School of Computer Science

Dr Gavin Brown


My Group




Maintained by G.Brown
Gavin Brown Who am I? What do I do?

I am Reader in Machine Learning ... (Reader?! what's that?).
I am also Director of Research for the School of Computer Science.

I'm based in the Machine Learning and Optimization Group and my research interests vary between many topics, e.g. feature selection/extraction with information theoretic methods, ensembles (e.g. Boosting, Random Forests), and recently I am looking at efficient deep neural networks.   Primarily I work on the theory behind these algorithms, so my applications are highly varied, not constrained to a single domain.... or, in less technical jargon, click here

Tel: 0161 275 6190     /      firstname.secondname AT

NEWS: (15 Feb 2017) A plethora of lovely new 2017 publications out from the group. See publications page for links.

        On the Use of Spearman's Rho to Measure the Stability of Feature Rankings (IbPRIA 2017)
        Exploring the consequences of distributed feature selection in DNA microarray data (IJCNN 2017)
        Disentangling Prognostic and Predictive Biomarkers Through Mutual Information (Informatics for Health 2017)
        Freedom and Diversity in Regression Ensembles (ESANN 2017)
        Mutual information for improving the efficiency of the SCH algorithm (ESANN 2017)
* NEW *  Cost Sensitive Boosting Algorithms: Do we really need them?
Nikolas Nikolaou, Meelis Kull, Narayanan Edakunni, Peter Flach, Gavin Brown
Machine Learning Journal. September 2016, Volume 104, Issue 2, pp 359-384.
Special issue acceptance rate 10/58 (17%).
Download a demo of the main contribution from Github.
* NEW *  Measuring the Stability of Feature Selection
Sarah Nogueira and Gavin Brown
European Conference on Machine Learning (ECML). Italy, Sept 2016. Acceptance rate 99/353 (28%).
Watch the talk on YouTube.
NEWS: (9 Oct 2016) - I'm now an Editor for Machine Learning Journal.

NEWS: (28 Sept 2016) - I'll be delivering a keynote at IbPRIA 2017 in Faro, Portugal, and teaching at the AERFAI summer school 2017 in Spain.

NEWS: (29 June 2016) - Two new papers out from the group. One to appear in Machine Learning Journal, by Nikolaos Nikolaou, callled "Cost Sensitive Boosting Algorithms: Do we really need them?" (spoiler alert: no). And another by Sarah Nogueira, called "Measuring the Stability of Feature Selection", to appear in ECML 2016. Well done guys!
NEWS: (5th July 2016) - New paper by Kostas Sechidis, in collaboration with Matt Sperrin and Emily Petherick - "Estimating mutual information in under-reported variables" to appear in the International Conference on Probabilistic Graphical Models 2016.

Gavin Brown NEWS: (1 June 2016) - Extremely pleased to announce a partnership with the Advanced Analytics Centre at AstraZeneca. The AZ team, led by James Weatherall, is now funding Kostas Sechidis on the very first AstraZeneca/Manchester Data Science Fellowship. Kostas will be working on statistical machine learning approaches to subgroup discovery and personalized medicine, which is partly an extension of some key award-winning work from his PhD thesis.

NEWS: (May 2016) - Extremely pleased to be able to announce a funded EPSRC project on efficient deep neural networks. The 4 year project will begin later this year - job applications being accepted til 6th July!
NEWS: (March 2016) - New funded ESRC project on predicting re-offenders in domestic violence. Juanjo Medina over in the Law School is the PI, while I provide the Machine Learning element.  We have collaborations with Greater Manchester Police and other constabularies across the UK.
NEWS:(21st Oct 2015) Check out my Bayes Theorem Tribute to Back to the Future!

NEWS: I will be giving a keynote at the Spanish National Conference on Artificial Intelligence (CAEPIA 2015).

NEWS: Extremely pleased that Veronica Bolon will be joining the group as a postdoc for a 2 year period starting in May, whilst her colleague Diego Fernandez is joining us for 3 months from April ...  all courtesy of the Galician Regional Government of Spain.  Thankyou Galicia!

NEWS: Two new papers - published in the Intl Workshop on Multiple Classifier Systems by my students Nikolas Nikolaou and Sarah Nogeuira - well done!

