
Available online at www.sciencedirect.com
Applied Mathematics and Computation 200 (2008) 178–188

www.elsevier.com/locate/amc
Parallel algorithm for the solutions of PDEs in linux
clustered workstations

Feras A. Mahmoud, Mohammad H. Al-Towaiq *

Jordan University of Science and Technology, Department of Mathematics and Statistics, P.O. Box 3030, Irbid 22110, Jordan
Abstract

In this paper we propose parallel algorithm for the solution of partial differential equations over a rectangular domain
using the Crank–Nicholson method by cooperation with the DuFort–Frankel method and apply it on a model problem,
namely, the heat conduction equation. One of the well known parallel techniques in solving partial differential equations in
cluster computing environment is the domain decomposition technique. Using this technique, the whole domain is decom-
posed into subdomains, each of them has its own boundaries that are called the interface points. Parallelization is realized
by approximating interface values using the unconditionally stable DuFort–Frankel explicit scheme, and these values serve
as Neumann boundary conditions for the Crank–Nicholson implicit scheme in the subdomains. The numerical results
show that our algorithm is more accurate than the algorithm based on the forward explicit method to approximate the
values of the interface points, especially, when we use a small number of time steps. Moreover, these numerical results
show that increasing the number of processors which are used in the cluster, yields an increase in the algorithm speedup.
� 2007 Published by Elsevier Inc.

Keywords: Heat conduction equation; Parallel computing; Domain decomposition; Crank–Nicholson; DuFort–Frankel
1. Introduction

The mathematical formulation of most problems in science and engineering involving rates of change with
respect to two or more independent variables, usually representing time, length or angle, leads either to a par-
tial differential equation (PDE) or to a set of such equations. Numerical approximation methods for solving
PDEs those employing finite differences are more frequently used and more universally applicable than any
other. These numerical methods often require a large number of computations, which make us explore parallel
methods for solving PDEs.

Finite difference solutions for PDEs can be found either explicitly or implicitly. The explicit method is easy
to implement on parallel computers but it has severe conditions for stability; that is, in order to attain reason-
able accuracy, the space step must be small which forces necessarily the time step to be small too. The implicit
0096-3003/$ - see front matter � 2007 Published by Elsevier Inc.

doi:10.1016/j.amc.2007.11.013

* Corresponding author.
E-mail addresses: feras_mahmoud@hotmail.com (F.A. Mahmoud), towaiq@just.edu.jo (M.H. Al-Towaiq).

mailto:feras_mahmoud@hotmail.com
mailto:towaiq@just.edu.jo


F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188 179
method does not have these conditions for stability but instead a global linear system of equations needs to be
solved at each time step and it is not easy for parallel implementation.

Domain decomposition is a method widely used for solving time dependent PDEs and powerful tool for
devising parallel PDE methods. A conventional approach [1] of parallelizing the implicit scheme is to apply
the domain decomposition based on preconditioning methods to the problem arising from the semidiscretiza-
tion at each time step. In [2] is proved that the preconditioning methods is well conditioned when the time step
is small; nevertheless, small step size is not always describe in situations where implicit schemes become nec-
essary to use. If the original domain is decomposed into a set of non-overlapping subdomains, then the PDEs
defined in different subdomains could be solved on different processors concurrently. This often requires
numerical boundary conditions at the interface points between subdomains. Since these interface points are
not a part from the original model of the problem, we have to generate them numerically. One way to generate
these numerical boundary conditions is to use the solutions from the previous time step to calculate the solu-
tion at the next time step. This is often referred to as time lagging [3]. A modified approximation scheme of
mixed type was proposed by Kuznetsov [4] where the standard second order implicit scheme is used inside
each subdomain, while the explicit Euler scheme is applied to obtain the interface values on the new time level.
Once the interface values are available, the global problem is fully decoupled and can thus be computed in
parallel. In [5] Dawson proposed a similar hybrid scheme, where instead of using the same spacing as for
the interior points where the implicit scheme is applied, a larger spacing is used at each interface point where
the explicit scheme is applied. In [1] Du, Mu, and Wu proposed two new parallel finite difference methods for
parabolic PDEs and he focused on a one-dimensional heat equation in a spatial interval ½0; 1� as an example.
For computation on the subdomain interface, Du used in the first method a high-order scheme, while he used
a multistep explicit scheme for the other one. He studied the stability and error analysis of the two new
schemes, and addressed the parallel efficiency of these schemes. In [6] Zhang and Wan presented some new
techniques in designing finite difference domain decomposition algorithm for the heat equation. The basic idea
is to define the finite difference schemes at the interface grid points with smaller time steps by Saulyev’s asym-
metric schemes.

