
COMP20012

3: Trees

COMP20012 Trees 219

Trees

Seen lots of examples.

Parse Trees

Decision Trees

Search Trees

Family Trees
Hierarchical Structures

Management
Directories

COMP20012 Trees 220

Trees have natural recursive structure
Any node in tree has number of children each of which is a tree.

COMP20012 Trees 221

Mathematical descriptions of Graphs and Trees

A directed graph is a pair (N,E) consisting of a set of nodes N,
together with a relation E on N. There is no restriction on the relation
E .
aE b iff there is an edge from a to b

n5

� �� �

� �� �

� �� �

� �� �
� �	 	

n1

n2

n3

n4

COMP20012 Trees 222

A tree is a graph (N,P) (where the relation P is called has parent),
with the following property

For any node n, there is at most one node n′ with n P n′.

n8

� � �� � � � �� �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �n1

n3 n4

� �	 	

� �

� � �

 � � �� � � �� �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

�
�
�
�

�
�
�
�

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

n2

n5

n6 n7

� � �� �

COMP20012 Trees 223

If there is no node n′ with n P n′, n is called a root node.

A tree with a single root node is called a rooted tree. Often the
word tree is used to mean rooted tree, and the more general
collection is known as a forest of trees.

For any node n, the set {n′ | n′P n} is called the set of children of
n.

If a node n has no children it is called a leaf

Not difficult to see that this is equivalent to the more normal recursive
definition of a rooted tree

COMP20012 Trees 224

A (rooted) tree also has the property that it is a directed graph such
that

There is one node (the root) from which all other nodes can be
reached by exactly one path.

COMP20012 Trees 225

Height and Depth

For any node n in a tree the depth of n is the length of the path
from the root to n (so the root has depth 0)

For any node n in a tree the height of n is the length of the
longest path from n to a leaf (so all leaves have height 0)

The height of a tree is the height of its root.

COMP20012 Trees 226

Representations of Trees

In this section we look at different ways in which rooted trees can
be represented in a programming language

Have seen both Java and C representations of binary trees.

COMP20012 Trees 227

public class BinaryNode
{

private Object element;
private BinaryNode left;
private BinaryNode right;

....
}

public class BinaryTree
{

private BinaryNode root;
...
}

COMP20012 Trees 228

and in C

typedef struct TreeNode *PtrToNode;

struct TreeNode {
ElementType element;
PtrToNode left;
PtrToNode right;

};

typedef PtrToNode Tree;

COMP20012 Trees 229

G

DH

A

B C

E F

COMP20012 Trees 230

Non-binary trees are almost as simple

public class NaryNode
{

private Object element;
private NaryNode firstChild;
private NaryNode firstSibling;

....
}

public class NaryTree
{

private NaryNode root;
...
}

COMP20012 Trees 231

and

typedef struct TreeNode *PtrToNode;

struct TreeNode {
ElementType element;
PtrToNode FirstChild;
PtrToNode NextSibling;

};

typedef PtrToNode Tree;

COMP20012 Trees 232

This looks almost the same as the binary tree representation, but is
interpreted quite differently
The nary tree

J

B

E F G H

C

A

D

I

COMP20012 Trees 233

is represented as

J

A

B C D

E F G H I

COMP20012 Trees 234

Traversing Trees

Can list the nodes of a tree in one of several orders

Preorder: List the node, then recursively list all children subtrees

Postorder: Recursively list all children subtrees, then list the node

Inorder: Only suitable for binary trees. List left subtree, node,
then right subtree

Level order: list all the nodes at each level followed by all nodes
at the next level etc.

Exercise: Write preorder and postorder listing functions for both the
binary and n-ary trees.
How would you implement a level-order traversal?

COMP20012 Trees 235

Other representations

All the above representations use explicit pointers to represent
the tree structure

Now look at some implicit representations which do not use
pointers.

COMP20012 Trees 236

Array based representations

Suppose the nodes of a tree have names 1 . . .n (or something
that we can conveniently map to and from 1 . . .n).

We can represent a tree (or even a forest of trees) with these
nodes by use of single array.

The array element a[i] should contain the parent of the node i,
or if i is a root node, i itself.

