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Trees

Seen lots of examples.

Parse Trees

Decision Trees

Search Trees

Family Trees
Hierarchical Structures

Management
Directories
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Trees have natural recursive structure
Any node in tree has number of children each of which is a tree.
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Mathematical descriptions of Graphs and Trees

A directed graph is a pair (N,E) consisting of a set of nodes N,
together with a relation E on N. There is no restriction on the relation
E .
aE b iff there is an edge from a to b
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A tree is a graph (N,P) (where the relation P is called has parent),
with the following property

For any node n, there is at most one node n′ with n P n′.
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If there is no node n′ with n P n′, n is called a root node.

A tree with a single root node is called a rooted tree. Often the
word tree is used to mean rooted tree, and the more general
collection is known as a forest of trees.

For any node n, the set {n′ | n′P n} is called the set of children of
n.

If a node n has no children it is called a leaf

Not difficult to see that this is equivalent to the more normal recursive
definition of a rooted tree
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A (rooted) tree also has the property that it is a directed graph such
that

There is one node (the root) from which all other nodes can be
reached by exactly one path.
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Height and Depth

For any node n in a tree the depth of n is the length of the path
from the root to n (so the root has depth 0)

For any node n in a tree the height of n is the length of the
longest path from n to a leaf (so all leaves have height 0)

The height of a tree is the height of its root.
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Representations of Trees

In this section we look at different ways in which rooted trees can
be represented in a programming language

Have seen both Java and C representations of binary trees.
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public class BinaryNode
{

private Object element;
private BinaryNode left;
private BinaryNode right;

....
}

public class BinaryTree
{

private BinaryNode root;
...
}
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and in C

typedef struct TreeNode *PtrToNode;

struct TreeNode {
ElementType element;
PtrToNode left;
PtrToNode right;

};

typedef PtrToNode Tree;
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Non-binary trees are almost as simple

public class NaryNode
{

private Object element;
private NaryNode firstChild;
private NaryNode firstSibling;

....
}

public class NaryTree
{

private NaryNode root;
...
}
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and

typedef struct TreeNode *PtrToNode;

struct TreeNode {
ElementType element;
PtrToNode FirstChild;
PtrToNode NextSibling;

};

typedef PtrToNode Tree;
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This looks almost the same as the binary tree representation, but is
interpreted quite differently
The nary tree
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is represented as

J

A

B C D

E F G H I
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Traversing Trees

Can list the nodes of a tree in one of several orders

Preorder: List the node, then recursively list all children subtrees

Postorder: Recursively list all children subtrees, then list the node

Inorder: Only suitable for binary trees. List left subtree, node,
then right subtree

Level order: list all the nodes at each level followed by all nodes
at the next level etc.

Exercise: Write preorder and postorder listing functions for both the
binary and n-ary trees.
How would you implement a level-order traversal?
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Other representations

All the above representations use explicit pointers to represent
the tree structure

Now look at some implicit representations which do not use
pointers.
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Array based representations

Suppose the nodes of a tree have names 1 . . .n (or something
that we can conveniently map to and from 1 . . .n).

We can represent a tree (or even a forest of trees) with these
nodes by use of single array.

The array element a[i] should contain the parent of the node i,
or if i is a root node, i itself.
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So the array

index 1 2 3 4 5 6
contents 1 2 5 5 5 2

Represents the forest of trees
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Note that there is no restriction here on the amount of branching in the
tree, since we give the parent relation directly, and not the children.
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Could also have data associated with each node

This representation is not particularly useful if tree traversal is
required

How would we find the first child of a node or next sibling in this
context?
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This representation is very useful for representing a partition of the set
1 . . .n.
A partition of a set X is a set of subsets Xi with the properties

The union of all the sets Xi is X i.e.
S

Xi = X

All the sets Xi are pairwise disjoint i.e. ∀i, j, i 6= j · Xi ∩Xj = /0

So {{1,3},{2},{4}} is a partition of the set {1,2,3,4}.
A partition of a set is just a way of breaking it up into disjoint chunks.

[x1]

[x3]

[x5]

[x4]

[x2]

Partitions are used to represent equivalence relations on some set
(see COMP10020 notes)
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Equivalence Relations

Often elements of a set are regarded as equivalent because they
have some set of properties in common even though they are not
identical.

