
Effective Query Rewriting with Ontologies over DBoxes

İnanç Seylan and Enrico Franconi and Jos de Bruijn

Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
{seylan,franconi,debruijn}@inf.unibz.it

Abstract

We consider query answering on Description Logic
(DL) ontologies with DBoxes, where a DBox is
a set of assertions on individuals involving atomic
concepts and roles called DBox predicates. The ex-
tension of a DBox predicate is exactly defined in
every interpretation by the contents of the DBox,
i.e., a DBox faithfully represents a database whose
table names are the DBox predicates and the tuples
are the DBox assertions. Our goals are (i) to find
out whether the answers to a given query are solely
determined by the DBox predicates and, if so, (ii)
to find a rewriting of the query in terms of them.
The resulting query can then be efficiently evalu-
ated using standard database technology. We have
that (i) can be reduced to entailment checking and
(ii) can be reduced to finding an interpolant. We
present a procedure for computing interpolants in
the DL ALC with general TBoxes. We extend the
procedure with standard tableau optimisations, and
we discuss abduction as a technique for amending
ontologies to gain definability of queries of interest.

1 Introduction

We address the problem of concept query answering on
databases with ontologies. An ontology provides a concep-
tual view of the database and it is composed by constraints
on a vocabulary extending the basic vocabulary (tables and
attributes) of the data. Querying a database using the terms in
such a richer ontology allows for more flexibility than using
only the basic vocabulary of the relational database directly.

Description Logics [Baader et al., 2007] (DLs) are a promi-
nent formalism for representing ontologies. However, DLs
such as ALC or OWL or DL-lite were not originally devel-
oped with this use case in mind. In particular, the data in a DL
knowledge base is represented using an ABox, which can be
seen as an incomplete database. This means the extensions of
the concepts and roles contain at least the data mentioned in
the ABox, but may contain additional data, and this may vary
among the models of the knowledge base. This is in contrast
to relational databases, which are complete: the extensions of
the predicates (i.e., the tables) contain exactly the data in the
database and nothing more.

We introduce in this paper the notion of a DBox, which
is syntactically similar to an ABox; it is a set of ground
atomic concept and role assertions. However, semantically
it behaves like a database, i.e., the extensions of the con-
cepts and roles mentioned in the DBox are exactly defined
by the contents of the DBox. We call the concepts and roles
appearing in the DBox the DBox predicates. Observe that
the DBox predicates are closed, i.e., their extensions are the
same in every interpretation, whereas the other predicates
in the knowledge base are open, i.e., their extensions may
vary among different interpretations. This has been called
also locally closed world [Etzioni et al., 1997] or exact views
[Abiteboul and Duschka, 1998; Segoufin and Vianu, 2005;
Nash et al., 2007].

The queries we consider in this paper are concept expres-
sions (and the answers are their instances), and the ontologies
are general ALC TBoxes. Our goals are (i) to check whether
the answers to a given query under a TBox are solely deter-
mined by the extension of the DBox predicates and, if so, (ii)
to find an equivalent rewriting of the query in terms of the
DBox predicates to allow the use of standard database tech-
nology for answering the query. This means we benefit from
the low computational complexity in the size of the data of
answering first-order queries on relational databases. In addi-
tion, we would like as much as possible to use standard tech-
niques for DL reasoning to find rewritings. As was pointed
out recently also by Marx [2007], (i) corresponds to implicit
definability [Tarski, 1956], and can be reduced to checking
entailment and (ii) corresponds to explicit definability [Beth,
1953]. Inspired by the results of Craig [1957], this problem
can be reduced to finding an interpolant.

Our contributions in this paper are as follows:
– We introduce the notion of DBoxes as a faithful encoding
of databases, and show how to find a query rewriting over
DBoxes, using Beth definability and interpolation;
– we present a procedure for calculating interpolants of ALC
concepts under general TBoxes, using an adaptation of stan-
dard DL tableau techniques;
– we extend the procedure to deal with common tableau opti-
misation techniques found in implemented systems, in partic-
ular, non-atomic closure, semantic branching, lazy unfolding
and absorption, and backjumping; and
– we show how abduction techniques can be used for amend-
ing TBoxes to gain definability of queries of interest.

923

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)

2 ALC and DBoxes

ALC TBoxes. Let NC and NR be countably infinite sets
of concept and role names, respectively. The set of ALC
concepts is the smallest set that includes the atomic concepts
NC ∪ {�}, and if C, D are concepts and R ∈ NR, then ¬C,
C � D, and ∀R.C are concepts. As usual, ⊥, C � D, and
∃R.C are short for ¬�, ¬(¬C �¬D), and ¬∀R.¬C, respec-
tively. An ALC TBox T is a finite set of axioms of the form
C
 D, where C and D are ALC concepts.

An interpretation I is a pair 〈ΔI , ·I〉 where ΔI is a non-
empty set and ·I is a function that maps concept names A
to subsets AI of ΔI and role names R to binary relations
RI on ΔI ; ·I extends to concepts as follows: �I = ΔI ;
(¬C)I = ΔI \CI ; (C �D)I = CI ∩DI ; and (∀R.C)I =
{δ ∈ ΔI | ∀δ′ (〈δ, δ′〉 ∈ RI → δ′ ∈ CI)}.
I is a model of a TBox T , written I |= T , iff CI ⊆ DI

for all axioms C
 D ∈ T . Since C
 D is equivalent
to �
 ¬C � D, we assume that all axioms in T are of
this form. We can thus view the TBox as a set of universal
concepts {C | �
 C ∈ T }.

