## Axiom Selection for Large Theory Reasoning

Kryštof Hoder Andrei Voronkov

# Large Theory Reasoning in First-Order Logic

- Traditional FO problems
  - Not too many axioms
  - Axiomatizations of algebras, set theory
- Large theory problems
  - Many axioms, most of them are irrelevant to the conjecture
- Axiom selection
  - attempts to remove the irrelevant and keep the important

### Structure of a First-Order problem



## Sources of Large Theory Problems

- Ontology reasoning
  - SUMO, YAGO, CyC





- Up to 10m axioms
- Proofs involve few axioms, almost no equalities
- Mathematical libraries
  - Mizar Mathematical Library



- Tens of thousands axioms
- More complex proofs, equalities

## **Problems with Large Theories**

### Preprocessing

Quadratic algorithm becomes a problem with 10m axioms

### Indexing

Algorithms may assume small signature size



### Saturating irrelevant axioms

E.g. transitive closure leads to quadratic amount of axioms (but it can be even much worse)



## Performance of our Algorithm

| LTB       | SInE-VD<br>0.3 | SInE<br>0.3 | /ampire-LTB<br>10.0 | iProver-LTB<br>0.5c | MaLARea<br>0.3 |         | EP-LTB<br>1.0pre | randoCoP<br>1.1 |
|-----------|----------------|-------------|---------------------|---------------------|----------------|---------|------------------|-----------------|
| Attempted | 150            | 150         | 150                 | 150                 | 150            | 150     | 150              | 150             |
| Solved    | 88             | 86          | 76                  | 62                  | 52             | 34      | 32               | 23              |
| Av. Time  | 389.45         | 402.85      | 446.71              | 520.06              | 568.66         | 1058.82 | 1125.00          | 1388.28         |
| Solutions | 88             | 85          | 76                  | 0                   | 52             | 0       | 32               | 23              |

| TTD       | Vampire-LTB | iProver-SInE | SInE-LTB   | leanCoP-SInE | -LTB         | EP-LTB        |
|-----------|-------------|--------------|------------|--------------|--------------|---------------|
| LID       | <u>11.0</u> | <u>0.7</u>   | <u>0.4</u> | <u>2.1</u>   | <u>.1pre</u> | <b>1.1pre</b> |
| Attempted | 100         | 100          | 100        | 100          | 100          | 100           |
| Solved    | 69          | 67           | 64         | 35           | 18           | 18            |
| Av. Time  | 24.53       | 76.46        | 75.33      | 110.81       | 63.39        | 77.79         |
| Solutions | 69          | 0            | 64         | 35           | 0            | 18            |
|           |             |              |            |              |              |               |

| LTB         | Vampire- | Currahee | iProver-S | Vampire-1 | iProver-E | E-LTB<br>1.2pre | leanCoP-S |
|-------------|----------|----------|-----------|-----------|-----------|-----------------|-----------|
| Solved      | 104/150  | 87/150   | 87/150    | 58/150    | 52/150    | 40/15           | 3/150     |
| Av. CPU Tin | 13.50    | 84.42    | 94.91     | 22.67     | 127.39    | 22.3            | 1.80      |
| Av. WC Time | 6.38     | 23.00    | 30.29     | 22.94     | 38.83     | 6.83            | 2.00      |
| Solutions   | 94/150   | 0/150    | 0/150     | 58/150    | 0/150     | 0/15            | 3/150     |

| LTB/225     | Vampire- | E-LTB   | iProver-Sl | iProver-E | -KRHyp |
|-------------|----------|---------|------------|-----------|--------|
| L 1 D/225   | 1.8      | 1Apre   | 0.9        | 0.7       | 1.2    |
| Solved      | 139/225  | 111/225 | 54/225     | 17/225    | 14/225 |
| Av. WC Time | 3.62     | 21.33   | 15.86      | 22.88     | 4.95   |
|             |          |         |            |           |        |

