
COMP20012 Tutorial 1

COMP20012 Tutorial 1: Collections – The questions

Happy New Year. For some of you, this tutorial takes place before many lectures have taken
place for COMP20012, so it does not depend on any material from the course itself. We have
based it on material already covered in previous programming courses, for which you have
notes. There is also useful background material in the course textbook, Weiss, and copious
material on the web e.g. http://java.sun.com/docs/books/tutorial/collections/.

1. java.util provides the Collections Framework, a set of interfaces for working with groups
of objects. Read your previous notes on this topic and explain to your tutor the main features
of the Collections Framework.

2. A stack is a collection of items that has the property that the last item in is the first item
out (LIFO), so the operation add adds an item onto the stack and remove takes off the item
added most recently. The operations add and remove for stacks are usually called push and
pop.

A common text processing problem is that of bracket-matching. For example the string
"[(z + b) + (c * d)]" has matching brackets, but "[(z + b] + (c * d))" does not,
even though there are an appropriate number of opening and closing brackets of each type,
because bracket pairs are not properly nested.

Describe an algorithm which uses a stack to determine whether a given string has matching
brackets. You do not need to produce Java code, just a description of the algorithm.

3. Explain to your tutor how Iterators are used. Why is a separate Iterator object needed,
rather than using a class or instance variable of the Collection of interest?

Write static methods to print out the items in any Collection in each of the following
cases:-

a) in the default order given by an Iterator

b) in reverse order. (Note: you can not use a ListIterator, as this is not available for all
Collection objects.)

c) in reverse order, but without using another intermediate Collection (Hint: recursion)

COMP20012 Tutorial 1

COMP20012 Tutorial 1: Collections – Tutors notes

This tutorial is supposed to be revision of first year Java material, but your students may be a
bit rusty in this area.

Graham
Aim: This sheet is a revision for the students and focuses on some of the topics which will be
evident in this course unit. It covers abstract types as the Collection class in Java and a range of
data structures which may be used as representations of collections. It also acts as a revision of
the construction of iterative and recursive routines, including the relationship between recursion
and stacks.

1. A tutorial on the Collections Framework can be found at http://java.sun.com/docs/
books/tutorial/collections/.

The students have had a brief introduction to Collections in previous Java courses. The
main points are that the Collections interface provides a uniform interface to various types
of collection, such as Vector, List, Stack, Set etc. The interface itself can be found at http:
//java.sun.com/javase/6/docs/api/java/util/Collection.html. The methods in
the interface are used to update and query the underlying objects. There is much more to
say, but this will be covered later in the course.

2. No Java is required here. The algorithm is the standard one whereby the string is examined
character by character (you might ask how to do this in Java; using a String and the charAt
method is the obvious way), opening brackets of various types are pushed on to a stack as
they occur and when a closing bracket is found, the top of the stack examined to see if it has
the same type (or false returned if the stack is empty). If so, it is popped and we continue;
if not, the brackets don’t match. If anything is left on the stack at the end, then we have
unmatched brackets.

if they find this easy you might want to discuss approaches to implementation. For com-
pleteness, here is my version of the code

public static boolean bracketMatch(String str)
{
Stack<Character> openers = new Stack <Character>();

for (int i = 0 ; i < str.length(); i++)
{

char thisChar = str.charAt(i);
if (isOpenBracket(thisChar))

openers.push(new Character(thisChar));
else if (isClosedBracket(thisChar))
{

if (openers.empty())
return false;

char topChar = (openers.peek()).charValue();
if (bracketsMatch(topChar,thisChar))

openers.pop();
else

return false;

COMP20012 Tutorial 1

}
}

return (openers.empty());
}

private static boolean isOpenBracket(char c) {
return (c == ’(’ || c == ’[’ || c == ’{’);

}

private static boolean isClosedBracket(char c) {
return (c == ’)’ || c == ’]’ || c == ’}’);

}

private static boolean bracketsMatch(char c1, char c2) {
return (

c1 == ’(’ && c2 == ’)’ ||
c1 == ’[’ && c2 == ’]’ ||
c1 == ’{’ && c2 == ’}’
);

}

3. Iterators are used to successively access all the members of a collection. Each Collection
provides an iterator method to return such an object. The Iterator interface ensures the
existence of methods next() and hasNext() to access and query the iterator. Using a sepa-
rate iterator object means that the collection can be iterated over several times independently,
with the iterator keeping a record of the state of each iteration.

The code for the methods is given below. The only slightly tricky point is the use of an
auxiliary (private) method to do the recursion.

public static <T> void printCollection(Collection<T> col)
{
Iterator<T> itr = col.iterator();
while (itr.hasNext())
{

System.out.println(itr.next());
}

}

public static <T> void printCollectionRev(Collection<T> col)
{
Iterator<T> itr = col.iterator();
Stack<T> s = new Stack<T>();

while (itr.hasNext()) {
s.push(itr.next());

}

while (! s.empty()){

COMP20012 Tutorial 1

System.out.println(s.pop());
}

}

public static <T> void printCollectionRevRec(Collection<T> col)
{
Iterator<T> itr = col.iterator();
printCollectionRevRecAux(itr);

}

private static <T> void printCollectionRevRecAux(Iterator<T> itr)
{
if (itr.hasNext()) {
T n = itr.next();
printCollectionRevRecAux(itr);
System.out.println(n);

}
}

