
COMP20012

4: Graphs

COMP20012 Graphs 332

Graphs

A directed graph (digraph) is a pair (N,E) consisting of a set of
nodes (or vertices) N, together with a relation E on N. Each
element (n1,n2) of E is called an edge

There is no restriction on the relation E .

n5

� �� �

� �� �

� �� �

� �� �
� �	 	

n1

n2

n3

n4

Recall equivalence between digraphs and relations from CS1021

COMP20012 Graphs 333

A path in a graph is a sequence of nodes n1,n2,n3 . . .nk , where
(ni ,ni+1) ∈ E for 1 ≤ i < k

The length of a path is the number of edges in it (k −1 in the
definition above)

A cycle in a graph is a path of length at least 1, such that n1 = nk .
Sometimes edges of graphs are labelled. The label may describe
either the nature of the edge (e.g. name of train operator
providing service on a rail network graph), or other attribute such
as the distance or cost associated with the edge.

COMP20012 Graphs 334

Representations of Directed Graphs

If the number of nodes is fairly small and known before the
graph’s construction can use an adjacency matrix.

Suppose N = {1,2, . . .n}
The adjacency matrix for the graph G = (N,E) is an n×n matrix
A of booleans, where A[i, j] is true if and only if there is an edge
from i to j .

COMP20012 Graphs 335

Representations of Directed Graphs

Denoting true by 1 and false by 0 we have, for the graph above,

0 1 0 0 1
1 0 1 1 0
0 0 0 0 0
0 1 1 0 1
0 0 0 1 0

Given edge can be detected in constant time

Easy to extend to labelled graph, just replace booleans by labels.

Main disadvantage is that this requires O(n2) storage even if
graphs has much fewer than n2 edges.

COMP20012 Graphs 336

Representations of Directed Graphs

Alternative representation is adjacency list

For each node n, we give a list of the nodes n′, such that there is
an edge (n,n′).
Easy to see how to implement this in Java or C.

COMP20012 Graphs 337

Single source shortest paths problem

Problem
Given a directed graph

G = 〈N,E〉

where each edge has an associated non-negative ‘length’ (or ‘cost’),
find the shortest (cheapest) distance from a single node (called the
source) to each other node in the graph.

COMP20012 Graphs 338

50

1

2

34

5

10 50

100
30

20
10

5

Use a greedy algorithm called Dijkstra’s algorithm.

COMP20012 Graphs 339

Edsger Dijkstra: 1930-2002

1972 recipient of the ACM Turing Award

Responsible for the idea of building operating systems as
explicitly synchronized sequential processes, for the formal
development of computer programs, and for the intellectual
foundations for the disciplined control of nondeterminacy.

Designed and coded the first Algol 60 compiler.

Leader of the movement to abolish the GOTO statement from
programming.

COMP20012 Graphs 340

Diversion: Greedy algorithms

Used to solve optimisation problems

Have a problem, which has many possible solutions

Want to find a solution which is in some sense ‘best’

Want solution which minimises (or maximises) value of some
function that measures cost or value of solution.

Such function called the objective function

COMP20012 Graphs 341

One example is the scheduling problem

Given set of jobs
j1, j2, . . . jn

with running times
t1, t2, . . . tn

What is best way to schedule jobs in order to minimise average
completion time?

COMP20012 Graphs 342

Example: Coin choosing

Another example is change giving

Want to give an amount of money using fewest number of
coins/notes possible.

Objective function is number of coins in selection

What strategy do we usually adopt?
– Choose largest coin available

COMP20012 Graphs 343

For example

£86.68 = £50 (leaving £36.68)
+ £20 (leaving £16.68)
+ £10 (leaving £6.68)
+ £5 (leaving £1.68)
+ £1 (leaving 68p)
+ 50 p (leaving 18p)
+ 10 p (leaving 8p)
+ 5 p (leaving 3p)
+ 2 p (leaving 1p)
+ 1 p

This is an example of a greedy algorithm

COMP20012 Graphs 344

Greedy algorithms can be used when a set (or list) of candidates
is to be chosen to build up a solution (e.g. a set of coins, ordering
of a set of jobs to be scheduled, set of edges of a graph).

The greedy approach always makes what appears at the time to
be the ‘best’ choice at each stage, without worrying about its
effect on future choices.

Once a candidate is included in the solution it is never removed,
and once a candidate is excluded from the solution it is never
reconsidered.

No backtracking over choices.

This makes greedy algorithms relatively simple and easy to
implement.

COMP20012 Graphs 345

But . . .

Back to the coins example:-

What happens if we introduce a 12p coin?

35p =?

COMP20012 Graphs 346

Back to Dijkstra

Want to find the shortest distance from a single node to each other
node in the graph.

Maintain a set S of known nodes

A path from the source node to any other node is called special if
uses only known nodes as intermediates

At each step add a new vertex to S , and maintain a list D of
lengths of shortest special paths from the source to every other
node in the graph.

