
COMP20012

2: Hash Tables

COMP20012 Hash Tables 139

Maps

The Map ADT is used when information needs to be stored and
acessed via a key
The key is often a string, but could be any Java Object.
For example:

Dictionaries

Symbol Tables

Associative Arrays (eg in perl, awk) In perl we can use

$room_no{"Gough"} = "Kilburn 2.115";

COMP20012 Hash Tables 141

Associated with each key is some data

The Map is essentially a set of (key,data) pairs, with the property
that, for any k ,d ,d ′, if (k ,d) and (k ,d ′) are in the set, then
d = d ′.

In other words a Map provides a function Key −→ Data.

For example the key might be a word and the data its dictionary
definition, or the key an employee National Insurance number and
the data the employment record associated with that employee.

COMP20012 Hash Tables 142

The Map Interface

Object put(K key, V value) Associates the specified value
with the specified key in this
map (optional operation).

Object get(Object key) Returns the value to which
this map maps the specified
key.

boolean containsKey(Object key) Returns true if this map
contains a mapping for the
specified key.

boolean containsValue(Object value) Returns true if this map maps
one or more keys to the
specified value.

boolean equals(Object o) Compares the specified object
with this map for equality.

COMP20012 Hash Tables 143

boolean isEmpty() Returns true if this map
contains no key-value
mappings.

void putAll(Map<? extends K> t) Copies all of the mappings
from the specified map to this
map (optional operation).

Object remove(Object key) Removes the mapping for this
key from this map if present
(optional operation).

void clear() Removes all mappings from
this map (optional operation).

int hashCode() Returns the hash code value
for this map.

int size() Returns the number of
key-value mappings in this
map.

COMP20012 Hash Tables 144

Set entrySet() Returns a set view of the
mappings contained in this
map.

Set keySet() Returns a set view of the keys
contained in this map.

Collection values() Returns a collection view of
the values contained in this
map

COMP20012 Hash Tables 145

Implementing Maps

Maps can be implemented in many ways

Linked lists of (key,data) pairs
Tree based representations

Ordered binary trees of (key,data) pairs
Balanced trees, eg 2-3 trees, Red-Black trees, B-trees, Splay trees

Hash tables

COMP20012 Hash Tables 146

Hash tables

When storing and accessing indexed information, most efficient
access mechanism is direct addressing.

Simplest example is an array a

Can access, or update, any array element a[i] in constant time,
if we know the index i.

COMP20012 Hash Tables 148

If data is stored in other forms of data structure, such as lists, or
binary search trees, the access and update cost depends on
position of the data in the data structure.

Arrays ok for data indexed by integers

Need similar mechanisms for data with other types of index, e.g.
strings of characters

COMP20012 Hash Tables 149

Suppose we are given a set K of keys.

For direct addressing need a function h, such that, for any k ∈ K

h(k) is the address of the location of data associated
with k

memory
*

K

k

h

h would ideally have the following properties:-
It is easy (and fast) to calculate h(k), given k
It is 1-1 (i.e. no two keys give the same value of h)
Uses reasonable amount of memory (i.e. the range of h is not too
large)

COMP20012 Hash Tables 150

All these properties are satisfied by array indexing, but in general
are too much to ask for.

Hash tables give a way round the problem by relaxing the 1-1
condition.

A hash table is basically an array

HashSize − 1

*

K

k

0

2

4

6h

COMP20012 Hash Tables 151

A hash function is a function

h : K −→ (0 . . .HashSize−1)

h is used whenever access to the hash table is required – e.g.
search, insertion, deletion

COMP20012 Hash Tables 152

A problem arises when two keys k1,k2 have

h(k1) = h(k2)

Where does data associated with these keys go?
Two mechanisms for resolving this type of conflict

Open hashing (otherwise known as separate chaining)
Closed hashing (otherwise known as open addressing)

COMP20012 Hash Tables 153

Open hashing

No data is stored in the hash table itself

Hash table just contains pointers to linked lists of data cells

null

null

k3

k1

k6

null

null

k2
null

*

K

*k2

k3

COMP20012 Hash Tables 154

Have drawn cells containing only a key and a reference to the
next list node.

The cells would normally contain references to the values
associated with the keys.

COMP20012 Hash Tables 155

The principal operations on hash tables are to initialise, find using a
key and insert new data, again using a key.

Initialise a hash table, given its size
Create array (of appropriate size) of Lists
Initialise each List object.

