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İnanç Seylan, Enrico Franconi, and Jos de Bruijn

Free University of Bozen-Bolzano, Italy
{seylan,franconi,debruijn}@inf.unibz.it

Abstract. In this paper, we revisit the problem of definitorial completeness, i.e.,
whether a given general TBox T in a description logic (DL) L can be rewritten
to an acyclic TBox T ′ in L . This is an important problem because crucial opti-
misations in DL reasoners rely on acyclic parts in TBoxes. It is known that such
rewritings are possible for definitorial TBoxes in ALC and in logics ALCX for
X ⊆ {S,H, I}. Here we establish optimal bounds on the sizes of the result-
ing acyclic TBoxes. In particular, we reduce the known triple exponential upper
bound on ALC-TBoxes to single exponential. Additionally, we prove the same
upper bound for those extensions withX ⊆ {S,H, I} for which there was no es-
tablished result before. This means, together with the already known exponential
lower bound for ALC, that our bounds are tight.

1 Introduction

Description logic (DL) TBoxes enable one to introduce names for complex concepts
using concept definitions. For example, the definition Parent ≡ Mother t Father
classifies all individuals that are either mothers or fathers as parents. Here, Parent is
called a defined concept, and Mother and Father are primitive concepts. In some sense,
instances of primitive concepts come directly from the application domain whereas
defined concepts help us to define views or constraints. Baader and Nutt [1] call a finite
set of concept definitions a terminology if no concept name is defined more than once.

Terminologies can be cyclic, i.e., a defined concept may refer to itself directly in
its definition or indirectly through some other defined concept. Cyclicity is a syntactic
condition and for certain cyclic terminologies there may be equivalent acyclic ones. For
example, the definition

Parent ≡ (Parent t ¬Parent) u (Mother t Father)

contains the tautological expression (Parent t¬Parent). By removing this expression
we obtain an equivalent acyclic definition.

Acyclic TBoxes are of particular interest because reasoning with them is “eas-
ier” than with general TBoxes. For example, satisfiability of an acyclic ALC-TBox
is a PSPACE-complete problem whereas the variant of the problem for general ALC-
TBoxes is EXPTIME-complete [2]. On the practical side of things, absorption is an
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indispensable optimisation technique in DL reasoners which makes use of the acyclic
part of a TBox [3]. Therefore a natural question arises: from which cyclic terminologies
can we obtain equivalent acyclic ones? Baader and Nutt answer this question by iden-
tifying a semantic condition on terminologies called definitoriality [1]. Intuitively, if a
terminology is definitorial and the instances of primitive concepts are known then the
instances of defined concepts are completely determined. In particular, Baader and Nutt
show that ALC is definitorially complete, i.e., for every definitorial ALC-terminology
there is an equivalent acyclic ALC-terminology. As also noted by the authors, definito-
rial completeness is a form of Beth Definability [4] – a property of first-order logic –
for DLs.

Another relevant question which is of practical interest is how an equivalent acyclic
terminology can be obtained from a definitional one. Ten Cate et al. [5] give a con-
structive method for calculating an acyclic ALC-terminology from a definitorial one
and prove definitorial completeness for some extensions of ALC. To be more precise,
Ten Cate et al. consider the same problem for general TBoxes instead of terminologies.
In general TBoxes, it is not clear from the syntactic shape of the TBox anymore which
predicate is primitive and which is defined. In this setting, primitive predicates are as-
sumed as given. Moreover, Ten Cate et al. establish a single exponential lower and a
triple exponential upper bound on the size of the generated TBoxes in ALC. However,
the exact characterisation of the succinctness of general TBoxes over acyclic ones was
left as an open problem.

In this paper, we reduce the upper bound on the size of the equivalent acyclic termi-
nologies obtained from definitorial ALC-TBoxes to single exponential, which is tight.
We then extend this result to all logicsALCX forX ⊆ {S,H, I}, for which there were
no earlier established results. In previous work [6], we used Beth Definability (adapted
to DLs) to rewrite a given concept into an equivalent one for efficient instance retrieval
using databases. Our results in this paper extend to that scenario as well. More precisely,
here we give an optimal version of the algorithm that computes rewritings.