In this paper, we propose parallel finite difference scheme for solving PDEs. For simplicity, we consider as a
model the heat conduction equation
ou
ot
¼ s2 o

2u
ox2

: ð1Þ
The parallel difference scheme based on both, the Crank–Nicholson (CN) implicit and DuFort–Frankel (DF)
explicit schemes. In this procedure, the values of interface points of each subdomain are calculated by using
the DF explicit scheme, and then these values serve as Neumann boundary conditions for the CN implicit
scheme in the subdomains. The rest of the paper is organized as follows. In Section 2, we present a detailed
description of the proposed algorithm. The stability of our parallel algorithm is given in Section 3. A numer-
ical results and performance analysis are presented in Section 4. Finally, we conclude this paper in Section 5.

2. DF–CN parallel algorithm

Consider the heat conduction equation
ou
ot
¼ s2 o2u

ox2
for 0 < x < ‘ and 0 < t < T ; ð2Þ
with initial condition
uðx; 0Þ ¼ f ðxÞ for 0 6 x 6 ‘;
and boundary conditions
uð0; tÞ ¼ c1

uð‘; tÞ ¼ c2

for 0 6 t 6 T :



180 F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188
We partition the space into n subintervals and the time into m subintervals, and we define the space step h ¼ ‘
n

and the time step k ¼ T
m. Therefore, the domain is discretized uniformly. For designing the parallel algorithm

we begin by choosing primitive tasks, identifying data communication patterns among them, and looking for
ways to agglomerate tasks.

By using the domain decomposition technique, the nþ 1 elements of the space are divided among p processors
fairly; that is, p divides the number of the space subintervals n. Denote the grid points by uðxi; tjÞ ¼ uðih; jkÞ ¼ ui;j

where i ¼ 0; 1; . . . ; n and j ¼ 1; 2; . . . ;m. So that the interface points correspond to i ¼ ðnpÞ; 2ðnpÞ; . . . ; ðp � 1ÞðnpÞ
and the boundary points correspond to i ¼ 0 and i ¼ n. Each processor is responsible to compute ðnpÞ þ 1 points
where each two neighbor processors share only one interface point at each time step, and each processor will
compute this interface point concurrently.

Let
Fig. 1.
fill in t
neighb
r ¼ s2 k

h2
;

then at any time step j ¼ 1; 2; . . . ;m, and if we use the approximation wi;j for ui;j in (2), the DF explicit scheme
ð1þ 2rÞwi;jþ1 ¼ 2rðwiþ1;j þ wi�1;jÞ þ ð1� 2rÞwi;j�1 ð3Þ

is applied at the interface points whereas the CN implicit scheme
ð2þ 2rÞwi;jþ1 � r½wi�1;jþ1 þ wiþ1;jþ1� ¼ ð2� 2rÞwi;j þ r½wi�1;j þ wiþ1;j�: ð4Þ

will be used to compute the interior points of each subdomain.

Fig. 1 depicts the communications needed to compute the solution at time jþ 1 given the solution at time j

and time j� 1. Processor q is responsible for computing wi;jþ1 implicitly using the CN difference scheme (4). It
can compute the values of the gray cells (interior points) without any communications. However, it cannot
compute the values of these gray cells until it computes the values of the black cells (interface points). Proces-
sor q can compute the values of the black cells explicitly, using the DF scheme (3), only if it gets values from
neighboring processors. In Fig. 1b we show how processor q exchanges values with the neighboring proces-
sors, q� 1 and qþ 1. After these values are received, the black cells can be computed. The parallel program
allocates two extra points for processor q at each time step (the dotted cells). These points will receive the val-
ues received from the neighboring processors that will be stored in memory locations. These memory locations
are called the ghost points. During the iteration that computes row jþ 1, each processor sends each of its
neighbors the appropriate border values from row j and receives the neighbor’s row j border value in turn.
After the values has been received into the ghost points, every processor can compute all of its row jþ 1 inte-
rior values using the CN scheme (4).