For example two electrical components might be regarded as
equivalent, even if they are produced by different manufacturers.

Two different Java functions might be regarded as equivalent if
they always produced the same results, even if they were
implemented in completely different ways.
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It seems ‘obvious’ that any notion of equivalence should satisfy the
following:

1 a is equivalent to a
2 If a is equivalent to b then b is equivalent to a
3 If a is equivalent to b and b is equivalent to c then a is equivalent

to c

For any set A there will be many possible equivalence relations.
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Equivalence Classes and Partitions

The idea of an equivalence relation R on a set A is that if aR b
then in some sense a and b are the same.

Any equivalence relation on a set A divides A in a natural way into
disjoint parts.

Each part contains elements that are equivalent to each other, so
two elements a, b are put into the same part if and only if aR b.
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One example of their use is in generation of mazes.

Start with a rectangular grid of cells, with walls between every
cell.

Choose a desired entry square and exit square

out

in
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Construct a partition by using the equivalence relation, a is
related to b if there is a path from a to b.

Initially this partition will consist of a set of sets of single
elements, since with all the walls in place the only thing that is
related to a is a itself.

So the initial state of the partition will be

{{1},{2}. . . .{n}}
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Now choose a wall at random, and if the two cells separated by
that wall are not already connected, remove the wall, and merge
the partition members containing the two cells.

out

in

For example
{{1},{2} . . .{6,7} . . .{n}}

Continue this process until the entry and exit cells are in the
same partition member.
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{{25, 26}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44}}

+--+--+--+--+--+
|* | | |
+ + + + + +
| | | |
+ + + +--+--+
| | | |
+ + +--+--+--+
| | |
+--+ +--+ + +
| | | | |
+--+--+ + + +
| | | |
+--+--+ +--+ +
| | |
+ +--+--+--+--+
| |
+ +--+ + +--+
| | | |
+--+--+--+--+--+

COMP20012 Trees 247



+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|* | | | | | | | |
+ +--+ + +--+--+--+--+ +--+ +--+--+ + + +--+ +--+--+--+--+ + +--+
| | | | | | | | | | | | | | |
+ + +--+ + + +--+--+ +--+ + + + + +--+ +--+ + +--+--+--+ + +
| | | | | | | | | | | | | | |
+ +--+ + +--+ +--+ +--+ +--+--+--+--+ +--+ +--+--+ +--+--+ + + +
| | | | | | | | | | | |
+ + + + + +--+--+--+ +--+ +--+ + +--+--+--+ +--+--+ + +--+ + +
| | | | | | | | | | | | | | |
+ +--+--+ +--+ +--+ +--+--+--+ + + +--+--+--+--+--+ + + + + +--+
| | | | | | | | | | | | | | |
+--+--+ +--+ +--+ + + + + +--+ +--+--+--+--+ + +--+ +--+ + + +
| | | | | | | | | | | | |
+ +--+ +--+ + + +--+ + + + +--+--+--+--+--+ + +--+--+--+ + +--+
| | | | | | | | | | | | | |
+ + + + +--+--+ +--+--+--+ +--+--+ +--+--+ +--+--+--+--+--+--+--+--+
| | | | | | |
+ +--+--+--+ +--+ + +--+--+ +--+--+ + + +--+--+ +--+--+--+ + +--+
| | | | | | | | | | | |
+--+ +--+ +--+--+--+ + +--+--+ + +--+ +--+--+--+--+--+ + +--+ + +
| | | | | | | | | | | | | | | | |
+ + +--+--+--+ +--+--+ +--+ +--+--+ + +--+ + + + +--+ + + +--+
| | | | | | | |
+--+--+--+ + +--+--+ +--+--+ +--+--+--+--+ +--+ +--+ + + +--+--+--+
| | | | | | | | | | | | | | |
+ +--+--+ + + +--+--+ + + +--+ +--+ +--+ +--+--+--+ + +--+ + +
| | | | | | | | | | | | |
+--+--+ +--+--+--+--+--+ + + +--+--+ +--+ +--+ +--+ +--+ + + + +
| | | | | | | | | *|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
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A simple way of representing a partition is by using a forest of trees
For example