We start by giving a brief introduction to standard notions we will use from DLs
in Section 2. In Section 3 we give our main result for ALC after introducing relevant
terminology. These results are based on the algorithm we present in Section 4. Our
results for extensions of ALC are presented in Section 5, after which we conclude.

2 Preliminaries

Let NC and NR be countably infinite and disjoint sets of concept and role names,
respectively. With NP we denote the set of predicates NC ∪NR.

The set of SHI-roles is defined as NR ∪ {R− | R ∈ NR}. A role inclusion axiom
is of the form R v S, with R and S SHI-roles. A transitivity axiom is of the form
Trans(R), for R a SHI-role. A role hierarchy H is a finite set of role inclusion and
transitivity axioms.

For a role hierarchy H, we define the function Inv over roles as Inv(R) := R− if
R ∈ NR and Inv(R) := S if R = S−, for some S ∈ NR. Further we define vH as the
smallest transitive reflexive relation on SHI-roles in H such that R v S ∈ H implies
R vH S and Inv(R) vH Inv(S).



The set of SHI-concepts and their semantics are defined in the standard way [7].
A SHI-TBox T is a finite set of concept inclusion axioms C v D and/or concept
definitions A ≡ C, where A is a concept name, and C and D are SHI-concepts.
A SHI knowledge base (KB) K is a pair (T ,H), where T is a SHI-TBox and H
is a role hierarchy. For a SHI-concept C and a SHI-KB K = (T ,H), rol(C,K)
and sig(C,K) denote, respectively, the sets of role and predicate (i.e., concept or role)
names occurring in C or K. We are interested in special acyclic TBoxes.

Definition 1 ([5]). Let T be a TBox. A concept name A directly uses a concept name
B in T if there is some A ≡ C ∈ T and B ∈ sig(C); uses is the transitive closure of
the relation directly uses.

Let Σ ⊆ sig(T ). T is Σ-acyclic if it satisfies the following two properties:

1. T consists of exactly one concept definition A ≡ C for each concept name A ∈
(sig(T ) \Σ), plus a number of concept inclusion axioms C v D, where sig(C) ⊆
Σ and sig(D) ⊆ Σ.

2. There is no concept name A that uses itself in T .

The notion of an interpretation satisfying a role hierarchy or TBox is defined in the
usual way (cf. [7]). An interpretation I satisfiesK = (T ,H) if and only if I satisfies T
andH. In this case, we say that I is a model ofK.K is satisfiable ifK has a model. Two
KBs are equivalent if they have the same models. A concept C is satisfiable w.r.t. K if
and only if there is some model I of K such that CI 6= ∅. The concept subsumption
and equivalence problems, i.e., checking whether K |= C v D (respectively, (K |=
C ≡ D), are defined in the usual way.

A concept C is in negation normal form (NNF) if and only if the negation sign
appears only in front of concept names in C. A concept can be transformed into an
equivalent one in NNF in linear time and thus, we assume all concepts to be in NNF.
For a concept C, we denote its negation in NNF by ¬̇C. Moreover, we will sometimes
consider only concept inclusions of the form > v C to which every concept inclusion
and definition can be rewritten again in linear time.

The concept closure cl(C0,K) of C0 andK is the smallest set of concepts satisfying
the following conditions:

– C0 ∈ cl(C0,K);
– if > v C ∈ T then C ∈ cl(C0,K);
– if C ∈ cl(C0,K) and D is a subconcept of C then D ∈ cl(C0,K);
– if ∀R.C ∈ cl(C0,K), S vH R, and Trans(S) ∈ H then ∀S.C ∈ cl(C0,K).

We define the notions of closure f(e), for f ∈ {sig, cl, rol} and e ∈ {C, T ,H,K},
analogously. The size of a concept C (written |C|) is the number of elements in cl(C).
For a TBox T , |T | :=

∑
>vC∈T |C|.