A concept C is satisfiable w.r.t. T iff there is some model
I of T such that CI �= ∅; D subsumes C w.r.t. T , written
C
T D, iff CI ⊆ DI for all models I of T . We write
C ≡T D if CI ⊆ DI and DI ⊆ CI .

For ease of presentation, we assume all concepts to be in
negation normal form (NNF), which means the negation signs
appear only in front of atomic concepts. The negation normal
form of the complement of a concept C is written ¬̇C.

With sig(C) (resp. sig(T)) we denote the set of all concept
and role names occurring in C (resp. T), i.e., the signature of
C (resp. T). With sig(C, T) we denote the set of all concept
and role names occurring in C or T .

DBoxes. Let NI be a countably infinite set of individual
names. A DBox D is a set of assertions of the forms A(a)
and R(a, b), where A ∈ σD(C), R ∈ σD(R), and a, b ∈
σD(I). The signature σD of D consists of the DBox concepts
σD(C) ⊆ NC , the DBox roles σD(R) ⊆ NR, and the DBox
individuals σD(I) ⊆ NI ; we call DBox predicates the set
σD(P) = σD(C) ∪ σD(R). The active domain of D is the
set of individuals in σD(I) appearing in the assertions of D .

An interpretation I = 〈ΔI , ·I〉 is a model of D , written
I |= D , iff aI = a for every DBox individual a ∈ σD(I),
and for every concept (resp., role) name P in σD(P) and ev-
ery u ∈ ΔI (resp., (u, v) ∈ ΔI ×ΔI), we have that u ∈ P I

iff P (u) ∈ D (resp., (u, v) ∈ P I iff P (u, v) ∈ D). In other
words, in every model of D the extensions of the DBox pred-
icates are given by the contents of the DBox, and are the same
in every model. Please note that the domain ΔI of a model
of D is not fixed, but it includes all the DBox individuals in
σD(I), which in turn includes the active domain of D .

A DBox D is satisfiable with respect to a TBox T iff there
is a model of D that is also a model of T . An interpretation I
is a model of C(a), where C is a concept and a an individual
name, written I |= C(a), iff aI ∈ CI . A pair (T ,D) entails
a membership expression C(a) – this is the instance checking
problem, or concept querying problem – written (T ,D) |=
C(a), iff for every model I of T and D it holds that I is a

model of C(a). Finally, D entails C(a), written D |= C(a),
iff (∅,D) |= C(a).

The unique names assumption (UNA) holds for a DL L if
for any interpretation I considered in L , aI �= bI whenever
a �= b, for any two a, b ∈ NI . If we assume UNA, reasoning
in a DL with DBoxes can be reduced to reasoning in the same
DL extended with nominals – i.e., concept expressions of the
form {a}, where a is an individual name, such that {a}I =
{aI} – and vice versa.

Proposition 1. Given a description logic L with UNA that
includes ALC, for every DBox D and TBox T in L there ex-
ists a TBox T D in L extended with nominals with size poly-
nomially bounded by the size of T ∪ D , such that D is satis-
fiable with respect to T iff T D is satisfiable, and vice versa.

Proof sketch. (⇒) T D is obtained from T by adding comple-
tion and closure axioms. For every DBox concept A add the
axiom A ≡ {a1}�· · ·�{an}, such that A(a1), . . . , A(an) are
the assertions involving A in D . For every DBox role R add
the axioms {ai}
 ∃R.{bj}, {ai}
 ∀R.{b1} � · · · � {bn},
and ∃R.�
 {a1} � · · · � {am}, such that R(ai, bj) for
i = 1, · · · , m and j = 1, · · · , n are the assertions involv-
ing R in D .
(⇐) For every occurrence of {a} in T D , the assertion Aa(a)
is added to D , where Aa is a new DBox concept name, and
every occurrence of {a} in T D is replaced with Aa.

Please note that this reduction encodes the entire DBox into
a TBox, and that, although concept querying in ALCO has
the same combined complexity as in ALC, if we consider
more expressive logics such as SHIQ we do get an in-
crease in combined complexity when nominals are added
(from EXPTIME to NEXPTIME). It can also be shown that the
data complexity of query answering with DBoxes (i.e., with
closed data predicates) is at least as hard as query answering
with ABoxes (i.e., with open data predicates), and that it is
strictly harder if we consider conjunctive query answering in
simple description logics such as DL-lite (it increases from
LOGSPACE to CONP-hard, which can be shown by a reduc-
tion from non-existence of 3-colourings).

3 Definability and Query Answering

We introduce in this Section implicit and explicit defin-
ability for queries, and discuss how explicit definitions can
be used for concept query rewriting. In the following,
given a TBox T and a DBox D , let Q be a query con-
cept (i.e., a query asking for all the instances of the con-
cept) and let sig(Q, T) = {B1, . . . , Bm, D1, . . . , Dn} be
the combined signature where {D1, . . . , Dn} ⊆ σD(P) and
{B1, . . . , Bm} ∩ σD(P) = ∅; {D1, . . . , Dn} is the set of
DBox predicates appearing in T or in Q.

Definition 1 (Implicit definability). Let a concept ϕ′ (resp.
a TBox T ′) be like ϕ (resp. T) but with occurrences of B1,
. . . , Bm replaced by distinct occurrences of B′

1, . . . , B
′
m �∈

sig(Q, T). Then, Q is implicitly definable from D1, . . . , Dn

in T iff Q ≡T ∪T ′ Q′.