X = {1,2,3,4,5,6}

The partition {{1},{2,6},{3,4,5}} can be represented by the forest
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The same partition could also be represented by the forest

5
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To determine whether 2 elements are in the same member of the
partition, just find the root of the trees they are in.
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To combine two elements of the partition, just ‘graft’ the trees together,
by making the root of one tree the parent of the root of the other.
e.g. to combine {2,6} and {3,4,5} from the first representation of the
above partition

or
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Can optimise the tree by flattening, by making the root of each node its
parent
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We will see other applications of this technique later in the course
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Binary Heaps

This is another type of tree with a pointer-free representation.

An essentially complete binary tree is one in which all nodes have
exactly two children, except possibly those at the lowest level,
which is filled from left to right.

How many leaves does such a tree have?
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A binary tree has the heap property if the value of the key at any
node is less than or equal to the values of all the keys of its
children.

33

13

16

22 35

20

32 24

26

Sometimes ‘greater than or equal to’ is used instead.

Note difference between this and an ordered binary tree
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A binary heap is a binary tree which has the type invariant

it is essentially complete

it has the heap property

The smallest element in a heap is always at its root.

All operations on a heap must preserve the type invariant
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The above heap (or any complete binary tree) can be stored in an
array as follows

index 0 1 2 3 4 5 6 7 8 9 10
value 13 16 20 22 35 32 24 26 33
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In general, the root is stored in slot 1, and the children of the
element at position i can be found at positions 2i and 2i + 1

To insert into a heap just insert after the last element (as long as
there is room.)

This can destroy the heap property, so then need to repair the
heap to reestablish the invariant.
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Increase size of heap by one to open up a hole at the last element

If the item to be inserted is less than the parent of the hole, move
the parent into the hole and create a new hole

Repeat this until the parent of the hole is less than the element to
be inserted and insert the element into the hole
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Inserting 15 into the heap
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The major use of heaps is as priority queues, so a general delete
is not usually needed.

Usual form of delete is deleteMin, which removes the smallest
element from the heap
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Delete Minimum

This is performed as follows:-

Remove the minimum element, which will be at the root, creating
a hole, and decreasing the size of the heap by 1, remembering
the last element in the heap

If last element is smaller than the children of the hole, insert it,
and end

Move the hole down by moving up the smaller of the two children
until last element can be placed in the hole (which may be at a
leaf)

Move the old last element into the hole
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Delete Minimum Example
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Delete next lowest

COMP20012 Trees 263



4

20

24

333235

22

26

3

20

24

3235

22

26

33

2

20

32 2435

22

26

33

1

20

32 2435

22

26

33

. . . and the next lowest
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Building Heaps

Given a list of keys, a heap can be built simply by using the insert
function described above.
A more efficient O(n) technique is the following:

Put the list elements into the heap array in any order, without
worrying about heap invariant
Turn the array into a heap as follows:

Starting at the rightmost, deepest node with a child, swap its
contents with that of one of its children to ensure the heap
property for the tree below, then percolate that element down if
necessary
Work leftwards and upwards to the root.
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Building Heap example

For example:

index 0 1 2 3 4 5 6 7 8 9 10
value 43 6 20 16 13 42 4 12 33
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Building Heap example
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Using this technique followed by removing the smallest element from
the heap until it is empty, gives an O(n logn) sort technique called
heapsort
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Priority Queues

Normal queues are FIFO devices

In a Priority Queue each element entering a queue is assigned a
value, usually a number, and the first element to leave the queue
is that with the lowest value.

Used in Operating Systems etc

Most common implementation of Priority Queues is the heap.
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An interface for Priority Queues

public interface PriorityQueue
{

boolean insert( Comparable x );
Comparable findMin( );
Comparable deleteMin( );
boolean isEmpty( );
void makeEmpty( );
int size( );

}
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Binary Heaps in Java

This code is largely taken from Weiss, with some minor modifications

public class BinaryHeap
{

private static final int DEFAULT_CAPACITY = 100;

private int currentSize; // Number of elements
private Comparable [ ] array; // The heap array
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/**
* Construct the binary heap.
*/

public BinaryHeap( )
{

currentSize = 0;
array = new Comparable[ DEFAULT_CAPACITY + 1 ];