At each step, add to S the node not currently in S which has the
shortest special path.

Adjust the values of D to take account of the new element of S

COMP20012 Graphs 347

50

1

2

34

5

10 50

100
30

20
10

5

Step Node to add S D
Init - {1} [50,30,100,10]
1 5 {1,5} [50,30,20,10]
2 4 {1,4,5} [40,30,20,10]
3 3 {1,3,4,5} [35,30,20,10]

COMP20012 Graphs 348

Note that this algorithm finds the shortest distance from the
source to each node, but doesn’t give us the routes.

Can do this by adding a second array P which records the node
that precedes the final node in each special path.

COMP20012 Graphs 349

50

1

2

34

5

10 50

100
30

20
10

5

Step Node to add S D P
Init - {1} [50,30,100,10] [1,1,1,1]
1 5 {1,5} [50,30,20,10] [1,1,5,1]
2 4 {1,4,5} [40,30,20,10] [4,1,5,1]
3 3 {1,3,4,5} [35,30,20,10] [3,1,5,1]

Can build paths by working backwards from each node.

COMP20012 Graphs 350

Description of algorithm

A pseudocode description of the algorithm is as follows (we maintain
C = N −S rather than S itself)

C = {2, 3, ... n}
for i = 2 to n do

D[i] = L[1,i]

repeat n - 2 times
v = some element of C with minimal D[v]
C = C - {v}
for each w in C do

D[w] = min(D[w],D[v] + L[v,w])

COMP20012 Graphs 352

Why does Dijkstra’s algorithm work?

We will outline the proof that the algorithm does actually produce the
right result
The proof is by induction. We prove that

a) if a node i 6= 1 is in S, then D[i] is the length of the shortest path
from the source to i

b) if a node i 6= 1 is not in S, then D[i] is the length of the shortest
special path from the source to i

Since S contains all nodes when the algorithm is complete this will
prove the result.

COMP20012 Graphs 353

Base case: Initially only the source node is in S, so a) is obviously
true. For all other nodes, the only special path is the direct path,
and D contains the lengths of those paths, so b) is also true.

COMP20012 Graphs 354

Inductive step. Suppose a) and b) are both true at some stage,
we show that adding a new node maintains both properties

a) For every node in S before addition of v nothing changes
Need to show that the D[v] is the shortest path to v and not just
the shortest special path
Suppose that the shortest path to v is not a special path, ie it
passes through some node not in S.

COMP20012 Graphs 355

Let x be the first such node on the path from 1 to v .

w

S N −S

v

x

The path from 1 to x is a special path, so its length is D[x] (by
inductive assumption).
If we go to v via x the distance must be at least D[x], so D[v] must be
greater than D[x]
But v was chosen because it had smallest value of D, so we have a
contradiction and so property a) is maintained

COMP20012 Graphs 356

b) Now consider some w , different to v , not in S
Need to show that D[w] is the length of the shortest special path to
w
When v is added to S, we have two possibilities for shortest path to
w , either it changes or it doesn’t
Suppose it changes, let x be the last node in S before w
Length of this path is D[x]+L[x ,w]
For every x except v , we have already compared the old value of
D[w] with D[x]+L[x ,w] when we added x
So only need to compare it with D[v]+L[v ,w]
This shows that condition b) is also maintained

COMP20012 Graphs 357

Complexity of Dijkstra’s algorithm

Suppose graph has n nodes and e edges, using an adjacency
matrix representation

Initialisation take O(n)
For each iteration, need to look at n−1,n−2,n−3, . . . values of
D[v]
This gives a total time of O(n2)

COMP20012 Graphs 358

Can improve on this by storing the values of D in a heap so that
smallest value is always at the root.

Initialisation take O(n)
Removing smallest value from heap takes O(lgn)
Updating the heap also takes O(lgn). This happens at most once
for each edge of the graph.

This gives a time of O((e +n) lgn)
If the graph is dense, (i.e. e is close to n2) the straightforward
implementation is better

If graph is sparse (e much smaller than n2), the heap
implementation is better

COMP20012 Graphs 359

Huffman Codes

This section presents another greedy algorithm (not a graph algorithm)
which makes an interesting use of trees

Problem
Information is contained in a file containing n characters, how can we
store this information in as efficient a way as possible?

Need to know something about the contents.