3. Stability of the DF–CN algorithm

The DF–CN parallel algorithm is stable for all values of r > 0 if and only if both the DF explicit scheme
and the CN implicit scheme are stable for all values of r > 0. When only one processor is used, the fully CN
implicit scheme is applied and the algorithm is unconditionally stable [7]. Using two or more processors in the
DF–CN algorithm leads us to approximate the values of the interface points by the DF explicit scheme, then
Ghost points simplify parallel finite difference programs. (a) When computing row jþ 1, processor q has the data values it needs to
he gray cells, but it needs values from neighboring processors to fill in black cells. (b) Every processor sends its edge values to its
ors. Every processor receives incoming values into ghost points.



F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188 181
these interface values serve as Neumann boundary conditions for the CN implicit scheme in the subdomains.
So, we have to prove that the CN implicit scheme is unconditionally stable when boundary conditions of Neu-
mann type are used for the heat conduction equation (2).

3.1. Neumann boundary conditions

Consider a thin rod of length ‘ that is thermally insulated along its length and which radiates heat from the
end x ¼ 0. Then the boundary condition at x ¼ 0 is given by
� ou
ox
¼ �g1½uð0; tÞ � v1�:
A negative sign must be associated with ou
ox because the outward normal to the rod at this end is in the negative

direction of the x-axis. On the other hand, the boundary condition at x ¼ ‘ is given by
ou
ox
¼ �g2½uð‘; tÞ � v2�
with a positive sign because the outward normal to the rod at this end is in the same direction of the x-axis.
Note that g1, g2, v1, v2 are constants in which g1 and g2 are nonnegative. Hence, instead of the boundary con-
ditions in (2), the boundary conditions have the form
ouð0;tÞ
ox

ouð‘;tÞ
ox

for 0 6 t 6 T :
If we wish to represent ou
ox more accurately at x ¼ 0 and x ¼ ‘ by the central difference formula
ouðx; tÞ
ox

¼ uðxþ h; tÞ � uðx� h; tÞ
2h

; ð5Þ
it is necessary to introduce the fictitious temperature w�1;j and wnþ1;j at the external mesh points ð�h; jkÞ and
ð‘þ h; jkÞ, respectively, by imagining the rod to be extended very slightly. Then, the boundary conditions can
be represented by
w�1;j ¼ w1;j � 2hg1ðw0;j � v1Þ; ð6Þ
wnþ1;j ¼ wn�1;j � 2hg2ðwn;j � v2Þ: ð7Þ
The temperatures w�1;j and wnþ1;j are unknown and necessitates another two equations. Specifically, for the
CN formula, at i ¼ 0 and i ¼ n, we have
ð2þ 2rÞw0;jþ1 � r½w�1;jþ1 þ w1;jþ1� ¼ ð2� 2rÞw0;j þ r½w�1;j þ w1;j�; ð8Þ
and
ð2þ 2rÞwn;jþ1 � r½wn�1;jþ1 þ wnþ1;jþ1� ¼ ð2� 2rÞwn;j þ r½wn�1;j þ wnþ1;j�: ð9Þ
By substituting (6) and (7) into (8) and (9) respectively, the resulting formulae will be
½2þ 2rð1þ hg1Þ�w0;jþ1 � 2rw1;jþ1 ¼ ½2� 2rð1þ hg1Þ�w0;j þ 2rw1;j þ 4rhg1v1; ð10Þ
and
½2þ 2rð1þ hg2Þ�wn;jþ1 � 2rwn�1;jþ1 ¼ ½2� 2rð1þ hg2Þ�wn;j þ 2rwn�1;j þ 4rhg2v2: ð11Þ
For each time step we have to solve the nþ 1 tridiagonal system of linear equations, using Thomas algorithm
[8], which represented in matrix form as follows:
Awðjþ1Þ ¼ BwðjÞ þ c; for each j ¼ 0; 1; 2; . . . ; ð12Þ
where
wðjÞ ¼ ðw0;j;w1;j; . . . ;wn;jÞt;



182 F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188
and the matrices A and B and the vector c are given by
A ¼

2þ 2ð1þ hg1Þr �2r 0 � � � � � � 0

�r 2þ 2r �r 0 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0

..

