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Trees

A tree is a directed graph with the property

There is one node (the root) from which all other nodes can be

reached by exactly one path.

Seen lots of examples.

• Parse Trees

• Decision Trees

• Search Trees

• Family Trees

• Hierarchical Structures

– Management

– Directories

Trees 2-1
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Trees have natural recursive structure

Any node in tree has number of children each of which is a tree.
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Descriptions of Graphs and Trees

A directed graph is a pair (N,E) consisting of a set of nodes N, together

with a relation E on N. There is no restriction on the relation E.

aE b iff there is an edge from a to b
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n3
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A tree is a graph (N,P) (where the relation P is called has parent), with the

following property

For any node n, there is at most one node n′ with nPn′.
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• If there is no node n′ with nPn′, n is called a root node.

• A tree with a single root node is called a rooted tree. Often the word tree

is used to mean rooted tree, and the more general collection is known as

a forest of trees.

• For any node n, the set {n′ | n′Pn} is called the set of children of n.

• If a node n has no children it is called a leaf

Not difficult to see that this is equivalent to the more normal recursive

definition of a rooted tree
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Height and Depth

For any node n in a tree the depth of n is the length of the path from the root

to n (so the root has depth 0)

For any node n in a tree the height of n is the length of the longest path from

n to a leaf (so all leaves have height 0)

The height of a tree is the height of its root.
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Representations of Trees

In this section we look at different ways in which rooted trees can be

represented in a programming language

Have seen both SML and C representations of binary trees.

datatype ’a TREE = Empty

| Node of (’a TREE * ’a * ’a TREE)

Trees 2-7
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and in C

typedef struct TreeNode *PtrToNode;

struct TreeNode {

ElementType element;

PtrToNode left;

PtrToNode right;

};

typedef PtrToNode Tree;
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DH

A

B C

E F G
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Non-binary trees are almost as simple

datatype ’a TREE = Empty

| Node of (’a * ’a TREE list)
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and

typedef struct TreeNode *PtrToNode;

struct TreeNode {

ElementType element;

PtrToNode FirstChild;

PtrToNode NextSibling;

};

typedef PtrToNode Tree;
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This looks almost the same as the binary tree representation, but is

interpreted quite differently

A

B C D

E F G H I J
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Traversing Trees

Can list the nodes of a tree in one of several orders

• Preorder: List the node, then recursively list all children subtrees

• Postorder: Recursively list all children subtrees, then list the node

• Inorder: Only suitable for binary trees. List left subtree, node, then right

subtree

Exercise: Write preorder and postorder listing functions for both the binary

and n-ary trees.
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A Pointer-Free Representation

Suppose the nodes of a tree have names 1. . .n (or something that we can

conveniently map to 1. . .n).

We can represent a tree (or even a forest of trees) with these nodes by use

of single array.

The array element a[i] should contain the parent of the node i, or if i is a

root node, i itself.
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So the array

index 1 2 3 4 5 6

contents 1 2 5 5 5 2

Represents the forest of trees
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Note that there is no restriction here on the amount of branching in the tree,

since we give the parent relation directly, and not the children.
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How would we find the first child of a node or next sibling in this context?
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This representation is very useful for representing a partition of the set

1. . .n.

A partition of a set X is a set of subsets Xi with the properties

• The union of all the sets Xi is X i.e.
⋃

Xi = X

• All the sets Xi are pairwise disjoint i.e. ∀i, j · Xi ∩Xj = /0

So {{1,3},{2},{4}} is a partition of the set {1,2,3,4}.
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A simple way of representing a partition is by using a forest of trees

For example

X = {1,2,3,4,5,6}

The partition {{1},{2,6},{3,4,5}} can be represented by the forest
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To determine whether 2 elements are in the same member of the partition,

just find the root of the trees they are in.
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To combine two elements of the partition, just ‘graft’ the trees together, by

making the root of one tree the parent of the root of the other.

e.g. to combine {2,6} and {3,4,5}

� �� �

� �� �
�
�
�
�

�
�
�
�
2

6

� �� �

� �	 	 
 
� �

� �  � �� �

�
�
�
�

�
�
�
�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

2

6

43

5

� � �� �

� � �� � � � �� �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

     
     
     
     
     

! ! ! !
! ! ! !
! ! ! !
! ! ! !
! ! ! !

" " " " "
" " " " "
" " " " "
# # # # #
# # # # #
# # # # # 5

43

or

Can optimise the tree by flattening
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Binary Heaps

This is another type of tree with a pointer-free representation.

Recall from tutorial 3 that an essentially complete binary tree is one in which

all nodes have exactly two children, except possibly those at the lowest level,

which is filled from left to right.
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A binary tree has the heap property if the value of the key at any node is

less than or equal to the values of all the keys of its children.

