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A conceptually simple but effective noise smoothing algorithm is described. This filter is 
motivated by the sigma probability of the Gaussian distribution, and it smooths the image 
noise by averaging only those neighborhood pixels which have the intensities within a fixed 
sigma range of the center pixel. Consequently, image edges are preserved, and subtle details 
and thin tines such as roads are retained. The characteristics of this smoothing algorithm are 
analyzed and compared with several other known filtering algorithms by their ability to retain 
subtle details, preserving edge shapes, sharpening ramp edges, etc. The comparison also 
indicates that the sigma filter is the most computationally efficient filter among those evaluated. 
The filter can be easily extended into several forms which can be used in contrast enhancement, 
image segmentation, and smoothing signal-dependent noisy images. Several test images 128 X 
128 and 256 X 256 pixels in size are used to substantiate its characteristics. The algorithm can 
be easily extended to 3-D image smoothing. 

1. INTRODUCTION 

Generally, digital image smoothing techniques fall into two categories. In the first 
category, the noisy image is processed globally in the sense that the whole or a large 
section of a noisy image is correlated to obtain a smoothed image. Techniques in the 
transform domain using Wiener or least squares filtering [l, 21 and techniques 
applying one-dimensional or two-dimensional Kalman filter are in this category. 
Statistical models for the signal (noise free image) and the noise are required for the 
implementation of these techniques. Unfortunately, the statistical model for most 
images is either unknown or impossible to describe adequately with a simple random 
process. The smoothed images display blurred edges and conceal subtle details. In 
addition, the techniques are computationally costly. In the second category local 
operators are applied to noisy images. Only those pixels in a small neighborhood of 
the concerned pixel are involved in the computation. The immediate advantage of 
these techniques is their efficiency. They have great potential for real-time or near 
real-time implementation, because several pixels can be processed in parallel without 
waiting for their neighboring pixels to be processed. Recent research in image 
smoothing and segmentation favors the local techniques. 

There are many local smoothing methods. The well-known median filter [4] in one 
or two dimensions has attracted much attention. The edge preserving smoothing of 
Nagao and Matsuyama [5], the gradient inverse weighting scheme of Wang et al. [6], 
the box filtering algorithm [7], and the local statistics method of Lee [8, 91 are just a 
few other algorithms in this category. Obviously, it is nearly impossible to rank 
them, because an algorithm may be effective for a class of images, but ineffective for 
others. In this paper a new class of local smoothing schemes is introduced. It is 
motivated by the sigma probability of the Gaussian distribution. The basic idea is to 
replace the pixel to be processed by the average of only those neighboring pixels 
having their intensity within a fixed sigma range of the center pixel. Replacing the 
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center pixel by the average of selected neighboring pixels has been explored by many 
algorithms. Nagao’s filter [5] replaces the center pixel by the average of a subregion 
which has minimum variance. Lee [9] in his refined local statistics method selected 
the region by using gradient information. Graham [lo] and Prewitt [ll] replace a 
pixel by the average of the surrounding area if the absolute value of their difference 
is smaller than some threshold. Rosenfeld [l] in his region growing and tracking 
algorithm excludes high contrast edges, lines, and points from the average by judging 
the gray level difference between the average of the region and the new pixel. The 
extended box-filtering algorithm [7] restricts the average to only neighboring pixels 
within a fixed intensity range. The main difference between the box filter and the 
sigma filter of this paper is that the former has the intensity range fixed throughout 
the whole image, while the latter lets the intensity range float with the intensity of 
the center pixel. The advantages are numerous: (1) noise near edge areas will be 
smoothed without blurring the edge because only pixels on one side of the edge are 
included in the average; (2) subtle details of several pixel clusters and linear features 
of one to three pixels in width will be preserved since only those pixels and not the 
background are included in the average; (3) it will not create artifacts and will retain 
shapes, because no directional masks are used, unlike the algorithms of Nagao [S] 
and Lee [9]; (4) it is computationally efficient, since only simple compare and fixed 
point add instructions are involved. 