COMP20012 Hash Tables 156

Find a key k
Calculate h(k)
look along the list with header at h(k) to see if k is there

Insert a key k
If already there, do nothing
Otherwise, add a new list element containing k to the list starting
at h(k)

COMP20012 Hash Tables 157

Delete a key k
If not there, do nothing
Otherwise, delete cell containing k from the list starting at h(k).

COMP20012 Hash Tables 158

Cost of hashing

Search time for a key k has two components

Calculating h(k)
Searching the linked list for k

Ignoring, for time being, calculation of h(k), search time depends on

Maximum length of linked lists
= Maximum number of collisions for any k

Aim to choose size of hash table and hash function so that this is as
small as possible

COMP20012 Hash Tables 159

Hash functions

If hash table size is H, then need a function

h : K −→ 0 . . .(H−1)

Should have properties

It is easy to compute

For given values in K , values of h(k) are uniformly distributed
over the range 0 . . .(H−1)
For example, no use having H = 1000 and all values of h(k) in
the region 200 to 300.

These properties are difficult to achieve, since the keys themselves
are often not randomly distributed

COMP20012 Hash Tables 160

Example hash functions for strings

Simple additive function. Adds character values (as ints) and reduces
mod the table size.

static int hash1(String key)
{

int hashVal=0;

for (int i = 0 ; i < key.length() ; i++)
hashVal += key.charAt(i);

return(hashVal);
}

This function takes no account of the position of characters within the
key
e.g. ’cat’ and ’act’ hash to the same value, 99 + 97 + 116 = 312

COMP20012 Hash Tables 161

This function weights the second and third characters with powers of
the size of the alphabet (in this case 27). It ignores all characters after
the third.

static int hash2(String key)
{
int hashVal;
if (key.length() == 0)
hashVal = 0;

else if (key.length() == 1)
hashVal = key.charAt(0);

else if (key.length() == 2)
hashVal = (key.charAt(0) + 27*key.charAt(1));

else
hashVal = (key.charAt(0) + 27*key.charAt(1) +

729*key.charAt(2));
return(hashVal);

}

COMP20012 Hash Tables 162

With this one we have

cat: 87282
act: 87334
catalogue: 87282

COMP20012 Hash Tables 164

We can generalise this approach to use the entire string.
For a key of length n, calculate the polynomial

k0 ∗Cn−1 + k1 ∗Cn−2 + . . .kn−1

where the value of C is 32, and k0, . . .kn−1 are the characters of the
key.
We can do this in an efficient way by rewriting the polynomial in the
following way:-

(. . .((k0 ∗C)+ k1)∗C)+ k2 + . . .kn−2)+ kn−1

COMP20012 Hash Tables 165

An example of this evaluation strategy is

3C3 +5C2 +2C +7 = ((3C +5)C +2)C +7

Only 3 multiplications are used instead of 3+2+1 = 6

COMP20012 Hash Tables 166

static int hash3(String key)
{

int hashVal=0;
int c=32;
for (int i = 0 ; i < key.length() ; i++)

{
hashVal = (hashVal * c) + key.charAt(i);

}
return(hashVal);

}

COMP20012 Hash Tables 168

or equivalently

static int hash3alt(String key, int hashSize)
{

int hashVal=0;

for (int i = 0 ; i < key.length() ; i++)
{

hashVal = (hashVal << 5) + key.charAt(i);
}

return(hashVal);
}

COMP20012 Hash Tables 170

The Java method hashCode in the class String is defined in a similar
way to hash3, except that the constant used is 31, rather than 32.

COMP20012 Hash Tables 171

Hash function performance

The following slides show the performance of the above hash
functions under two sets of conditions

