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Abstract

Data Grids provide transparent access to heterogeneous
and autonomous data resources. The main contribution of
this paper is the presentation of a data sharing system that
(i) is tailored to data grids, (ii) supports well established
and widely spread relational DBMSs, and (iii) adopts a hy-
brid architecture by relying on a peer model for query re-
formulation for retrieving semantically equivalent expres-
sions, and on a wrapper-mediator integration model for ac-
cessing and querying distributed data sources. The system
builds upon the infrastructure provided by the OGSA-DQP
distributed query processor and the XMAP query reformu-
lation algorithm. The paper discusses the implementation
methodology, and also presents empirical evaluation re-
sults.

1. Introduction

The Grid has emerged as a promising infrastructure for
the coordinated use and sharing of distributed resources in
a dynamic manner [12], enabling the temporary pooling of
resources to solve specific problems [13]. It does not refer
only to resources such as CPU power, storage facilities and
memory, but also to data sources; integrating, accessing and
thus sharing multiple data sources is deemed as a key point
for realizing the Grid vision and bridging the gap between
that vision and the current state-of-the-art [13]. A Data Grid
can include and provide transparent access to semantically
related data resources that are maintained in different syn-
taxes, managed by different software systems, and are ac-
cessible through different protocols and interfaces. Due to
this diversity in data resources, one of the most demanding
issues in managing and sharing data on Grids is reconcilia-
tion of data heterogeneity.

Data Grids that rely on the coordinated sharing of and
interaction across multiple autonomous database manage-
ment systems play a key role not only in scientific initiatives
but in many industrial scenarios as well; this fact has led to
the production of vendor systems, such as Oracle10g and

IBM DB2. At the level of Grid middleware infrastructure,
two notable (and correlated) examples are the OGSA Data
Access and Integration (OGSA-DAI) and the OGSA Dis-
tributed Query Processor (OGSA-DQP)1 [3, 4] projects.
These projects have moved toward a service-oriented archi-
tecture quite early in their lifecycle. OGSA-DAI exposes
database management systems (including Oracle, MySQL,
SQLServer, DB2, and so on) in a uniform way, whereas
OGSA-DQP provides distributed query processing func-
tionalities on top of OGSA-DAI, presenting the multiple
databases as a single one. As such, OGSA-DQP can com-
bine and integrate data from multiple data sources. To en-
hance performance, it employs parallel and adaptive query
execution techniques [14]; nevertheless the semantic inter-
pretation of the data rests with the user, and furthermore,
OGSA-DQP does not address any schema integration re-
quirements. Hence, to a significant extent, the integration
facilities provided by OGSA-DAI and DQP are inadequate
to meet the requirements of data grid real cases.

Data integration, in its own right, is one of the most per-
sistent problems that the database and information manage-
ment community has to deal with. Efficient techniques have
been developed for and approaches have been devised to
schema mediation languages, query answering algorithms,
optimisation strategies, query execution policies, industrial
development, and so on [17]. However, effective tech-
niques for the generation and handling of semantic map-
pings are still in their infancy. The need for semantic cor-
relation of data sources is particularly felt in Grid settings.
To date, only few projects (e.g., [7, 6]) actually meet the
schema-integration requirements that are necessary for es-
tablishing semantic connections among heterogeneous data
sources. To this end, the use of the XMAP query reformu-
lation algorithm for integrating heterogeneous data sources
distributed over a Grid has been proposed [8]. Its aim is
to develop a decentralized network of semantically related
schemas, so that the formulation of semantically equivalent
distributed queries over heterogeneous data sources is en-
abled. XMAP employs a decentralized point-to-point me-

1OGSA-DAI/DQP are publicly available in open source form from
www.ogsadai.org.uk.



diation approach to connect different data sources based
on schema mappings. For instance, if the user submits a
query for authors of scientific papers of a certain kind to
a certain database containing information about scientific
publications, XMAP can return equivalent queries referring
to similar databases, provided that the semantic mappings
have been defined.