3 Beth Definability

We introduce in this Section implicit and explicit definability for concepts. We used
these notions in [6] to reduce the instance retrieval problem in DLs with DBoxes to



SQL query answering. In this section, we will use them again to rewrite definitorial
TBoxes into acyclic ones in a more direct way than Ten Cate et al. did in [5]. We start
by giving a semantic characterisation of implicit definability.

Definition 2 (Reduct). Let I = 〈∆I , ·I〉 be an interpretation and let Σ ⊆ NP . An
interpretation J = 〈∆J , ·J 〉 is the reduct of I to Σ (denoted by I|Σ) if and only
∆I = ∆J and ·J is defined only on the symbols in Σ.

Definition 3 (Implicit definability). Let C be a concept, K a KB, and Σ ⊆ sig(C,K).
C is implicitly definable from Σ under K if and only if for any two models I and J of
K, ∆I = ∆J and I|Σ = J |Σ implies CI = CJ .

In other words, given a TBox, a concept C is implicitly definable if the set of all its
instances depends only on the extension of the predicates in Σ.

Example 1. Consider the KB K = (T , ∅), where T is equal to:

Project v Activity

Meeting v Activity

Activity v Project tMeeting

Project v ¬Meeting

and let Σ = {Meeting ,Activity}. Project is implicitly definable from Σ under K
since its extension depends only on the (fixed) extension of Meeting and Activity .

The following proposition provides an alternative, syntactic definition of implicit defin-
ability. In particular, it reduces checking implicit definability to the entailment problem
in the same logic. Let a concept C̃ (resp., KB K̃) be like C (resp., K) except that every
occurrence of each predicate P ∈ (Σ \ sig(C)) (resp. P ∈ (Σ \ sig(K))) is replaced
with a new predicate P̃ .

Proposition 1. A concept C is implicitly definable from Σ under K if and only if K ∪
K̃ |= C ≡ C̃.

If a concept is implicitly definable fromΣ, then it may be possible to find an expression
using only predicates in Σ whose instances are the same as in the original concept: this
would be its explicit definition.

Definition 4 (Explicit definability). Let C be a concept, K a KB, and Σ ⊆ sig(C,K).
C is explicitly definable from Σ under K if and only if there is some concept D such
that K |= C ≡ D and sig(D) ⊆ Σ. Such a D is called an explicit definition of C from
Σ under K.

In Example 1, the explicit definition of Project is Activity u ¬Meeting . It is not hard
to see that explicit definability implies implicit definability. Beth [4] shows that the
converse holds for the case of first-order logic: if C is implicitly definable from Σ in
K, then it is explicitly definable. This property for ALC with general TBoxes is proved
in [6] by exploiting interpolation. Here we state a stronger version of the theorem in [6]
by putting an exponential bound on the size of the explicit definition and give the proof
again to show how interpolation is used.



Definition 5. Let K = (T ,H) be a KB. A labelling of K is an ordered pair 〈Kl,Kr〉 of
KBs where Kl = (Tl,Hl), Kr = (Tr,Hr), T = Tl ∪ Tr, andH = Hl ∪Hr; 〈Tl, Tr〉 is
a labelling of the TBox T .

Definition 6 (Interpolant). Let C, D be concepts and let K be a KB such that K |=
C v D. A concept I is called an interpolant of C and D under a labelling 〈Kl,Kr〉 of
K if sig(I) ⊆ sig(C,Kl) ∩ sig(D,Kr), K |= C v I , and K |= I v D.

Section 4 is devoted to a constructive proof for the following lemma by using an optimal
tableau calculus for ALC.

Lemma 1. Let C and D be ALC-concepts and let K = T be an ALC-KB such that
K |= C v D. If 〈Kl,Kr〉 is a labelling of K then there exists an interpolant of C and
D under 〈Kl,Kr〉 whose size is at most exponential in |T |+ |C|+ |D|.

Theorem 1 (Beth Definability). Let C be an ALC-concept, let K = T be an ALC-
KB, and let Σ ⊆ sig(C,K). If C is implicitly definable from Σ under K then C is
explicitly definable from Σ under K, and the size of the explicit definition is at most
exponential in |T |+ |C|.