}

COMP20012 Trees 272



/**
* Construct the binary heap from an array.
* @param items the inital items in the binary heap.
*/

public BinaryHeap( Comparable [ ] items )
{

currentSize = items.length;
array = new Comparable[ items.length + 1 ];

for( int i = 0; i < items.length; i++ )
array[ i + 1 ] = items[ i ];

buildHeap( );
}
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/**
* Insert into the priority queue.
* Duplicates are allowed.
* @param x the item to insert.
*/

public boolean insert( Comparable x ) {
if( currentSize + 1 == array.length )

doubleArray( );
// Percolate up

int hole = ++currentSize;
array[ 0 ] = x;

for( ; x.compareTo( array[ hole / 2 ] ) < 0; hole /= 2 )
array[ hole ] = array[ hole / 2 ];

array[ hole ] = x;
return true;

}
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/**
* Find the smallest item in the priority queue.
* @return the smallest item.
*/

public Comparable findMin( )
{

if( isEmpty( ) )
throw new RuntimeException( "Empty binary heap" );

return array[ 1 ];
}
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/**
* Remove the smallest item from the priority queue.
* @return the smallest item.
*/

public Comparable deleteMin( )
{

Comparable minItem = findMin( );
array[ 1 ] = array[ currentSize-- ];
percolateDown( 1 );

return minItem;
}

COMP20012 Trees 276



/**
* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time.
*/

private void buildHeap( )
{

for( int i = currentSize / 2; i > 0; i-- )
percolateDown( i );

}
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/**
* Test if the priority queue is logically empty.
* @return true if empty, false otherwise.
*/

public boolean isEmpty( )
{

return currentSize == 0;
}

/**
* Returns size.
* @return current size.
*/

public int size( )
{

return currentSize;
}
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/**
* Make the priority queue logically empty.
*/

public void makeEmpty( )
{

currentSize = 0;
}
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/**
* Internal method to percolate down in the heap.
* @param hole the index at which the percolate begins.
*/

private void percolateDown( int hole )
{

int child;
Comparable tmp = array[ hole ];
for( ; hole * 2 <= currentSize; hole = child ) {

child = hole * 2;
if( child != currentSize &&

array[ child + 1 ].compareTo( array[ child ] ) < 0 )
child++;

if( array[ child ].compareTo( tmp ) < 0 )
array[ hole ] = array[ child ];

else
break;

}
array[ hole ] = tmp;

}
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/**
* Internal method to extend array.
*/

private void doubleArray( )
{

Comparable [ ] newArray;

newArray = new Comparable[ array.length * 2 ];
for( int i = 0; i < array.length; i++ )

newArray[ i ] = array[ i ];
array = newArray;

}
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Ordered Binary Trees

A binary tree is said to be ordered if, for every node n in the tree, the
values of the keys in its left subtree are smaller that the key at n, and
those in the right subtree are greater than the key at n.
The operations required on an ordered binary tree are

Initialise a tree

Find the location (if any) of a given key in a tree.

Insert a given key in a tree.

Delete a given key from a tree.

List the contents of a tree.

Seen implementations of these before
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If we adopt a naı̈ve approach to insertion and the data is
pre-sorted, the cost of building a tree becomes quadratic in the
size of the data (Why?)

One solution is to attempt to keep the tree balanced

There are several possible definitions of the term balanced, one is

A tree is balanced if every node has left and right subtrees whose
heights differ by at most 1

This is another type invariant

A tree with this property is called an AVL tree. (Adelson, Velski
and Landis)
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For example
These trees are balanced
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These trees are not
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The problem is that when a new node is inserted, or an old one
deleted, the tree can become unbalanced

When inserting a new node in an AVL tree, find a place to put it in
the usual way

Then check the tree to be sure that it is still balanced

If tree has lost the AVL property, only nodes between inserted
element and root can have balance destroyed. (Why?)
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AVL trees: restoring the balance

For example if we insert 6 into the tree below, unbalances tree
First unbalanced ancestor of new node is node containing 9
Can restore balance by rotating unbalanced subtree.

9

5

2

1 4

3

7

6

5

2

1 4 7

3 6

9
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Suppose n is the first node (going up) which is unbalanced.