A comprehensive data sharing tool needs to include both
distributed query processing and query reformulation func-
tionality. Thus far, data sharing tools in distributed en-
vironments tend to build upon non-database management
systems (DBMSs) or immature decentralized models, such
as peer databases [18]. The main novelty of the work de-
scribed in this paper is the presentation of a data sharing tool
that (i) is tailored to data grids, (ii) supports well-established
and widely spread relational DBMSs, and (iii) adopts a hy-
brid architecture by relying on a peer model for query refor-
mulation for retrieving semantically equivalent expressions,
and on a wrapper-mediator integration model for accessing
and querying distributed data sources. Since the function-
ality offered by OGSA-DQP and XMAP is complementary,
and provides an efficient basis on top of which comprehen-
sive, Grid-enabled data sharing tools can be built, we dis-
cuss the design and implementation of a system combining
the two aforementioned artefacts, along with their extended
functionality. The result of our work is a unifying service-
oriented infrastructure for distributed query processing and
query reformulation driven by semantic connections, with a
view to providing more complete access and integration ser-
vices for data grids. An important feature is that, although
the system incorporates OGSA-DQP and XMAP, the model
it conforms to is generic, and enables the usage of any query
reformulation or distributed query processing subsystem.

The prototype that has been developed realizes the Grid
vision with regards to data management in two orthog-
onal ways. Firstly, it enables both query reformulation
and distributed query processing across heterogeneous data
sources through extensions to the original work of XMAP
and OGSA-DQP, respectively. Second, it constitutes an ex-
ample of how independent systems that seem incompati-
ble at first glance, exposed as services, can work together.
OGSA-DQP accepts queries in a subset of OQL (that is
very close to simple SQL) and supports relational databases,
whereas XMAP was initially designed for XPath queries
over XML databases. In our system, this language mis-
match has been addressed through the development of a
mapping between a subset of XPath over the XML repre-
sentation of the relational schemas into OQL. Our approach
is limited, but it has proved sufficient for our environment.

This remainder of this paper is structured as follows.
Section 2 discusses the motivation for the development of
this prototype. Its main independent components, namely
OGSA-DQP and XMAP are presented in Section 3. Sec-

tion 4 deals with the architecture, the design decisions and
the implementation details. Section 5 presents some exper-
iments that aim at providing useful insight into the actual
behavior of the system, and the overheads incurred by the
hybrid architecture. Section 6 discusses the related work
and Section 7 summarises the paper.

2. Motivation

Our experience with OGSA-DQP is that, although it pro-
vides the key functionality of executing distributed queries
transparently to the user [3], its applicability is restricted be-
cause of two main reasons. First, the service oriented archi-
tecture and the SOAP-based communication protocol incur
a high overhead. This drawback has been partly ameliorated
through the development of adaptive techniques [14]. Sec-
ond, as the users typically do not know enough information
about the semantics of the data in the autonomous, third-
party resources to which they are provided access, they find
it difficult to formulate semantically correct queries that
combine data from multiple sources. Several solutions may
exist for the second problem. Our approach, which is the
topic of this paper, is to make the following option avail-
able to the users: instead of writing a query across mul-
tiple databases to compose a query that refers to a single
database, and the system, through the XMAP algorithm that
has been integrated, to return equivalent queries that refer
to data stored to other databases, and subsequently, to ex-
ecute them automatically. Without such functionality the
user would be forced first to understand the semantics of the
data in all data sources, and then to compose a union query,
whereas now a query to a single database is sufficient to
trigger the query reformulation mechanism, which automat-
ically constructs and evaluates the semantically equivalent
queries.

3. Background

Before presenting the architecture of our prototype,
we briefly describe the two systems it integrates, namely
OGSA-DQP and XMAP.

3.1. The OGSA-DQP System

OGSA-DQP is an open source service-based Distributed
Query Processor supporting the evaluation of queries over
collections of potentially remote data access and analy-
sis services. OGSA-DQP uses data services provided by
OGSA-DAI to hide data source heterogeneities and ensure
consistent access to data and metadata from any database
resource. An OGSA-DAI data service exposes data service
resources, which wrap autonomous DBMSs. The version of



OGSA-DQP used in our prototype builds upon the Globus
Toolkit 4 WSRF infrastructure [9].

