
Supplementary Material:
To Ensemble or Not Ensemble: When does

End-To-End Training Fail?

Andrew Webb1, Charles Reynolds1, Wenlin Chen1, Henry Reeve2, Dan Iliescu3,
Mikel Luján1, and Gavin Brown1

1 University of Manchester, UK
2 University of Bristol, UK

3 University of Cambridge, UK

A Re-writing the Joint Training Loss

Here we show that the convex combination form and the ‘ambiguity’ form of the
loss are equivalent. Starting from the convex combination form:

Lλ
def
= λD(p ‖ q̄) + (1− λ)

1

M

M∑
j=1

D(p ‖ qj) , (1)

we use the ambiguity decomposition (Heskes, 1998):

D(p ‖ q̄) =
1

M

M∑
j=1

D(p ‖ qj)−
1

M

M∑
j=1

D(q̄ ‖ qj) . (2)

Substituting the right-hand side for the D(p ‖ q̄) term in (1), we obtain the
ambiguity form of the loss:

Lλ =
1

M

M∑
j=1

D(p ‖ qj)−
λ

M

M∑
j=1

D(q̄ ‖ qj) . (3)

B Experimental Details

Here we specify details such as dataset, model architecture, and training for the
modular loss experiments.

B.1 Spending a Fixed Parameter Budget—MLPs / Fashion-MNIST

Dataset. We use the Fashion-MNIST dataset (Xiao et al., 2017) with the prede-
fined train/test split, holding out 10,000 training examples as a validation set for
early stopping. We apply mean and standard deviation normalization, and no
data augmentation.



2 Webb et al.

Architectures. We use single layer MLPs with ReLU activations, in four configu-
rations each with ∼815K parameters: a single module with 1024 hidden nodes
(1-M-1024-H), 16 modules with 64 hidden nodes each (16-M-64-H), 64 modules
with 16 nodes (64-M-16-H), and 256 modules with 4 nodes (256-M-4-H).

Training. We train for 200 epochs of SGD, batch size 100, momentum 0.9, and
tune the learning rate independently for each configuration and λ. Final reported
test error is that at the epoch where validation error was minimized. Results are
averaged over 5 trials of random train/validation splits and initializations.

B.2 High Capacity Individual Models—DenseNets / CIFAR-100

Dataset. We use the CIFAR-100 (Krizhevsky, 2009) dataset with the predefined
train/test split, per-channel mean and standard deviation normalization, and the
standard data augmentation (see, e.g., He et al. (2016)).

Architectures. We train ensembles of DenseNet-BC networks (Huang et al., 2017).
We train 4 modules with a depth of 100 and growth rate 12 (DN-100-12-4)—a
configuration used in Dutt et al. (2020). We also train ensembles of 8 and 16
smaller DenseNet modules. Our DenseNet implementation is based on Amos and
Kolter (2017).

Table 1. DenseNet architectures.

Name Depth k Modules Parameters

DN-High 100 12 4 3.2M
DN-Mid 82 8 8 2.1M
DN-Low 64 6 16 1.7M

Training. We evaluate λ values {0.0, 0.5, 0.9, 1.0} over 3 trials of parameter
initialization. We use the training procedure described by Huang et al. (2017);
Dutt et al. (2020). We use SGD with batch size 64. The initial learning rate of
0.1 is decreased by a factor of 10 at epochs 150 and 225, with momentum 0.9.

B.3 Intermediate Capacity—Small ConvNets / CIFAR-100

Dataset. We use the CIFAR-100 dataset (Krizhevsky, 2009) with the predefined
train/test split, holding out 10,000 training examples for early stopping. We
apply per-channel mean and standard deviation normalization, and apply the
standard flip and crop data augmentation used for this dataset.



Title Suppressed Due to Excessive Length 3

Architecture. We train ensembles of 16 CNNs with ReLU activations. We ap-
ply global pooling before the final fully connected layer, in the style of Mo-
bileNets (Howard et al., 2017). The networks are fully convolutional, and we
evaluate a variety of architectures of varying complexity. The architectures are
described in Table 2.

Table 2. ConvNet architectures. Each architecture is fully convolutional. Each convolu-
tion layer has a 3× 3 kernel with no dilation. The ‘Filters’ column indicates the number
of output features of each layer. Bold indicates a stride of 2 for a layer, otherwise a
stride of 1 is used.

Parameters Layers Filters

0.07M 3 32,64,64
0.14M 4 32,64,64,128
0.29M 5 32,64,64,128,128
0.60M 6 32,64,64,128,128,256
1.20M 7 32,64,64,128,128,256,256

Training. We evaluate λ values {0.0, 0.1, 0.2, . . . , 1.0} over 5 trials of random
training/validation splits and parameter initializations. We use SGD with batch
size 128, with learning rate 0.1, momentum 0.9, and weight decay 10−4. We train
for 400 epochs, decaying learning rate by a factor of 10 at epochs 200 and 300,
before reporting test error at the epoch at which validation error is minimized.

C Effect of λ on the Condition Number of the Hessian

In this section we show that for λ > 0, any stationary points—in the special
case of scalar model outputs—has a Hessian with both positive and negative
eigenvalues, and so all stationary points are saddle points. Further, we show that
the condition number of the Hessian grows as λ tends to 1 from below.