COMP20012 Trees 237

So the array

index 1 2 3 4 5 6
contents 1 2 5 5 5 2

Represents the forest of trees

3

� �� �

� �� �

� �� �

� �� � � �	 	

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

1 2

6

5

4

� �� �

Note that there is no restriction here on the amount of branching in the
tree, since we give the parent relation directly, and not the children.

COMP20012 Trees 238

Could also have data associated with each node

This representation is not particularly useful if tree traversal is
required

How would we find the first child of a node or next sibling in this
context?

COMP20012 Trees 239

This representation is very useful for representing a partition of the set
1 . . .n.
A partition of a set X is a set of subsets Xi with the properties

The union of all the sets Xi is X i.e.
S

Xi = X

All the sets Xi are pairwise disjoint i.e. ∀i, j, i 6= j · Xi ∩Xj = /0

So {{1,3},{2},{4}} is a partition of the set {1,2,3,4}.
A partition of a set is just a way of breaking it up into disjoint chunks.

[x1]

[x3]

[x5]

[x4]

[x2]

Partitions are used to represent equivalence relations on some set
(see COMP10020 notes)

COMP20012 Trees 240

Equivalence Relations

Often elements of a set are regarded as equivalent because they
have some set of properties in common even though they are not
identical.

For example two electrical components might be regarded as
equivalent, even if they are produced by different manufacturers.

Two different Java functions might be regarded as equivalent if
they always produced the same results, even if they were
implemented in completely different ways.

COMP20012 Trees 241

It seems ‘obvious’ that any notion of equivalence should satisfy the
following:

1 a is equivalent to a
2 If a is equivalent to b then b is equivalent to a
3 If a is equivalent to b and b is equivalent to c then a is equivalent

to c

For any set A there will be many possible equivalence relations.

COMP20012 Trees 242

Equivalence Classes and Partitions

The idea of an equivalence relation R on a set A is that if aR b
then in some sense a and b are the same.

Any equivalence relation on a set A divides A in a natural way into
disjoint parts.

Each part contains elements that are equivalent to each other, so
two elements a, b are put into the same part if and only if aR b.

COMP20012 Trees 243

One example of their use is in generation of mazes.

Start with a rectangular grid of cells, with walls between every
cell.

Choose a desired entry square and exit square

out

in

COMP20012 Trees 244

Construct a partition by using the equivalence relation, a is
related to b if there is a path from a to b.

Initially this partition will consist of a set of sets of single
elements, since with all the walls in place the only thing that is
related to a is a itself.

So the initial state of the partition will be

{{1},{2}. . . .{n}}

COMP20012 Trees 245

Now choose a wall at random, and if the two cells separated by
that wall are not already connected, remove the wall, and merge
the partition members containing the two cells.

out

in

For example
{{1},{2} . . .{6,7} . . .{n}}

Continue this process until the entry and exit cells are in the
same partition member.

COMP20012 Trees 246

{{25, 26}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44}}

+--+--+--+--+--+
|* | | |
+ + + + + +
| | | |
+ + + +--+--+
| | | |
+ + +--+--+--+
| | |
+--+ +--+ + +
| | | | |
+--+--+ + + +
| | | |
+--+--+ +--+ +
| | |
+ +--+--+--+--+
| |
+ +--+ + +--+
| | | |
+--+--+--+--+--+