13

16

22 35

20

32 24

26 33

Sometimes ‘greater than or equal to’ is used instead.
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A binary heap is a binary tree which has the type invariant

• it is essentially complete

• it has the heap property

The smallest element in a heap is always at its root.

All operations on a heap must preserve the type invariant
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The above heap (or any complete binary tree) can be stored in an array as

follows

index 0 1 2 3 4 5 6 7 8 9 10

value 13 16 20 22 35 32 24 26 33
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In general, the root is stored in slot 1, and the children of the element at

position i can be found at positions 2i and 2i + 1

To insert into a heap just insert after the last element (as long as there is

room.)

This can destroy the heap property, so then need to repair the heap to

reestablish the invariant.
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For example to insert 15 into the heap above

26 33

13

16

22 35

20

32 24

26 33

13

16

22

20

32 24

35

26 33

13

22

20

32 24

35

16

26 33

13

22

20

32 24

35

16

15
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The major use of heaps is as priority queues, so a general delete is not

usually needed.

Usual form of delete is deleteMin, which removes the smallest element

from the heap
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This is performed as follows

26 33

22

20

32 24

35

16

15

26 33
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20

32 24
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16

15

26 33
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20

32 24
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16
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32 24

15

16

35

Trees 2-27



CS2011 Binary Heaps (continued)'

&

$

%

If we delete the next lowest

26 33
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32 24

16

35

26 33
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32 2435
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32 2435
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and the next lowest
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Building Heaps

Given a list of keys, a heap can be built simply by using the insert function

described above.

A more efficient O(n) technique is the following:

• Put the list elements into the heap array in any order, without worrying

about heap invariant

• Turn the array into a heap as follows:

– Starting at the rightmost, deepest node with a child, swap its contents

with that of one of its children to ensure the heap property for the tree

below, then percolate that element down if necessary

– Work leftwards and upwards to the root.
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For example:

index 0 1 2 3 4 5 6 7 8 9 10

value 43 6 20 16 13 42 4 12 33

20

12 33

6

16 13 42 4

43

20

16 33

6

12 13 42 4

43

16 33

6

12 13 42

4

20

43

16 33

6

12 13 42

4

20

43

16 33

6

12 13 42 20

4

43

16 33

6

12 13 42

4

43

20
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Using this technique followed by removing the smallest element from the

heap until it is empty, gives an O(nlgn) sort technique called heapsort
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Priority Queues

Normal queues are FIFO devices

In a Priority Queue each element entering a queue is assigned a value,

usually a number, and the first element to leave the queue is that with the

lowest value.

Used in Operating Systems etc

Most common implementation of Priority Queues is the heap.
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Data Types for Priority Queues

struct HeapStruct {

unsigned int Capacity; /* Capacity of heap */

unsigned int Size; /* Current # of elements in heap */

ElementType *Elements;

};

typedef struct HeapStruct *PriorityQueue;

Trees 2-34



CS2011'

&

$

%

Initialising a Priority Queue

PriorityQueue

CreatePq( unsigned int MaxElements ) {

PriorityQueue H;

H = (PriorityQueue) malloc( sizeof( struct HeapStruct ) );

if( H == NULL )

FatalError("Out of space!!!");

/* Allocate the array + one extra for sentinel */

H->Elements= (ElementType *)

malloc((MaxElements+1)*sizeof(ElementType));

if( H->Elements == NULL )

FatalError("Out of space!!!");
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H->Capacity = MaxElements;

H->Size = 0;

H->Elements[0] = MINDATA; /* MINDATA less than ALL */

/* possible data elements */

return H;

}
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Insertion in a Priority Queue

/* H->element[0] is a sentinel */

void

insert( ElementType x, PriorityQueue H ) {

unsigned int i;

if( IsFull ( H ) )

error("Priority queue is full");

else {

i = ++H->Size;
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while( H->Elements[i/2] > x ) {

H->Elements[i] = H->Elements[i/2];

i /= 2;

}

H->Elements[i] = x;

}

}
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Deletion from a Priority Queue

ElementType

DeleteMin( PriorityQueue H ) {

unsigned int i, child;

ElementType MinElement, LastElement;

if( IsEmpty( H ) ) {

error("Priority queue is empty");

return H->Elements[0];

}

MinElement = H->Elements[1];

LastElement = H->Elements[ H->Size-- ];
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for (i=1; i*2<=H->Size; i=child ) {

child = i*2; /* find smaller child */

if((child!=H->Size) &&

(H->Elements[child+1] < H->Elements[child]))

child++;

if( LastElement > H->Elements[child] ) /*percolate */

H->Elements[i] = H->Elements[child];

else

break;

}

H->Elements[i] = LastElement;

return MinElement;

}
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Ordered Binary Trees

A binary tree is said to be ordered if, for every node n in the tree, the values

of the keys in its left subtree are smaller that the key at n, and those in the

right subtree are greater than the key at n.

