The Vampire Theorem Prover

Krystof Hoder
Andrei Voronkov

Automated First-Order
Theorem Proving

 Automated * First-Order
— we do not rely on user — predicate logic with
interaction equality

— can be used a black-box e Extensions

by other tools _ sorts

— arithmetic
e Automated First-Order

— undecidability — not all can be solved od
— but we keep getting better oil

2005 2006 2007 2008 2009 2010 2011

relative CASC performance of a
reference prover Otter 3.3

TPTP

Domains of TPTP benchmarks:

 TPTP is a universal input
language for FO provers

* Also alibrary of
categorized real-life
benchmarks

fof(kb_SUMOONLY_167,axiom,(
I'[V_ROW1,V__ROW2]:
((s__instance(V__ROW2,s Agent)
& s__instance(V__ROW1,s__TelecomNumber))
=>(s__workPhoneNumber(V__ROW1,V_ ROW2)

=>s_telephoneNumber(V__ROW1,V__ROW2))))).

tff(sum_something_0 samething,conjecture,(
I[X: Sint] :
((Sless(-1,X)
& Sless(X,1))
=>Ssum(21,X) =21))).

Agents

General Algebra
Analysis

Arithmetic

Boolean Algebra
Category Theory
Combinatory Logic
Computing Theory
Commonsense Reasoning
Data Structures

Fields

Geography

Geometry

Graph Theory

Groups

Homological Algebra
Henkin Models
Hardware Creation
Hardware Verification
Kleene Algebra
Knowledge Representation
Lattices

Logic Calculi

Left Distributive
Medicine
Management
Miscellaneous
Natural Language Processing
Number Theory
Planning

Processes

Puzzles

Quantales

Relation Algebra
Rings

Robbins Algebra
Social Choice Theory
Set Theory
Semantic Web
Software Creation
Software Verification
Syntactic

Topology

@ CASC

* “World championship” in automated theorem
proving

e Several divisions, mostly fragments first-order
logic
— unit equalities, CNF, EPR, general FOF
— recently also higher-order logic and arithmetic

* Held annually in summer

— the release dates of theorem provers tend to
coincide with the competition date

Vampire Architecture

* Input are general FOF formulas

TPTP SMTLIB 1.2 e Reasoning calculi work with CNF
— Conjunctive (or Clausal) Normal
Form
S AG S— — Clause: disjunction of literals

* p(a)\/ ~a(b) \/ a=b
— CNF: conjunction of clauses
e Clausification

— can obscure some information in
the problem
— p<=>(q|r)
Resolution Instantiation Tabulation _ (Np \/ q \/ r) /\

(p\V~a)/\(p\ ~r)

— Preprocessing can exploit this
before conversion to CNF

Proof Answer Interpolant

Preprocessing

Sine axiom selection
— we will discuss later
Definition elimination
— removal of unused
— inlining
* may be restricted to avoid
blow-up

— both predicate and function
definitions
Pure predicate removal
Equality propagation
x!I=a | p(x)
p(a)

Clausification

FOF --=> ENNF --> NNF

— NNF has only quantifiers, &, |
and literals

Skolemization
NNF --> CNF

— using de Morgan rules

— (a&Db) | (c&d)
(@lc)&(a]d)&(b]c)&(b]d)

— Naming can reduce number
of generated clauses

— (@&b)|n
(c&d) | ~n

Internal representation

e Terms and literals e (Clauses

— shared by a hash table — objects with several pre-
computed values and a tail

— “prolog” representation _
array of literals

header | stop argN arg2 argl . Formulas
— rather naive
10 oo implementation, not
Term* shared, not garbage
varnum |01 collected
spec var num | 1] 1 — work in progress on a

representation using

— fast equality tests quantified and-inverter

— pre-computed values graphs (QAIG)

(weight, variable count,...)

Resolution and superposition calculus

Most important rules:

e Resolution e Subsumption
AIC ~BID c b
(C|ID)o
o...mgu(A,B) D 2 Co
* Superposition * Demodulation
Als]IC [=r|D [=r €lo]
(A[r]IC| D)o Clro]

o...mgu(s,l) lo>ro

Some of the ordering and literal selection constraints are omitted.

Resolution and superposition calculus

e Resolution

e Subsumption

AIC ~BID c P
No
(¢1D)o equalit
O...mgu(A,B) D 2 Co . y
multiset
e Superposition * Demodulation
Als]IC [=r|D [=r €lo]
(A[r]IC1 D)o Clro] equality
lo>-ro

o...mgu(s,l)

generation rules
use unification

simplifying rules
use matching

Indexing

Substitution trees

Unification, Matching,
Instance retrieval

O
*0 = f(i%*l)
= / " —a\ 2 = g(d)
*1 = g(d) *1 = g(x1)
/ \))
*1{T}331 *1{;}@
(1) f(mltxl)v (2) f($1=x2):

Code trees

Matching

Patterns compiled into a tree
of abstract machine programs

Instructions such as

<bind var 1 to current term and
move to next term>

<check current symbol is f and
move to its first argument>

<check var 2 binding is equal to
the current term and move to the
next term>
When a check fails, we
backtrack in the tree

Calculus extensions

Splitting
— splits long clauses into shorter ones (under some conditions) and does
case analysis

Separate propositional reasoning

— we can move propositional predicates out of the first-order reasoning
and deal with them separately

— using BDDs and SAT solver
Unit-resulting hyper-resolution
— a,b,c,~a|~b |~ |d > d
Global subsumption resolution
— uses SAT solver to find redundant parts of clauses
— say we have clauses p | b, “b | ~a and derivep | a

— from the existing clauses we know that ~p --> ~a, so we can simplify p
| aintop

Strategies

Enabling and disabling various rules and extensions
gives a large amount of possible strategies

We use a computer cluster to explore the strategy
space
— evaluate random strategies on problems from the TPTP
library
— take the best strategies and try to improve them further

Then we build a “CASC mode”
— automatically selects a sequence of strategies to use for
solving a particular problem

— puts problem into one of 43 classes, each class has its
sequence of strategies

What Matters?

* Features that made a significant improvement
— Sine
— DPLL-style splitting
— Unit hyper-resolution
— Code trees
* Spider
— our strategy evaluation system
* The wide variety of strategies

— it’s better to have two complementary strategies that

each solve 70 distinct problems than one that solves
100

End of the first part

* Any questions?

