
COMP20012 Tutorial 2

COMP20012 Tutorial 2: Algorithms and their Complexity – The
questions

This is to occupy one tutorial session. It covers material in Chapter 5 in the course textbook
(Data Structures and Problem Solving using Java, by Mark Allen Weiss, 2002). You should
attempt the questions, writing out full answers, before the tutorial. You may need to consult
the course textbook to help with some of the material.

Question 1.

Be prepared to explain to your tutor the following concepts:

1. Measures of the performance of an algorithm. Time and space complexity.

2. Worst-case, average-case and best-case complexity.

Question 2.

Describe the performance of the following algorithms using suitable measures of complexity.
You should make clear what operations you are counting, what is the worst-case that you are
considering, (and, perhaps, average-case and best-case, where appropriate). Consider also
space complexity.

1. Multiplication of two N×N matrices. Also, the N-th power of an N×N matrix, using
repeated matrix multiplication,

2. Long multiplication of integers (i.e. the standard digitwise multiplication of integers),

3. Integer division (i.e. an integer result, plus remainder) using ‘long division’.

Question 3.

The definition of the Fibonacci sequence is as follows:

f (0) = 0, f (1) = 1, f (n+2) = f (n+1)+ f (n).

This could be interpreted as a recursive algorithm for computing the Fibonacci sequence. Here
is an alternative algorithm:

static int fib(int n)
{

int [] FibSeq = new int[n+1];
FibSeq[0]= 0; FibSeq[1]= 1;
for (int i= 2; i <= n; i++)

FibSeq[i] = FibSeq[i-1] + FibSeq[i-2];
return FibSeq[n];

}



COMP20012 Tutorial 2

This creates an array containing the whole sequence up to the nth item. Yet only the two
immediate predecessors are required to calculate a value in the sequence. Use this idea to
recast this algorithm, removing the array and using instead two additional variables.

What is the (time) complexity of the original recursive definition as a means of computing
items in the Fibonacci sequence? Hint: Consider how many addition operations are used at
each unfolding of the recursion, and consider the size of the tree of recursive calls. Use the fact
that the Fibonacci sequence f (n) is of order rn where r is the golden ratio, r = 1.61803 . . ..

What does this result say about the efficient use of recursion?
What is the (time) complexity of the above algorithm in Java and of your improved version?

(This is a simple example of a general technique: saving the results of sufficient recursive calls
to enable a result to be computed without recomputing intermediate values. It is sometimes
called ‘memoization’.)



COMP20012 Tutorial 2

COMP20012 Tutorial 2: Algorithms and their Complexity – Tutors notes

Tutors: There is rather a lot of material here but much of it is presented in the lectures. Try
to get through questions 1 and 2.

This material here is in the course textbook, Chapter 5 and 7 of Data Structures and Prob-
lem Solving using Java, by Mark Allen Weiss, 2002.

David
Aim: This is to reinforce the basics of complexity measures which are described and discussed
in the lectures. It consists of pen-and-paper exercises as well as a requirement for the group to
formulate the basic concepts in their own words.

For the former, some of the key aspects are measures that are independent of the way that
an algorithm is implemented, ie measures intrinsic to the algorithm itself. For time complex-
ity, these are counting suitable operations - these operations themselves should be of constant
complexity in terms of the algorithm’s input size and should reflect where the real work is con-
centrated in an algorithm. The best case etc are in terms of the range of actual inputs for each
input size.

The pen-and-paper exercises ask the students not only to calculate a few of these measures
for familiar algorithms, but also what forms of approximation are appropriate in these calcu-
lations. They illustrate how small changes in algorithms can have a considerable effect on the
complexity, eg from exponential to linear!

This is to occupy one tutorial session. It covers material in Chapter 5 in the course textbook
(Data Structures and Problem Solving using Java, by Mark Allen Weiss, 2002). You should
attempt the questions, writing out full answers, before the tutorial. You may need to consult
the course textbook to help with some of the material.

Question 1.

Be prepared to explain to your tutor the following concepts:

1. Measures of the performance of an algorithm. Time and space complexity.

2. Worst-case, average-case and best-case complexity.

Question 2.

Describe the performance of the following algorithms using suitable measures of complexity.
You should make clear what operations you are counting, what is the worst-case that you are
considering, (and, perhaps, average-case and best-case, where appropriate). Consider also
space complexity.

1. Multiplication of two N×N matrices. Also, the N-th power of an N×N matrix, using
repeated matrix multiplication,

2. Long multiplication of integers (i.e. the standard digitwise multiplication of integers),

3. Integer division (i.e. an integer result, plus remainder) using ‘long division’.



COMP20012 Tutorial 2

Answer

(1) Multiplication of two N ×N matrices, is ci,k = Σ jai, j × b j,k, that is for each of the N2

results ci,k, we perform N multiplications, and N− 1 additions, so in total N3 multiplications
of elements and N2(N−1) additions of elements.