A comparison of the sigma filter, the gradient inverse filter, Nagao’s filter, and the 
median filter are conducted in this paper. Comparisons are based on the following 
criteria: (1) effectiveness in smoothing noise; (2) preservation of subtle details and 
linear features; (3) immunity from shape distortion; (4) retention of step edges and 
sharpening of ramp edges; (5) removal of high-contrast spot noise; (6) computa- 
tional efficiency. For the smoothing algorithms to be effective they are applied 
iteratively three times to test images of dimension 128 X 128. In many respects the 
sigma filter performs better than other algorithms except as regards the ability to 
remove sharp spot noise. Some methods of reducing this deficiency are presented. 

The sigma filter and its extended forms are discussed in the next section. ,A 
comparison study of the algorithms is given in Section 3. Section 4 is devoted to 
presenting the characteristics of the sigma filter and its extensions to images with 
multiplicative noise. 

2. THE SIGMA FILTER 

The noise in an image is generally considered as spatially uncorrelated and with 
continuous intensity spectrum. White Gaussian noise is an example. We shall regard 
as noise any random clutter of the size of three or fewer pixels. It is well known that 
the “straight” averaging filter will smooth noise at the expense of blurring edges and 
smearing subtle details. An indiscriminate average of pixels in a window is the cause 
of the problem. As mentioned in Section 1 many schemes have been developed to 
overcome this problem. The merits of these algorithms will be explored in more 
detail in the next section. In this section, a conceptually simple algorithm is 
developed which easily excludes significantly different pixels from the average. 

Most image noise is Gaussian in distribution. The two-sigma probability is defined 
as the probability of a random variable being within two standard deviations of its 
mean. The two-sigma probability for a one-dimensional Gaussian distribution is 
0.955. This can be interpreted as meaning that 95.5% of random samples lie within 
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the range of two standard deviations. In image smoothing, any pixel outside the 
two-sigma range most likely comes from a different population and, therefore, 
should be excluded from the average. If we assume that the a priori mean is the gray 
level of the pixel to be smoothed, we can establish a two-sigma range from the gray 
level and include in the average only those pixels within the two-sigma intensity. Let 
xi, j be the intensity or gray level of pixel (i, j), and &, j be the smoothed pixel (i, j). 
Also we assume that the noise is additive with zero mean and standard deviation u. 
The sigma filter procedure is then described as follows: 

(1) Establish an intensity range (xi, j + A, xi, - A), where A = 2~. 
(2) Sum all pixels which lie within the intensity range in a (2n + 1,2m + 1) 

window. 
(3) Compute the average by dividing the sum by the number of pixels in the 

sum. 
(4) Then R;, j = the average. (To reduce sharp spot noise, step (4) will be 

modified later in this section.) 

Or, mathematically, let 

6 k,I - - 1, if (‘1, j - A) 5 xk,/ _< (xi,, + A) 
= 0, otherwise. 

Then 

n+i m+j 

?i,j= c c ‘k,Ixk,I/ 2 m? ‘k.1. 
k=i-n I=J-m k-i-n [=j-m 

(2) 

The two-sigma range is generally large enough to include 95.5% of the pixels from 
the same distribution in the window, yet in most cases it is small enough to exclude 
pixels representing high-contrast edges and subtle details. Linear features such as 
roads one or two pixels wide are retained, because only those pixels with intensity 
near that of the feature are included in the average. The main drawback is that sharp 
spot noise represented by clusters of one or two pixels will not be smoothed. This 
could be very annoying especially for a fairly noisy image. To remedy this, we shall 
replace the two-sigma average with the center pixel’s immediate neighbor average, if 
M, the number of pixels within the intensity range, is less than a prespecified value 
K. In other words, step (4) is replaced by 

$, j = two-sigma average, ifM>K 

= immediate neighbor average, ifM< K. (4 

The value of K should be carefully chosen to remove isolated spot noise without 
destroying thin features and subtle details. For a 7 x 7 window, K should be less 
than 4, and it should be less than 3 for a 5 X 5 window. It should be noted that 
subtle textures within the two-sigma range will be wiped out after a few iterations. If 
conservation of texture information is required, a small A range and one or two 
iterations should be used. 
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FIG. 1. This figure shows the results of the 7 x 7 sigma filter when applied once, twice, and three 
times to a medical image. The biased sigma filter when applied to (D) is shown in (E), and the result of 
the 3 x 3 median filter is shown in (F) for comparison. 
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For images with unknown noise characteristics, the intensity range A can be 
determined either from a rough estimation of the noise standard deviation in a flat 
area, or from the desirability of retaining the gray level difference between the 
desirable features and its background. The sigma filter can be applied repeatedly 
with reduced u after each iteration. Two or three iterations are generally sufficient to 
reduce the noise level significantly. 