COMP20012 Graphs 360

Suppose file contained only characters a, b, c, d, e, together with
blank and newline

Can encode these 7 characters in 3 bits

a b c d e blank newline
000 001 010 011 100 101 110

Could store the information in original file in 3n bits (plus
overhead for above table), rather than the usual 8n bits

COMP20012 Graphs 361

Can do better if we use variable length code using the frequency of the
characters – shorter codes for more frequent characters
Suppose frequencies and codes are

a b c d e newline blank
10 15 12 3 4 1 13
001 01 10 00000 0001 00001 11

Then need

10×3+15×2+12×2+3×5+4×4+1×5+13×2 = 146 bits

Standard representation needs 8×58 = 464 bits
Fixed length encoding requires 3×58 = 174 bits

COMP20012 Graphs 362

In above variable length code, no character’s code is a prefix of
another’s.
Such codes called prefix codes

a b c d e newline blank
10 15 12 3 4 1 13
001 01 10 00000 0001 00001 11

Sequence
010011110001011000111000100001

splits into

01|001|11|10|001|01|10|001|11|0001|00001|

which represents character sequence

"ba cabca e
"

COMP20012 Graphs 364

Problem
How do we generate such codes?
Can represent a binary code as a tree with data only at leaves (trie)
0 indicates left choice
1 indicates right choice

Fixed length code

blanka b c d e \n

a b c d e blank newline
000 001 010 011 100 101 110

COMP20012 Graphs 365

Prefix code

blank

d \n

e

a

b c

a b c d e newline blank
10 15 12 3 4 1 13
001 01 10 00000 0001 00001 11

COMP20012 Graphs 366

Huffman’s algorithm

Given a set of characters and frequencies, generate a prefix code

Maintain a forest of trees, each with weight given by sum of
frequencies at leaves

Repeatedly merge two trees with smallest weight until have only
one tree

Start with forest of singleton trees

COMP20012 Graphs 367

Huffman’s algorithm

1
d (3)b (15) c (12)a (10) e (4) \n (1) bl (13)

2
4

a (10) b (15) c (12) e (4) bl (13)

d (3) \n (1)

3

4

a (10) b (15) c (12) bl (13)

e (4)

8

d (3) \n (1)

COMP20012 Graphs 368

Huffman’s algorithm

4

4
a (10)

18
b (15) c (12) bl (13)

e (4)

8

d (3) \n (1)

5

25
b (15)

a (10)

18

e (4)

8

d (3) \n (1)

4
c (12) bl (13)

COMP20012 Graphs 369

Huffman’s algorithm

6

4

58

c (12) bl (13)

25

b (15)

33

a (10)

18

e (4)

8

d (3) \n (1)

7

25

58

b (15)

33

a (10)

18

e (4)

8

d (3) \n (1)

4

c (12) bl (13)

COMP20012 Graphs 370

The code produced by Huffman’s algorithm is, in one sense, the best
code possible.

The length of the encoded string is given by

∑
leaves

(frequency of char at leaf)× (distance to root)

This is the weighted external path length of the tree

Claim that

No tree with the same frequencies at the leaves has lower weighted
external path length than the Huffman tree

COMP20012 Graphs 371

The Huffman tree has the property that the two least frequently
occurring characters α and β, must be at the deepest level of the
tree

Argue that if one of α and β not deepest then some other
character γ must be and swapping γ with α (or β) would decrease
weighted external path length

Rest of the proof proceeds by induction

COMP20012 Graphs 372

Compression techniques in action

(This material is not in the syllabus, included merely for interest)

Huffman encoding – used by unix utility pack.

Adaptive Huffman encoding – used by (obsolete) unix utility
compact.

Lempel-Ziv encoding – used by unix utilities compress and gzip.

COMP20012 Graphs 373

Gzip

gzip finds duplicated strings in the input data. The second
occurrence of a string is replaced by a pointer to the previous
string, in the form of a pair (distance, length).

A ‘sliding window’ of size 32K bytes is used, this means is that
any given point in the data, there is a record of the previous 32K
characters.

The sliding window is split into 2 parts

a dictionary – which is before the cursor

a lookahead buffer – which starts at the cursor and goes forward.

COMP20012 Graphs 374

When the next sequence of characters in the lookahead buffer to be
compressed is identical to one starting in the dictionary, the sequence
of characters is replaced by two numbers:

a distance: representing how far back into the window the
sequence starts,

a length: representing the number of characters for which the
sequence is identical.

COMP20012 Graphs 375

For example

Blah blah blah blah blah!

The first 5 characters contain no repetitions, so appear verbatim
But looking at the next five characters:

Blah blah blah blah blah!

There is an exact match for those five characters within the sliding
window, it starts five characters behind the point where we are now.

COMP20012 Graphs 377

The data so far:

Blah blah b

The compressed form of the data so far:

Blah b[D=5,L=5]

The compression can be increased even further

COMP20012 Graphs 379

Now look at the character that follows the strings we’ve identified
as identical.

In both cases, it’s ‘l’ – so we can make the length 6, and not just 5.

Continuing in this way we eventually find that the 18 characters
that start at the second character are identical to the 18
characters that start at the seventh character.

We don’t worry that these two strings overlap

COMP20012 Graphs 381

It turns out our data can be compressed down to just this:

Blah b[D=5, L=18]

Think about how this would be decompressed

COMP20012 Graphs 383

Literals or match lengths are compressed with one Huffman tree,
and match distances are compressed with another tree.