Data set of 315 words, hash table size 157

Data set of 25144 words (/usr/share/dict/words), hash table
size 3001

COMP20012 Hash Tables 172

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

C
ha

in
 le

ng
th

Hash value

Hash values: sample - size 157 - function 1 - usage ratio 0.771

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5

F
re

qu
en

cy

Chain length

Chain lengths: sample - size 157 - function 1

COMP20012 Hash Tables 173

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

C
ha

in
 le

ng
th

Hash value

Hash values: sample - size 157 - function 2 - usage ratio 0.745

5

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6

F
re

qu
en

cy

Chain length

Chain lengths: sample - size 157 - function 2

COMP20012 Hash Tables 174

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160

C
ha

in
 le

ng
th

Hash value

Hash values: sample - size 157 - function 3 - usage ratio 0.771

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

F
re

qu
en

cy

Chain length

Chain lengths: sample - size 157 - function 3

COMP20012 Hash Tables 175

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

C
ha

in
 le

ng
th

Hash value

Hash values: words - size 3001 - function 1 - usage ratio 0.427

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

F
re

qu
en

cy

Chain length

Chain lengths: words - size 3001 - function 1

COMP20012 Hash Tables 176

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

C
ha

in
 le

ng
th

Hash value

Hash values: words - size 3001 - function 2 - usage ratio 0.647

0

200

400

600

800

1000

1200

0 50 100150200250300350400

F
re

qu
en

cy

Chain length

Chain lengths: words - size 3001 - function 2

COMP20012 Hash Tables 177

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

C
ha

in
 le

ng
th

Hash value

Hash values: words - size 3001 - function 3 - usage ratio 1.000

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Chain length

Chain lengths: words - size 3001 - function 3

COMP20012 Hash Tables 178

Closed Hashing (Open addressing)

Open hashing has several disadvantages, including

needs separate data structure for chains, and code to manage it

Closed hashing has neither of these problems

all data is stored in the hash table array itself

when collision occurs, look elsewhere in the array for space

COMP20012 Hash Tables 179

Given key k , hash function hash, adopt following procedure to search
for k .

Look at the location s0 given by hash(k)
If k found at location s0, return s0

Otherwise, if location s0 is empty, halt search, since k is not in the
table

Otherwise, use second function p to find s1, given by

s1 = hash(k)+p(1) (mod HashSize)

Repeat above with

si = hash(k)+p(i) (mod HashSize)

until either find k or an empty cell.

COMP20012 Hash Tables 180

The function p called collision resolution function or probe
function

Simplest function is
p(i) = i

So si = hash(k)+ i

Start at s0 and look at consecutive cells until find space.

This is linear probing

COMP20012 Hash Tables 181

Hash table insertion – linear probing

This example uses integer keys and the hash function

h(k) = k mod hash_size

Data to be inserted is

23 3 2 22 45 68 24 47 91

COMP20012 Hash Tables 183

Using linear probing gives
insertions --->

23 3 2 22 45 68 24 47 91
==

0 || 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
1 || | | | | 45 | 45 | 45 | 45 | 45 |
2 || | | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
3 || | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
4 || | | | | | 68 | 68 | 68 | 68 |
5 || | | | | | | 24 | 24 | 24 |
6 || | | | | | | | 47 | 47 |
7 || | | | | | | | | 91 |
8 || | | | | | | | | |
9 || | | | | | | | | |
10 || | | | | | | | | |
11 || | | | | | | | | |
12 || | | | | | | | | |
13 || | | | | | | | | |
14 || | | | | | | | | |
15 || | | | | | | | | |
16 || | | | | | | | | |
17 || | | | | | | | | |
18 || | | | | | | | | |
19 || | | | | | | | | |
20 || | | | | | | | | |
21 || | | | | | | | | |
22 || | | | 22 | 22 | 22 | 22 | 22 | 22 |

==

Everything OK until try
to insert 45.

45 mod 23 = 22 full

22+1 mod 23 = 0 full

22+2 mod 23 = 1 insert

COMP20012 Hash Tables 185

Note that this produces a block of occupied cells – this effect is
known as clustering.

Using linear probing means that if a new key is hashed into the
cluster, we need several probes to find space for it, and it then
adds to the cluster.

One way to avoid this is to use quadratic probing.

p(i) = i2

COMP20012 Hash Tables 186

Hash table insertion – quadratic probing

Same data and hash function as before, but using quadratic probing
==

0 || 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
1 || | | | | | | 24 | 24 | 24 |
2 || | | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
3 || | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
4 || | | | | | | | | |
5 || | | | | | | | 47 | 47 |
6 || | | | | | | | | |
7 || | | | | | | | | |
8 || | | | | 45 | 45 | 45 | 45 | 45 |
9 || | | | | | | | | |

10 || | | | | | | | | |
11 || | | | | | | | | |
12 || | | | | | | | | 91 |
13 || | | | | | | | | |
14 || | | | | | | | | |
15 || | | | | | 68 | 68 | 68 | 68 |
16 || | | | | | | | | |
17 || | | | | | | | | |
18 || | | | | | | | | |
19 || | | | | | | | | |
20 || | | | | | | | | |
21 || | | | | | | | | |
22 || | | | 22 | 22 | 22 | 22 | 22 | 22 |
==

Again everything OK until
try to insert 45.