OGSA-DQP provides two types of services, Grid Dis-
tributed Query Services (GDQSs) and Query Evaluation
Services (QESs). The former are visible to end users, ac-
cept queries from them, construct and optimise the corre-
sponding query plans and coordinate the query execution.
Query evaluation services are hidden from the users, imple-
ment the query engine, interact with other services (such as
OGSA-DAI services, ordinary Web Services and other eval-
uators), and are responsible for the execution of the query
plans created by a GDQS. The interactions and functional-
ity of OGSA-DQP services are described in detail in [4],
whereas a more complete list of publications is provided at
the download site.

The operations a data service resource can perform are
called activities. For each activity to be called, there needs
to be a separate, dedicated activity element in the perform
document received by the data service resource. Activities
are also the extensibility point of OGSA-DAI and DQP, i.e.,
additional functionalities are implemented as new activities.

3.2. The XMAP framework

The primary design goal of the XMAP framework is
to develop a decentralized network of semantically related
schemas that enables the formulation of queries over hetero-
geneous, distributed data sources. The XMAP framework
abstracts from the underlying network infrastructure, it is
modeled as a number of various autonomous nodes (that
can be also referred to as sites, sources, peers, etc) which
hold information, and which are linked to other nodes by
means of mappings. Therefore, it can be extended at infor-
mation nodes in any networked environment, and, as thus
it can be seen as a set of network nodes connected to the
Internet. More precisely, XMAP is composed of a collec-
tion N of nodes which are logically bound to XML data
sources. That is, each data source Dn is represented by ex-
actly one node n and, conversely, each node has access to
a single data source, named local data source. Naturally, a
local schema Sn is associated to this data source Dn. Data
sources employ the XML data model and each source de-
fines its own XML Schema. Each node also holds a collec-
tion of mappings Mn from its local schema to other foreign
schemas. Finally, a node knows a list (also named partial
view or, simply, view) of other nodes (called neighbors).
These nodes are connected to each other through declara-
tive mappings rules.

The XMAP integration [8] model is based on schema
mappings to translate queries between different schemas.
The goal of a schema mapping is to capture structural as
well as terminological correspondences between schemas.
Thus, in [8] , we propose a decentralized approach inspired

by [18] where the mapping rules are established directly
among source schemas without relying on a central media-
tor or a hierarchy of mediators. The specification of map-
pings is thus flexible and scalable: each source schema is
directly connected to only a small number of other schemas.
However, it remains reachable from all other schemas that
belong to its transitive closure. In other words, the sys-
tem supports two different kinds of mapping to connect
schemas semantically: point-to-point mappings and tran-
sitive mappings. In transitive mappings, data sources are
related through one or more “mediator schemas”.

We address structural heterogeneity among XML data
sources by associating paths in different schemas. Map-
pings are specified as path expressions that relate a specific
element or attribute (together with its path) in the source
schema to related elements or attributes in the destination
schema. The mapping rules are specified in XML docu-
ments called XMAP documents. Each source schema in the
framework is associated to an XMAP document containing
all the mapping rules related to it.

The key issue of the XMAP framework is the XPath
reformulation algorithm: when a query is posed over the
schema of a node, the system will utilize data from any
node that is transitively connected by semantic mappings,
by chaining mappings, and reformulate the given query,
expanding and translating it into appropriate queries over
semantically related nodes. Every time the reformulation
reaches a node that stores no redundant data, the appropri-
ate query is posed on that node, and additional answers may
be found. Therefore, beyond basic processing and commu-
nication facilities (exchanging messages with other nodes),
nodes are supposed to be able to execute the XMAP query
reformulation algorithm and to answer locally the queries
they receive. We performed an extensive set of experiments
to evaluate the performance and effectiveness of our ap-
proach. From such experiments we can realize that XMAP
addresses the scalability concern scaling well with the num-
ber of participating nodes and guaranteeing quick produc-
tion of reformulations, within few milliseconds even for the
most demanding configurations.