Proof. We have that K ∪ K̃ |= C ≡ C̃ by implicit definability of C. Moreover, 〈K, K̃〉
is a labelling of K ∪ K̃. Now, by Lemma 1 and |C| = |C̃|, there is an interpolant I of
C and C̃ under 〈K, K̃〉 and the size of I is at most exponential in |T | + |C|. Since it
is an interpolant, sig(I) ⊆ sig(C,K) ∩ sig(C̃, K̃) = Σ, and both (a) K ∪ K̃ |= C v I

and (b) K ∪ K̃ |= I v C̃. By (b) and K ∪ K̃ |= C̃ v C, we have K ∪ K̃ |= I v C,
from which K ∪ K̃ |= C ≡ I follows by (a). From the structure of K̃ and the fact that
sig(C), sig(I) ⊆ sig(K) straightforwardly follows that K |= C ≡ I . ut

This proof of Beth definability for ALC with general TBoxes is constructive, provided
we have a constructive method of finding interpolants as defined in Definition 6. As we
will see in Section 4, this constructive method is based on tableau. To be more precise,
the tableau algorithm will allow us to check whether a concept is implicitly definable
and if this is the case, we will use the same tableau proof to construct an explicit def-
inition. Note that Theorem 1 also establishes a single exponential upper bound on the
size of explicit definitions we calculate. Together with the following theorem which es-
tablishes the lower bound, we can conclude that our procedure for calculating explicit
definitions is worst-case optimal.

Theorem 2 ([5]). There are anALC-concept C,ALC-KBK = T , andΣ ⊆ sig(C,K)
such that C is implicitly definable from Σ under K and the smallest explicit definition
of C is exponential in |C|+ |K|.

We now formally define the notions we discussed in the introduction. However, unlike
Baader and Nutt [1], we consider general TBoxes instead of terminologies. In general
TBoxes, it is not clear from the syntactic shape of the TBox which predicate is prim-
itive and which is defined. Therefore, we assume that primitive predicates, i.e., Σ, are
specified beforehand. This is similar to the approach by Ten Cate et al. [5].



Definition 7. Let T be a TBox and let Σ ⊆ sig(T ). T is Σ-definitorial if and only if
for every interpretation I that interprets only the predicates in Σ there is exactly one
interpretation J such that ∆I = ∆J , P I = PJ for every predicate P ∈ Σ, and J is
a model of T .

It is not hard to see the connection between definitoriality and implicit definability.

Theorem 3. Let T be a TBox and let Σ ⊆ sig(T ). T is Σ-definitorial if and only if
every concept name A ∈ sig(T ) \Σ is implicitly definable from Σ under T .

We are interested in rewriting general TBoxes toΣ-acyclic ones. It is clear from the def-
inition ofΣ-acyclic TBoxes that they may contain general concept inclusions involving
only predicates from Σ. This restriction is needed because unlike in [1] we may be
given a TBox that is not a terminology. A Σ-acyclic TBox is also Σ-definitorial, but
the converse may not always be true. DLs possessing this property are called definito-
rially complete.

Definition 8. A description logic L is called definitorially complete if each Σ-defini-
torial L -TBox T is equivalent to a Σ-acyclic L -TBox T ′.

Baader and Nutt show that ALC is definitorially complete [1]. Ten Cate et al. give
a concrete algorithm for computing acyclic TBoxes from definitorial ones in ALC [5].
The algorithm is based on a special normal form for concepts and uniform interpolation.
This involves at most a triple exponential blowup. Here we take a more direct approach
using interpolation and improve this upper bound to a single exponential one, which is
the main result of this section.

Theorem 4. Let T be an ALC-TBox and let Σ ⊆ sig(T ). If T is Σ-definitorial, then
there exists an equivalent Σ-acyclicALC-TBox T ∗, which is at most exponential in the
size of T .