In other words, given a TBox, a concept Q is implicitly
definable if the set of all its instances depends only on the

924

extension of the DBox predicates. This means that it may
be possible to find an expression using only predicates in the
DBox whose instances are the same as in the original concept:
this would be its explicit definition.
Definition 2 (Explicit definability). Q is explicitly definable
from D1, . . . , Dn in T iff there is some concept C such that
Q ≡T C and sig(C) ⊆ {D1, . . . , Dn}.

Clearly, explicit definability implies implicit definability.
Beth [1953] shows that the converse also holds for the case of
first-order logic: if Q is implicitly definable from D1, . . . , Dn

in T , then it is explicitly definable. To prove this property for
ALC with general TBoxes, we exploit interpolation.
Lemma 1 (Interpolation for ALC with TBoxes). Let Q
be an ALC concept and let T be an ALC TBox such that
Q
T ∪T ′ Q′, where Q′ and T ′ are obtained as above.
Then, there exists some concept C, called the interpolant of
Q and Q′ under T and T ′, such that sig(C) ⊆ sig(Q, T) ∩
sig(Q′, T ′), Q
T ∪T ′ C, and C
T ∪T ′ Q′.
Theorem 1 (Beth Definability for ALC with TBoxes). If Q
is implicitly definable from D1, . . . , Dn in T then Q is explic-
itly definable from D1, . . . , Dn in T .

Proof. We have that Q ≡T ∪T ′ Q′. Now, by Lemma 1 there
is an interpolant C of Q and Q′ under T and T ′. Since
it is an interpolant, sig(C) ⊆ sig(Q, T) ∩ sig(Q′, T ′) ⊆
{D1, . . . , Dn}, and both (a) Q
T ∪T ′ C and (b) C
T ∪T ′

Q′. By (a) and Q′
T ∪T ′ Q, we have C
T ∪T ′ Q, from
which Q ≡T ∪T ′ C follows by (b). From the structure of T ′

and the fact that sig(Q), sig(C) ⊆ sig(T) straightforwardly
follows that Q ≡T C.

This proof of Beth definability for ALC with general
TBoxes is constructive, provided we have a constructive
method of finding interpolants as defined in Lemma 1. In
Section 4 we present such a method, and we prove its cor-
rectness and completeness.
We can now combine these results to reduce answering defin-
able queries to query answering using only the DBox.
Theorem 2. Let D be a DBox that is satisfiable with respect
to a TBox T , let Q be a concept and let a ∈ σD(I) be a
DBox individual. If Q is implicitly definable from σD(P),
then there is an ALC concept C with sig(C) ⊆ σD(P) such
that (T ,D) |= Q(a) iff D |= C(a).

To enable rewriting C(a) to standard database query lan-
guages we first need to prove its domain independence.
Definition 3 (Domain independence). Let C be a concept
and let a be an individual name. C(a) is said to be domain
independent if for every interpretation I = 〈ΔI , ·I〉 such that
I |= C(a) it is the case that I ′ |= C(a) for every interpreta-
tion I ′ = 〈ΔI′

, ·I′〉 with ΔI′ ⊇ ΔI and ·I = ·I′
.

Theorem 3. Let C be an ALC concept and let a be an indi-
vidual name. Then, C(a) is domain independent.

Proof sketch. Let I = 〈ΔI , ·I〉 and I ′ = 〈ΔI′
, ·I′〉 be two

interpretations as in Definition 3, and let δ be in both ΔI and
ΔI′

. We will show by induction on the structure of concept
D in negation normal form that δ ∈ DI implies δ ∈ DI′

.

The atomic cases are trivial: if D = A or D = ¬A, for
some atomic concept A, clearly δ ∈ DI iff δ ∈ DI′

, since
AI = AI′

. Suppose now D = C1 � C2. By the inductive
hypothesis, δ ∈ (C1)I implies δ ∈ (C1)I

′
, and δ ∈ (C2)I

implies δ ∈ (C2)I
′
. But then δ ∈ (C1 � C2)I implies δ ∈

(C1 � C2)I
′
. Analogous for when D = C1 � C2. Suppose

D = ∃R.E. Since RI = RI′
, there is some δ′ ∈ ΔI such

that 〈δ, δ′〉 ∈ RI iff δ′ ∈ ΔI′
and 〈δ, δ′〉 ∈ RI′

. Moreover,
by the induction hypothesis we have that δ′ ∈ EI implies
δ′ ∈ EI′

. Analogous for D = ∀R.E.

Consider a query C(a) with a ∈ σD(I) and sig(C) ⊆
σD(P). Since C(a) is domain independent, deciding D |=
C(a) can be reduced to checking aI ∈ CI for an arbitrary
model I of D ; in particular we choose the smallest model
ID = 〈ΔID

, ·ID 〉 of D , where ΔID

is equal to the set of
the DBox individuals in σD(I) and ·ID

considers only the
set of DBox assertions. In other words, the entailment check
reduces to model checking over ID and a standard database
query language over the DBox database can be used for de-
ciding D |= C(a).