Four different possibilities

Imbalance due to insertion in left subtree of left child
Imbalance due to insertion in right subtree of right child
Imbalance due to insertion in right subtree of left child
Imbalance due to insertion in left subtree of right child
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Single right rotation, imbalance in left subtree of left child

B

T1 T2

T3 T1

T2 T3

A

B A
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Single left rotation, imbalance in right subtree of right child

B

T1

T2 T3

A

B

T1 T2

T3

A
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Now if we insert 8 into the tree below, unbalances tree
First unbalanced ancestor of new node is again node containing 9
Need two rotations to restore balance

8

5

2

1 4 7

3

9
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8

5

2

1 4 7

3

9

8

5

2

1 4

3

5

2

1 4

3

8

7

9

7 9
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Double left-right rotation, imbalance on right subtree of left child

C

T3

B

T1

T2

A T4
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T2

B

A

T1 T2 T3 T4

C

A

T1

B T4

C

T3
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Double right-left rotation, imbalance on left subtree of right child

C

B

T1

A

T2 T3

T4
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T3 T4

C

B

T3 T4

CA

T1 T2

T1

A

B

T2
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Balancing algorithm performs at most 1 constant time operation
on each of the ancestors of the unbalanced node.

So, restoring the AVL property to the tree is an O(log N)
operation.
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AVL Trees: An example

Starting tree k4
�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7
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Insert 16
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7

@
@ k16
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Insert 15
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k15
�
�k7 @

@ k16
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Insert 14, initial position
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k15
�
�k7 @

@ k16
@
@ k14
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After one rotation

k4
�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k6
�

�
��k5

@
@
@@ k7

@
@ k15
�
�

@
@ k16k14
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Final position, after two rotations
k4

�
�

�
�
�k2

�
�

��k1
@
@
@@ k3

@
@
@
@
@ k7
�

�
��k6

�
�k5

@
@
@@ k15
�
�k14

@
@ k16
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Insert 13 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k15
�

�
��k14

�
�k13

@
@
@@ k16
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Insert 12 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k15
�

�
��k13

�
�k12

@
@ k14

@
@
@@ k16
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Insert 11 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k12

�
�k11

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 306



Insert 10 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k10

@
@ k12

@
@
@@ k15
�
�k14

@
@ k16

COMP20012 Trees 307



Insert 8 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k10

��k8
@
@ k12

@
@
@@ k15
�
�k14

@
@ k16
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Insert 9 k7
�
�

�
�
�k4

�
�

��k2
�
�k1 @

@ k3

@
@
@@ k6
�
�k5

@
@
@
@
@ k13
�

�
��k11

�
�k9

��k8 @@ k10

@
@ k12

@
@
@@ k15
�
�k14

@
@ k16
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2-3 Trees

2-3 trees are search trees that maintain their balance by relaxing
the structural constraint of being a binary tree.

Some nodes have 2 children and some have 3, hence the name
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A 2-3 tree is a tree with the following properties

The root is either a leaf or has either 2 or 3 children

All data is stored at the leaves.

All leaves are at the same depth

The first two of these constraints are structural and the third is part of
the type invariant
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The type invariant is completed with the following constraint
In each node, we store the value of smallest leaf in tree of second
child, and value of smallest leaf in tree of third child, if there is one

2 5 7 8 12 16 19

7 16

− −5 8 12 19
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Insert 18

−

7 16

1916

18 19

2 5 7 8 12 18

5 8 12
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Insert 10

10

7 16

1916

18 19

18

5 8 12− − −

2 5 7 8 12

Wants to go between 8 and 12, so need to split 3 node into 2 2’s
But root now appears to have 4 children, so need to split and make
new root
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10 1916

18 19

18

−−−−5 8 12

7

10

16

−

− −

2 5 7 8 12
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B trees

2-3 trees can be generalised to trees that have the following
properties, for some natural number M

The root is either a leaf or has between 2 and M children
All non-leaf nodes (except the root) have between dM/2e and M
children
All leaves have the same depth.

Such trees are called B-trees of order M.

Main use is in database systems, where tree is on disk rather
than in memory

Want to minimise the number of disk accesses
B-trees are in general very shallow
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