45 mod 23 = 22 full

(22+12) mod 23 = 0 full

(22+22) mod 23 = 3 full

(22+32) mod 23 = 8 insert

COMP20012 Hash Tables 188

Quadratic probing
Linear probing is guaranteed to find an empty space if one exists.
Not the case for quadratic probing
Consider the following hash table. It isn’t full, but an attempt to insert
30, using hash function as before and quadratic probing, will fail.

===========
0 || 10 |
1 || 21 |
2 || |
3 || |
4 || 34 |
5 || 45 |
6 || 56 |
7 || |
8 || |
9 || 69 |

===========

30 mod 10 = 0 full

(0+12) mod 10 = 1 full

(0+22) mod 10 = 4 full

(0+32) mod 10 = 9 full

(0+42) mod 10 = 6 full

(0+52) mod 10 = 5 full

(0+62) mod 10 = 6 full

(0+72) mod 10 = 9 full

Never get any values other than 0,4,5,6,9, so
never hit free space

COMP20012 Hash Tables 190

Can be shown that can guarantee to find a place for a new key k using
quadratic probing if following conditions hold

The table size is prime

The table is less than half full

This means that, if quadratic probing used, need table size to be at
least twice as big as maximum number of data items

COMP20012 Hash Tables 191

Suppose table has size H, H an odd prime greater than 3.

Claim that the first bH/2c alternative locations probed by
quadratic probing are different

Suppose we hit the same location for probes i and j , where i ≥ j ,
and h0 is the initial starting point given by the hash function

i2

h0

j2

COMP20012 Hash Tables 192

So we have

h0 + i2 = h0 + j2 (mod H)
i2 = j2 (mod H)

(i− j)(i + j) = 0 (mod H)

This means that (i− j)(i + j) is a multiple of H.

Since H is prime, one of i− j , i + j must be divisible by H.

Since both i and j are ≤ bH/2c, we must have i + j < H
So i− j = 0.

COMP20012 Hash Tables 193

This justifies the claim that that the first bH/2c alternative
locations probed are different

If the table is less than half full, at least one of these bH/2c
locations must be free.

COMP20012 Hash Tables 194

Double hashing

Although quadratic probing eliminates primary clustering there is
still a secondary clustering effect, in that if two keys have the
same hash values, they result in probing the same sequence of
slots.

One way of eliminating this is by using double hashing.

Choose a second hash function, h2, and use the collision
resolution function

p(i) = h2(k)∗ i

Need to make sure that h2(k) never takes the value 0 (Why?)

COMP20012 Hash Tables 195

If the table size is prime and p is some prime smaller than the hash
table size, the function

h2(k) = p− (k mod p)

usually works well. (Note that we are assuming integer keys here, but
can easily be generalised to string keys)

COMP20012 Hash Tables 196

Using double hashing with the above example, with secondary hash
function

p− (k mod p)

with p = 7
Can insert 10, 21, 34, 45, 56, 69 with no problems – now try to insert
70 and 19

========================
0 || 10 | 10 | 10 |
1 || 21 | 21 | 21 |
2 || | | |
3 || | | 19 |
4 || 34 | 34 | 34 |
5 || 45 | 45 | 45 |
6 || 56 | 56 | 56 |
7 || | 70 | 70 |
8 || | | |
9 || 69 | 69 | 69 |

========================

h2(70) = 7− (70 mod 7) = 7

70 mod 10 = 0 full

(0+7) mod 10 = 7 insert

h2(19) = 7− (19 mod 7) = 2

19 mod 10 = 9 full

(9+2) mod 10 = 1 full

(9+2∗2) mod 10 = 3 insert

COMP20012 Hash Tables 198

Deletion in closed hashing

Deleting an entry from a hash table based on closed hashing is
not as straight forward as in open hashing

Why is this?

COMP20012 Hash Tables 199

Suppose we have used linear probing and the obvious hash
function to create the following table:-

============
0 || 10 |
1 || 21 |
2 || 31 |
3 || 41 |
4 || 44 |
5 || 71 |
6 || |
7 || |
8 || |
9 || |

10 || |
============

============
0 || 10 |
1 || 21 |
2 || |
3 || 41 |
4 || 44 |
5 || 71 |
6 || |
7 || |
8 || |
9 || |

10 || |
============

Now delete 31 and then search for 71.

If we just delete, we come across an empty space which
suggests our search is unsuccessful, even though 71 is there.