In our architecture the reformulation algorithm has been
re-engineered as a Web Service, referred to as XMAPAlgo-
rithm Web Service (XMAP-WS).

4 System Architecture

4.1. The hybrid model

A comprehensive data integration architecture needs to
combine both the query reformulation and the query pro-
cessing services. Our system offers a wrapper/mediator-
based approach to integrate data sources, and adopts the
XMAP decentralized mediator approach to handle seman-



Figure 1. System Model.
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Figure 2. The high-level architecture. The ar-
rows denote (remote) service calls.

tic heterogeneity over data sources, whereas syntactic het-
erogeneity is hidden behind OGSA-DAI wrappers. More
precisely, the proposed framework is characterized by three
core components: a query reformulator engine, a dis-
tributed query processor, and a wrapper module (see Fig-
ure 1).

The very general behavior of the developed system can
be briefly outlined as follows. XMAP plays the role of the
reformulation engine, OGSA-DQP is the distributed query
processor with GDQS playing the role od mediator, whereas
wrappers are provided by OGSA-DAI. The user query is
handled by the reformulator engine that through the XMAP
query reformulation algorithm produces zero, one or more
reformulations of the original query. All the obtained refor-
mulations (included the original query) are then processed
by the DQP module that partitions each of such queries in
several sub-queries to be executed in parallel. Then, each
produced sub-query execution plan is processed by OGSA-
DQP’s QESs that access data sources through OGSA-DAI
data service resources and produce the query result.

The model above can be implemented in several ways.
Three main options include: (i) to incorporate the reformu-

lation algorithm within the DQP module; (ii) to make the
reformulation algorithm a stand-alone module that is called
from within DQP; and (iii) to make the reformulation al-
gorithm a stand-alone module that is called from a third
module that acts as the bridge between DQP and the for-
mer module. The basic advantage of the first option is that
the overheads due to inter-module communication are min-
imized at the expense of generality. In the third option, both
DQP and query reformulation algorithms can be replaced
and modified easily, i.e., the design is more generic, but the
system becomes less efficient. In our system, we followed
the second option that is the middle solution, as shown in
Figure 2. In our architecture, the query reformulation al-
gorithm is exposed as a completely independent service, so
that any such algorithm can be plugged in and out of the
system. However, this service is called from within OGSA-
DQP, which has been extended accordingly, and as such, if
we want to replace OGSA-DQP with another DQP system,
we need to re-implement these extensions.

After having exposed the XMAP framework as a stand-
alone WS, reusing it for other examples and in other set-
tings does not pose significant problems. However, in order
to integrate it with OGSA-DQP as in our case, two main
technical issues had to be overcome. The first was to adhere
to OGSA-DAI design principles, which entailed that the ad-
ditional data integration functionality must be implemented
in the form of an OGSA-DAI activity with all its complex-
ities. The second main technical challenge stemmed from
the fact that a solution to the language mismatch problem
had to be developed. Both issues are discussed in the next
subsection.

4.2. System Functionalities

The main features, that provide added value to stand-
alone OGSA-DQP are query reformulation and query trans-
formation that we have implemented in a new activity,
called XPathMappingActivity. The schema of the new ac-
tivity is shown in Figure 3. The expression element con-
tains the submitted XPath query, whereas ServiceLocation
contains the address of the web service to be contacted for
the actual query reformulation, according to the architecture
discussed previously. As such, each OGSA-DQP data ser-
vice resource supports two main operations, one for OQL
queries and one for XPath queries that are reformulated and
translated into OQL (see Figure 4).