NEWS: (26 Feb 2015) Interview for Children's BBC Newsround - explaining how a deep neural network built by Google Deepmind learnt how to play video games like Breakout, Pacman and Pong.... and won!
NEWS: (November 2014): My student Kostas Sechidis won Best Student Paper at ECML 2014. His work, on positive unlabelled learning, shows how to perform statistical tests in semi-supervised scenarios, very common in Big Data.
NEWS (15/8/2014)/b>): Children's BBC appearance again - explaining swarm robots this time.  The Newsround article is HERE, possibly only available for a short time.
NEWS (14/3/2014): For all you 7-year olds out there, I just appeared on Children's BBC explaining what 'artificial intelligence' is.  See the full clip HERE.
VERY GOOD NEWS! : Very pleased to announce that my PhD student Adam Pocock has just won the BCS Distinguished Dissertation Award 2013! Read a BCS press release here!  Read his thesis HERE !  The judging panel said of the thesis:  "The judges were very impressed by the fact that the thesis not only makes a major advance of the state of the art, but also illustrates the context of the problem and motivates the work in a way that a general audience would be able to understand. One reviewer observed that he would use it as a standard reference in the area, and recommend it to his students as a model to be aspired to."
VERY GOOD NEWS!: One of my undergraduate project students, Laura Howarth-Kirke, just won the award for Best Undergraduate Science, Engineering and Technology Student in the UK!  Very proud of her.  Read the full story HERE. As a nice follow up, I won Best SET Lecturer. Very nice indeed!

NEWS (Nov 2013): I am co-chairing SPR 2014 along with Marco Loog.  Please submit your best papers! Note the special journal spotlight track, for articles published in JMLR/PAMI/TNNLS the past year.  Submissions are open til March 1st 2014.
NEWS (July 2013): I presented a lecture for children, on the topic of "Making Computers Think".  The version below is on YouTube, but there is a higher resolution copy available if you email me.

NEWS (July 2013): New JMLR paper "Beyond Fano's inequality: bounds on the optimal F-score, balanced error rate, and cost-sensitive risk using conditional entropy and their implications". Though the paper is quite dense, the basic idea is this: if you want to optimize F-score or Balanced Error Rate, don't use infomax approaches like maximum likelihood or mutual information! Our main result shows that the infomax principle is NOT a proper criterion for this task, and can cause a catastrophic failure for the F-score in particular!
NEWS (June 2013): New grant. I am Co-I, along with Mikel Lujan (PI) on a new EU-funded project, AXLE, Analytics on Xtremely Large European Databases. The principle here is to explore how to study large scale data analytics (including machine learning algorithms as a special case) on very large data. We want to get to the point where 10tb is considered "normal". This is in collaboration with various EU partners, in particular Janez Demsar and friends who developed the Orange Python toolkit.
NEWS (June 2013): I taught on a Summer School in Machine Learning in June, in Spain. Great fun, great people.
Richard Stapenhurst PhD
My PhD student Richard recently finished his thesis. You can see it here.
Adam Pocock PhD
My PhD student Adam Pocock recently finished his thesis. You can see it here. We presented our work on feature selection at ICML 2012 in the ML-journaled special sessions. You can watch the talk here. And... thanks to Charles Sutton, the "wordcloud" is this....
Talks on the JMLR paper
I have been touring somewhat, giving talks about our recent JMLR paper - thanks for the invites everyone!
Visiting... Surrey Elec Eng, Birmingham Computer Science, Manchester Medical School.... next scheduled talk: Oxford (Mathematics Dept) in May.

REUNITE project featured by BBC World Service
The BBC's flagship technology programme "Click" recently featured our project. You can hear the podcast here, or watch the video...

Papers accepted to AISTATS 'Informative Priors for Markov Blanket Discovery', and to UAI "Boosting as a Product of Experts"

AstraZeneca MSc Research Bursaries
I am currently investigating biomarkers for lung cancer analysis with AstraZeneca Research. AZ have sponsored our students this year, under their predictive safety science initiative.

Invited Doctoral Lecture Course University of Cagliari, Sardinia
I delivered a series of 8 invited lectures in Cagliari - see the course webpages here.

Invited lecture at IEEE symposium
I am delivering a keynote at the 2011 IEEE symposium on Computational Intelligence, on the topic of computational intelligence in dynamic and uncertain environments.