Given a query concept Q, a TBox T , and a DBox D , in
order to find the answer set {a | (T ,D) |= Q(a)} by means
of the rewriting {a | D |= C(a)}, one can use the equivalent
database query Q(x) :- CFO(x) ∧ �D(x) over the database
D , where CFO is the standard first order translation of C and
�D is the relation containing exactly the DBox individuals
σD(I). It is possible to pre-compute offline the rewriting of
all definable atomic concepts in the ontology as materialised
SQL views, so that at run time query answering on ALC on-
tologies with DBoxes is reduced to answering SQL queries
over the DBox database with materialised views.

4 Constructive Interpolation for ALC
Fitting [1983] and Rautenberg [1983] give constructive
proofs using symmetric Gentzen systems, respectively
tableau calculi. Schlobach [2004] provides an algorithm for
calculating interpolants between ALC concepts; however, he
does not consider TBoxes, nor does he provide a reference
with standard or optimised implemented tableau algorithms.

Let NV be a countably infinite set of variable names and
< a well-order relation on NV . A biased constraint is an
expression of the form (x : D)λ where x ∈ NV , D is a
concept, and λ ∈ {l, r} is a bias. A biased constraint system
S for 〈C, T 〉 is a finite, non-empty set of biased constraints.

We say a variable x ∈ NV is in S if S contains a mention
of x; x is fresh for S if x is not in S and y < x for all y in
S. We assume that when a variable x is in S, the constraints
(x : �)l, (x : �)r are also in S.

Let x be a variable in S. The set of x-constraints of S is de-
fined as {x : C ∈ S}. For a role name R, with succ(x, R, S)
we denote the set {Cλ | (x : ∀R.C)λ ∈ S}. If X is
a set of labelled concepts, then x : X is a shorthand for
{(x : C)λ | Cλ ∈ X}.

S is said to contain a clash if for some variable x and some
concept name A, {(x : A)λ, (x : ¬A)κ} ⊆ S.

925

The R� rule

Condition: (x : C1 � C2)
λ ∈ L(g) and {(x : C1)

λ, (x :
C2)

λ} �⊆ L(g)
Effect: L(g′) = L(g) ∪ {(x : C1)

λ, (x : C2)
λ}

The R� rule

Condition: (x : C1 � C2)
λ ∈ L(g) and {(x : C1)

λ, (x :
C2)

λ} ∩ L(g) = ∅
Effect: L(g′) = L(g)∪{(x : C1)

λ}, L(g′′) = L(g)∪{(x :
C2)

λ}
The R∃ rule

Condition: (x : ∃R.C)λ ∈ L(g), there is no variable y in L(g)
such that y : {Cλ} ∪ succ(x, R, S) ⊆ L(g)

Effect: L(g′) = L(g) ∪ y : {Cλ} ∪ succ(x, R, S) ∪ T ,
where y is fresh for S

Figure 1: Biased completion rules for ALC

Let H , J be ALC concepts and T = T l∪T r a set of biased
concepts with T l being l- and T r being r-labelled concept.
A biased tableau for 〈H � ¬̇J, T 〉 is a triple T = 〈V,E,L〉,
where 〈V,E〉 is a finite tree, with g0 ∈ V being the root node,
and L is a labelling function associating with each node g ∈
V a biased constraint system for 〈H � ¬̇J, T 〉 and with each
edge 〈g, g′〉 ∈ E a biased completion rule Rχ from Figure 1.
In addition, we require L(g0) = x0 : {H l} ∪ {(¬̇J)r} ∪ T ∪
T ′. A biased tableau T0 for 〈H � ¬̇J, T 〉 that contains only
the root node is called the initial biased tableau for 〈H �
¬̇J, T 〉. A completion rule is applicable in a node g if its
condition is satisfied in g.

A branch of a tableau is a path from the root down to a
leaf. If in a tableau there is some successor g′ of g such that
L(〈g, g′〉) = R�, then g is called a branching point in the
tableau. A branch is closed if the label of its leaf node con-
tains a clash; otherwise it is open. A tableau is closed if all its
branches are closed; otherwise it is open. A tableau is com-
plete if no completion rule is applicable in the leaf nodes of
any of its open branches.

The biased tableau algorithm takes as input the initial bi-
ased tableau T0 for 〈H � ¬̇J, T 〉. T0 is then expanded by
repeatedly applying the completion rules given in Figure 1
with the following strategy: R∃ is applied only when R� is
not applicable which in turn is applied only when R� is not
applicable. If the obtained complete tableau is closed, the
algorithm returns false, otherwise true.

If the biased tableau algorithm returns false, then a second
phase is initiated to extract an interpolant I .
Definition 4. Let g be a node in a tableau and let {(x :
C1)l, . . . , (x : Cn)l, (x : D1)r, . . . , (x : Dm)r} be the x-
constraints of L(g). A concept I is called an interpolant for
this set under T if I is an interpolant for C1 � . . . � Cn and
¬D1 � . . . � ¬Dm under T l and T r. (Take the empty inter-
section to be � and the empty union to be ⊥.)

Let C and D be concepts. We define the binary infix oper-
ator ·� as follows: C ·� D = C �D, C ·� ⊥ = ⊥ ·� C = C,
C ·� null = null ·� C = C, and null ·� null = null. If
ht1 and ht2 are hash tables, ht′ = ht1 ·� ht2 is defined as:
ht′(x) = ht1(x) ·� ht2(x), for every variable x. The opera-
tor ·� is defined analogously.

Interpolants at nodes g are stored in hash tables int(g).

