
COMP20012
Data Structures and Algorithms

Graham Gough

COMP20012 1

COMP20012

1: The Collections Framework

COMP20012 The Collections Framework 2

Introduction

In this half of the course we will be looking at various data
structures and algorithms.

Continuation of earlier programming courses and David’s half of
COMP20012

Mostly general, applicable to any language, but some Java
specific material

The Java Collections framework provides the background to this
study

First take another look at the framework and one extension of it

COMP20012 The Collections Framework 3

Later look at a number of topics

Hashing and Hash tables

Trees - data structures and algorithms

Graphs - data structures and algorithms

COMP20012 The Collections Framework 4

The Collections Framework

The Java Collections Framework consists a number of interfaces,
together with a set of classes which implement those interfaces.

The purpose of these interfaces is to allow collections to be
manipulated in a uniform way, independently of the details of their
representation.

Since Java 1.5 the Collections framework is expressed in terms
of generics

COMP20012 The Collections Framework 5

Java Generics

Lots of material on this on the web, the official line is at
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
and
http://java.sun.com/docs/books/tutorial/collections/

COMP20012 The Collections Framework 6

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/docs/books/tutorial/collections/

A simple example is that of a class to construct a pair of objects.
Without using Generics, this would be

public class Pair1
{
private final Object first, second;
public Pair1(Object firstElt, Object secondElt)
{
first = firstElt; second = secondElt;

}

public Object getFirst()
{ return first; }

public Object getSecond()
{ return second; }

COMP20012 The Collections Framework 8

To use this class we would do something like (although without the deliberate mistake)

public static void main(String [] args)
{
Pair1 pr1 = new Pair1("February", new Integer(15));
Pair1 pr2 = new Pair1(new Integer(15), "Feb");

System.out.println("name length: " +
((String)pr1.getFirst()).length());

System.out.println("days to end: " +
(29 - ((Integer)pr1.getSecond()).intValue()));

System.out.println("days to end: " +
(29 - ((Integer)pr1.getFirst()).intValue()));

System.out.println("name length: " +
((String)pr1.getSecond()).length());

}
}

COMP20012 The Collections Framework 10

name length: 8
days to end: 14
Exception in thread "main" java.lang.ClassCastException:

java.lang.String at Pair1.main(Pair1.java:29)

type-casting error is not caught at compile-time.

Fatal Run-Time error!

An easy mistake to make?

No ‘Type-Safety Net’ provided

We ‘override’ Java’s usual type-checking mechanism

COMP20012 The Collections Framework 12

We would like this mistake to be found at compile time, not run time,
enter Generics.

public class Pair2<S,T>
{
private final S first;
private final T second;

public Pair2(S firstElt, T secondElt)
{
first = firstElt; second = secondElt;

}

public S getFirst()
{ return first; }

public T getSecond()
{ return second; }

COMP20012 The Collections Framework 13

Error now detected at compile time.

Pair2.java:35: inconvertible types
found : java.lang.String
required: java.lang.Integer

(29 - ((Integer)pr1.getFirst()).intValue()));
ˆ

Pair2.java:37: inconvertible types
found : java.lang.Integer
required: java.lang.String

((String)pr1.getSecond()).length());
ˆ

COMP20012 The Collections Framework 15

The Collections Interfaces

Collection <E>

SortedMap <K,V>

Map <K,V>

List <E>

SortedSet <E>

Set <E>

The core collection interfaces form a hierarchy.

COMP20012 The Collections Framework 16

Collection <E>

SortedMap <K,V>

Map <K,V>

List <E>

SortedSet <E>

Set <E>

Collection <E> - A group of objects of type E. No assumptions
are made about the order of the collection (if any), or whether it
may contain duplicate elements.

Least common denominator that all collections implement.

used to pass collections around and manipulate them when
maximum generality is desired.

JDK has no direct implementations of this interface.
Provides implementations of more specific subinterfaces like Set
and List.

COMP20012 The Collections Framework 17

SortedMap <K,V>Set <E>

Collection <E>

SortedSet <E>

List <E>

Map <K,V>

Set <E> - The familiar mathematical set abstraction. No
duplicate elements permitted. Extends the Collection interface.