COMP20012 Trees 247

+--+
|* | | | | | | | |
+ +--+ + +--+--+--+--+ +--+ +--+--+ + + +--+ +--+--+--+--+ + +--+
| | | | | | | | | | | | | | |
+ + +--+ + + +--+--+ +--+ + + + + +--+ +--+ + +--+--+--+ + +
| | | | | | | | | | | | | | |
+ +--+ + +--+ +--+ +--+ +--+--+--+--+ +--+ +--+--+ +--+--+ + + +
| | | | | | | | | | | |
+ + + + + +--+--+--+ +--+ +--+ + +--+--+--+ +--+--+ + +--+ + +
| | | | | | | | | | | | | | |
+ +--+--+ +--+ +--+ +--+--+--+ + + +--+--+--+--+--+ + + + + +--+
| | | | | | | | | | | | | | |
+--+--+ +--+ +--+ + + + + +--+ +--+--+--+--+ + +--+ +--+ + + +
| | | | | | | | | | | | |
+ +--+ +--+ + + +--+ + + + +--+--+--+--+--+ + +--+--+--+ + +--+
| | | | | | | | | | | | | |
+ + + + +--+--+ +--+--+--+ +--+--+ +--+--+ +--+--+--+--+--+--+--+--+
| | | | | | |
+ +--+--+--+ +--+ + +--+--+ +--+--+ + + +--+--+ +--+--+--+ + +--+
| | | | | | | | | | | |
+--+ +--+ +--+--+--+ + +--+--+ + +--+ +--+--+--+--+--+ + +--+ + +
| | | | | | | | | | | | | | | | |
+ + +--+--+--+ +--+--+ +--+ +--+--+ + +--+ + + + +--+ + + +--+
| | | | | | | |
+--+--+--+ + +--+--+ +--+--+ +--+--+--+--+ +--+ +--+ + + +--+--+--+
| | | | | | | | | | | | | | |
+ +--+--+ + + +--+--+ + + +--+ +--+ +--+ +--+--+--+ + +--+ + +
| | | | | | | | | | | | |
+--+--+ +--+--+--+--+--+ + + +--+--+ +--+ +--+ +--+ +--+ + + + +
| | | | | | | | | *|
+--+

COMP20012 Trees 248

A simple way of representing a partition is by using a forest of trees
For example

X = {1,2,3,4,5,6}

The partition {{1},{2,6},{3,4,5}} can be represented by the forest

3

� �� �

� �� �

� �� �

� �� � � �	 	

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

1 2

6

5

4

� �� �

COMP20012 Trees 249

The same partition could also be represented by the forest

5

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

3

� �� � � �� �

� �� �

� �	 	

� �
� � � �
� � � �
� � � �
� � � �
� � � �

1 4

2

6

� �� �

To determine whether 2 elements are in the same member of the
partition, just find the root of the trees they are in.

COMP20012 Trees 250

To combine two elements of the partition, just ‘graft’ the trees together,
by making the root of one tree the parent of the root of the other.
e.g. to combine {2,6} and {3,4,5} from the first representation of the
above partition

or

� �� �
�
�
�
�

�
�
�
�
2

6

� �� �

� �� � � �	 	

� � � �

�
�
�
�

�
�
�
�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

2

6

43

5

� � �� �

� � �� � � � �� �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

! ! ! ! !
! ! ! ! ! 5

43

" "# #

COMP20012 Trees 251

Can optimise the tree by flattening, by making the root of each node its
parent

� � �� � � � �� �� �� � � � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

	 	 	 		 	 	 		 	 	 		 	 	 		 	 	 	5

43

� �
2 6

� � �

We will see other applications of this technique later in the course

COMP20012 Trees 252

Binary Heaps

This is another type of tree with a pointer-free representation.

An essentially complete binary tree is one in which all nodes have
exactly two children, except possibly those at the lowest level,
which is filled from left to right.

How many leaves does such a tree have?

COMP20012 Trees 253

A binary tree has the heap property if the value of the key at any
node is less than or equal to the values of all the keys of its
children.

33

13

16

22 35

20

32 24

26

Sometimes ‘greater than or equal to’ is used instead.

Note difference between this and an ordered binary tree

COMP20012 Trees 254

A binary heap is a binary tree which has the type invariant

it is essentially complete

it has the heap property

The smallest element in a heap is always at its root.

All operations on a heap must preserve the type invariant

COMP20012 Trees 255

The above heap (or any complete binary tree) can be stored in an
array as follows

index 0 1 2 3 4 5 6 7 8 9 10
value 13 16 20 22 35 32 24 26 33

COMP20012 Trees 256

In general, the root is stored in slot 1, and the children of the
element at position i can be found at positions 2i and 2i + 1

To insert into a heap just insert after the last element (as long as
there is room.)

This can destroy the heap property, so then need to repair the
heap to reestablish the invariant.