## Idea: Simple Relevance

- Based on mutual occurrences of symbols in axioms
- Symbol s is 0-relevant if it occurs in the goal
- If s is d-relevant and appears in axiom A, A and all symbols in A become (d+1)-relevant
  - d-relevance implies also (d+N)-relevance
- Select *d*-relevant axioms  $d \in \{1,...,\infty\}$

subclass(beverage, liquid) subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)



## Problem: Common Symbols

- With this notion of relevance almost all axioms are usually selected
- Common symbols (such as 'subclass' or 'subsumes') make relevant otherwise unrelated symbols

subclass(beverage, liquid)
subclass(beer, beverage)
subclass(chair, furniture)

? subclass(beer, liquid)



### Solution: Trigger-Based Selection

- We had
   If s is d-relevant and appears in A, A and all symbols in A become (d+1)-relevant
- Assuming a 'triggers' relation between symbols and axioms:

If s is d-relevant and triggers A, A and all symbols in A become (d+1)-relevant

subclass(beverage, liquid) subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)

We want:

**0:** subclass beer liquid

**1:** beverage

## What Is a Common Symbol?

- There is no a priori information on symbol commonness
- We approximate it by number of occurrences
  - more common symbols appear in more axioms

subclass(beverage, liquid)
subclass(beer, beverage)
subclass(chair, furniture)

| Occ. | Symbols                           |
|------|-----------------------------------|
| 3    | subclass                          |
| 2    | beverage                          |
| 1    | liquid, beer,<br>chair, furniture |

## 'Triggers' relation

| Occ. | Symbols                           |
|------|-----------------------------------|
| 3    | subclass                          |
| 2    | beverage                          |
| 1    | liquid, beer,<br>chair, furniture |

- Should penalize common symbols
- But not ignore them completely

```
subclass(x, y) \land subclass(y, z) \rightarrow subclass(x, z)
```

Our solution:

Only the least common symbols trigger an axiom.

1: subclass(beverage, liquid)

1: subclass(beer, beverage) subclass(chair, furniture)

? subclass(beer, liquid)

O: subclass beer liquid

**1:** beverage

## Incompleteness, Unstability

 Small difference in number of occurrences can lead to loss of important axioms 1:  $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$ 

subclass(petrol, liquid)

¬subclass(stone,liquid)

2: subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer)

| Occ. | Symbols                 |
|------|-------------------------|
| 7    | subclass                |
| 3    | liquid                  |
| 2    | beer, beverage          |
| 1    | petrol, stone, guinness |

? subclass(beer,liquid)

**0:** subclass beer liquid

**1:** beverage

## Incompleteness, Unstability

- Small difference in number of occurrences can lead to loss of important axioms
- Or simply too little axioms may be selected
- We need a possibility to extend the 'triggers' relation

1:  $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$ 

subclass(petrol, liquid)
-subclass(stone, liquid)
subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer) subclass(pilsner,beer)

| Occ. | Symbols                             |
|------|-------------------------------------|
| 7    | subclass                            |
| 3    | liquid, beer                        |
| 2    | beverage                            |
| 1    | petrol, stone,<br>guinness, pilsner |

? subclass(beer,liquid)

**0:** subclass beer liquid

### Tolerance

### t=1.5:

- We had
  - Only the least common symbols trigger an axiom
- Having tolerance parameter t:
  - Only symbols with t times more occurrences than the least common symbol trigger an axiom
- For t=∞ the selection degrades to the simple relevance

1:  $subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)$ 

subclass(petrol, liquid)

¬subclass(stone,liquid)

2: subclass(beverage, liquid)

1: subclass(beer,beverage) subclass(guinness,beer) subclass(pilsner,beer)

| Occ. | Symbols                             |
|------|-------------------------------------|
| 7    | subclass                            |
| 3    | liquid, beer                        |
| 2    | beverage                            |
| 1    | petrol, stone,<br>guinness, pilsner |

? subclass(beer, liquid)