May or may not be ordered.

COMP20012 The Collections Framework 18

SortedMap <K,V>List <E>

Collection <E>

Set <E>

SortedSet <E>

Map <K,V>

List <E> - Ordered collection, also known as a sequence.
Duplicates are generally permitted. Extends the Collection
interface.

User of a List generally has precise control over where in the List
each element is inserted.

User can access elements by their integer index (position).

COMP20012 The Collections Framework 19

SortedMap <K,V>

Map <K,V>Collection <E>

Set <E>

SortedSet <E>

List <E>

Map <K,V> - A mapping from keys to values. Each key can map
to at most one value.

Could be a special sort of Set but is handled separately.

The mathematical abstraction function.

COMP20012 The Collections Framework 20

The last two core collection interfaces (SortedSet and
SortedMap) are merely sorted versions of Set and Map.

Objects to be stored in such a collection must be of a class which
implements the Comparable interface

An iterator for one of these collections will present the members
of the collection in ascending element order, sorted according to
the natural ordering of its elements (see Comparable), or by a
Comparator provided at sorted set creation time.

Several additional operations are provided to take advantage of
the ordering.

COMP20012 The Collections Framework 21

SortedMap <K,V>

SortedSet <E>

Collection <E>

Set <E> List <E>

Map <K,V>

SortedSet - A set whose elements are automatically sorted,
either in their natural ordering (see the Comparable interface), or
by a Comparator object provided when a SortedSet instance is
created.

Extends the Set interface.

COMP20012 The Collections Framework 22

Map <K,V>

SortedMap <K,V>

Collection <E>

Set <E>

SortedSet <E>

List <E>

SortedMap - A map whose map pairs, or maplets, are
automatically sorted by key, either in the keys’ natural ordering or
by a comparator provided when a SortedMap instance is created.

Extends the Map interface.

Used for applications like dictionaries and telephone directories.

COMP20012 The Collections Framework 23

Important to note that all restrictions on the behaviour of methods
are precisely that

They are not restrictions on the method of implementation

COMP20012 The Collections Framework 24

The Collection Interface

boolean add(E o) Ensures that this collection
contains the specified
element (optional operation).

boolean addAll(Collection<? extends E> c) Adds all of the elements in the
specified collection to this
collection (optional operation).

void clear() Removes all of the elements
from this collection (optional
operation).

boolean contains(Object o) Returns true if this collection
contains the specified
element.

boolean containsAll(Collection<?> c) Returns true if this collection
contains all of the elements in
the specified collection.

COMP20012 The Collections Framework 25

boolean equals(Object o) Compares the specified object
with this collection for equality.

int hashCode() Returns the hash code value
for this collection.

boolean isEmpty() Returns true if this collection
contains no elements.

Iterator <E> iterator() Returns an iterator over the
elements in this collection.

boolean remove(Object o) Removes a single instance of
the specified element from
this collection, if it is present
(optional operation).

boolean removeAll(Collection <?> c) Removes all this collection’s
elements that are also
contained in the specified
collection (optional operation).

COMP20012 The Collections Framework 26

boolean retainAll(Collection <?> c) Retains only the elements in this
collection that are contained in the
specified collection (optional operation).

int size() Returns the number of elements in this
collection.

Object[] toArray() Returns an array containing all of the
elements in this collection.

<T> T[] toArray(T[] a) Returns an array containing all of the
elements in this collection; the runtime
type of the returned array is that of the
specified array.

COMP20012 The Collections Framework 27

The Iterator<E> interface

The Iterator interface provides a uniform mechanism for accessing all
of the members of a Collection in turn

boolean hasNext() Returns true if the iteration has more elements.
E next() Returns the next element in the iteration.
void remove() Removes from the underlying collection the last

element returned by the iterator (optional
operation).