COMP20012 Trees 257

Increase size of heap by one to open up a hole at the last element

If the item to be inserted is less than the parent of the hole, move
the parent into the hole and create a new hole

Repeat this until the parent of the hole is less than the element to
be inserted and insert the element into the hole

COMP20012 Trees 258

4

15

33

13

22

20

32 24

35

16

26

3

16

33

13

22

20

32 24

3526

2

3533

13

16

22

20

32 24

26

1

24

33

13

16

22 35

20

32

26

Inserting 15 into the heap

COMP20012 Trees 259

The major use of heaps is as priority queues, so a general delete
is not usually needed.

Usual form of delete is deleteMin, which removes the smallest
element from the heap

COMP20012 Trees 260

Delete Minimum

This is performed as follows:-

Remove the minimum element, which will be at the root, creating
a hole, and decreasing the size of the heap by 1, remembering
the last element in the heap

If last element is smaller than the children of the hole, insert it,
and end

Move the hole down by moving up the smaller of the two children
until last element can be placed in the hole (which may be at a
leaf)

Move the old last element into the hole

COMP20012 Trees 261

4

35

33

22

20

32 24

15

16

26

3

33

22

20

32 24

15

16

26 35

2

33

22

20

32 2416

15

26 35

1

22

20

32 24

35

16

15

26 33

Delete Minimum Example

COMP20012 Trees 262

5

33

20

32 2435

16

22

26

4

26

20

32 2435

16

22

33

3

20

32 2435

16

22

26 33

2

22

20

32 2435

16

26 33

1

22

20

32 24

16

35

26 33

Delete next lowest

COMP20012 Trees 263

4

20

24

333235

22

26

3

20

24

3235

22

26

33

2

20

32 2435

22

26

33

1

20

32 2435

22

26

33

. . . and the next lowest

COMP20012 Trees 264

Building Heaps

Given a list of keys, a heap can be built simply by using the insert
function described above.
A more efficient O(n) technique is the following:

Put the list elements into the heap array in any order, without
worrying about heap invariant
Turn the array into a heap as follows:

Starting at the rightmost, deepest node with a child, swap its
contents with that of one of its children to ensure the heap
property for the tree below, then percolate that element down if
necessary
Work leftwards and upwards to the root.

COMP20012 Trees 265

Building Heap example

For example:

index 0 1 2 3 4 5 6 7 8 9 10
value 43 6 20 16 13 42 4 12 33

COMP20012 Trees 266

6

20

16 33

6

12 13 42

4

43

5

16 33

6

12 13 42 20

4

43

4

16 33

6

12 13 42

4

20

43

3

16 33

6

12 13 42

4

20

43

2

20

16 33

6

12 13 42 4

43

1

20

12 33

6

16 13 42 4

43

Building Heap example

COMP20012 Trees 267

Using this technique followed by removing the smallest element from
the heap until it is empty, gives an O(n logn) sort technique called
heapsort

COMP20012 Trees 268

Priority Queues

Normal queues are FIFO devices

In a Priority Queue each element entering a queue is assigned a
value, usually a number, and the first element to leave the queue
is that with the lowest value.

Used in Operating Systems etc

Most common implementation of Priority Queues is the heap.

COMP20012 Trees 269

An interface for Priority Queues

public interface PriorityQueue
{

boolean insert(Comparable x);
Comparable findMin();
Comparable deleteMin();
boolean isEmpty();
void makeEmpty();
int size();

}

COMP20012 Trees 270

Binary Heaps in Java

This code is largely taken from Weiss, with some minor modifications

public class BinaryHeap
{

private static final int DEFAULT_CAPACITY = 100;

private int currentSize; // Number of elements
private Comparable [] array; // The heap array

COMP20012 Trees 271

/**
* Construct the binary heap.
*/

public BinaryHeap()
{

currentSize = 0;
array = new Comparable[DEFAULT_CAPACITY + 1];