New book chapter - Ensemble Learning
I wrote an invited book chapter for the Springer Encyclopedia of Machine Learning.
You can see also the typeset article here.
"The study of ensemble methods, with model outputs considered for their abstract properties rather than the specifics of the algorithm which produced them, allows for a wide impact across many fields of study. If we can understand precisely why, when, and how particular ensemble methods can be applied successfully, we would have made progress toward a powerful new tool for Machine Learning: the ability to automatically exploit the strengths and weaknesses of different learning systems."

New PhD (Dec 2010) : - Manuela Zanda completed her PhD, entitled ``A Probabilistic Perspective on Ensemble Diversity''. A copy of her thesis can be downloaded here.

New Grant (9th Sept 2010) - EPSRC KTA, Reuniting Refugees with Computational Intelligence.
REUNITE is a research project aiming to utilise crowdsourcing and machine learning techniques to help reunite those separated by conflict and natural disaster. Imagine the following scenario. A disaster occurs in a remote part of the developing world. The local population are forced to flee their homes. Many are separated from their family and friends. With no mobile or Internet communication, finding loved ones in the aftermath of a disaster is incredibly difficult. Relief organisations go to great lengths to help people find those they are missing. The system we are developing aims to make this process easier, faster and more secure.

Article in THE (3 June 2010): I had an article about computer science education in the Times Higher this week. Are you looking for the Computing at School group? Or for the Manchester Schools' Animation Competition? The Animation competition is an effort led by Toby Howard, to encourage schoolchildren to learn the concepts of computational thinking, and I strongly encourage all to take note!

Invited plenary talk at MCS 2010
I gave an invited talk at the Intl Workshop on Multiple Classifier Systems 2010, entitled Some Thoughts at the Interface of Ensemble Methods and Feature Selection. It was repeated with (slightly) adapted slides for Microsoft Research Cairo,

New PhD (Nov 2009) : - Amir Ahmad completed his PhD, entitled ``Data Transformations for Decision Tree Ensembles''. A copy of his thesis can be downloaded here.

AISTATS 2009 paper - Feature Selection with Information Theory
The traditional approach to so-called filter methods in feature selection is to construct a criterion to measure the utility of any given feature. The more sophisticated methods penalize feature-feature correlations (`redundancy') with various penalty terms. The last 15 years have produced a flood of papers advocating different penalty terms. My recent work shows that the vast majority of these can be naturally derived from a single framework, using multivariate information theory. The work reveals that there exists a natural, smooth space space of feature selection criteria, where each paper over the last 15 years corresponds to one point. Most of the space has never been explored. See the AISTATS 2009 paper for details.

Invited plenary at UK-KDD 2009 - Feature Selection by Filters, a Unifying Perspective
I gave an invited talk at UK-KDD 2009.

New Grant - Dynamic Ensemble Techniques (EPSRC grant EP/F023855/1)
With colleagues at Bristol, I am investigating how dynamic ensemble techniques can tackle multi-step (control) and nonstationary problems. This is in collaboration with Tim Kovacs, James Marshall and Jeremy Wyatt, conducted under our EPSRC funded ADEPT project.

New Grant - Machine Learning for Multi-Core Computers (EPSRC grant EP/G000662/1)
The computer industry is undergoing the "multi-core" revolution. When you buy a PC off the shelf these days, it is inevitably "dual-core" or "quad-core". This idea of more and more CPU "cores" executing in parallel is expected to continue to the hundreds and thousands. The problem of coordinating these cores is challenging and unsolved. With Mikel Lujan and Jeremy Singer I am working on applying Machine Learning to this problem, conducted under our EPSRC funded iTLS project.

IEEE TNN paper on Sparse Distributed Memories
In a project with Steve Furber I found that sparse distributed memory models like the correlation matrix memories of Wilshaw and Kanerva could give significant insights into the design of fault tolerant computer architectures. This resulted in a IEEE TNN paper available here.

Ensemble Learning
I worked for a long while on the issue of diversity in ensembles, with Jeremy Wyatt. A summary of the work can be found on this page. A slightly less optimistic (but rather insightful) take on the field is found here.

Image Feature Extraction
I did a nice project with Honda several years ago, which turned into a patent, on image feature extraction - I follow up little avenues on this occasionally. Throughout this time I have maintained an interest in evolutionary speciation and optimisation, which has spun off into several useful collaborations.

Wow, you read all the way to the bottom.
Please don't click here.