COMP20012 The Collections Framework 28

For example the following method from an earlier tutorial uses an
Iterator to print out the members of an arbitrary Collection

public static <T> void printCollection(Collection<T> col)
{
Iterator<T> itr = col.iterator();
while (itr.hasNext())
{
System.out.println(itr.next());

}
}

COMP20012 The Collections Framework 30

or, alternatively

public static void printCollection(Collection<?> col)
{
Iterator<?> itr = col.iterator();
while (itr.hasNext())
{
System.out.println(itr.next());

}
}

COMP20012 The Collections Framework 32

Implementations

Interface Implementation Historical
Set HashSet

TreeSet
List ArrayList Vector

LinkedList Stack
Map HashMap Hashtable

TreeMap Properties

We will look closer at the way some of these implementations work
later in the course.

COMP20012 The Collections Framework 33

The Bag Interface

We now define an interface that is not part of the Collections
framework, together with one implementation of it.

The mathematical concept Bag (or multiset) is that of a collection
in which (as with a Set) there is no notion of order, but which
differs from Set in that it allows the possibility of more than one
copy of identical elements.

For example the collection of coins in your pocket is, for many
purposes, probably best modelled by a Bag, rather than a Set or
List.

Why is this so?

COMP20012 The Collections Framework 34

If we did use an an alternative model for the collection of coins in
your pocket what would be the implications

if it were a Set?
if it were a List?

One way of thinking of a Bag is as a map from a Set to the natural
numbers.

How does this work?

COMP20012 The Collections Framework 35

The Bag interface extends the Collection interface and requires a
number of additional methods.

The methods required by Collection, such as add and remove,
must be implemented in a way that is consistent with the
underlying mathematical model of Bag.

So, when an item is added, the size of the Bag will always
increase by 1, unlike the corresponding method for Set.

COMP20012 The Collections Framework 36

Additional methods
In addition to the methods specified by the Collection interface, we
have:-

int countOccurrences(Object target) Find the number of
occurrences of an object in a
bag

Bag union(Bag b) Create a new bag that
contains all the elements from
this and b.

boolean removeEvery(Object togo) Remove all occurrences of an
object from a bag

boolean isSubBagOf(Bag <E> other) Test whether a bag is a
sub-bag of another. This
means that every member of
one must be a member of the
other, taking into account the
number of occurrences.

COMP20012 The Collections Framework 37

For example the bag

0,1,2,3,3

is a sub-bag of

0,1,2,3,3,2

but not vice-versa, even though as sets they are identical.

COMP20012 The Collections Framework 38

ArrayBag: an implementation of Bag

This implementation was based on code from ’Data Structures & Other Objects using
Java’ by Michael Main, but extends and diverges from it in significant ways.

public class ArrayBag<E> implements Bag<E>
{

// 1. The number of elements in the bag is in the instance
// variable numItems.
// 2. For an empty bag, we do not care what is stored in any of
// data; for a non-empty bag, the elements in the bag are
// stored in data[0] to data[numItems-1], and we don’t care
// what’s in the rest of data.
private static final int INITIAL_CAPACITY = 10;
private E[] data;
private int numItems;

COMP20012 The Collections Framework 40

ArrayBag: Constructors

This constructor allows the user to specify the initial capacity of the bag

/**
* Initialize an empty bag with a specified initial capacity. The
* add method works efficiently (without needing more memory)
* until this capacity is reached.
* @param initialCapacity
* the initial capacity of this bag
* Precondition:
* initialCapacity is non-negative.
* Postcondition:
* This bag is empty and has the given initial capacity.
* @exception IllegalArgumentException
* Indicates that initialCapacity is negative.
* @exception OutOfMemoryError
* Indicates insufficient memory for:
* new Object[initialCapacity].
**/

COMP20012 The Collections Framework 42

public ArrayBag(int initialCapacity)
{

if (initialCapacity < 0)
throw new IllegalArgumentException
("The initialCapacity is negative: " + initialCapacity);

data = (E[]) new Object[initialCapacity];
numItems = 0;

}

/**
* Initialize an empty bag with an initial capacity of 10.
**/

public ArrayBag()
{

this(INITIAL_CAPACITY);
}

COMP20012 The Collections Framework 44

ArrayBag: Implementing the Collections interface

add

/**
* Put a reference to an object into this bag. If the addition
* would take this bag beyond its current capacity, then the
* capacity is increased before adding the new element. The new
* element may be the null reference.
* @param element
* the element to be added to this bag
* Postcondition:
* The element has been added to this bag, so the size of the bag
* has increased by 1
* @exception OutOfMemoryError
* Indicates insufficient memory for increasing the bag’s capacity.
* Note:
* An attempt to increase the capacity beyond
* Integer.MAX_VALUE will cause the bag to fail with an
* arithmetic overflow.
**/