As an illustration, Fig. l(A) shows a medical image of cell structure. The results of 
applying the 7 x 7 sigma filter once, twice and three times are shown in Fig. l(B), 
(C), and (D), respectively. The result of applying the median filter twice is shown in 
(F). It should be noted that (E) is the result of applying a derivative version of the 
sigma filter, to be discussed in Section 4. 

3. A COMPARISON OF LOCALLY SMOOTHING ALGORITHMS 

Numerous local image smoothing algorithms have been developed recently. It is 
impractical to compare all of them in detail. The straight local average method is 
known to blur edges and details. Lev et al. [12] applied a template matching 
technique to detect edges and lines and then replaced the pixel by a weighted 
average corresponding to the particular pattern detected. Twelve 3 X 3 masks are 
created and relatively complicated weighting schemes are proposed. This algorithm 
is not computationally efficient, nor is it very effective in smoothing noise, since the 
window size is small. Lee [9, 131, using a local statistics method, produced good 
results for images corrupted by both additive and multiplicative noise. However, 
artifacts are observed in some cases, and the computation of the local variance 
makes this algorithm somewhat inefficient. These two filtering algorithms are ex- 
cluded in the present comparison. The recently published gradient inverse method 
[6], the edge preserving smoothing scheme of Nagao and Matsuyama [5], and the 
well-known median filter are chosen instead. 

For completeness, brief descriptions of these three algorithms are given in this 
section. The gradient inverse weighting scheme employs a 3 X 3 window and 
computes for each pixel its inverse gradient weighted average with its neighboring 
pixels. The idea is to weight less those pixels having greater absolute differences with 
their center pixel. The procedure for processing xi, j in a 3 x 3 window is given as 
follows: 

(1) Compute the inverse gradients of the eight neighboring pixels: 

gkl = ‘/lXi+k, j+l - Xi,,I if xi+k j+l # xi j 

= l/2, if x r+k, j+l = xi, j 

wherek,l= {-l,O,-tl}. 
(2) Compute weights for the eight neighbors: 

1 gkl 1 
Wk,l=-‘d 2 Q 

and w~,~=- 2 

(3) gi, j = c cwk,lxi+k, j+P 
k I 

Nagao and Matsuyama [5] proposed an algorithm which selects the most homoge- 
neous neighborhood and replaces the pixel by its neighborhood average. They 
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FIG. 2. Nagao’s filter with its nine subregions in a 5 X 5 window. Two of the eight directional 
subregions are shown on the left, and the ninth mask is on the right. The center pixel is replaced by the 
mean of the subregion having the minimum variance. 

created nine overlapped subregions in a 5 X 5 window as shown in Fig. 2. The 
means and variances of the nine subregions are computed, and the center pixel is 
replaced by the mean of the subregion having the minimum variance. 

The median filter is more flexible. It can be applied columnwise, rowwise, and 
areawise. In our study, a 3 x 3 window is used, and the median of the nine pixels in 
the window represents the smoothed pixel. The reason for not using a large window 
is that a large window will smear details and edges, not to mention the higher 
computational load. 

Two test images shown in Figs. 3 and 4, of dimension 128 X 128 pixels, are used 
in our comparison. In Fig. 3, a computer generated pattern of bars with increasing 
width (one pixel, three pixels,. . . , 15 pixels) is created, and corrupted with noise to 
test the ability to preserve linear features, the ability to smooth noise along edges, 
and the effectiveness of noise reduction in general. The average intensity of the bar is 
150 and of the background is 50. Figure 4 is a natural aerial scene artificially 
corrupted with noise. The intensity levels in all images in this paper are between 0 
and 255, Each algorithm is applied to the noisy image repeatedly 3 times. The sigma 
filter is applied in a 7 X 7 window with the intensity intervals 20, u, and a/2, and 
K = 2. 

(1) Efectiveness in Noise Smoothing 
The efficiency of smoothing noise can be measured by the reduction in noise 

standard deviation or variance. For the images of Fig. 3 the standard deviations of 
each smoothed image are computed from a flat area in the lower left comer. The 
results are listed in Table 1. 