As mentioned before, query reformulation is enabled
with the help of the XMAP-WS, the descriptor of which
is shown in Figure 5. However, the reformulated queries re-
turned by the XMAP-WS cannot be evaluated in their cur-
rent form by OGSA-DQP, as the latter accepts only OQL
queries. Thus a query transformation step is required. The
policy for that is as follows. In general, the set of mean-



<?xml version="1.0" encoding="UTF-8"?> ...
<xsd:schema
<xsd:complexType name="XPathMappingType">
<xsd:complexContent>
<xsd:extension base="gds:ActivityType">

<xsd:sequence>
<xsd:element name="expression"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">

<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType"/>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="ServiceLocation"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType"/>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="webRowSetStream"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityOutputType"/>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="XPathMappingStatement"
type="gds:XPathMappingType"
substitutionGroup="gds:activity"/>

</xsd:schema>

Figure 3. The schema of the new activity.

ingful XPath queries over the XML representation of the
schema of relational databases supported by OGSA-DQP
fits into the following template:

/database A[predicate A]/table A[predicate B]/column A

where

predicate A ::= table pred A[column pred A = value pred A], and

predicate B ::= column pred B = value pred B

As such, the mapping to the select, from, where
clauses of OQL is straightforward. column A defines the
select attribute, whereas table A, table pred A populate
the from clause. If column pred A=value pred A, col-
umn pred B=value pred B exist, they go into the where
field.

The approach above is simple but effective; nevertheless
two important observations are: firstly, it does not bene-
fit from the full expressiveness of the XPath queries sup-
ported by the XMAP framework, and secondly, it requires
the join conditions between tables table A, table pred A to
be inserted in a post-processing step. Such a transforma-
tion falls in an active research area (e.g., [11, 5] ), and is
implemented as an additional component within the query
compiler.

The interactions of the services are as follows (see also
Figure 2):

<activityConfiguration> ...
<activityMap>
<activity name="XPathMappingStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.XPathMappingActivity"
schema="xpath_mapping_statement.xsd"/>

<activity name="oqlQueryStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.OQLQueryStatementActivity"
schema="oql_query_statement.xsd"/>

...
</activityMap>

</activityConfiguration>

Figure 4. Fragment of the activity configura-
tion document of an OGSA-DQP data service
resource.

<?xml version="1.0" encoding="UTF-8"?> <deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<globalConfiguration>
<parameter name="adminPassword" value="admin"/>...

</globalConfiguration>...
<service name="XMAPAlgorithmService" provider="java:RPC">
<parameter name="className" value="xmap.XMAPAlgorithm"/>
<parameter name="allowedMethods" value="*"/>

</service>...
</deployment>

Figure 5. Fragment of the WSDD of the XMAP-
WS.

1. The user contacts the GDQS through a client appli-
cation and requests a view of the schema for each
database he/she is interested in. The schema is re-
turned in XML with the elements database, table and
column forming an hierarchy. At this point, there is
no assumption that the user has an a priori knowledge
of the semantics of this and the semantically-related
databases.

2. Based on the retrieved schema, the user composes
an XPath query, which is sent to the GDQS, and
not directly to the corresponding database service,
following the OGSA-DQP approach. An example of
an XPath query is “/database[@dbname=IEEE]/ ta-
ble[@name=Publications]/column[@name=author]”,
or, in a simpler form, /IEEE/Publications/author.

3. GDQS contacts a XMAP-WS service, which encapsu-
lates the XMAP algorithm.

4. The XMAP-WS retrieves the locally stored mapping
schema, which contains the mapping information that
links the paths in the submitted query with paths refer-
ring to other databases. It returns a set of n queries that
all return results that are semantically similar to those
of the initial query.

5. For each of the results of the previous step, the GDQS



transforms the XPath expression in OQL, parses, op-
timises, schedules and compiles a query execution
plan. The resulting query execution plan is sent to
the corresponding QES, which returns the results asyn-
chronously, after contacting the local database via an
OGSA-DAI service.

In order to make clearer the concepts introduced, in the
following we describe an example of use of the overall pro-
totype.

4.3. An Example

Suppose that several publishers (such as IEEE and ACM)
make their databases accessible from anywhere, and when a
user wants to retrieve the publications of a specific author in
a certain year it is sufficient to submit a query only to one of
the databases, with the system being responsible for query-
ing the remaining databases. Or, when querying a museum
database for artifacts of a specific artist, the system is able to
return similar results from other museum databases as well.
Supporting scenarios like that, coupled with the emergence
of Grid technologies, have motivated the architecture and
the system of this paper.