The trees are stored in a compact form at the start of each block.

Duplicated strings are found using a hash table.

COMP20012 Graphs 384

The following example uses a dictionary of size 6 and lookahead buffer
of size 4.
The cursor position is boxed , the dictionary is bold faced and the
lookahead buffer is underlined.
Step Input String Output

1 x x z x x z x y z x y x y x z x
2 x x z x x z x y z x y x y x z (1,1,z)
3 x x z x x z x y z x y x y x z (3,4,y)
4 x x z x x z x y z x y x y x z (3,3,x)
5 x x z x x z x y z x y x y x z (2,2,z)

COMP20012 Graphs 385

Much more information on compression related matters can be found
on the Info-Zip web site, http:
//www.mirror.ac.uk/sites/ftp.cdrom.com/pub/infozip/

COMP20012 Graphs 386

http://www.mirror.ac.uk/sites/ftp.cdrom.com/pub/infozip/
http://www.mirror.ac.uk/sites/ftp.cdrom.com/pub/infozip/

All pairs shortest paths

Back to graphs.

Problem
Given a directed graph

G = 〈N,E〉

where each edge has an associated ‘length’ (or ‘cost’), find the
shortest (cheapest) distance between each pair of nodes in the
graph.

Recall that Dijkstra’s algorithm gave shortest distance from a
given node to all other nodes. Could use that n times (n number
of nodes)

The algorithm we now give is much simpler and can be used
when graph has negative edges (Dijkstra’s algorithm can’t)

COMP20012 Graphs 387

Although negative edges are allowed, we do not allow negative cycles
(Why?)

negative cycle

6

−3

2
5

COMP20012 Graphs 388

Suppose shortest path from i to j passes through k

j

k

i

Then the path taken from i to k must be the shortest available

So must path taken from k to j (Why?)

COMP20012 Graphs 389

Define function d(k , i, j) as

d(k , i, j) = shortest distance from i to j using
only nodes 1 . . .k as intermediate
points

If given lengths of edges are L(i, j), then

d(0, i, j) = L(i, j)

i.e. use direct paths only, no intermediate nodes

How do we calculate d(k , i, j) for k > 0?

COMP20012 Graphs 390

Want to find the shortest path from i to j (using only 1 . . .k as
intermediates)
Have two possibilities

The path doesn’t actually use the node k

It does use the node k

COMP20012 Graphs 391

In first case, use only intermediate nodes 1 . . .(k −1) and length of
path is just

d(k −1, i, j)

In second it is
d(k −1, i,k)+d(k −1,k , j)

j

k

i

This gives

d(k , i, j) = min(d(k −1, i, j),d(k −1, i,k)+d(k −1,k , j))

COMP20012 Graphs 392

Can do this recursively, but most efficient way to calculate this is
bottom up

For each k , d(k) depends on the values of d(k −1), so calculate
d(0), d(1) and store the values for use in the next step

This is the Floyd-Warshall algorithm

COMP20012 Graphs 393

Robert W Floyd

Won the Turing award in 1978.

He was one of the inventors of the deterministic linear time
selection algorithm.

Also made early improvements in quicksort and quickselect.

COMP20012 Graphs 394

Floyd-Warshall – an example

1

2

43

−4 −5

6

7

8

2

1

5 4

3

Store d(k , i, j) in a matrix Dk

COMP20012 Graphs 395

D0

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

P0

* 1 1 * 1
* * * 2 2
* 3 * * *
4 * 4 * *
* * * 5 *

D1

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 5 −5 0 −2
∞ ∞ ∞ 6 0

P1

* 1 1 * 1
* * * 2 2
* 3 * * *
4 1 4 * 1
* * * 5 *

d(1, i, j) = min(d(0, i, j),d(0, i,1)+d(0,1, j))

COMP20012 Graphs 396

d(2, i, j) = min(d(1, i, j),d(1, i,2)+d(1,2, j))

D2

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 5 −5 0 −2
∞ ∞ ∞ 6 0

P2

* 1 1 2 1
* * * 2 2
* 3 * 2 2
4 1 4 * 1
* * * 5 *

D3

0 3 8 4 −4
∞ 0 ∞ 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
∞ ∞ ∞ 6 0

P3

* 1 1 2 1
* * * 2 2
* 3 * 2 2
4 3 4 * 1
* * * 5 *

d(3, i, j) = min(d(2, i, j),d(2, i,3)+d(2,3, j))

COMP20012 Graphs 397

d(4, i, j) = min(d(3, i, j),d(3, i,4)+d(3,4, j))