COMP20012 Hash Tables 201

To get round this problem we need to flag each entry in the table
to say whether it is deleted or not.

Only if we find an empty slot which is not flagged as deleted do
we end a search

COMP20012 Hash Tables 202

Rehashing

Two major disadvantages to closed hashing
Need to know upper bound on amount of data before building the
hash table
As the hash table fills up, more clashes occur and insertion
becomes more expensive. At some stage insertion will fail (at best
when the table is full).

Rather than make the hash table extremely large in first place,
can get round both problems by rehashing.

This involves building a new hash table at least double the size of
original, inserting all data from the original hash table into the
new table, and freeing memory resources taken by old table.

COMP20012 Hash Tables 203

This means that we are not limited by size of data expected in
advance,

Can rehash if run out of space.
Rehash can take place either

When becomes full – probably a bit late
When table loading reaches some predetermined factor (70%
often used)

Rehashing should be triggered automatically by an insert, without
user intervention.

Easy to implement

COMP20012 Hash Tables 204

The lab exercise: A simple spell checker

First lab session week of April 8.

The exercise is to implement a very simple spelling checker
which uses a set in which to store all the words in a dictionary.

A text is then read and words which are in the text which can not
be found in the dictionary are reported to the user, together with
the line numbers on which these words occur in the text.

COMP20012 Hash Tables 205

The dictionary is to be contained in a collection which implements
the following very simplified collection interface

public interface Coll
{

public boolean add(Object o);
public boolean contains(Object o);
public void printColl();

}

The behaviour of the add and contains methods should be the
same as the corresponding methods in Set. printColl should
print the contents of collection to standard output in a suitable
manner.

COMP20012 Hash Tables 207

Tasks

Your tasks for this lab are to provide two different implementations
of this interface, both using Hash Tables, one using Open
Hashing and the other using Closed Hashing.

You should then implement a class SpellCheck which uses
either of these implementations to produce a simple spell
checker, as described above.

COMP20012 Hash Tables 208

Task 1: Open Hashing based implementation

The first task is to create a class HashSetOpen which implements
the Coll interface using hash tables based on open hashing, so
that collisions are dealt with by using a list of entries.

You can probably reuse a modified form of your LinkedList
code from lab 1 for list handling purposes.

In addition to the methods required for the interface you will need
suitable constructors and a main method which includes code to
test your methods.

COMP20012 Hash Tables 209

Task 2: Closed Hashing based implementation

The second task is to write a call HashSetClosed, which
implements the Coll interface type using hash tables based on
closed hashing, so that collisions are dealt with by using a
collision resolution mechanism, such as linear probing.

You could alternatively use quadratic probing or double hashing.

For this style of hash table you will also need to implement a
rehash method, which is invoked by add when the the table
reaches a predetermined load factor, otherwise the table risks
overfilling.

Your implementation should, of course, include suitable testing.

COMP20012 Hash Tables 210

For both types of hash table it is preferable to use hash tables
whose size is a prime number.

A class Primes is provided in
/opt/info/courses/lab3/Primes.java, to help you identify
suitable prime numbers. In particular the method nextPrime
returns the first prime number greater than or equal to its
argument.

COMP20012 Hash Tables 212

Task 3: The Spell Checker

The final task is to write a class SpellCheck which uses either of
these implementations to produce a simple spell checker, as
described above. The text file to be checked should be specified
via a command line argument, as should the Coll
implementation to be used and the dictionary.

One possible example of how this might be used is:-

java SpellCheck -o -d /usr/share/dict/words test-text

This should use the dictionary /usr/share/dict/words and
the open hashing based hash table implementation to spell check
the file test-text.

The simpler command

java SpellCheck test-text

might use a default dictionary and text file.

COMP20012 Hash Tables 214

One way to switch between the two implementations is to have a
SpellCheck constructor which takes an argument of type Coll
which is then used to store the dictionary.

This can then be used in conjunction with a method to do the
spell check, which can be invoked by that object.

COMP20012 Hash Tables 215

To populate the dictionary and also to read the text to be
checked, you need to read a file and identify the words in it.

For this purpose we regard a word as a sequence of consecutive
alphabetic characters. Any non-alphabetic character can be
regarded as a separator.

You may find the StringTokenizer class useful here.

COMP20012 Hash Tables 216

Take a look in the directory
/opt/info/courses/COMP20012/lab3/., where there is a sample
dictionary and text file to be spell checked, together with a file
containing some examples of command line handling.

COMP20012 Hash Tables 218