C¬(ll)
(x : A)l, (x : ¬A)l ∈ L(g)

int(g)(x) := ⊥

C¬(rr)
(x : A)r, (x : ¬A)r ∈ L(g)

int(g)(x) := �

C¬(lr)
(x : A)l, (x : ¬A)r ∈ L(g)

int(g)(x) := A

C¬(rl)
(x : A)r, (x : ¬A)l ∈ L(g)

int(g)(x) := ¬A

Figure 2: Atomic interpolant calculation rules for ALC

(x : C1 � C2)
λ ∈ L(g)

C�(λ)
L(g′) = L(g) ∪ {(x : C1)

λ, (x : C2)
λ}

int(g) := int(g′)

(x : C1 � C2)
l ∈ L(g)

L(g′) = L(g) ∪ {(x : C1)
l}

C�(l)
L(g′′) = L(g) ∪ {(x : C2)

l}
int(g) := int(g′) ·� int(g′′)

(x : C1 � C2)
r ∈ L(g)

L(g′) = L(g) ∪ {(x : C1)
r}

C�(r)
L(g′′) = L(g) ∪ {(x : C2)

r}
int(g)(y) := int(g′)(y) ·� int(g′′)(y) (y �= x)
int(g)(x) := int(g′)(x) ·� int(g′′)(x)

Figure 3: Propositional interpolant calculation rules for ALC

Every key in int(g) is a variable in L(g) and every value is a
concept or the special symbol null. With int(g)(x) we denote
the value associated with the key x. The algorithm used in
the second phase starts from the leaves of the tableau tree and
applies the interpolant calculation rules Cχ(λ) in Figures 2,
3, and 4, which are if-then rules. If the rules do not assign a
value, it is assumed to be null.

We need to show that our interpolant calculation algorithm
is correct and that it terminates. The latter is a consequence
of the complete tableau being finite, which in turn is a con-
sequence of our tableau calculus being a decision procedure
for ALC [Baader et al., 2007]. We show correctness in two
steps: first we prove that our interpolant calculation rules are
sound, i.e., they compute interpolants; second we prove com-
pleteness, i.e., that we always find an interpolant.

Lemma 2 (Soundness). Let T be a closed biased tableau
for 〈H � ¬̇J, T 〉, g a node in the tableau, and x a variable
in L(g). If int(g)(x) is not null, it is an interpolant for the
x-constraints of L(g).

Proof sketch. We proceed by induction on the tableau tree.
For each leaf node g, L(g) must contain a clash involving
some variable x. Assume (x : A)l, (x : ¬A)r ∈ L(g), then
clearly · · · � A
T A
T · · · � A, and so int(g)(x) = A is
an interpolant; similar for the other atomic rules.

For reasons of space we further only show soundness of
C∃(l). We have that y is not in L(g). For any other vari-
able z �= x, we have that int(g)(z) is an interpolant, by
induction. If int(g′)(y) = null, int(g)(x) must be an in-
terpolant (if it is not null): if X
T int(g)(x), then clearly
X � ∃R.C
T int(g)(x). Now assume int(g′)(x) = null
and int(g′)(y) �= ⊥. If (y : D)λ ∈ L(g′) for some con-
cept D �= C, either (x : ∀R.D)λ ∈ L(g) or (D)λ ∈ T .

926

(x : ∃R.C)l ∈ L(g)

C∃(l)
L(g′) = L(g) ∪

`
y : {Cl} ∪ X

´

int(g)(z) := int(g′)(z) (z �= x & z �= y)
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) [if I = null]
int(g)(x) := int(g′)(x) ·� ⊥ [if I = ⊥]
int(g)(x) := int(g′)(x) ·� ∃R.I [otherwise]

(x : ∃R.C)r ∈ L(g)

C∃(r)
L(g′) = L(g) ∪ (y : {Cr} ∪ X)

int(g)(z) := int(g′)(z) (z �= x & z �= y)
int(g)(y) := null I := int(g′)(y)
int(g)(x) := int(g′)(x) [if I = null]
int(g)(x) := � [if I = �]
int(g)(x) := int(g′)(x) ·� ∀R.I [otherwise]

Figure 4: Modal interpolant calculation rules for ALC

In the former case we have that C � D
T int(g)(y) im-
plies ∃R.C � ∀R.D
T ∃int(g)(x) and int(g′)(y)
T ¬D
implies ∃R.int(g′)(y)
T ¬∀R.D. For the latter case, ob-
serve that ∀R.D ≡T �. The cases int(g′)(x) �= null and/or
int(g′)(y) = ⊥ can be shown analogously.

Lemma 3 (Completeness). Let T be a closed biased tableau
for 〈H�¬̇J, T 〉 with root node g0. Then, int(g0)(x0) �= null.

Proof sketch. Since our biased tableau algorithm is sound
and complete, H
T J iff there exists a closed biased tableau
T = 〈V,E, L〉 for 〈H � ¬̇J, T 〉. Since T is closed, all labels
of its leaves contain clashes. Let g be such a leaf. Then, there
is some y in L(g) such that {y : A, y : ¬A} ⊆ L(g) and y
is introduced by a (possibly empty) series of R∃ applications.
Clearly, int(g)(y) �= null. One can verify by induction on the
rule applications that int(g0)(x0) �= null.

We are now ready to prove interpolation for ALC with gen-
eral TBoxes.