The intention is that the power is calculated as (. . .(A×A)×A)×A) . . .×A). Each mul-
tiplication of an N×N matrix requires, using the standard formula for matrix multiplication,
O(N3) multiplications of matrix elements. So the overall complexity is O(N4).

Strassen’s algorithm for matrix multiplication allows us to reduce this to O(N ×N2.81)
Moreover, we can accumulate the exponential in faster ways e.g. A4 = let S = A×A in S×S,
requiring only two multiplications. You may want to hint at these improved algorithms, and
further improvements based on repeatedly splitting the sequence of multiplications and saving
intermediate values.

(2) A long multiplication of an M-digit number a with an N-digit number b requires M×N
multiplications of digits. Now M is approximately log10 a and N is approximately log10 b.
The number of additions is harder - there may be carry digits. Without carry digits it takes
(M−1)×(N−1) digit additions. Anyway, both the number of multiplications and of additions
is quadratic, O(MN).

There are faster methods of integer multiplication, suitable for large integers, based upon
the Discrete (or Fast) Fourier Transform. These are O(N log(N)) for integers of N digits. The
overheads of this method make it unsuitable for small integers,

(3) If the number of digits in the numerator is N and in the denominator is D, then the
number of multiplications of digits is O(N×D), so the performance is quadratic. This takes a
bit of seeing and an example is perhaps worthwhile.

288
-------

12 ) 3456
24
--
105
96
---

96
96
--
0

At each stage we invent a digit of the result, multiply each digit of the denominator by this,
perform a subtraction and then move along one digit of the numerator. So for each digit of
the numerator, we perform D multiplications. The invention of the digits of the result can, of
course, be performed with at most 9D digit multiplications if necessary.

Question 3.

The definition of the Fibonacci sequence is as follows:

f (0) = 0, f (1) = 1, f (n+2) = f (n+1)+ f (n).



COMP20012 Tutorial 2

This could be interpreted as a recursive algorithm for computing the Fibonacci sequence. Here
is an alternative algorithm:

static int fib(int n)
{

int [] FibSeq = new int[n+1];
FibSeq[0]= 0; FibSeq[1]= 1;
for (int i= 2; i <= n; i++)

FibSeq[i] = FibSeq[i-1] + FibSeq[i-2];
return FibSeq[n];

}

This creates an array containing the whole sequence up to the 100-th item. Yet only the two
immediate predecessors are required to calculate a value in the sequence. Use this idea to recast
this algorithm, removing the array and using instead two additional variables.

What is the (time) complexity of the original recursive definition as a means of computing
items in the Fibonacci sequence? Hint: Consider how many addition operations are used at
each unfolding of the recursion, and consider the size of the tree of recursive calls. Use the fact
that the Fibonacci sequence f (n) is of order rn where r is the golden ratio, r = 1.61803 . . ..

What does this result say about the efficient use of recursion?
What is the (time) complexity of the above algorithm in Java and of your improved version?

(This is a simple example of a general technique: saving the results of sufficient recursive calls
to enable a result to be computed without recomputing intermediate values. It is sometimes
called ‘memoization’.)

Answer

Here is a Fibonnacci algorithm based upon storing the two previous items, calculating the
current item then updating the previous to move along one step in the sequence. This is a
simple example of so-called dynamic programming – preventing the recalculation of results in
a recursive definition by storing the required intermediate results.

static int fib(int n)
{ int x, y;

x= 0; y= 1;
for (int i = 1; i <= n; i++)

{ x = x + y; y = x - y; }
return x; }

Note: The subtraction present here is simply to assign the original value of x to y (we could
have used another variable to store x temporarily).

For the complexity of the recursive algorithm: If CN is the complexity of calculating the
N-th item (counting the number of additions) then the definition of the Fibonacci sequence
gives:

CN = CN−1 +CN−2 +1

(where the 1 is the one addition at top level and the other two terms are the number of additions
in the recursive calls). Thus the complexity grows just as the terms of the sequence grow,
i.e. CN = O(rN), and the computation is exponential. More accurately, the solution of the



COMP20012 Tutorial 2

recurrence relation is CN = f (N +2)+ f (N +1)−1, where f (N) is the N-th Fibonacci number,
as may be verified by substitution.

It may be worth explaining how quickly this rises and how inefficient and infeasible this
becomes.

The other algorithms are all linear, O(N).