.
� � � 0 �r 2þ 2r �r

0 � � � � � � 0 �2r 2þ 2ð1þ hg2Þr

2
66666666664

3
77777777775
;

B ¼

2� 2ð1þ hg1Þr 2r 0 � � � � � � 0

r 2� 2r r 0 � � � 0

0 . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0

..

.
� � � 0 r 2� 2r r

0 � � � � � � 0 2r 2� 2ð1þ hg2Þr

2
66666666664

3
77777777775
;

and
c ¼ ð4hv1g1r; 0; . . . ; 0; 4hv2g2rÞt:
As g1, g2, h and r are all nonnegative, then the matrix A in (12) is strictly diagonally dominant [9]. Since a
diagonally dominant matrix is nonsingular [9], then there is a unique solution to the tridiagonal linear system
(12) given by
wðjþ1Þ ¼ A�1BwðjÞ þ A�1c: ð13Þ
To examine stability of the CN difference scheme (12), let us assume that an error
eð0Þ ¼ ðeð0Þ0 ; eð0Þ1 ; . . . ; eð0Þn Þ
t

is made in representing the initial data
wð0Þ ¼ ðw0;0;w1;0; . . . ;wn;0Þt:
So, the initial vector is actually wð0Þ þ eð0Þ, and so we have
wð1Þ ¼ A�1Bðwð0Þ þ eð0ÞÞ þ A�1c ¼ A�1Bwð0Þ þ A�1cþ A�1Beð0Þ

wð2Þ ¼ A�1Bwð1Þ þ A�1c

¼ ðA�1BÞ2wð0Þ þ ðA�1BÞðA�1cÞ þ A�1cþ ðA�1BÞ2eð0Þ

..

.

wðkÞ ¼ A�1Bwðk�1Þ þ A�1c

¼ ðA�1BÞkwð0Þ þ
Xk�1

i¼0

ðA�1BÞiðA�1cÞ þ ðA�1BÞkeð0Þ:
Hence, at the kth time step, the error in wðkÞ due to eð0Þ is ðA�1BÞkeð0Þ. In order for this error not to be magnified
in the successive steps, we want
ðA�1BÞkeð0Þ
�� �� 6 keð0Þk
for all values of k. Therefore, we must have
kðA�1BÞkk 6 1;



F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188 183
which requires that
q½ðA�1BÞk� ¼ ½qðA�1BÞ�k 6 1;
where qðAÞ is the spectral radius of the matrix A [9]. The CN difference scheme (12) is therefore stable only
when the modulus of every eigenvalue of the matrix A�1B does not exceed one. Since the matrix B can be writ-
ten as B ¼ 4I � A, then
A�1B ¼ 4A�1 � I :
Therefore, the method is stable only when
4

l
� 1

����
���� 6 1;
where l is an eigenvalue of A. This is equivalent to l P 2. Since g1, g2, h and r are all nonnegative, then an
application of Gerschgorin’s circle theorem [9] to the matrix A in (12) shows that all its eigenvalues are at least
2 for any value of r P 0. Hence, the CN difference scheme (12) is unconditionally stable. Note that the local
truncation error of the CN implicit scheme is Oðk2 þ h2Þ, see [9].

3.2. Stability analysis of the DF method

The stability of the DF scheme can be investigated by writing the DF formula (3) in the matrix form
wðjþ1Þ ¼ 2r
1þ 2r

AwðjÞ þ 1� 2r
1þ 2r

wðj�1Þ þ c; ð14Þ
where
wðjÞ ¼ ðw1;j;w2;j; . . . ;wn�1;jÞt; c ¼ ð2rc1; 0; . . . ; 0; 2rc2Þt;

and
A ¼

0 1 0 � � � � � � 0

1 0 1 . .
. ..

.

0 . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

..

. . .
. . .

. . .
.