Proof of Lemma 1. Let T l = {Cl | C ∈ T } and T r = {Cr |
C ∈ T ′}. By Lemma 3 we have that int(g0)(x0) is an inter-
polant for the x0-constraints of L(g0) under T l ∪ T r. But
L(g0) = x0 : {H l}∪{(¬̇J)r}∪T l ∪T r and so int(g0)(x0)
is an interpolant for H and J under T and T ′.

Finally, we remark that the interpolant calculation algo-
rithm can be made more space-efficient by integrating it into
the satisfiability checking algorithm (one-pass) and generat-
ing the tableau in a depth-first manner: interpolants are con-
structed for each subbranch while backtracking, so that the
subbranch may be discarded from memory before exploring
the next subbranch. Interpolants are combined at the branch-
ing points using the C�(λ) rule. Please note that, in this way,
the final algorithm to compute the interpolant can be obtained
by simply adorning a standard tableau algorithm for ALC.

5 Integrating Tableau Optimisations

In this section, we extend the tableau algorithm with com-
monly used optimisations, which can be applied to the one-
pass algorithm sketched above, so that the process to compute
the interpolant is just an adorned variant of the standard and
optimised implemented tableau algorithm for ALC.

C¬̇(ll)
(x : C)l, (x : ¬̇C)l ∈ L(g)

int(g)(x) := ⊥

C¬̇(rr)
(x : C)r, (x : ¬̇C)r ∈ L(g)

int(g)(x) := �

C¬̇(lr)
(x : C)l, (x : ¬̇C)r ∈ L(g)

int(g)(x) := C

Figure 5: Interpolant calculation rules for non-atomic clashes

Non-atomic Closure. One can relax the definition of the
closure condition for a tableau such that a constraint system
S is said to contain a clash if for some variable x and some
concept C, {x : C, x : ¬̇C} ⊆ S. For example the unsatis-
fiability of the constraint system S ⊇ {C � D, ¬̇(C � D)}
can be detected without branching for ¬̇(C � D). Figure 5
depicts the calculation rules for non-atomic clashes, replac-
ing the ones in Figure 2. Correctness is proved analogously
to the atomic case.

Semantic Branching. The standard definition of R�
(cf. Figure 1), which is based on syntactic branching, does
not prevent the recurrence of unsatisfiable disjuncts in differ-
ent branches of the tree. Semantic branching is a technique
that allows the subtrees introduced by non-deterministic rules
to be distinct in the sense that the satisfiability of a disjunct
is searched only in a single subtree [Horrocks, 2003]. This
requires a slight change in the R� rule: the second effect be-
comes L(g′′) = L(g) ∪ {x : ¬̇C1, x : C2}, obtaining the
new rule R�′ . Replacing R� with R′

� in our tableau calculus
requires modifying the third condition of C�(λ) in Figure 3
with L(g′′) = L(g)∪{(x : ¬̇C1)λ, (x : C2)λ}. However, the
way the interpolants are calculated does not change.

Lazy Unfolding and Absorption. Absorption is a TBox
rewriting technique that has been developed to address the
problem of the high level of non-determinism caused by gen-
eral TBox axioms [Horrocks, 2003]. Being a rewriting tech-
nique, absorption of general axioms into simple axioms is
performed before the satisfiability algorithm starts. For this
reason, we are only concerned here with the structure of the
output TBox. Given a general TBox T , the absorption pro-
cess rewrites and partitions T into the general TBox TG and
the unfoldable TBox TU [Horrocks, 2003] such that a concept
is satisfiable w.r.t. T iff it is satisfiable w.r.t. TU ∪ TG.

The implicit definability problem takes as input two
TBoxes T and T ′. Therefore, we assume w.l.o.g. that the
absorption process is only applied to T , resulting in TU and
TG, and T ′

U and T ′
G are obtained analogously to T ′. R∃ is

modified to use only TG and T ′
G and, in addition, we need

the rules in Figure 6 that handle unfoldable TBoxes. In the
literature, these rules constitute what is known as the lazy un-
folding optimisation [Horrocks, 2003].

To complement these rules we use the interpolant calcula-
tion rules given in Figure 7. One needs to verify the sound-
ness of these rules. We show only CU1(l) for TU . Suppose
X = {(x : C1)l, . . . , (x : Cn)l, (x : D1)r, . . . , (x : Dm)r},
g′ is the result of applying RU1 to g for A ≡ C ∈ TU , and
X ∪ {(x : A)κ, (x : C)l} are the x-constraints of L(g′).

927

The RU1 rule

Condition: (x : A)κ ∈ L(g), A ≡ C is in TU (or T ′
U), and

(x : C)l �∈ L(g) (or (x : C)r �∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r})
The RU2 rule

Condition: (x : ¬A)κ ∈ L(g), A ≡ C is in TU (or T ′
U), and

(x : ¬̇C)l �∈ L(g) (or (x : ¬̇C)r �∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : ¬̇C)l} (or {(x : ¬̇C)r})
The RU3 rule

Condition: (x : A)κ ∈ L(g), A � C is in TU (or T ′
U), and

(x : C)l �∈ L(g) (or (x : C)r �∈ L(g))
Effect: L(g′) = L(g) ∪ {(x : C)l} (or {(x : C)r})

Figure 6: Lazy unfolding rules

Note that although κ may not be equal to l, we can assume
w.l.o.g. that κ = l since A ∈ sig(TU). By our assumption,
int(g′)(x) is an interpolant for the x-constraints of L(g′) and
by Definition 4, A � C � C1 � . . . � Cn
T int(g′)(x)
T
¬D1 � . . .�¬Dm. CU1 assigns int(g′)(x) to int(g)(x). We
have that (i) A � C1 � . . . � Cn
T int(g′)(x) follows from
(A � C � C1 � . . . � Cn)I = (A � C1 � . . . � Cn)I , for all
models I of T , since A ≡ C ∈ TU and (ii) int(g′)(x)
T
¬D1 � . . . � ¬Dm follows from the fact that L(g) has the
same r-labelled x-constraints as L(g′).