D4

0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

P4

* 1 4 2 1
4 * 4 2 1
4 3 * 2 1
4 3 4 * 1
4 3 4 5 *

D5

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

P5

* 3 4 5 1
4 * 4 2 2
4 3 * 2 2
4 3 4 * 1
4 3 4 5 *

d(5, i, j) = min(d(4, i, j),d(4, i,5)+d(4,5, j))

COMP20012 Graphs 398

The matrix D5 contains the lengths of all the shortest paths, but
doesn’t record the paths themselves

Can find the paths by recording the choices that change value of
d

COMP20012 Graphs 399

Define p(k , i, j) to be the last node visited (before j) on the path from i
to j (using only vertices 1 . . .k as intermediates)

p(k , i, j) = p(k −1, i, j) if d(k , i, j) is same as d(k −1, i, j)
= p(k −1,k , j) otherwise

See the matrices P0 . . .P5 in the above example
A Java applet showing an animated version of this algorithm can be
found at http://www.cs.man.ac.uk/˜graham/COMP20012

COMP20012 Graphs 400

http://www.cs.man.ac.uk/~graham/COMP20012

The Floyd-Warshall algorithm

public class Floyd
{

int nodes;
int [][] edgeLength;
int [][] predecessor;
int [][] distance;

final static int inf = 1000000;
final static int nonVertex = -1;

COMP20012 Graphs 402

Floyd (int [][] edges)
{

edgeLength = edges;
nodes = edges.length;
distance = new int[nodes][nodes];
predecessor = new int[nodes][nodes];

}

COMP20012 Graphs 404

void floyd()
{
int i, j, k;

/* Initialize distance and predecessor */
/* predecessor[i][j] contains the last but one */
/* vertex on the path from i to j */
for(i=0; i < nodes; i++)
for(j=0; j < nodes; j++)
{
distance[i][j] = edgeLength[i][j];
if (i != j && edgeLength[i][j] != inf)
predecessor[i][j] = i;

else
predecessor[i][j] = nonVertex;

}

COMP20012 Graphs 406

for(k=0; k < nodes; k++)
{
/* Consider each vertex as an intermediate */
for(i=0; i < nodes; i++)
for(j=0; j < nodes; j ++)
if(distance[i][k] + distance[k][j] < distance[i][j])
{ /*update min and predecessor*/
distance[i][j] = distance[i][k] + distance[k][j];
predecessor[i][j] = predecessor[k][j];

}
% printArray(distance);

}
}

COMP20012 Graphs 408

int printShortestPath(int i,int j)
{
/* Prints out the shortest path from i to j */
/* Returns the length of the shortest path */
/* (purely for checking purposes) */
int len,rest;
len = 0;
if (i == j)
{
System.out.print(i + " ");
len =0;

}
else

COMP20012 Graphs 410

if (predecessor[i][j] == nonVertex)
System.out.println("No path from " + i + " to " + j);

else
{
rest=printShortestPath(i,predecessor[i][j]);
System.out.print(j + " ");
len=rest+edgeLength[predecessor[i][j]][j];

}
return(len);

}

COMP20012 Graphs 412

Floyd-Warshall algorithm – example

Edge lengths |Shortest path length | Predecessor matrix
0 3 8 Inf -4 | 0 1 -3 2 -4 | -1 2 3 4 0

Inf 0 Inf 1 7 | 3 0 -4 1 -1 | 3 -1 3 1 0
Inf 4 0 Inf Inf | 7 4 0 5 3 | 3 2 -1 1 0
2 Inf -5 0 Inf | 2 -1 -5 0 -2 | 3 2 3 -1 0

Inf Inf Inf 6 0 | 8 5 1 6 0 | 3 2 3 4 -1

Shortest paths
0 1: 0 4 3 2 1 | 2 0: 2 1 3 0 | 4 0: 4 3 0
0 2: 0 4 3 2 | 2 1: 2 1 | 4 1: 4 3 2 1
0 3: 0 4 3 | 2 3: 2 1 3 | 4 2: 4 3 2
0 4: 0 4 | 2 4: 2 1 3 0 4 | 4 3: 4 3
1 0: 1 3 0 | 3 0: 3 0 |
1 2: 1 3 2 | 3 1: 3 2 1 |
1 3: 1 3 | 3 2: 3 2 |
1 4: 1 3 0 4 | 3 4: 3 0 4 |

COMP20012 Graphs 414

Dynamic programming

The bottom-up approach adopted in this algorithm is typical of a
family of algorithms which adopt a method called dynamic
programming

Basic idea behind dynamic programming is organisation of work
in order to avoid repetition of work already done

Recall the Fibonacci numbers (again)

F0 = 0

F1 = 1

Fk+1 = Fk +Fk−1

COMP20012 Graphs 415

Obvious recursive function to calculate Fk is

static int fib(int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return(fib(n-1) + fib(n-2));

}

COMP20012 Graphs 417

Consider calculation of fib(5), have following recursive calls

fib 0

fib 3

fib 2 fib 1

fib 2 fib 1 fib 1 fib 0fib 1 fib 0

fib 5

fib 4

fib 2fib 3

fib 1

fib(3) calculated twice

fib(2) calculated three times

Know that, in order to calculate fib(k), need to calculate

fib(0),fib(1),fib(2) . . .fib(k −1)

Why not calculate all of them just once?

