Local Proofs and Interpolants

Krystof Hoder
Laura Kovacs
Andrei Voronkov

Interpolants

Craig's Interpolation Theorem

Let R, B be closed formulas and let $R \vdash B$.

Then there exists a formula / such that

- 1. $R \vdash I$ and $I \vdash B$;
- 2. every symbol of / occurs both in *R* and *B*;

I is called an **interpolant** of R and B.

Motivation

Bounded model-checking

- checks safety property after N unrollings
- good for finding bugs
- not so good for proving correctness
 - showing that bug isn't in the first N iterations is not enough
- correctness can be proved by finding an invariant
 - 1) implied by initial states
 - 2) preserved by transition
 - 3) implies safety property
- R formula contains first few unrollings, B the rest together with safety property
 - we get (1) and (3), hope to get (2) as well

$$R \vdash I$$
 and $I \vdash B$

we may get either $a_2=1 \land b_2=0$ (useless) or $a_2 \oplus b_2$ (desider invariant)

Interpolation Through Colors

- There are three colors: blue, red and grey.
- Each symbol (function or predicate) is colored in exactly one of these colors.
- We have two formulas: R and B.
- Each symbol in R is either red or grey.
- Each symbol in B is either blue or grey.
- ▶ We know that $\vdash R \rightarrow B$.
- Task of interpolation: find a grey formula / such that
 - 1. $\vdash R \rightarrow I$;
 - 2. $\vdash I \rightarrow B$.

Local Proofs

Local proofs: No inference mixes blue and red symbols

- $ightharpoonup R := \forall x(x = a)$
- \triangleright B := c = b

Non-local proof

$$\begin{array}{c|c}
x = a \\
\hline
c = a
\end{array}$$

$$\begin{array}{c|c}
x = a \\
b = a
\end{array}$$

$$c \neq b$$

$$\bot$$

Local Proof

$$\frac{x = a \quad y = a}{x = y \quad c \neq b}$$

$$\frac{y \neq b}{\bot}$$

Extracting Interpolants from Local Proofs

Given an unsatisfiable set $\{R, B\}$.

A reverse interpolant / of R and B is a formula such that:

- 1. $R \vdash I$ and $\{I, B\}$ is unsatisfiable;
- 2. every symbol of I occurs both in I and I.

Easy case: Contradiction follows from R, so interpolant is \bot

Still quite easy:
G₁ is interpolant as it follows
from R and is unsat with B

Basic Idea

A bit more subtle:

 $\{G_1, B\}$ is unsat, but G_1 but doesn't follow from R alone. However it follows from R Λ G_2 , and G_2 follows from B.

Therefore $G_2 \rightarrow G_1$ is an interpolant.

Extracting Interpolants from Local Proofs

Proof Localization

- Not many tools generate local proofs
 - most SMT solvers don't output any proofs at all
- Under few reasonable conditions proofs can be localized
 - only constants are colored
 - input formulas do not mix colors
- We can quantify away the colored symbols

Given $R(a) \vdash B$ where a is an uninterpreted constant not occurring in B.

Then, $R(a) \vdash (\exists x) R(x)$ and $(\exists x) R(x) \vdash B$.

Proof Localization

Given $R(a) \vdash B$ where a is an uninterpreted constant not occurring in B.

Then, $R(a) \vdash (\exists x) R(x)$ and $(\exists x) R(x) \vdash B$.

- Naïve approach
 - quantify away all colored symbols in R and get interpolant $(\exists x)R(x)$ $(\exists x_0,y_0,x_1,y_1)(x_0=1 \land y_0=0) \\ \land x_1=x_0-->y_0 \land y_1=y_0-->x_0$

 $\land a_2 = x_1 --> y_1 \land b_2 = y_1 --> x_1$

does not give a "nice" interpolant

Detect non-local parts of the proof and try to localize locally

• May still require non-local transformations

- G₁,...,G₄ are conclusions of symbol-eliminating inferences
 - their premises are colored, they themselves not (i.e. they are grey)
- A subset of sym-el formulas forms digest, the set of formulas used in the interpolant
- We try to modify the proof so that different formulas appear in the digest

Idea: Change the grey areas of the local proof

Slicing off formulas

If A is grey: Grey slicing

Idea: Change the grey areas of the local proof, but preserve locality!