Backjumping. Our tableau decision procedure for ALC,
upon discovering a clash, backtracks to the last branching
point to which R� is applicable. Blindly progressing in this
way may be very inefficient if the given concept causes a lot
of branching but the source of unsatisfiability does not de-
pend on this branching (cf. [Horrocks, 2003]). Backjumping
addresses this problem by identifying the causes of clashes
and it is one of the most effective optimisation techniques,
along with absorption + lazy unfolding, to deal with non-
determinism. It works by associating a constraint to a branch-
ing point in the tableau such that the introduction of the con-
straint depends on that branching point. Because of this,
tableau rules are equipped with dependency propagating in-
formation [Horrocks, 2003]. When a clash {x : A, x : ¬A}
is discovered, the dependencies of both of these constraints
are combined, and the algorithm backjumps to the deepest
branching point in the set. As a consequence, backjumping
is an optimisation that modifies the shape of the tableau gen-
erated by the satisfiability checking algorithm by eliminating
redundant branches from the tree. For this reason, no modifi-
cation is required in our interpolant calculation rules.

6 Abduction

In our framework, finding the rewriting of a query in terms of
the DBox predicates is possible only if the query is implic-
itly definable. However, not always a given query concept
is implicitly definable given a TBox. To gain definability of
queries of interest, it is necessary to modify the ontology by
adding axioms to the TBox such that they become implicitly
definable. We propose to use techniques from the area of ab-
duction to find such axioms.

[Colucci et al., 2004; Elsenbroich et al., 2006] define ab-
ductive reasoning tasks in DLs. Among these, we consider

CU1(λ)

(x : A)κ ∈ L(g)
A ≡ C ∈ TU (or T ′

U)
L(g′) = L(g) ∪ {(x : C)λ}

int(g) := int(g′)

CU2(λ)

(x : ¬A)κ ∈ L(g)
(A ≡ C)λ ∈ TU (or T ′

U)
L(g′) = L(g) ∪ {(x : ¬̇C)λ}

int(g) := int(g′)

CU3(λ)

(x : A)κ ∈ L(g)
(A � C)λ ∈ TU (or T ′

U)
L(g′) = L(g) ∪ {(x : C)λ}

int(g) := int(g′)

Figure 7: Lazy unfolding interpolant calculation rules

TBox abduction problems.

Definition 5 (TBox Abduction Problem). Let T be a TBox,
and let C and D be concepts such that both are satisfiable
w.r.t. T and C �
T D. A TBox abduction problem (TAP)
is denoted by 〈T , C,D〉. A TBox TA is a solution to a TAP
〈T , C,D〉 if T ∪ TA is satisfiable and C
T ∪TA

D.

We look for solutions with particular syntactic shapes.

Definition 6 (Sub-concept Solution). Let P = 〈C, D, T 〉
be a TAP. We say that a solution TA to P is a sub-concept
solution to P iff TA is a set of axioms of the form E1
 ¬E2,
where concepts E1, E2 are sub-formulae of C, D, or T .

Since the concepts in sub-concept solutions appear in the
abduction problem, we conjecture that such amendment to
the TBox are more easily understandable than amendments
involving arbitrary concepts. Moreover, among sub-concept
solutions we identify semantically minimal ones – i.e., the
ones that minimally change the TBox in order to obtain de-
finability of a query. With subSol(P) we denote the set of all
sub-concept solutions to a TAP P and with M(T) the set of
all models of the TBox T .

Definition 7. Let P = 〈C, D, T 〉 be a TAP, let ≺ be a pref-
erence order, and let TA, TB ∈ subSol(P). Then TA ≺ TB iff
M(T) \ M(TA) is a subset of M(T) \ M(TB). A sub-
concept solution TA is minimal iff there is no other sub-
concept solution TB such that TA ≺ TB .

The idea behind this minimality criteria is that it favours a
solution TA over TB whenever TA has more common models
with the original TBox T than TB . In a way, TA, when added
to T , changes the models of T in a minimal way. Note that
≺ is a partial order since (M(T) \ M(TA)) ⊆ (M(T) \
M(TB)) does not always hold for arbitrary two sub-concept
solutions TA and TB

A thorough study of abduction in DLs is given in the mas-
ter’s thesis by Klarman [2008], in which the author solves the
more generic problem of ABox abduction using both tableau
and resolution, and proposes novel techniques. A minimality
criteria similar to ours is also formulated. Since we do not
consider ABoxes, our approach requires less involved tech-
niques.

928

7 Outlook

In this paper we considered the basic propositionally closed
DL ALC. However, several languages currently in use, e.g.,
OWL, are based on more expressive DLs, with constructs
such as inverse roles and qualified cardinality restrictions. For
example, in the presence of inverse roles, standard DL tableau
algorithms may propagate concepts back and forth between
individuals. Therefore, proving interpolation constructively
by induction over the tableau is problematic. But one can
overcome this problem by adapting a calculus with analytic
cut rules [Goré and Nguyen, 2007] for inverse roles. Tech-
niques like algebraic reasoning seem promising in the case
of qualified cardinality restrictions [Haarslev et al., 2001].
In the presence of nominals, the logic loses the interpolation
property and requires additional constructs in the concept lan-
guage to regain this property [Ten Cate et al., 2006]. In future
work we plan to extend our techniques towards such expres-
sions Description Logics.