COMP20012 Graphs 418

static int fib (int n)
{

int [] Fib = new int[n];

Fib[0] = 0;
Fib[1] = 1;

for (i=2; i<=n ; i++)
Fib[i] = Fib[i-1] + Fib[i-2];

return(Fib[n]);
}

In fact, don’t need to store them all, since only need previous 2 values,
to calculate fib(i). (Exercise: Code this)

COMP20012 Graphs 420

Original, recursive approach is top down
This is bottom up
Only works because

Relatively small number of subproblems
Know in advance which subproblems need solving
Many shared subproblems

Dynamic programming is an approach to solving problems that
uses this bottom-up, table-based style.

COMP20012 Graphs 422

Memoisation

Main benefit of dynamic programming approach is that don’t have
to repeat calculations already done – just decide in advance
which calculations need to be done and do each of them once,
recording the answer

Disadvantage is that lose simplicity of top-down divide and
conquer approach – have to organise bottom-up calculations.

Can obtain the benefits of both by using an auxiliary data
structure to remember values already calculated

COMP20012 Graphs 423

For example, the Fibonacci function (yet again)

Use an array to record values already calculated

If value already calculated, just look it up

Otherwise, calculate using the recursive definition and record the
result

This process called memoisation

COMP20012 Graphs 424

A further advantage of memoised code is that only the values of
the function that are needed are ever calculated.

Some dynamic programming algorithms sometimes calculate
unneeded values in order to keep the bottom-up organisation
simple (the binary knapsack is a good example of this).

COMP20012 Graphs 425

Memoised Fibonacci function

static final int MAXN = ??
static int fib_tab[MAXN];

static int fib (int n)
{
if (fib_tab[n] == DUMMY)
/* Calculate new value */
fib_tab[n] = fib(n-1) + fib(n-2);

return(fib_tab[n]);
}

COMP20012 Graphs 427

The table needs to be initialised before use

static void init_fib ()
{
fib_tab[0] = 0;
fib_tab[1] = 1;
for (int i=2; i<MAXN ; i++)
fib_tab[i] = DUMMY;

}

COMP20012 Graphs 429

Disadvantages

Memoised divide and conquer implementations usually less efficient
than hand-coded dynamic programming version
This is due to

Recursion overheads

Space taken is often more than is strictly necessary – e.g. in
fibonacci, the memoised version uses O(n) space, but the
bottom-up approach uses only O(2).

COMP20012 Graphs 430

Traversing a graph

Often need to visit all nodes in graph, need a systematic way of
doing this

One technique is depth first search

Initially mark all nodes as unvisited

Select a node n as start node and mark it as visited

Each node adjacent to n is used as start node for a depth first
search

Once all nodes accessible from n have been visited, the search
from n is complete

If not all nodes have been visited need to pick a new, unvisited
start node

COMP20012 Graphs 431

The following implementation assumes a representation of
graphs using adjacency lists

The nodes are indexed by integers 0 . . .n and for each node we
have a linked list of adjacent nodes

The algorithm has a natural recursive implementation

COMP20012 Graphs 432

void dfs (int v) {
visited[v] = true;
System.out.println("Visiting " + v);

for (ListNode n = graph.adjList[v]; n != null; n = n.next)
{
int v1 = n.vertexNum;
if (!visited[v1])
dfs(v1);

}
System.out.println("Finished " + v);

}

COMP20012 Graphs 434

7

4

5

3

0

2
6

1 7

6

4

5

3

0

2
6

1 7

5

4

5

3

0

2
6

1 7

4

4

5

3

0

2
6

1 7

3

4

5

3

0

2
6

1 7

2

4

5

3

0

2
6

1 7

1

4

5

3

0

2
6

1 7

Depth First Search

COMP20012 Graphs 435

Alternatively, use breadth first search

Can’t use the recursion stack to do all the work here, need a
queue in which to store nodes awaiting a visit

COMP20012 Graphs 436

void bfs (int v) {
IntQueue q = new IntQueue();
q.enqueue(v);

while (!q.isEmpty()) {
int k = q.dequeue();
if (!visited[k]) {
System.out.println("Visiting " + k);
visited[k] = true;
for (ListNode n = graph.adjList[k]; n != null; n = n.next) {
int neighbour = n.vertexNum;
if (!visited[neighbour])
q.enqueue(neighbour);