COMP20012 The Collections Framework 46

public boolean add(E element)
{

if (numItems == data.length)
{

// Double the capacity and add 1; ok even if numItems is 0.
// However, in the case that numItems*2 + 1 is beyond
// Integer.MAX_VALUE, there will be an arithmetic overflow and
// the bag will fail.
ensureCapacity(numItems*2 + 1);

}

data[numItems] = element;
numItems++;
return true;

}

COMP20012 The Collections Framework 48

addAll

/**
* Add references to all members of a given collection into this
* Uses add, so inherits its capabilities
* @param coll
* the collection of elements to be added to this bag
* Postcondition:
* All elements in coll have been added to this bag, so the size
* of the bag has increased by the size of coll.
* @exception OutOfMemoryError
* Indicates insufficient memory for increasing the bag’s capacity.
* Note:
* An attempt to increase the capacity beyond Integer.MAX_VALUE
* will cause the bag to fail with an arithmetic overflow.
**/

COMP20012 The Collections Framework 50

public boolean addAll (Collection <? extends E> coll)
{

if (coll.isEmpty())
return false;

Iterator <? extends E> itr = coll.iterator();
while (itr.hasNext())

{
E t = itr.next();
add(t);

}
return true;

}

COMP20012 The Collections Framework 52

clear

/**
* Makes the bag this empty
* @param none
* Postcondition:
* this is empty
**/
public void clear ()
{

numItems = 0;
}

Note that the variable data is not touched.

COMP20012 The Collections Framework 54

contains

/**
* Test whether a given object is a member of this
* @param o
* the object to be searched for
* Postcondition:
* Returns true if and only if this bag contains o.
**/

public boolean contains (Object o)
{
for (int i = 0; i < numItems; i++)
{
if (o.equals(data[i])) {
return true;

}
}

return false;
}

COMP20012 The Collections Framework 56

containsAll

/**
* Test whether all members of a given collection are members of this.
* @param coll
* the collection to be searched for
* Postcondition:
* Returns true if and only if this bag contains all members of coll.
**/

public boolean containsAll (Collection <?> coll)
{
Iterator<?> itr = coll.iterator();
while (itr.hasNext())
{
Object o = itr.next();
if (!contains(o))
return false;

}
return true;

}

COMP20012 The Collections Framework 58

equals

For two Bags to be equal, they must contain the same (or at least
equals()) elements in equal quantities.

For example the Bag of coins containing
1p, 2p, 50p, 50p, 5p, 2p, 2p
is identical to the Bag
2p, 1p, 50p, 2p, 50p, 5p, 2p

COMP20012 The Collections Framework 60

We implement this by using the method isSubBagOf

/**
* Test this and other for equality (as Bags)
* @param other
* the Bag to be compared with this
* Postcondition:
* Returns true if and only if this is equal (as a Bag) to other
**/

public boolean equals (Object other)
{
return (other instanceof Bag

&& (this.isSubBagOf((Bag)other) &&
((Bag)other).isSubBagOf(this)));

}

COMP20012 The Collections Framework 62

hashCode

We will say much more about hashing and hash codes later in the
course.

The requirement that the Collection interface imposes is that if
two Bags are equal (as given by equals), the values given by
hashCode must be equal.

The converse is not necessary

This is a fairly loose requirement which could be satisfied in many
different ways

One solution is simply to sum the hashCode values of all the
elements in the Bag.