**0**: subclass

beer liquid

1:

beverage

### Implementation

### Preprocessing

- Linear in the size of theory axiomatization
- Two passes through the theory axioms:
  - Count symbol occurrences
  - Record axioms triggered by each symbol

### Selection

- Linear in the size of the resulting set of axioms
  - goal + selected axioms
- Iteratively selecting
   d-relevant axioms
   based on (d-1)-relevant
   symbols discovered in
   previous iteration
- Preprocessing can be modified to support selection with different tolerance values

## Experiments

### Two parameters:

- **t** Tolerance
- **d** Depth limit (selects *d*-relevant axioms)

### Problem sizes

| problems | average size (axioms) | average size (atoms) |
|----------|-----------------------|----------------------|
| SUMO     | 298,420               | 323,170              |
| CYC      | 3,341,990             | 5,328,216            |
| Mizar    | 44,925                | 332,143              |

#### CYC:

| $d \backslash t$ | 1.0   | 1.2    | 1.5     | 2.0     | 3.0     | 5.0     |
|------------------|-------|--------|---------|---------|---------|---------|
| 1                | 29    | 35     | 41      | 47      | 60      | 72      |
| 2                | 142   | 287    | 442     | 607     | 1027    | 1476    |
| 3                | 505   | 937    | 1451    | 2484    | 5311    | 10482   |
| 4                | 1784  | 3232   | 5716    | 11603   | 29963   | 69015   |
| 5                | 4432  | 8870   | 16806   | 37599   | 110186  | 249192  |
| 7                | 10698 | 25607  | 56337   | 150277  | 431875  | 832935  |
| $\infty$         | 36356 | 495360 | 1310965 | 1562064 | 1822427 | 2057597 |

### Numbers of selected axioms

#### SUMO:

| $d \backslash t$ | 1.0  | 1.2  | 1.5   | 2.0   | 3.0   | 5.0    |
|------------------|------|------|-------|-------|-------|--------|
| 1                | 12   | 13   | 14    | 16    | 21    | 28     |
| 2                | 70   | 82   | 115   | 158   | 272   | 654    |
| 3                | 188  | 230  | 372   | 762   | 1950  | 5980   |
| 4                | 316  | 470  | 942   | 3021  | 8720  | 23440  |
| 5                | 540  | 979  | 2417  | 8179  | 22644 | 52241  |
| 7                | 1027 | 2708 | 8517  | 24445 | 54958 | 97481  |
| $\infty$         | 1116 | 8361 | 26959 | 57322 | 82379 | 107926 |

#### Mizar:

| $d \backslash t$ | 1.0  | 1.2   | 1.5   | 2.0   | 3.0   | 5.0   |
|------------------|------|-------|-------|-------|-------|-------|
| 1                | 4903 | 4911  | 4921  | 4936  | 4973  | 5038  |
| 2                | 5296 | 5395  | 5553  | 5823  | 6427  | 7743  |
| 3                | 6118 | 6451  | 7068  | 8280  | 10841 | 16337 |
| 4                | 6893 | 7556  | 9001  | 12176 | 18300 | 28878 |
| 5                | 7432 | 8517  | 11165 | 16945 | 26842 | 37284 |
| 7                | 7897 | 9991  | 15788 | 26203 | 36507 | 41443 |
| $\infty$         | 8047 | 15987 | 28353 | 35345 | 39389 | 41762 |

### Experiments

### Solved problems

| atoms     | only with Sine | only without Sine | together |
|-----------|----------------|-------------------|----------|
| 10,000    | 243            | 64                | 721      |
| 20,000    | 217            | 10                | 542      |
| 40,000    | 208            | 7                 | 464      |
| 80,000    | 187            | 3                 | 373      |
| 160,000   | 138            | 1                 | 243      |
| 320,000   | 80             | 1                 | 168      |
| 640,000   | 50             | 0                 | 100      |
| 1,280,000 | 50             | 0                 | 50       |
| rating 1  | 232            | 25                | 402      |

Implemented in Vampire ( <a href="http://vprover.org">http://vprover.org</a>)