The gradient inverse filter is apparently the least efficient smoothing algorithm due 
to its small mask and the nature of its weighting scheme. The sigma filter is 
significantly superior in smoothing noise with a reduction of standard deviation by 
approximately a factor of ten. The Nagao and median filters are comparable in their 
ability to reduce noise. 
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FIG. 3. The noise corrupt images ((A) and (F)) of bars with increasing width (one pixel, three 
pixels,. , 15 pixels). Several noise smoothing algorithms are applied, and the results are shown in 
(B)-(E) and (G)-(J), respectively. (B) and (G) are the results of applying the sigma filter, while (C) and 
(H), (D) and (I), and (E) and (J) are the results of the gradient inverse filter, Nagao’s filter and the 3 x 3 
median filter, respectively. 
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FIG 
standa 
sigma 

4. (A) An aerial image (courtesy of Image Processing Institute, USC); (B) Gaussian noise 
id deviation 20 is artificially added to (A); (c), (D), (E), and (F) are the results applied by I 
filter, gradient inverse filter, Nagao’s filter, and the 3 X 3 median filter, respectively. 

of 
the 
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TABLE 1 
Comparison of Reduction in Noise Standard Deviation 

Noise Standard Deviation 

Smoothing 
Algorithms 

Sigma filter 
Gradient inverse 
Nagao’s filter 
Median filter 

Bar pattern 
with 0 = 10 

0.81 
5.14 
2.48 
2.55 

Bar pattern 
with (r = 30 

3.54 
17.84 
10.87 

8.11 

(2) Preservation of Subtle Details and of Linear Features 
In some images it is important to retain highly distinguishable subtle details and 

line features, such as piers and roads. In other applications, such as image segmenta- 
tion, it may be desirable to remove subtle details. The sigma filter is effective in 
preserving subtle details and line features as long as the intensity difference between 
them and their background is greater than the two-sigma intensity range. The 
background pixels will be excluded from the average when processing a pixel which 
represents the road or the subtle detail. In fact, it would preserve even a single 
outlying pixel, if we were not using the threshold K for spot noise reduction. The 
gradient inverse method theoretically will smear any feature of any size if applied a 
sufficient number of times, since it includes all pixels in the average and only weights 
them less if the difference is large. Similarly the Nagao filter will blur and eventually 
devour any feature with dimensions of three pixels or less in any direction. This can 
be easily seen in a noise free one-dimensional case in Fig. 5, in which the Nagao 
filter is equivalent to replacing the center pixel with the average of itself and its two 
neighbors on either side, whichever has the minimum variance. The center pixel of 
the three-pixel-wide pulse will drop in value after one application. The deterioration 
will continue slowly in the one-dimensional case, but much faster in the two 
dimensional case. As seen in Figs. 3(D) and (I), the bars of width one and three 
pixels are almost completely wiped out. The 3 x 3 median filter will wipe out single 
pixel lines in one application, since in a 3 x 3 mask, among the nine pixels, six of 
them will be background pixels. Thus the median will approach the background 
pixel value. A bar two pixels wide is a critical case. It has five to six pixels depending 
on the orientation of the bar. The median filter will swallow slightly curving or 
broken two-pixel-wide bars. For a 5 X 5 median filter, a three-pixel-wide bar will be 
wiped out in one application. The images in Fig. 4 further substantiate the character- 
istics of these algorithms. Figures 4(C), (D), (E), and (F) are the results of applying 
the smoothing algorithms three times. The gradient inverse scheme shown in Fig. 
4(D) did not do much about the noise and slightly reduced the contrast of the image. 
As shown in Fig. 4(E), Nagao’s filter smeared bridges and subtle detail and created 
artifacts. The 3 x 3 median filter smeared the bridges and generally blurred the 
image. The sigma filter performed fairly well except for the sharp spot noise 
problem. 