Slicing off formulas

$$\frac{B_0}{G_0}$$
 $\frac{R_0}{G_1}$ $\frac{B_0}{G_0}$ slicing off G_1

$$\frac{\frac{R_{1}}{G_{3}} \frac{G_{1}}{G_{4}}}{\frac{G_{3}}{G_{4}}}
\frac{\frac{G_{5}}{G_{4}}}{\frac{R_{3}}{G_{6}}}
\frac{\frac{R_{4}}{G_{7}}}{\frac{L}}$$

Digest: $\{G_4, G_7\}$

Reverse interpolant: $G_4 \rightarrow G_7$

Digest: $\{G_5, G_7\}$

Reverse interpolant: $G_5 \rightarrow G_7$

$$\frac{R_{1} \quad G_{1}}{G_{3}}$$
 $\frac{R_{1} \quad G_{2}}{G_{3}}$
 $\frac{R_{3}}{G_{6}}$
 $\frac{R_{4}}{G_{7}}$

Digest: $\{G_6, G_7\}$

Reverse interpolant: $G_6 \rightarrow G_7$

$$\frac{R_1 \quad G_1}{G_3} \quad \frac{B_1 \quad G_2}{G_3}$$

$$\frac{R_3}{G_6} \quad \frac{R_4}{\Box}$$

Digest: { G₆}

Reverse interpolant: $\neg G_6$

Note that the interpolant has changed from $G_4 \rightarrow G_7$ to $\neg G_6$.

- ▶ There is no obvious logical relation between $G_4 \rightarrow G_7$ and $\neg G_6$, for example none of these formulas implies the other one;
- These formulas may even have no common atoms or no common symbols.

If grey slicing gives us very different interpolants, we can use it for finding small interpolants.

Problem: if the proof contains n grey formulas, the number of possible different slicing off transformations is 2^n .

Solution:

encode all sequences of transformations as an instance of SAT

Solution:

encode all sequences of transformations as an instance of SAT

$$\frac{\frac{R}{G_1}}{\frac{B}{G_2}}$$

Some predicates on grey formulas:

- sliced(G): G was sliced off;
- red(G): the trace of G contains a red formula;
- blue(G): the trace of G contains a blue formula;
- grey(G): the trace of G contains only grey formulas;
- digest(G): G belongs to the digest.

Solution:

- encode all sequences of transformations as an instance of SAT
- solutions encode all slicing off transformations

$$\frac{\frac{R}{G_1}}{\frac{B}{G_2}}$$

Some predicates on grey formulas:

- sliced(G): G was sliced off;
- red(G): the trace of G contains a red formula;
- blue(G): the trace of G contains a blue formula;
- grey(G): the trace of G contains only grey formulas;
- digest(G): G belongs to the digest.

```
\neg \operatorname{sliced}(G_1) \to \operatorname{grey}(G_1)

\operatorname{sliced}(G_1) \to \operatorname{red}(G_1)

\neg \operatorname{sliced}(G_3) \to \operatorname{grey}(G_3)

\operatorname{sliced}(G_3) \to (\operatorname{grey}(G_3) \leftrightarrow \operatorname{grey}(G_1) \land \operatorname{grey}(G_2))

\operatorname{sliced}(G_3) \to (\operatorname{red}(G_3) \leftrightarrow \operatorname{red}(G_1) \lor \operatorname{red}(G_2))

\operatorname{sliced}(G_3) \to (\operatorname{blue}(G_3) \leftrightarrow \operatorname{blue}(G_1) \lor \operatorname{blue}(G_2))

\operatorname{digest}(G_1) \to \neg \operatorname{sliced}(G_1)

...
```

Solution:

- encode all sequences of transformations as an instance of SAT;
- solutions encode all slicing off transformations;
- compute small interpolants: smallest digest of grey formulas;

$$\min_{\{G_{i_1},...,G_{i_n}\}} \left(\sum_{G_i} \mathsf{digest}(G_i)\right)$$

$$\min_{\{G_{i_1},...,G_{i_n}\}} \left(\sum_{G_i} \text{quantifier_number}(G_i) \, \text{digest}(G_i) \right)$$

- use a pseudo-boolean optimisation tool or an SMT solver to minimise interpolants;
- minimising interpolants is an NP-complete problem.

Conclusion

- We localise proofs by quantifying away colored constants;
- We minimise interpolants by:
 - expressing constraints on grey formulas;
 - finding a minimal interpolants as a solution to the constraint system;
- Experiments show that interpolants become smaller in size, weight, or number of quantifiers;
 - ▶ 9632 first-order examples from the TPTP library: for example, for 2000 problems the size of the interpolants became 20-49 times smaller;
 - 4347 SMT examples:
 - we used Z3 for proving SMT examples;
 - Z3 proofs were localised in Vampire;
 - minimal interpolants were generated for 2123 SMT examples.