Considering the publisher example, we used a modi-
fied real-world data set to validate our prototype, the DB-
Research data set that has been created for the Piazza sys-
tem [18]2. The data set is based on data available on web
sites concerning research in the database field. It includes
the schemas corresponding to the structure and terminology
of 19 such web sites (such as DBLP, CiteSeer, ACM Digital
Library, and a few university sites). On the basis of these
schemas, we have defined XMAP mappings between the
schemas that are semantically similar. More precisely, for
each source schema we have defined mapping rules toward,
on average, three other source schemas.

Figure 6 shows some of the database schemas in the con-
sidered data set. The figure presents two self-explanatory
views: one hierarchical (for native XML databases), and
one tabular (for object-relational DBMSs). In OGSA-DQP,
the table schemas are retrieved and exposed in the form
of XML documents. We exploit such representation of
database schemas in order to integrate XMAP within the
OGSA-DQP. In fact, users can have a view of the XML
representation of relational schemas, so instead of translat-
ing the tabular view in a XML one, they can directly query
the XML representation by using the XPath query language.

Examples of semantic mappings among the databases
are illustrated in Figure 7: here, the column “title” of the ta-
ble “paper” of the database “ACM” is mapped to the column
“paper” of the table “proceedings” of the database “DBLP”.

2The usage of this data set has been kindly authorized by Igor Tatarinov.
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Figure 6. The example schemas.
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Figure 7. Example of mappings.

The latter is mapped to the column “article” of the “jour-
nal” table of “IEEE” data source. This information resides
in the mapping document associated with the XMAP Web
Service. Note that it is not necessary to map the ACM to
the IEEE database directly. The XMAP mappings need to
capture the semantic relationships between the data fields in
different databases , including the primary and foreign keys.
This can be done as shown in Figures 8, 9.

Let us suppose a user wants to find the title of the paper
published in the year 2000. To this aim the following tasks
are performed:

1. The user contacts the GDQS and requests a view of
the schema of the ACM database, which has a table
called “paper”, with columns “year” and “title”.

2. Based on the retrieved schema, the user com-
poses the following XPath query formulated over the



<Mapping>
<sourceSchema>ACM</sourceSchema>
<Rule cardinality="Mapping1-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/title</sourcePath>
<destinationPath>/dblp/proceedings/paper</destinationPath>

</Rule>
<Rule cardinality="Mapping1-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/year</sourcePath>
<destinationPath>/dblp/proceedings/year</destinationPath>

</Rule>...
</Mapping>

Figure 8. Fragment of the ACM XMAP docu-
ment.

<Mapping>
<sourceSchema>DBLP</sourceSchema>
<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/paper</sourcePath>
<destinationPath>/ieee/journal/article</destinationPath>

</Rule>
<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/year</sourcePath>
<destinationPath>/ieee/journal/year</destinationPath>

</Rule>...
</Mapping>

Figure 9. Fragment of the DBLP XMAP doc-
ument.

ACM schema: QACM = /acm/paper[year =
”2000”]/title, which is sent to the GDQS.

3. GDQS contacts a XMAP-WS service, which encapsu-
lates the XMAP algorithm.

4. The XMAP-WS service retrieves the locally stored
ACM mapping schema (see Figure 8). More specif-
ically, the schema ACM is connected to the schema
DBLP and thus we can rewrite the query QACM over
the schema DBLP obtaining the query QDBLP =
/dblp/proceedings[year = ”2000”]/paper. Then
exploiting the semantic mappings concerning the
schema DBLP (see Figure 9) we obtain the query
QIEEE = /ieee/journal[year = ”2000”]/article.

5. For each of the results of the previous step, the
GDQS transforms the XPath expressions in OQL
producing the following corresponding OQL queries:
select a.title from a in paper where
year="2000"; select d.paper from d
in proceedings where year="2000"; and
select i.article from journal where
year="200". OGSA-DQP automatically detects
the remote databases for each query; in this case the
ACM database for the first one, the DBLP for the
second one, and the IEEE for the third.