(3) Immunity from Shape Distortion 
The gradient inverse method is not effective in smoothing noise, but it is relatively 

free from artifacts and shape distortion. Nagao’s filter, on the other hand, as shown 
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5 (A) ORIGINAL 
> 

5 (8) N=I > 

PIXEL DISTANCE 

FIG. 5. The effect of Nagao’s filter as applied in the one-dimensional case, to illustrate tbat it will blur 
and eventually devour any feature with dimension of three pixels or less. (A) shows the original 
one-dimensional three-pixel-wide pulse; the center pixel drops in value after one application as shown in 
(B); (C) shows that the value of the pulse decreases even more after another application. 

in Fig. 4(E), does create significant distortion because of the directional subregion 
average. It will round off comers of less than 90”. Median filter is known to create 
artifacts. The 3 x 3 median filter will round off comers and produce patterns of 
patches, the same as Nagao’s filter. As shown in Fig. 4(C), the sigma filter is 
practically free of shape distortion. 

(4) Retention of Step Edges and Sharpening Ramp Edges 

The intensity variations in the direction perpendicular to a sharp edge in the 
image plane form a step edge. Retaining the sharpness of a step edge is highly 
desirable in both image smoothing and segmentation. The gradient inverse filter will 
blur the step edge, as it computes the average on all pixels. The median filter will 
maintain a noise free step edge, but it will smear a noise step edge. Figure 6 shows a 
3 x 3 mask moving through an edge. Assuming the edge is contaminated by noise, 
the 3 x 3 median filter replaces the center pixel with the fifth least bright pixel of the 
six pixels on the left side of the edge, while as the window moves right by one pixel, 
the center pixel is replaced by the fifth brightest among the six pixels on the dark 
side of the edge. Consequently the sharpness of the edge is degraded. The s&&a 
filter, however, retains its sharpness by replacing the center pixel by the average of 
the six pixels. 

Sharpening a ramp edge is generally of interest in studies of image segmentation 
by gray level difi’erence. In this application Nagao’s filter is excellent due to its 
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EDGE BOUNDARY 

b BRIGHT SIDE DARK SIDE 

FIG. 6. The 3 X 3 median filter will maintain a noise free step edge, but it will smear a noisy step 
edge. Assuming the edge is contaminated by noise, the median is the fifth least bright pixel of the six 
pixels on the left side of the edge as shown in the upper portion of the figure. As the window moves to the 
right by one pixel (refer to the lower portion of the figure), the median is the fifth brightest pixel of the six 
in the shaded area. 

directional subregion average. The other three algorithms will not sharpen a ramp 
edge but all will maintain a ramp edge fairly well. A derivative of the sigma filter 
which will sharpen a ramp edge will be discussed in the next section. 

(5) Removing Spot Noise 

The median filter is well known for its effectiveness in removing sparsely posi- 
tioned sharp spot noise, since the spot noise has intensity at either end of the 
intensity scale. Nagao’s filter is also effective, but requires a few iterations. The 
gradient inverse filter weights the spot noise much higher than its surrounding pixels. 
Consequently, it is not effective. The sigma filter with large window size is highly 
suseptible to spot noise, since no other pixel but the spot noise itself is within the 
two sigma range. The modified version with threshold K (as shown in Fig. 3(G)) 
discussed in the last section will remove most isolated spot noise. However, spot 
noise near edges remains because the 7 X 7 mask contains several edge pixels which 
will fall into the two-sigma range. Increasing the value of K will further reduce the 
spot noise, but at the expense of blurring edges and subtle details. The spot noise 
can be further reduced by applying a 3 X 3 sigma filter with K = 1, or 2. Figure 7 
shows the effect of spot noise reduction by applying it to Figs. 3(G) and 4(C) for 
K = 1 and K = 2. Figures 3(G) and 4(C) are repeated in Fig. 7 for comparison. As 
shown in Fig. 7(C), the spot noise is almost completely removed; however, the 
one-pixel-wide bar is badly broken up. Figures 6(E) and (F) show the effect on the 
aerial image. 

(6) Computational Eficiency 

In our comparison, the algorithms were coded in FORTRAN and no special 
efforts were devoted to accelerate their executions. The computations were carried 
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FIG. 7. The sigma filter is susceptible to spot noise as indicated in (A) and (D). The problem is 
overcome by applying the 3 X 3 sigma filter with K = 1 and 2 as shown in (B) and (C) for the bar pattern, 
and (E) and (F) for the aerial scene. (A) and (D) repeat Figs. 2(G) and 3(C), respectively. 
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out on a Data General NOVA 800 with a Comtal 8000 image display. The ratio of 
computational time required for images of size 128 X 128 for each filter (per 
iteration) is listed in increasing order as follows: 

(1) The sigma filter (7 X 7), 1 unit of time; 
(2) The median filter (3 X 3) 1.5 units of time; 
(3) The gradient inverse filter, 4.0 units of time; 
(4) Nagao’s filter, 11.0 units of time. 