}

COMP20012 Trees 272

/**
* Construct the binary heap from an array.
* @param items the inital items in the binary heap.
*/

public BinaryHeap(Comparable [] items)
{

currentSize = items.length;
array = new Comparable[items.length + 1];

for(int i = 0; i < items.length; i++)
array[i + 1] = items[i];

buildHeap();
}

COMP20012 Trees 273

/**
* Insert into the priority queue.
* Duplicates are allowed.
* @param x the item to insert.
*/

public boolean insert(Comparable x) {
if(currentSize + 1 == array.length)

doubleArray();
// Percolate up

int hole = ++currentSize;
array[0] = x;

for(; x.compareTo(array[hole / 2]) < 0; hole /= 2)
array[hole] = array[hole / 2];

array[hole] = x;
return true;

}

COMP20012 Trees 274

/**
* Find the smallest item in the priority queue.
* @return the smallest item.
*/

public Comparable findMin()
{

if(isEmpty())
throw new RuntimeException("Empty binary heap");

return array[1];
}

COMP20012 Trees 275

/**
* Remove the smallest item from the priority queue.
* @return the smallest item.
*/

public Comparable deleteMin()
{

Comparable minItem = findMin();
array[1] = array[currentSize--];
percolateDown(1);

return minItem;
}

COMP20012 Trees 276

/**
* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time.
*/

private void buildHeap()
{

for(int i = currentSize / 2; i > 0; i--)
percolateDown(i);

}

COMP20012 Trees 277

/**
* Test if the priority queue is logically empty.
* @return true if empty, false otherwise.
*/

public boolean isEmpty()
{

return currentSize == 0;
}

/**
* Returns size.
* @return current size.
*/

public int size()
{

return currentSize;
}

COMP20012 Trees 278

/**
* Make the priority queue logically empty.
*/

public void makeEmpty()
{

currentSize = 0;
}

COMP20012 Trees 279

/**
* Internal method to percolate down in the heap.
* @param hole the index at which the percolate begins.
*/

private void percolateDown(int hole)
{

int child;
Comparable tmp = array[hole];
for(; hole * 2 <= currentSize; hole = child) {

child = hole * 2;
if(child != currentSize &&

array[child + 1].compareTo(array[child]) < 0)
child++;

if(array[child].compareTo(tmp) < 0)
array[hole] = array[child];

else
break;

}
array[hole] = tmp;

}

COMP20012 Trees 280

/**
* Internal method to extend array.
*/

private void doubleArray()
{

Comparable [] newArray;

newArray = new Comparable[array.length * 2];
for(int i = 0; i < array.length; i++)

newArray[i] = array[i];
array = newArray;

}

COMP20012 Trees 281

Ordered Binary Trees

A binary tree is said to be ordered if, for every node n in the tree, the
values of the keys in its left subtree are smaller that the key at n, and
those in the right subtree are greater than the key at n.
The operations required on an ordered binary tree are

Initialise a tree

Find the location (if any) of a given key in a tree.

Insert a given key in a tree.

Delete a given key from a tree.

List the contents of a tree.

Seen implementations of these before

COMP20012 Trees 282

If we adopt a naı̈ve approach to insertion and the data is
pre-sorted, the cost of building a tree becomes quadratic in the
size of the data (Why?)

One solution is to attempt to keep the tree balanced

There are several possible definitions of the term balanced, one is

A tree is balanced if every node has left and right subtrees whose
heights differ by at most 1

This is another type invariant

A tree with this property is called an AVL tree. (Adelson, Velski
and Landis)

COMP20012 Trees 283

For example
These trees are balanced

COMP20012 Trees 284

These trees are not

COMP20012 Trees 285

The problem is that when a new node is inserted, or an old one
deleted, the tree can become unbalanced

When inserting a new node in an AVL tree, find a place to put it in
the usual way

Then check the tree to be sure that it is still balanced

If tree has lost the AVL property, only nodes between inserted
element and root can have balance destroyed. (Why?)

COMP20012 Trees 286

AVL trees: restoring the balance

For example if we insert 6 into the tree below, unbalances tree
First unbalanced ancestor of new node is node containing 9
Can restore balance by rotating unbalanced subtree.

9

5

2

1 4

3

7

6

5

2

1 4 7

3 6

9

COMP20012 Trees 287

Suppose n is the first node (going up) which is unbalanced.