}
}

}
}

COMP20012 Graphs 438

7

4

5

3

0

2
6

1 7

6

4

5

3

0

2
6

1 7

5

4

5

3

0

2
6

1 7

4

4

5

3

0

2
6

1 7

3

4

5

3

0

2
6

1 7

2

4

5

3

0

2
6

1 7

1

4

5

3

0

2
6

1 7

Breadth First Search

COMP20012 Graphs 439

Directed Acyclic Graphs

A Directed Acyclic Graph, or dag, is a directed graph which contains
no cycles.
Every tree is a dag, but not every dag is a tree

E

A

B C

D

COMP20012 Graphs 440

Useful for representing tree-like structures with sharing
For example, algebraic expressions

((a+b)∗ c +((a+b)+e)∗ (e + f))∗ ((a+b)∗ c)

+

* *

a b

+ c

+

*

+

e f

COMP20012 Graphs 441

Also used for expressing dependencies

Large project can be split into number of smaller tasks, where
one task can depend on the completion of another.

Such dependencies are represented by a dag (why acyclic?)

For example course prerequisites

C4

C1 C3

C5C2

COMP20012 Graphs 442

Topological Sort

A topological sort is process of assigning a linear ordering to
vertices of a dag so that if there is an edge from i to j , then i
appears before j in the order

For example C1, C2, C3, C4, C5 is topological sort of course
dependency dag

Can take courses in that order without breaking dependencies
Other orders possible

COMP20012 Graphs 443

Define the indegree of a vertex to be the number of incoming
edges it has

One way to implement topological sort is to find a vertex of
indegree 0, add this vertex to our list, and then delete that vertex
and all edges from it.

Keep repeating this process until we run out of vertices.

COMP20012 Graphs 444

6
C4 C5C1 C2 C3

5
C4

C5

C1 C2 C3

4

C5

C4

C1 C2 C3

3

C3

C5

C4

C1 C2

2

C3

C5C2

C4

C1

1

C3

C5C2

C4

C1

COMP20012 Graphs 445

In the implementation, we don’t actually modify the graph by deleting
edges, we just simulate this by modifying the indegree of relevant
vertices.

COMP20012 Graphs 446

public class TopSort {
int [] inDegree;
int [] topOrder;
Graph graph;

TopSort(Graph g) {
graph = g;
inDegree = new int[g.size];
topOrder = new int[g.size];

for (int v = 0; v < g.size; v++)
for (ListNode n = graph.adjList[v]; n != null; n = n.next) {
int neighbour = n.vertexNum;
inDegree[neighbour]++;

}
}

COMP20012 Graphs 448

private int findNewVertexOfDegreeZero ()
{
for (int i = 0; i < graph.size; i++)
if (inDegree[i] == 0)
{
inDegree[i]--;
return(i);

}
return(-1);

}

COMP20012 Graphs 450

void topSort () {
int v;
int count = 0;

while ((v = findNewVertexOfDegreeZero()) >= 0)
{
topOrder[count++] = v;

for (ListNode n = graph.adjList[v]; n != null; n = n.next)
{
int neighbour = n.vertexNum;
inDegree[neighbour]--;

}
}

}

COMP20012 Graphs 452

We can improve the efficiency of this algorithm by storing the vertices
of indegree 0 on a queue.

COMP20012 Graphs 454

public class TopSort2 {
int [] inDegree;
int [] topOrder;
Graph graph;
IntQueue zeroQ;

COMP20012 Graphs 456

TopSort2(Graph g) {
graph = g;
inDegree = new int[g.size];
topOrder = new int[g.size];
zeroQ = new IntQueue(g.size);
for (int v = 0; v < g.size; v++)
for (ListNode n = graph.adjList[v]; n != null; n = n.next) {
int neighbour = n.vertexNum;
inDegree[neighbour]++;
}

for (int v = 0; v < g.size; v++)
if (inDegree[v] == 0)
zeroQ.enqueue(v);

}

COMP20012 Graphs 458

private int findNewVertexOfDegreeZero ()
{
return(zeroQ.dequeue());

}

COMP20012 Graphs 460

void topSort () {
int v;
int count = 0;

while (! zeroQ.isEmpty()) {
v = findNewVertexOfDegreeZero();
topOrder[count++] = v;

for (ListNode n = graph.adjList[v]; n != null; n = n.next) {
int neighbour = n.vertexNum;
inDegree[neighbour]--;
if (inDegree[neighbour] == 0)
zeroQ.enqueue(neighbour);

}
}

}

COMP20012 Graphs 462

This implementation will give the ordering
C1, C2, C4, C3, C5
for the course dependency graph, since the order in which vertices
appear is the order in which they are put on the queue.

COMP20012 Graphs 463

Undirected graphs

An undirected graph G = (N,E) is a set of nodes and a set of edges
Each edge is an unordered pair of vertices.
Undirected graphs represent symmetric relations
Can obviously represent as directed graph with edges in both
directions

COMP20012 Graphs 464

Spanning Trees

Given a connected, undirected graph

G = 〈N,E〉

where each edge has an associated ‘length’ (or ‘weight’)
Want a subset T of edges E , such that the graph remains connected if
only the edges in T are used, and sum of the lengths of edges in T is
as small as possible.