1

0 � � � � � � 0 1 0

2
666666666664

3
777777777775
:

Let
vðjÞ ¼ wðjÞ

wðj�1Þ

" #
;

then Eq. (14) can be written as
wðjþ1Þ

wðjÞ

" #
¼

2r
1þ2r A 1�2r

1þ2r I

I 0

� �
wðjÞ

wðj�1Þ

" #
þ

c

0

� �
where I is the identity matrix of size n� 1. Therefore,
vðjþ1Þ ¼ PvðjÞ þ d; ð15Þ

where
P ¼
2r

1þ2r A 1�2r
1þ2r I

I 0

� �
and d ¼

c

0

� �
:



184 F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188
This technique has reduced a three-level difference scheme to a two-level one. The DF scheme (15) will be
unconditionally stable when each eigenvalue of p has a modulus less than or equal to 1. The following two
theorems are useful for the analysis of the stability of three or more time level difference schemes and are easy
to use. The proof of these theorems can be found in [7].

Theorem 1. If the matrix A can be written as
A ¼

A11 A12 � � � A1n

A21 A22 � � � A2n

..

. ..
. ..

.

An1 An2 � � � Ann

2
66664

3
77775;
where each Aij is an m� m matrix, and all the Aij has a common set of n linearly independent eigenvectors, then the

eigenvalues of A are given by the eigenvalues of the matrices
kðkÞ11 kðkÞ12 � � � kðkÞ1n

kðkÞ21 kðkÞ22 � � � kðkÞ2n

..

. ..
. ..

.

kðkÞn1 kðkÞnn � � � kðkÞnn

2
666664

3
777775; k ¼ 1; 2; . . . ;m;
where kðkÞij is the kth eigenvalue of Aij corresponding to the kth eigenvector gk common to all the Aij’s.

Theorem 2. The eigenvalues of the n� n tridiagonal matrix A, where
A ¼

a b 0 � � � � � � 0

c a b . .
. ..

.

0 . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

..

. . .
.

c a b

0 � � � � � � 0 c a

2
666666666664

3
777777777775
;

are
kk ¼ aþ 2
ffiffiffiffiffi
bc
p

cos
kp

nþ 1

� �
; k ¼ 1; 2; . . . ; n:
The matrix A from (15) is a tridiagonal matrix. So, by Theorem (2), the matrix A has n� 1 different eigenvalues
which are
kk ¼ 2 cos
kp
n

� �
; k ¼ 1; 2; . . . ; n� 1;
and thus it has n� 1 linearly independent eigenvectors gi; i ¼ 1; 2; . . . ; n� 1. Although the matrix I has n� 1
eigenvalues each equal to 1, then it has n� 1 linearly independent eigenvectors which may be taken as gi;
i ¼ 1; 2; . . . ; n� 1. Hence, by Theorem (1), the eigenvalues l of P are the eigenvalues of
2r
1þ2r kk

1�2r
1þ2r

1 0

� �



F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188 185
where kk is the kth eigenvalue of A. The values of l can be computed by evaluating
det
2r

1þ2r kk � l 1�2r
1þ2r

1 �l

� �
¼ 0;
which gives
l2 � 2r
1þ 2r

kkl�
1� 2r
1þ 2r

¼ 0:
Therefore,
l ¼
2r cos kp

n

	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4r2 sin2 kp

n

	 
q
1þ 2r

;

and there are two cases: if 0 6 1� 4r2 sin2ðkp
n Þ < 1, then
jlj < 2r þ 1

1þ 2r
¼ 1;
and if 1� 4r2 sin2ðkp
n Þ < 0, then
jlj2 ¼
2r cos kp

n

	 
	 
2 þ 4r2 sin2 kp
n

	 

� 1

ð1þ 2rÞ2

¼ 4r2 � 1

4r2 þ 4r þ 1
< 1:
Therefore the DF explicit difference scheme (3) is unconditionally stable for all values of r > 0.
The local truncation error of this scheme is Oðk2 þ h2 þ k2

h2Þ, see [9]. Successive refinement of the values of h

and k may generate a finite difference solution that is stable, but that may converge to the solution of a dif-
ferent PDE. For example, in the DF explicit difference scheme, as both h and k tend to zero at the same rate,
the ratio k

h is constant, and thus we solve a modified PDE and not the original Eq. (2). However, the DF
scheme is consistent if k tends to zero faster than h.