#T QRT XRT Overall OH (%)

2 1485(18.6) 2111(123.3) 3688(139.1) 91.8(2.49%)
4 2727(15.5) 1971(5.1) 4785(16.9) 86.2(1.8%)
8 5248(96.8) 2045(15) 7380(105.6) 86.6(1.18%)

16 11256(1185)) 2034(1.58) 13377(1185) 86.6(0.64%)

Table 1. Response times (in msecs) and over-
heads, when the calls to the GDQS and XMAP
services are local, and the average size of re-
sults per query is 10.

#T QRT XRT Overall OH (%)

2 1726(102.8) 2056(17.8) 3872(123) 90.2(2.33%)
4 2948(130.8) 1977(2.65) 5010(132.2) 85.4(1.7%)
8 5613(129) 2031 (7.2) 7730 (123.7) 86.6(1.12%)

16 11670(566) 2964(16.5) 13824(559) 89.2(0.65%)

Table 2. Response times (in msecs) and over-
heads, when the calls to the GDQS and XMAP
services are local, and the average size of re-
sults per query is 100.

#T QRT XRT Overall OH (%)

2 9139(398) 6177(91.3) 16390(537) 1074(6.55%)
4 17970(738) 5971(171) 25032(1219) 1092(4.36%)
8 34291(1075) 6133(192) 42233(1111) 1809(4.29%)

16 72300(2288) 6269(103) 79787(2338) 1218(1.53%)

Table 3. Response times (in msecs) and over-
heads, when the calls to the GDQS and XMAP
services are remote, and the average size of
results per query is 10.

#T QRT XRT Overall OH (%)

2 9155(191) 5956(55) 16069(146) 958(5.96%)
4 18308(617) 5947(103) 25344(755) 1089(4.3%)
8 38269(656) 6247(212) 46487(726) 1971(4.24%)

16 75266(1495) 6177(89.3) 82609(1476) 1166(1.41%)

Table 4. Response times (in msecs) and over-
heads, when the calls to the GDQS and XMAP
services are remote, and the average size of
results per query is 100.

5. Experimental Evaluation

The experiments presented at this section aim at provid-
ing useful insights into the behavior of the system, focusing
on the overhead added because of the hybrid architecture
presented previously. For the behavior of individual com-
ponents the interested reader may refer to works such as
[10, 8].

In more detail, we are interested in measuring the over-
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Figure 10. Response times when the service
calls are remote and the average size of re-
sults per query is 100.

head incurred by the integrated architecture; in establishing
whether there is any varying property of the input queries
that the overhead depends on; and finally, in establishing
whether the overheads still allow query evaluation to benefit
from parallelism as it is the case with stand-alone OGSA-
DQP [16]. In the experiment, the DQP server was a Fedore
Core 4 machine with 1GB memory size and CPU Intel Pen-
tium 4 at 3.20GHz. The metrics that are of interest in the
experiments include: (i) the number of reformulated and
transformed queries to be executed (#T); (ii) the response
time for executing the complete set of these queries (QRT);
(iii) the response time to call the XMAP Web Service and
retrieve for a given XPath query the set of its equivalent
queries along with their OQL transformations (XRT); (iv)
the overall response time at the client, which includes QRT
and XRT, aling with any overhead incurred by their linking;
and (v) the overhead, which is the difference of the overall
response time with the sum of QRT and XRT (OH).

Tables 1 and 2 present the measurements taken when all
service calls are local (i.e., there is no network communi-
cation cost involved) and the average result size of each ex-
ecuted query is 10 and 100 tuples, respectively. The times
in columns “QRT”, “XRT”, and “overall” are the average
times of five runs in milliseconds, and, inside the parenthe-
ses, the standard deviation is shown. All the queries are sim-
ple Select-From-Where expressions scanning a single table
and they retrieve from store 10-100 entries each time. The
semantic mappings reside on a single XMAP Web Service.
The overhead column “OH” shows the absolute overhead in
milliseconds. Inside the parentheses is its percentage in the
overall response time. From the tables we can see that the
QRT cost increases linearly with the number of executed
queries (as expected), whereas both the cost to reformulate
and transform queries, and the overhead remain stable. The

XRT is around 2 seconds, and the overhead is less than a
tenth of a second. Moreover, the overhead incurred can be
deemed as negligible, as even when there are just two small
queries (i.e., retrieving only 10 tuples each), the overhead
does not exceed the 2.5 %.