The high computational complexity of these DLs might
make one question the practicality of such techniques. How-
ever, the schema of a database in contrast to its instance is
not exposed to many changes. Hence the explicit definitions
can be computed offline as SQL views once the ontology has
been developed.

Another interesting research direction is to increase the ex-
pressiveness of the query language beyond concept expres-
sions towards, e.g., conjunctive queries. Deciding implicit
definability reduces to checking query containment under De-
scription Logic constraints [Calvanese et al., 2008]. How-
ever, standard Description Logic tableau techniques are not
easily extended in this direction. One would need to develop
new interpolation calculation methods or use techniques for
first-order logic (e.g., Craig [1957]).

Another direction we plan to pursue is a case study of real
world ontologies to check how many queries of interest are
definable in terms of a given set of DBox predicates and how
hard it is to amend such ontologies to make queries definable.

Acknowledgements

We wish to thank Alex Borgida, Tommaso Di Noia, Um-
berto Straccia and David Toman with whom we are studying
a more general framework on query rewriting based on Beth
definability and abduction, and the anonymous reviewers for
insightful comments. The work presented in this paper has
been partially funded by the European project ONTORULE.

References

[Abiteboul and Duschka, 1998] S. Abiteboul and O. M.
Duschka. Complexity of answering queries using mate-
rialized views. In Proc. PODS, pages 254–263, 1998.

[Baader et al., 2007] F. Baader, D. Calvanese, D. L.
McGuinness, D Nardi, and P. F. Patel-Schneider, edi-
tors. Description Logic Handbook, 2nd edition. Cam-
bridge Univ. Press, 2007.

[Beth, 1953] E. W. Beth. On Padoa’s methods in the the-
ory of definitions. Koninklijke Nederlandse Akademie van
Wetenschappen, Proceedings, 56:330–339, 1953.

[Calvanese et al., 2008] D. Calvanese, G. De Giacomo, and
M. Lenzerini. Conjunctive query containment and answer-
ing under description logic constraints. ACM Transactions
on Computational Logic, 9(3), 2008.

[Colucci et al., 2004] S. Colucci, T. Di Noia, E. Di Sciascio,
F. M. Donini, and M. Mongiello. A uniform tableaux-
based approach to concept abduction and contraction in
ALN . In Proc. of DL’04, page 104, 2004.

[Craig, 1957] William Craig. Three uses of the herbrand-
gentzen theorem in relating model theory and proof theory.
The Journal of Symbolic Logic, 22(3):269–285, 1957.

[Elsenbroich et al., 2006] C. Elsenbroich, O. Kutz, and U.
Sattler. A case for abductive reasoning over ontologies.
In OWL: Experiences and Directions, pages 10–11, 2006.

[Etzioni et al., 1997] O. Etzioni, K. Golden, and D. S. Weld.
Sound and efficient closed-world reasoning for planning.
Artificial Intelligence, 89(1–2):113–148, 1997.

[Fitting, 1983] M. Fitting. Proof Methods for Modal and In-
tuitionistic Logics, vol. 169 of Synthese Library. 1983.

[Goré and Nguyen, 2007] R. Goré and L. A. Nguyen. Ex-
ptime tableaux with global caching for description logics
with transitive roles, inverse roles and role hierarchies. In
TABLEAUX ’07, pages 133–148, 2007.

[Haarslev et al., 2001] V. Haarslev, M. Timmann, and R.
Möller. Combining tableaux and algebraic methods for
reasoning with qualified number restrictions. In Proc. of
DL’01. 2001.

[Horrocks, 2003] I. Horrocks. Implementation and optimiza-
tion techniques. In Baader et al. [2007], pages 306–346.

[Klarman, 2008] S. Klarman. Abox abduction in description
logic. Master’s thesis, Universiteit van Amsterdam, 2008.

[Marx, 2007] M. Marx. Queries determined by views: pack
your views. In Proc. PODS, pages 23–30, 2007.

[Nash et al., 2007] A. Nash, L. Segoufin, and V. Vianu.
Determinacy and rewriting of conjunctive queries using
views: A progress report. In Proc. ICDT, pages 59–73,
2007.

[Rautenberg, 1983] W. Rautenberg. Modal tableau cal-
culi and interpolation. Journal of Philosophical Logic,
12(4):403–423, 1983.

[Schlobach, 2004] Stefan Schlobach. Explaining subsump-
tion by optimal interpolation. In Proc. JELIA’04, pages
413–425. 2004.

[Segoufin and Vianu, 2005] Luc Segoufin and Victor Vianu.
Views and queries: determinacy and rewriting. In Proc.
PODS, pages 49–60, 2005.

[Tarski, 1956] A. Tarski. Some methodological investiga-
tions on the definability of concepts. In Logic, Semantics
and Metamathematics, pages 296–319. Clarendon, 1956.

[Ten Cate et al., 2006] B. ten Cate, W. Conradie, M. Marx,
and Y. Venema. Definitorially complete description logics.
In Proc. of KR’06, pages 79–89. 2006.

929