4. Numerical results and performance analysis

In this section, we consider a heat conduction equation. We use the DF–CN algorithm to approximate the
solution of this equation. The example is implemented using the academic cluster built in the department of
Computer Science at Jordan University of Science and Technology. This cluster contains 1 management node
and 18 Linux (Kernel 2.4.20.8 RedHat 9) workstations connected as a star network, each of which has a single
IBM Pentium IV with 2.4 GHz, 512 Cache, 512 MBs of memory and 40 GBs disk space. These hosts are con-
nected together by fast Ethernet, 1 GB switch and 1 optical interconnection switch. We use the Message Pass-
ing Interface (MPI) with the MPICH version 1.5.2 as a message passing library throughout the
implementations. The barrier synchronization and blocking point-to-point communication are used. The
graphs reported in the figures represent the average speedup and efficiency over many runs of the DF–CN
algorithm.

Example. Consider the heat conduction equation
ou
ot
¼ 4

p2

o2u
ox2

for 0 < x < 4 and t > 0;
with boundary conditions
uð0; tÞ ¼ uð4; tÞ ¼ 0; t > 0;



186 F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188
and initial condition
uðx; 0Þ ¼ sin
p
4

x
� �

1þ 2 cos
p
4

x
� �h i

; 0 6 x 6 4:
The exact solution to this problem is
uðx; tÞ ¼ e�t sin
p
2

x
� �

þ e
�t
4 sin

p
4

x
� �

:

The solutions at t ¼ 0:01 will be approximated using the proposed DF–CN algorithm with several values of h

when k ¼ 1� 10�6. Figs. 2–4 show the execution time, speedup and efficiency of the DF–CN parallel differ-
ence scheme corresponding to several values of n when 1; 2; 4; 8; 12; 16 and 18 processors are used.

It is clear, from Fig. 3, that the speedup of the DF–CN algorithm is not ideal, i.e, it is not linear with the
number of processors. This because of the decreasing of the problem size when the number of processors
increases, which makes the communication time to be the dominant in comparison with the computation
one. Also, the height speed of the processors used in implementing our algorithm effects on the parallel exe-
cution time; that is, the small problem sizes will take little execution time to perform a certain calculations.
However, in the DF–CN algorithm, as problem size n increases, so does the height of the speedup curve. Also,
for a fixed number of processors, speedup is an increasing function of the problem size.
Fig. 2. The execution time of the DF–CN algorithm using several values of h with k ¼ 1� 10�6 at t ¼ 0:01.

Fig. 3. Speedup of the DF–CN parallel algorithm using several values of h with k ¼ 1� 10�6 at t ¼ 0:01.



Fig. 4. Efficiency of the DF–CN parallel algorithm using several values of h with k ¼ 1� 10�6 at t ¼ 0:01.

F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188 187
For a problem of fixed size, the efficiency of a parallel computation typically decreases as the number of
processors increases, see Fig. 4. Since parallel communication increases when the number of processors
increases, the way to maintain efficiency when increasing the number of processors is to increase the size of
the problem being solved. The proposed algorithm assumes that the data structures we manipulate fit in pri-
mary memory. The maximum problem size we can solve is limited by the amount of primary memory that is
available. Also, in the DF–CN parallel algorithm, as problem size n increases, the height of the efficiency curve
increases.

The DF–CN parallel algorithm is accurate. For example, when n ¼ 54; 000, the value of r is approximately
73:863 and the maximum error is 5:035� 10�9, while using this choice of n if the forward difference scheme, see
[7,9], is used to approximate the values of the interface points instead of the DF scheme makes the approxi-
mate solution diverges.