Similar observations can be made when the service calls
are remote, as shown in Tables 3 and 4. In this experiment
the client resides in continental Europe (and in Greece in
particular), where are the other services are on Grid nodes
in Manchester in the UK. Due to the network cost, the re-
sponse times are higher, but the pattern of the previous set-
ting is the same: linear increase of QRT and overall time,
and stable XRT and overhead. The former is 6 seconds
while the latter is 1 second, approximately. This is better
illustrated in Figure 10, as well.

The conclusions that can be drawn are twofold: firstly,
there is no single property of the input queries (such as the
result size or the number of database entries retrieved) that
the overhead depends on. The cost to reformulate and trans-
late queries, and the system overhead are both stable, which
entails that if we are able to estimate (with the help of a cost
model, or based on previous experience) the execution time
of queries, we can find the overall execution time by adding
to the query execution cost the flat overhead. Secondly, the
overheads still allow query evaluation to benefit from paral-
lelism. We can see from the values of the tables that, apart
of the extreme case that there is a very small number of
queries and the service calls are local, the dominant cost is
the QRT. This is important, as it is the only cost that can
be reduced by employing parallel execution techniques. In
other words, after the extensions added to OGSA-DQP to
integrate the query reformulation functionality, it is still the
case that parallelism can yield performance benefits.

6. Related Work

To the best of our knowledge, there are only few works
designed to provide schema-integration in Grids. The most
notable ones are Hyper [7] and GDMS [6]. Both sys-
tems are based on an approach similar to ours, i.e., to build
data integration services by extending the reference imple-
mentation of OGSA-DAI. The Grid Data Mediation Ser-
vice (GDMS) is part of the GridMiner project [1] and uses
a wrapper/mediator approach based on a global schema.
GDMS presents heterogeneous, distributed data sources as
one logical virtual data source in the form of an OGSA-
DAI service. The main difference from our work is that
it relies on the existence of a global schema, which is not
that realistic in Grids. Hyper is a framework that inte-
grates relational data in P2P systems built on Grid infras-
tructures. As in other P2P integration systems, the inte-
gration is achieved without using any hierarchical structure
for establishing mappings among the autonomous peers. In



that framework, the authors use a simple relational language
for expressing both the schemas and the mappings. Our
integration model follows an approach not based on a hi-
erarchical structure as well, however it focuses on XML
data sources and is based on schema-mappings that asso-
ciate paths in different schemas. Finally, semantic mapping
across relational databases coupled with a global-as-view
approach is investigated in the context of the SASF project
[2]. The notion of peer to peer semantic mappings appears
also in a non-grid setting in [18]. An earlier version of this
work is described in [15].

7. Summary

The contribution of this work is the proposal of a uni-
fying architecture and of an approach that combines a se-
mantic data integration methodology with existing services
for querying grid-enabled distributed databases. This archi-
tecture is used for providing an enhanced, data integration-
enabled service middleware for data grids. The architec-
ture employs a wrapper-mediator approach for distributed
query processing across autonomous databases exposed as
Grid resources, and a decentralized model for establishing
semantic connections between such databases. The instan-
tiation of this architecture is service-based and builds upon
two existing artefacts, namely OGSA-DQP for distributed
query processing, and XMAP for semantic query reformu-
lation. The paper, apart from describing the generic model
and the system developed, presents evaluation results that
provide insights into the actual behavior of the prototype.
The results show that the additional cost is both stable and
relatively low, which renders the practical application of the
proposal appealing.

This work can be extended in various ways. Directions
for future work include larger scale experiments both in
terms of the data volume size and the number of the ma-
chines used, experiments with simultaneous queries, and
evaluation of queries in XPath, if this functionality becomes
available from OGSA-DAI/DQP.
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