Four different possibilities

Imbalance due to insertion in left subtree of left child
Imbalance due to insertion in right subtree of right child
Imbalance due to insertion in right subtree of left child
Imbalance due to insertion in left subtree of right child

COMP20012 Trees 288

Single right rotation, imbalance in left subtree of left child

B

T1 T2

T3 T1

T2 T3

A

B A

COMP20012 Trees 289

Single left rotation, imbalance in right subtree of right child

B

T1

T2 T3

A

B

T1 T2

T3

A

COMP20012 Trees 290

Now if we insert 8 into the tree below, unbalances tree
First unbalanced ancestor of new node is again node containing 9
Need two rotations to restore balance

8

5

2

1 4 7

3

9

COMP20012 Trees 291

8

5

2

1 4 7

3

9

8

5

2

1 4

3

5

2

1 4

3

8

7

9

7 9

COMP20012 Trees 292

Double left-right rotation, imbalance on right subtree of left child

C

T3

B

T1

T2

A T4

COMP20012 Trees 293

T2

B

A

T1 T2 T3 T4

C

A

T1

B T4

C

T3

COMP20012 Trees 294

Double right-left rotation, imbalance on left subtree of right child

C

B

T1

A

T2 T3

T4

COMP20012 Trees 295

T3 T4

C

B

T3 T4

CA

T1 T2

T1

A

B

T2

COMP20012 Trees 296

Balancing algorithm performs at most 1 constant time operation
on each of the ancestors of the unbalanced node.

So, restoring the AVL property to the tree is an O(log N)
operation.

COMP20012 Trees 297

AVL Trees: An example

Starting tree k4
�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7

COMP20012 Trees 298

Insert 16
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7

@
@ k16

COMP20012 Trees 299

Insert 15
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k15
�
�k7 @

@ k16

COMP20012 Trees 300

Insert 14, initial position
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k15
�
�k7 @

@ k16
@
@ k14

COMP20012 Trees 301

After one rotation

k4
�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7

@
@ k15
�
�

@
@ k16k14

COMP20012 Trees 302

Final position, after two rotations
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k7
�

�
��k6

�
�k5

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 303

Insert 13 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k15
�

�
��k14

�
�k13

@
@
@@ k16

COMP20012 Trees 304

Insert 12 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k15
�

�
��k13

�
�k12

@
@ k14

@
@
@@ k16

COMP20012 Trees 305

Insert 11 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k12

�
�k11

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 306

Insert 10 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k10

@
@ k12

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 307

Insert 8 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k10

��k8
@
@ k12

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 308

Insert 9 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k9

��k8 @@ k10

@
@ k12

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 309

2-3 Trees

2-3 trees are search trees that maintain their balance by relaxing
the structural constraint of being a binary tree.

Some nodes have 2 children and some have 3, hence the name

COMP20012 Trees 310

A 2-3 tree is a tree with the following properties

The root is either a leaf or has either 2 or 3 children

All data is stored at the leaves.

All leaves are at the same depth

The first two of these constraints are structural and the third is part of
the type invariant

COMP20012 Trees 311

The type invariant is completed with the following constraint
In each node, we store the value of smallest leaf in tree of second
child, and value of smallest leaf in tree of third child, if there is one

2 5 7 8 12 16 19

7 16

− −5 8 12 19

COMP20012 Trees 312

Insert 18

−

7 16

1916

18 19

2 5 7 8 12 18

5 8 12

COMP20012 Trees 313

Insert 10

10

7 16

1916

18 19

18

5 8 12− − −

2 5 7 8 12

Wants to go between 8 and 12, so need to split 3 node into 2 2’s
But root now appears to have 4 children, so need to split and make
new root

COMP20012 Trees 314

10 1916

18 19

18

−−−−5 8 12

7

10

16

−

− −

2 5 7 8 12

COMP20012 Trees 315

B trees

2-3 trees can be generalised to trees that have the following
properties, for some natural number M

The root is either a leaf or has between 2 and M children
All non-leaf nodes (except the root) have between dM/2e and M
children
All leaves have the same depth.

Such trees are called B-trees of order M.

Main use is in database systems, where tree is on disk rather
than in memory

Want to minimise the number of disk accesses
B-trees are in general very shallow

COMP20012 Trees 316