To analyze the performance, let v represent the time needed to compute an interior point using the Thomas
algorithm. Using a single processor to update the nþ 1 points requires time ðnþ 1Þv. Because the algorithm
has m time steps, the total expected execution time of the sequential algorithm is
ts ¼ mðnþ 1Þv: ð16Þ
To compute the parallel execution time using p processors, suppose that each of them is responsible for an
equal-sized portion contains ðnpÞ þ 1 points, two boundaries and ðnpÞ � 1 interiors, in general. The boundary
points will be computed by the DF explicit scheme, while the interior points will be computed using the Tho-
mas algorithm. Suppose x represent the time needed to compute a boundary point, the parallel computation
time for each iteration is
tp
comp ¼

n
p

� �
� 1

� �
vþ 2x:
However, the parallel algorithm involves communication that the sequential algorithm does not. In general,
each processor must send values to its two neighboring processors and receive two values from them. If f rep-
resents the time needed for a processor to send (receive) a value to (from) another processor, the necessary
communications increase the parallel execution time for each iteration 2f. Therefore,
tp
comm ¼ 2f:
Combining computation time with communication time, the overall parallel execution time for all m iterations
of the algorithm is
tp ¼ mftp
comp þ tp

commg ¼ m
n
p

� �
� 1

� �
vþ 2xþ 2f


 �
: ð17Þ



188 F.A. Mahmoud, M.H. Al-Towaiq / Applied Mathematics and Computation 200 (2008) 178–188
The speedup relative to the sequential algorithm is
S ¼ ts

tp
¼ ðnþ 1Þv

n
p

� �
� 1

h i
vþ 2xþ 2f

; ð18Þ
and the parallel efficiency is given by
E ¼ S
p
¼ ðnþ 1Þv

n� p½ �vþ 2pxþ 2pf
: ð19Þ
5. Conclusion

In this paper, the DF–CN parallel algorithm has been discussed in depth. This algorithm uses the DF expli-
cit scheme to approximate the solution at the interior boundaries between subdomains. For the remaining
points in each subdomain, the algorithm uses the CN implicit scheme. This scheme has no stability constraint
and prevents the algorithm from moving to worse approximations.

A numerical example is given for the proposed DF–CN parallel algorithm. From the numerical results we
conclude that the DF–CN algorithm is recommended when small values of time steps are used. Small number
of time steps will decrease the inter-processors communications; which decreases the communication time of
this parallel algorithm. This algorithm gave more accurate results than the parallel algorithm that uses the for-
ward difference scheme to approximate the values of the interface points especially when a small number of
time steps are used.

Furthermore, in the DF–CN parallel algorithm, as problem size n increases, so does the height of the
speedup curve. Also, for a fixed number of processors, speedup is an increasing function of the problem size.
Moreover, the efficiency of the DF–CN algorithm computation typically decreases as the number of proces-
sors increases. The way to maintain efficiency when increasing the number of processors is to increase the size
of the problem being solved. Unfortunately, the maximum problem size we can solve is limited by the amount
of primary memory that is available.

References

[1] Q. Du, M. Mu, Z.N. Wu, Efficient parallel algorithms for parabolic problems, SIAM J. Numer. Anal. 30 (2001) 1469–1487.
[2] X. Cai, Additive Schwarz algorithms for parabolic convection–diffusion equations, Numer. Math. 50 (1991) 41–52.
[3] Rivera-Gallego Wilson, Stability analysis of numerical boundary conditions in domain decomposition algorithms, Appl. Math.

Comput. 137 (2003) 375–385.
[4] Y.A. Kuznetsov, New algorithms for approximate realization of implicit difference scheme, Soviet J. Numer. Anal. Math. Model. 3

(1988) 99–114.
[5] C.N. Dawson, Q. Du, T.F. Dupnot, A finite difference domain decomposition algorithm for numerical solution of the heat equation,

Math. Comput. 57 (1991) 63–71.
[6] Zhang Bao-Lin, Wan Zheng-Su, New techniques in designing finite-difference domain decomposition algorithm for the heat equation,

Comput. Math. Appl. 45 (2003) 1695–1705.
[7] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, London, 1978.
[8] Gearge Em Karniadakis, Robert M. Kirby II, Parallel Scientific Computing in C++ and MPI, Cambridge University Press,

Cambridge, 2003.
[9] Richard L. Burden, J. Douglas Faires, Numerical Analysis, seventh ed., Brooks/Cole, United States of America, 2001.


	Parallel algorithm for the solutions of PDEs in linux clustered workstations
	Introduction
	DF-CN parallel algorithm
	Stability of the DF-CN algorithm
	Neumann boundary conditions
	Stability analysis of the DF method

	Numerical results and performance analysis
	Conclusion
	References