2

� �� �

� �� �� �� �

� �� �

� �	 	

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � � � � �� � � � � � �� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

11

2 2

2

23

1

� �� �

COMP20012 Graphs 465

Such a subgraph must be a tree (Why?)
Called Minimum Spanning Tree
For above graph, the following are both minimum spanning trees (cost
7)

1

� �� �

� �� �� �� �

� �� �

� �	 	

� �

� � �

� � �� �� � �� �

� � �� �

� � �� �� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
! ! ! ! ! ! ! !

" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "

#
#
#
#

$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $

% % % % %
% % % % %
% % % % %
% % % % %
% % % % %
% % % % %

& & & & &
& & & & &
& & & & &

' ' ' '
' ' ' '
' ' ' '

(((((((()))))))

11

2

2

1

11

2

2

* *+ +

What happens if we add an extra edge to a minimum spanning tree?
Problem Devise an algorithm to find a minimum spanning tree

COMP20012 Graphs 466

Kruskal’s Algorithm

Greedy algorithm to find minimum spanning tree.
Want to find set of edges T

Start with T = /0

Keep track of connected components of graph with edges T

Initially (when T = /0), components are single nodes

At each stage, add the cheapest edge that connects two nodes
not already connected.

COMP20012 Graphs 467

Example

6

� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

G
1

5

2
A B

4 10
7

ED
2

C

F

1 3

8 4

� � � � � � � � � � � � �� � � � � � � � � � � � �

Ordered edge list
AD FG CD AB BD DG AC CF EG DE DF BE
1 1 2 2 3 4 4 5 6 7 8 10

COMP20012 Graphs 468

AD FG CD AB BD DG AC CF EG DE DF BE
1 1 2 2 3 4 4 5 6 7 8 10

Connected components
Initialise T = /0 {A},{B},{C},{D},{E},{F},{G}
Add AD {A,D},{B},{C},{E},{F},{G}
Add FG {A,D},{B},{C},{E},{F ,G}
Add CD {A,D,C},{B},{E},{F ,G}
Add AB {A,B,D,C},{E},{F ,G}
Reject BD
Add DG {A,B,D,C,F ,G},{E}
Reject AC
Reject CF
Add EG {A,B,D,C,F ,G,E}

COMP20012 Graphs 469

This gives minimum spanning tree

6

� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � �� �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

G
1

2
A B

ED
2

C

F

1

4

� � � � � � � � � � � � �

COMP20012 Graphs 470

Implementation

The set of connected components used in Kruskal’s algorithm is
example of a partition (in this case of the set of nodes)

Can use the simple array representation of partition described in
the Trees section of the notes

Since we need to access the shortest edge that is left, can use a
heap-based implementation of Priority Queue

COMP20012 Graphs 471

Proof of Kruskal’s algorithm

We need to establish that the graph constructed by Kruskal’s algorithm
is indeed a minimum spanning tree.
Minimum spanning trees have the following property:

Given a graph G = 〈N,E〉, and a partition of the nodes into two sets,
any minimum spanning tree contains the shortest (or one the shortest
in the case of a tie) of the edges connecting a vertex in one of the sets
to a vertex in the other

COMP20012 Graphs 472

Proof.
e

B N − B

e’

Suppose the two sets are B and N −B and the minimum
spanning tree has edges U.

Suppose e is the shortest edge joining a node in B to one in
N −B. If e is not in U, then add it.

This will create a cycle (why?), so some edge other than e, say e′

must connect B and N −B.

Deleting e′ from U still leaves a spanning tree, and if the length of
e is not equal to that of e′ it must be a smaller tree.

This contradicts the fact that U is a minimum spanning tree, and
the property is proved.
COMP20012 Graphs 473

The correctness of Kruskal’s algorithm follows from this property.

If the graph has n nodes and e edges, the complexity of Kruskal’s
algorithm is O(e lgn).

COMP20012 Graphs 474

Prim’s algorithm

An alternative to Kruskal’s algorithm

Choose an arbitrary starting node

Maintain a set B of connected nodes

At each stage, choose cheapest edge that connects an edge in B
with an edge in N −B

Also a greedy algorithm

COMP20012 Graphs 475

Example Same graph as before
AD FG CD AB BD DG AC CF EG DE DF BE
1 1 2 2 3 4 4 5 6 7 8 10

Connected nodes
{D} (arbitrary choice)

Add AD {A,D}
Add CD {A,C,D}
Add AB {A,B,C,D}
Add DG {A,B,C,D,G}
Add FG {A,B,C,D,F ,G}
Add EG {A,B,C,D,E ,F ,G}

The correctness of Prim’s algorithm also follows from the property
described earlier.

COMP20012 Graphs 476