COMP20012 The Collections Framework 64

/**
* Return a hashcode for this
* @param -- none
* Postcondition:
* Returns an integer, and has the property if b1.equals(b2)
* then hashCode(b1) == hashCode(b2)
**/

public int hashCode ()
{
int answer = 0;
for (int i = 0; i < numItems; i++)
answer += data[i].hashCode();

return answer;
}

COMP20012 The Collections Framework 66

isEmpty
The implementation of this method is trivial

/**
* Test whether this is an empty Bag
* @param -- none
* Postcondition:
* Returns true if and only if this bag is empty.
**/

public boolean isEmpty()
{

return (numItems == 0);
}

COMP20012 The Collections Framework 68

iterator
Just invoke the constructor of the appropriate iterator class (yet to be
defined)

/**
* Return an Iterator for this
* @param -- none
* Postcondition:
* Returns an Iterator object for this
**/

public Iterator<E> iterator ()
{
return new ArrayBagIterator<E>(data,numItems);

}

COMP20012 The Collections Framework 70

remove
This method should remove one copy of a specified element from the
bag.

/**
* Remove one copy of a specified element from this bag.
* @param target
* an element to remove from the bag
* Postcondition:
* If target was found in the bag, then one copy of
* target has been removed and the method returns true.
* Otherwise the bag remains unchanged and the method returns false.
* Note that if target is non-null, then
* target.equals is used to find
* target in the bag.
**/

COMP20012 The Collections Framework 72

public boolean remove(Object target)
{

int index; // The location of target in the data array.

// First, set index to the location of target in the data array,
// which could be as small as 0 or as large as numItems-1;
// If target is not in the array, then index will be set equal
//to numItems;
if (target == null)
{ // Find the first occurrence of the null reference in the bag.

for (index = 0; (index < numItems)
&& (data[index] != null); index++)

// No work is needed in the body of this for-loop.
;

}
else
{ // Use target.equals to find the first occurrence of the target.

for (index = 0; (index < numItems)
&& (!target.equals(data[index])); index++)

// No work is needed in the body of this for-loop.
;

}

COMP20012 The Collections Framework 74

if (index == numItems)
// The target was not found, so nothing is removed.
return false;

else
{ // The target was found at data[index].

// So reduce numItems by 1 and copy the last element
// onto data[index].
numItems--;
data[index] = data[numItems];
return true;

}
}

COMP20012 The Collections Framework 76

removeAll
This method should remove all copies of any members of the
Collection coll from the Bag.
Need additional method removeEvery, which removes all copies of a
specified object from the Bag

/**
* Remove all copies of elements of a given collection from this bag
* @param coll
* a collection of elements to be removed from the bag
* Postcondition:
* The bag contains no members of coll, all elements of this which
* are not members of coll remain in this.
* If any members are removed returns true, otherwise
* the bag remains unchanged and the method returns false.
**/

COMP20012 The Collections Framework 78

public boolean removeAll(Collection <?> coll)
{

boolean result = false;
Iterator <?> itr = coll.iterator();
while (itr.hasNext())

{
Object o = itr.next();
result = result || removeEvery(o);

}
return result;

}

COMP20012 The Collections Framework 80

retainAll
This method should remove all copies of any members of the Bag
which are not members of the Collection c.

public boolean retainAll (Collection <?> c)
{
boolean result = false;
for (int i = 0; i < numItems;)
{
if (!c.contains(data[i])) {
numItems--;
data[i] = data[numItems];
result = true;

}
else
i++;

}
return result;

}

COMP20012 The Collections Framework 82

size
Return the size of the Bag

/**
* Determine the number of elements in this bag.
* @param - none
* @return
* the number of elements in this bag
**/
public int size()
{

return numItems;
}

COMP20012 The Collections Framework 84

toArray
Return an array containing all of the elements in this collection.

public Object[] toArray ()
{
Object[] copy = new Object[numItems];
System.arraycopy(data, 0, copy, 0, numItems);
return copy;

}

COMP20012 The Collections Framework 86

toArray
Return an array containing all of the elements in this collection; the
runtime type of the returned array is that of the specified array.
We’re ducking out of this one

public <X> X[] toArray (X[] a)
{
throw new UnsupportedOperationException("method not supported yet");
}

COMP20012 The Collections Framework 88

ArrayBag: additional methods for Bag

isSubBagOf

One bag is a sub-bag of another if every member of one is a
member of the other, taking into account the number of
occurrences.

So we just count the number of occurences of each member of
this and make sure that there are at least as many occurrences in
other.

