Local Proofs and Interpolants

Krystof Hoder
Laura Kovacs

Andrei Voronkov

Interpolants

Craig’s Interpolation Theorem
Let R, B be closed formulas and let R + B.

Then there exists a formula / such that
1. A+ /land I+ B;
2. every symbol of / occurs both in A and B;

[is called an interpolant of A and B.

Motivation

a,=1

Bounded model-checking a,=1 b0=o
* checks safety property after N unrollings b,=0 ao_ 4 —>b
1~ “0 0

e good for finding bugs

* not so good for proving correctness bu=bi—>a, a=a,->b,
showngthatbugtnthe fstN 50, Vb, beb,o,
e correctness can be proved by finding an a;=a, > b,
invariant by=b,-->a,
1) implied by initial states a,=a;--> b,
2) preserved by transition b,=b,-->a,

3) implies safety property ~a,

* R formula contains first few unrollings, B b

the rest together with safety property *

— we get (1) and (3), hope to get (2) as well we may get either

RE/and /- B 22r= 1 Ab,=0 (useless)

a,® b, (desider invariant)

vV v. v v Y

Interpolation Through Colors

There are three colors: blue, red and grey.

Each symbol (function or predicate) is colored in exe
these colors.

We have two formulas: A and B.

Each symbol in A is either red or grey.
Each symbol in B is either blue or grey.
We know that - R — B.

Task of interpolation: find a grey formula / such that

1. FR—[;
2. V1 — B.

>tly one of

Local Proofs

Local proofs: No inference mixes blue and red symbols

» A:=VXx(x = a)
» B:=c=0b>

Non-local proof

c=a b=a
c=>b c#Db
1

Local Proof

Extracting Interpolants from Local
Proofs

Interpolant: boolean combination of {Gj, ..., G4}
[McMillan05, KV09]

Given an unsatisfiable set {R, B}.
A reverse interpolant / of A and B is a formula such that:

1. R+ /and {/, B} is unsatisfiable;

[]
2. every symbol of / occurs both in A and B. B a S I C I d e a

Easy case:
Contradiction follows from
R, so interpolantis L

A bit more subtle:

{G,, B} is unsat, but G, but doesn’t
follow from R alone. However it
follows from R A G,, and G, follows
from B.

Therefore G, --> G, is an interpolant.

Still quite easy:
G, is interpolant as it follows
from R and is unsat with B

Extracting Interpolants from Local
Proofs

Proof Localization

* Not many tools generate local proofs
— most SMT solvers don’t output any proofs at all

 Under few reasonable conditions proofs can
be localized

— only constants are colored
— input formulas do not mix colors

 We can quantify away the colored symbols

Given H(a) - B where a is an uninterpreted constant not occurring in B.

Then, R(a) + (Ix)H(x) and (Ix)H(x) + B.

Proof Localization

Given H(a) - B where ais an uninterpreted constant not occurring in B.

Then, R(a) + (3x)H(x) and (Ix)H(x) F B.

* Naive approach
— quantify away all colored symbols in R and get

: (T %o Yo X1,Y1) (Xg=1 A y,=0
interpolant (3x)FA(x) e T
— does not give a “nice” interpolant A a=x->y; A b=y, > x,)
* Detect non-local parts of the proof and try to
localize locally Ri(a) Ri(a)
Rg(a) B
A A

* May still require non-local transformations

Interpolant Minimization

G,AG,A-G,

* G,,...,G, are conclusions of

symbol-eliminating
inferences

— their premises are colored,
they themselves not (i.e. they
are grey)

A subset of sym-el formulas
forms digest, the set of
formulas used in the
interpolant

We try to modify the proof
so that different formulas
appear in the digest

Proof Transformations

l|dea: Change the of the local proof

Slicing off formulas

A - An A At -+ An Anp

AO inciﬂg_c))ff A AO

If Ais grey: slicing

Proof Transformations

ldea: Change the grey areas of the local proof, but preserve locality!

Slicing off formulas

Ro

By G By Ry

slicing off ¢

Proof Transformations

Gs Gy
Gs
Rs Gs
R4
G,
1

Digest: { G4, G7}

Reverse interpolant: G, — Gy

Proof Transformations

Digest: {65, G7}
Reverse interpolant: G5 — Gy

Proof Transformations

R Gy By Go

Digest: {G@, G7}

Reverse interpolant: G — Gy

Proof Transformations

R 1 G1 B1 Gz

=P

Digest: { Gg}

Reverse interpolant: —Gg

Proof Transformations

Note that the interpolant has changed from G, — G; to —Gs.

» There is no obvious logical relation between G4 — G7 and —Gg,
for example none of these formulas implies the other one;

» These formulas may even have no common atoms or no
common symbols.

Interpolant Minimization

If grey slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n grey formulas, the number of possible
different slicing off transformations is 2".

Solution:
» encode all sequences of transformations as an instance of SAT

Interpolant Minimization

Solution:
» encode all sequences of transformations as an instance of SAT

Gs

Some predicates on grey
formulas:

» sliced(G): G was sliced
off;

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

» grey(G): the trace of G
contains only grey
formulas;

» digest(G): G belongs to
the digest.

Interpolant Minimization

Solution:

» encode all sequences of transformations as an instance of SAT
» solutions encode all slicing off transformations

R B
G G
Gs

Some predicates on grey
formulas:

>

>

sliced(G): G was sliced
off;

red(G): the trace of G
contains a red formula;

blue(G): the trace of G
contains a blue formula;

grey(G): the trace of G
contains only grey
formulas;

digest(G): G belongs to
the digest.

—sliced(Gi) — grey(Gi)

sliced(G1) — red(Gy)

—sliced(Gsz) — grey(Gs)

sliced(G3) — (grey(Gs) < grey(Gi) A grey(Gz))
sliced(G3) — (red(G3) < red(Gy) V red(Gz))
sliced(Gs) — (blue(Gs) + blue(G1) V blue(Gz))
digest(Gi) — —sliced(Gy)

_>
_>

Interpolant Minimization

Solution:
» encode all sequences of transformations as an instance of SAT;
» solutions encode all slicing off transformations;

» compute small interpolants: smallest digest of grey formulas;

......

Gi

» use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

» minimising interpolants is an NP-complete problem.

Conclusion

» We localise proofs by quantifying away colored constants;

» We minimise interpolants by:

> expressing constraints on ;
» finding a minimal inte nis as a solution to the constraint
system;

» Experiments show that interpolants become smaller in size,
weight, or number of quantifiers;

» 9632 first-order examples from the TPTP library:
for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

» 4347 SMT examples:

» we used Z3 for proving SMT examples;
» Z3 proofs were localised in Vampire;
» minimal interpolants were generated for 2123 SMT examples.