For a given input pattern, let the target y be distributed according to a
single-parameter exponential family distribution with scalar parameter η. Let
η̂j be the parameter value prediction for the jth model of a collection of M

models, and let η̄ = 1
M

∑M
j=i η̂j be the ensemble prediction. Let ŷj = g(η̂j) and

ȳ = g(η̄) be the conditional mean estimates of the jth model and ensemble model
respectively, where g is the canonical inverse link function of the distribution.
We have

∂Lλ
∂η̂j

=
1

M

(
(1− λ)ŷj + λȳ − y

)
, (4)

where Lλ is the modular loss, and the entries of the Hessian are given by

∂2Lλ
∂η̂i∂η̂j

=

{
1
M

(
1− λ(1− 1

M )
)
· g′(η̂i) if i = j

λ
M2 · g′(η̄) otherwise

. (5)



4 Webb et al.

From (4), for λ 6= 0 any stationary point of the loss must have ŷi = ŷj = ȳ = y,

and therefore c
def
= g′(η̂i) = g′(η̂j) = g′(η̄) = g′(η) for all i, j, and the Hessian

takes the form

H =


q r r . . . r
r q r . . . r
r r q . . . r
...

...
. . .

...
r r r . . . q

 , (6)

with diagonal entries

q =
1

M

(
1− λ

(
1− 1

M

))
· c (7)

and off-diagonal entries

r =
λ

M2
· c . (8)

This matrix is H = r · JM + (q − r) · IM , where JM is the M ×M matrix of
ones and IM is the M ×M identity matrix. The eigenvalues of JM are M with
multiplicity 1 and 0 with multiplicity M − 1. Therefore, the eigenvalues of H are

ω1 = q + (M − 1) · r =
c

M
(9)

ω2 = q − r =
c

M
· (1− λ) . (10)

From this, we can see that for λ > 1 the Hessian at the stationary point has both
positive and negative eigenvalues, and therefore the stationary point is a saddle
point, therefore the models will diverge. Moreover, for 1 > λ > 0, the condition
number is

κ(H) =
ω1

ω2
=

1

1− λ
, (11)

which tends to infinity as λ tends to 1 from below. This may suggest that opti-
mization may be problematic for λ close to 1, and that we might see significantly
different learning behaviour between first- and second-order methods in this
regime.

Note that in the case of the Bernoulli distribution, the loss surface with
respect to the parameter estimates η̂j has no stationary points, but a similar
argument can be made with limits.

D Equivalence of ‘Coupled Ensembles’ Training Methods

We prove here that the ‘LL’ and ‘SM’ coupled training methods of Dutt et al.
(2020) for ensembles of classifiers are actually equivalent to independent training,
up to a scaling of learning rate. We demonstrate that here.



Title Suppressed Due to Excessive Length 5

Suppose we have a collection of M neural networks for a K class classification

problem. Let q
(m)
k denote the kth post-softmax output of the mth neural network

for a given example. Let y be the one hot-encoded true label. The cross entropy
loss L(m) of the mth network is

L(m) = −
∑
k

yk log q
(m)
k . (12)

The ‘LL’ coupled training method of Dutt et al. (2020) has as its loss function
LLL the arithmetic mean of the cross entropy loss functions for each network.
I.e.,

LLL =
1

M

∑
m

L(m) . (13)

It follows from the fact that ∂L(m)/∂q
(n)
k = 0 if m 6= n—i.e., that the cross

entropy loss of one network does not depend on the output of another—that

∂LLL

∂q
(m)
k

=
1

M

∂L(m)

∂q
(m)
k

. (14)

In words, the gradient of the ‘LL’ loss with respect to a given network output—
and therefore the gradient with respect to the network parameters—is the same
as when training independently, scaled by a factor 1/M .

The ‘SM’ coupled training method of Dutt et al. (2020) works as follows. First,

take the log of the probabilities q
(m)
k , and then take the arithmetic mean across

networks. The key point here is that the result is not a vector of log probabilities;
it is un-normalized. An inspection of the authors’ provided code (Dutt et al.,
2018) shows that, in the ‘SM’ method, this un-normalized log probability vector
is given as input to the NLLLoss loss function provided by PyTorch, which
expects log probabilities. The result is that the cross entropy loss is applied to
the un-normalized probabilities

q̃k = exp

(
1

M

∑
m

log q
(m)
k

)
, (15)

and that, if y is the one hot-encoded true label, the loss function that is effectively
used is

LSM = −
∑
k

yk log q̃k (16)

= −
∑
k

yk
1

M

∑
m

log q
(m)
k (17)

=
1

M

∑
m

L(m) = LLL . (18)

This suffices to demonstrate that the ‘LL’ and ‘SM’ methods are equivalent
to independent training up to a scaling of learning rate.



Bibliography

Amos, B. and Kolter, J. Z. (2017). A PyTorch implementation of DenseNet.
github.com/bamos/densenet.pytorch.

Dutt, A., Pellerin, D., and Quénot, G. (2018). A PyTorch implementation of
Coupled Ensembles. github.com/vabh/coupled ensembles.

Dutt, A., Pellerin, D., and Quénot, G. (July 2020). Coupled ensembles of neural
networks. Neurocomputing, 396:346–357.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In CVPR.

Heskes, T. (1998). Selecting weighting factors in logarithmic opinion pools. In
NIPS, pages 266–272. The MIT Press.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861.

Huang, G., Liu, Z., v. d. Maaten, L., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. In CVPR, pages 2261–2269.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Technical report, University of Toronto.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms. arXiv:1708.07747.

https://github.com/bamos/densenet.pytorch
https://github.com/vabh/coupled_ensembles

	Supplementary Material:To Ensemble or Not Ensemble: When does End-To-End Training Fail?