COMP20012 The Collections Framework 89

public boolean isSubBagOf(Bag <E> other)
{
Iterator <E> itr = this.iterator();
while (itr.hasNext())
{
Object value = itr.next();
if (this.countOccurrences(value) >

other.countOccurrences(value))
return false;

}
return true;

}

COMP20012 The Collections Framework 91

countOccurrences

/**
* Accessor method to count the number of occurrences
* of a particular element in this bag.
* @param target
* an element to be counted
* @return
* The return value is the number of times that target
* occurs in this bag. If target is non-null, then
* the occurrences are found using the
* target’s .equals method.
**/

COMP20012 The Collections Framework 93

public int countOccurrences(Object target)
{

int answer;
int index;

answer = 0;
if (target == null)
{ // Count how many times null appears in the bag.

for (index = 0; index < numItems; index++)
if (data[index] == null)

answer++;
}
else
{ // Use target.equals to determine how many times target appears.

for (index = 0; index < numItems; index++)
if (target.equals(data[index]))

answer++;
}
return answer;

}

COMP20012 The Collections Framework 95

removeEvery
This method removes all occurrences of an object from a bag, not just
one.

public boolean removeEvery (Object target)
{
int index;
boolean found = false;

if (target == null)
{ // Find all occurrences of the null reference in the bag.
for (index = 0; index < numItems;)
if (data[index] == null)
{
found = true;
numItems--;
data[index] = data[numItems];

}
else
{ index++; }

COMP20012 The Collections Framework 97

}
else
{ // Use target.equals to find all occurrences of the target.

for (index = 0; index < numItems;)
if (target.equals(data[index]))
{
found = true;
numItems--;
data[index] = data[numItems];

}
else
{
index++;

}
}

return found;
}

COMP20012 The Collections Framework 99

union

/**
* Create a new bag that contains all the elements from
* this and another bag.
* @param b
* the other bag
* Precondition:
* Neither this nor b is null, and
* this.getCapacity() + b.getCapacity() <= Integer.MAX_VALUE.
* @return
* the union of this and b
* @exception NullPointerException
* Indicates that the argument is null.
* @exception OutOfMemoryError
* Indicates insufficient memory for the new bag.
**/

COMP20012 The Collections Framework 101

public Bag<E> union(Bag<E> b)
{

// If b is null, then a NullPointerException thrown.
// In the case that the total number of elements is beyond
// Integer.MAX_VALUE, there will be an arithmetic overflow and
// the bag will fail.

ArrayBag<E> abthis = this;
ArrayBag<E> abother = (ArrayBag<E>) b;
ArrayBag<E> answer = new ArrayBag<E>(abthis.getCapacity() +

abother.getCapacity());

System.arraycopy(abthis.data, 0, answer.data,
0, abthis.numItems);

System.arraycopy(abother.data, 0, answer.data,
abthis.numItems, abother.numItems);

answer.numItems = abthis.numItems + abother.numItems;

return answer;
}

COMP20012 The Collections Framework 103

ArrayBag: additional methods

ensureCapacity

/**
* Change the current capacity of this bag.
* @param minimumCapacity
* the new capacity for this bag
* Postcondition:
* This bag’s capacity has been changed to at least minimumCapacity.
* If the capacity was already at or greater than minimumCapacity,
* then the capacity is left unchanged.
* @exception OutOfMemoryError
* Indicates insufficient memory for: new Object[minimumCapacity].
**/

COMP20012 The Collections Framework 105

private void ensureCapacity(int minimumCapacity)
{

E biggerArray[];

if (data.length < minimumCapacity)
{

biggerArray = (E[]) new Object[minimumCapacity];
System.arraycopy(data, 0, biggerArray, 0, numItems);
data = biggerArray;

}
}

COMP20012 The Collections Framework 107

getCapacity

/**
* Accessor method to get the current capacity of this bag.
* The add method works efficiently (without needing
* more memory) until this capacity is reached.
* @param - none
* @return
* the current capacity of this bag
**/
public int getCapacity()
{

return data.length;
}

COMP20012 The Collections Framework 109

toString

public String toString()
{

String ans = "";
for (int i = 0 ; i < numItems; i++)