The sigma filter is the fastest algorithm in this group even with a 7 X 7 window. In 
our simulation, it took no more time than computing a straight 7 X 7 average. 
Nagao’s filter is extremely slow, since it requires the computation of variance for 
nine subregions. 

4. THE EXTENDED SIGMA FILTER 

The sigma filter can be easily extended to perform image enhancement, segmenta- 
tion, smoothing of signal-dependent noise, and even 3-D images. Here, only a few of 
these possibilities will be mentioned. 

(I) The Biased Sigma Filter 
This extended sigma filter will sharpen a ramp edge and also enhance the contrast 

of subtle detail. The bias is introduced by separately averaging pixels in the upper 
intensity range of (xi, i, xi, j + A) and in the lower intensity range of (xi, i, xi, j - A). 
The absolute difference between the upper average and xi, j, and also the absolute 
difference between the lower average and xij, are computed. The center pixel is 
replaced by the average which has the smaller absolute difference. The function of 
the biased sigma filter can be easily explained in a one-dimensional case. Figure 8(A) 
shows the effect of a seven-pixel-wide biased sigma filter with A = 3. With one 
application, the ramp edge becomes much sharper, and it will approach a step edge 
as the number of applications increase. It should be cautioned that the intensity 
range A should be chosen to be relatively large. As shown in Fig. 8(B) a ramp edge 
may become a two step edge with A = 1. This algorithm is useful in sharpening 
edges in preprocessing for image segmentation by gray level difference and also in 
bringing out subtle details in a smoothed image. Figure l(E) shows the image of Fig. 
l(D) processed by the biased sigma filter. 

(2) Signal-Dependent Noise 

Signal-dependent noise or speckles occur in coherent optical images as well as in 
synthetic aperture radar images [13]. To deal with this noise, a reasonably effective 
method based on local statistics was recently proposed by Lee [14]. In our experi- 
ment the sigma filter modified for signal-dependent noise performs better in many 
cases and requires much less computational time. The intensity range will not only 
float up and down with xi, j but also shrink or grow with xi, j, since u is a function of 
x,, j. A more detailed discussion will be given in a separate study [15]. 

(3) Extension to 3-D Images 

It is straightforward to extend the sigma filter and its derivatives to 3-D image 
smoothing. The two-dimensional window will be replaced by a three-dimensional 
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(A) ?PlXEL WINDOW,INTENSITY RANGE,A=3 
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FIG. 8. A ramp edge as shown in (A) is sharpened by applying the biased sigma filter. The intensity 
range in the biased filter should be chosen to be relatively large. As shown in (B), the ramp edge becomes 
a two step edge with the intensity range reduced from 3 to 1. 

cube. Pixels within the cube are processed by the same procedures established for the 
two-dimensional case. 

5. REMARKS 

(a) Most local smoothing algorithms do not require prespecified parameters. 
Clearly, this is a distinct advantage if the algorithm is to be effective for all image 
categories. The sigma filter does require specification of the intensity range and the 
size of the window. However, these parameters permit us to fine-tune the filter to a 
specific image or class of images. Once the characteristics of the sigma filter with 
respect to the parameters are understood, it is fairly easy to determine the ap- 
propriate values. In addition, the computational efficiency of this algorithm permits 
us to adjust the parameters interactively. 

(b) The basic principle of the sigma filter can be incorporated into other algo- 
rithms to modify the characteristics of these filters. For example, it could be included 
in Nagao’s filter or Lee’s local statistics algorithm [9] to obtain the two-sigma 
average in the directional subregion after it has been chosen by the procedures of 
these algorithms. 

6. CONCLUSION 

A simple, effective, and computationally efficient noise smoothing algorithm has 
been developed. Detailed comparisons with a few local smoothing algorithms are 
made to substantiate the basic characteristics of this filter. The procedure and 
strategy of utilizing this filter has been explored. Applications of this filter to image 
segmentation and other problems are currently under investigation. It is hoped that 
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the sigma filter will be accepted as a basic digital image processing technique because 
of its simplicity and effectiveness. 
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