The operations required on an ordered binary tree are

• Initialise a tree

• Find the location (if any) of a given key in a tree.

• Insert a given key in a tree.

• Delete a given key from a tree.

• List the contents of a tree.

For implementations of these see the lab exercise
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Another common operation is

• Find the largest/smallest element in a tree
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If we adopt a naı̈ve approach to insertion and the data is pre-sorted, the cost

of building a tree becomes quadratic in the size of the data (Why?)

One solution is to attempt to keep the tree balanced

There are several possible definitions of the term balanced, one is

A tree is balanced if every node has left and right subtrees whose

heights differ by at most 1

This is another type invariant

A tree with this property is called an AVL tree. (Adelson, Velski and Landis)
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For example

These trees are balanced
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These trees are not
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The problem is that when a new node is inserted, or an old one deleted, the

tree can become unbalanced

When inserting a new node in an AVL tree, find a place to put it in the usual

way

Then check the tree to be sure that it is still balanced

If tree has lost the AVL property, only nodes between inserted element and

root can have balance destroyed. (Why?)

Balancing algorithm performs at most 1 constant time operation on each of

the ancestors of the unbalanced node.

So, restoring the AVL property to the tree is an O(log N) operation.
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AVL trees: restoring the balance

For example if we insert 6 into the tree below, unbalances tree

First unbalanced ancestor of new node is node containing 9

Can restore balance by rotating unbalanced subtree.

5

2

1 4

3

7

6

5

2

1 4 7

3 6

9

9
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Suppose n is the first node (going up) which is unbalanced.

Four different possibilities

Imbalance due to insertion in left subtree of left child

Imbalance due to insertion in right subtree of right child

Imbalance due to insertion in right subtree of left child

Imbalance due to insertion in left subtree of right child

Trees 2-48



CS2011 AVL trees: restoring the balance (continued)'

&

$

%

Single right rotation, imbalance in left subtree of left child

T1 T2

T3 T1

T2 T3

A

B A

B
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Single left rotation, imbalance in right subtree of right child

T1

T2 T3

A

B

T1 T2

T3

A

B
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Now if we insert 8 into the tree below, unbalances tree

First unbalanced ancestor of new node is again node containing 9

Need two rotations to restore balance
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1 4 7

3

9

8
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Double left-right rotation, imbalance on right subtree of left child

T3

B

T1

T2

A T4

C
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T2

B

A

T1 T2 T3 T4

C

A

T1

B T4

C

T3
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Double right-left rotation, imbalance on left subtree of right child

B

T1

A

T2 T3

T4

C
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T2

T3 T4
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T3 T4
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AVL Trees: An example

Starting tree k4
�

�
�

�
�k2

�
�
��k1

@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7
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Insert 16
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Insert 15
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Insert 14, initial position
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After one rotation
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Final position, after two rotations
k4
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Insert 13 k7
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Insert 12 k7
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CS2011 AVL Trees: An example (continued)'
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CS2011 AVL Trees: An example (continued)'
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CS2011 AVL Trees: An example (continued)'
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CS2011 AVL Trees: An example (continued)'
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2-3 Trees

2-3 trees are search trees that maintain their balance by relaxing the

structural constraint of being a binary tree.

Some nodes have 2 children and some have 3, hence the name
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CS2011 2-3 Trees (continued)'
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A 2-3 tree is a tree with the following properties

• The root is either a leaf or has either 2 or 3 children

• All data is stored at the leaves.

• All leaves are at the same depth

The first two of these constraints are structural and the third is part of the

type invariant
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CS2011 2-3 Trees (continued)'
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The type invariant is completed with the following constraint

In each node, we store the value of smallest leaf in tree of second child, and

value of smallest leaf in tree of third child, if there is one
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CS2011 2-3 Trees (continued)'
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Wants to go between 8 and 12, so need to split 3 node into 2 2’s

But root now appears to have 4 children, so need to split and make new root
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CS2011 2-3 Trees (continued)'
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B trees

2-3 trees can be generalised to trees that have the following properties, for

some natural number M

• The root is either a leaf or has between 2 and M children

• All non-leaf nodes (except the root) have between dM/2e and M

children

• All leaves have the same depth.

Such trees are called B-trees of order M.

Main use is in database systems, where tree is on disk rather than in

memory

Want to minimise the number of disk accesses

B-trees are in general very shallow
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