{
ans += data[i] + " ";

}
return ans;

}

COMP20012 The Collections Framework 111

ArrayBagIterator: an iterator for ArrayBag

This iterator needs to keep track of current position in the Bag.

public class ArrayBagIterator<T> implements Iterator<T>
{
private int bagSize;
// Current position
private int current;
private T [] contents;

COMP20012 The Collections Framework 113

/**
* Construct the ArrayBag iterator
* @param data the array containg the bag
* @param size the size of the ArrayBag
*/

ArrayBagIterator(T [] data, int size)
{

bagSize = size;
current = 0;
contents = data;

}

COMP20012 The Collections Framework 115

/**
* @return true if not at end of array
*/
public boolean hasNext()
{

return (current < bagSize);
}

COMP20012 The Collections Framework 117

/**
* Advance the current position to the next node in the list.
* If the current position is null, then do nothing.
*/
public T next()
{

T retval = contents[current];
current++;
return retval;

}

COMP20012 The Collections Framework 119

remove
Recall that this removes from the underlying collection the last element
returned by the iterator (optional operation).
With the data structures we have used, this one is a bit tricky.
Why is this?

public void remove()
{
throw new UnsupportedOperationException("method not supported yet");
}

COMP20012 The Collections Framework 121

An alternative approach to iterator

Can get round the problem of lack of access to the private
variables of ArrayBag by making the class which implements
Iterator an inner class.

It no longer needs to keep its own copy of the data and size of the
Bag, since an instance of the inner class contains a reference to
the object which created it.

COMP20012 The Collections Framework 122

ArrayBag2

ArrayBag2 is identical to ArrayBag except for its implementation of the Iterator

public Iterator<T> iterator ()
{
return new LocalArrayBagIterator();

}

COMP20012 The Collections Framework 124

LocalArrayBagIterator inner class

private class LocalArrayBagIterator implements Iterator<T>
{
// Current position
private int current;

/**
* @return true if not at end of array
*/
public boolean hasNext()
{
return (current < ArrayBag2.this.numItems);

}

COMP20012 The Collections Framework 126

/**
* Advance the current position to the next node in the list.
* If the current position is null, then do nothing.
*/
public T next()
{
return (ArrayBag2.this.data[current++]);

}

/**
* Remove the object returned by the previous call to next
*/
public void remove()
{
ArrayBag2.this.numItems--;
current--;
ArrayBag2.this.data[current] =

ArrayBag2.this.data[ArrayBag2.this.numItems];
}

}

COMP20012 The Collections Framework 128

Conclusion

This implementation of Bag is perfectly adequate for small Bags,
but will be very slow if the bags grow to any size

What alternative implementation strategies could be used to
implement Bag? Could any of the existing Collection framework
classes be used?

COMP20012 The Collections Framework 129

Other new stuff in 1.5

See http://java.sun.com/developer/technicalArticles/
releases/j2se15/

COMP20012 The Collections Framework 130

http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://java.sun.com/developer/technicalArticles/releases/j2se15/

Autoboxing and Auto-Unboxing of Primitive Types

Automatic conversion between primitive types, like int, boolean, and
their equivalent Object-based counterparts like Integer and Boolean.
Before

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(0, new Integer(42));
int total = (list.get(0)).intValue();

After

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(0, 42);
int total = list.get(0);

COMP20012 The Collections Framework 132

Enhanced for Loop

No need to use an Iterator to traverse a Collection.
Before

ArrayList<Integer> list = new ArrayList<Integer>();
for (Iterator i = list.iterator(); i.hasNext();) {

Integer value=(Integer)i.next();
}

After

ArrayList<Integer> list = new ArrayList<Integer>();
for (Integer i : list) { ... }

COMP20012 The Collections Framework 134

Enumerated Types

No need to static final for this

public enum StopLight { red, amber, green };

COMP20012 The Collections Framework 136

Formatted Output

printf rides again
Although the standard UNIX newline ’\n’ character is accepted, for
cross-platform support of newlines the Java %n is recommended.

System.out.printf("name count%n");
System.out.printf("%s %5d%n", user,total);

COMP20012 The Collections Framework 138