Proof. Let T be a Σ-definitorial ALC-TBox. By Theorem 3 and Theorem 1, for every
A ∈ (sig(T ) \ Σ), there is some concept CA such that T |= A ≡ CA, sig(CA) ⊆ Σ,
and |CA| is at most exponential in |A| + |T |. However, since A ∈ sig(T ), we can
conclude that |CA| is at most exponential only in |T |.

Let T ∗ be the TBox obtained from T by systematically replacing each occurrence
of all A by CA, and adding the relevant concept definitions A ≡ CA. Then T ∗ is
Σ-acyclic and equivalent to T . Finally, the length of T ∗ is easily seen to be at most
exponential in the length of T . ut

4 Optimally Constructing Interpolants

In this section, we give a constructive proof of Lemma 1. In other words, we present
a method for constructing an interpolant using a tableau proof. We have presented a
constructive method in [6]. However, the algorithm there is based on standard ALC
tableau techniques, which do not guarantee termination in EXPTIME, and are not worst-
case optimal, since checking satisfiability in ALC is known to be in EXPTIME. Here
we aim at obtaining exponential size interpolants by using a worst-case optimal tableau
algorithm in the style of Goré and Nyugen [8].



The R⊥ rule
Condition: {Cλ, (¬̇C)κ} ⊆ g.content.
Action: g.status := unsat.
The Ru rule
Condition: (C1 u C2)

λ ∈ g.content, {Cλ1 , Cλ2 } 6⊆ g.content.
Action: g′.content := g.content ∪ {Cλ1 , Cλ2 };
The Rt rule
Condition: (C1 t C2)

λ ∈ g.content, {Cλ1 , Cλ2 } ∩ g.content = ∅.
Action: g′.content := g.content ∪ {Cλ1 };

g′′.content := g.content ∪ {Cλ2 };
The R∃ rule
Condition: {(∃R1.C1)

λ1 , . . . , (∃Rn.Cn)λn} ⊆ g.content;
(∃R.C)λ ∈ g.content implies ∃i ∈ {1, . . . , n} s.t. (∃R.C)λ = (∃Ri.Ci)λi .

Action: gi.content := {Cλi
i } ∪ {D

λ | (∀R.D)λ ∈ g.content and Ri = R},
gi.content := gi.content ∪ {El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr}
for 1 ≤ i ≤ n.

Fig. 1. Tableau expansion rules for ALC.

4.1 An Optimal Tableau Algorithm for Satisfiability

We start by presenting a tableau algorithm for deciding concept subsumption. To this
aim, we fix two ALC-concepts C and D, and an ALC-TBox T with the labelling
〈Tl, Tr〉. A biased tableau (tableau for short) for 〈C,D, Tl, Tr〉 is a directed graph
〈V, E〉, where V is the set of nodes and E ⊆ V × V is the set of edges.

In the following, we will be using biased concepts which are expressions of the
form Cλ, where C is an ALC-concept and λ ∈ {l, r} is a bias. Let cll := {El | E ∈
cl(C, Tl)} and clr := {Er | E ∈ cl(¬̇D, Tr)}. We associate four different labels to
nodes in V: content : V → 2cll∪clr, type : V → {and-node,or-node}, status :
V → {sat,unsat}, and availability : V → {expanded,unexpanded}. The
function of these labels are explained when they are used.

The tableau expansion rules given in Figure 1 expand a tableau by making use of the
semantics of concepts, and thus make implicit information explicit. We assume that a
rule can be applied to a node g if g.availability = unexpanded and if a rule is applied
to g then g.availability := expanded without writing it explicitly in rule definitions.
In order to guarantee a finite expansion, we use proxies in the following way. Whenever
a rule creates a new node g′ from g, before attaching the edge 〈g, g′〉 to E , the tableau
is searched for a node g′′ ∈ V such that g′.content = g′′.content. If such a g′′ is found
then the edge 〈g, g′′〉 is added to E and g′ is discarded.

We are interested in deciding T |= C v D. The tableau algorithm starts with the
initial tableau T = 〈{g0}, ∅〉 for 〈C,D, Tl, Tr〉, where g0.content = {Cl, (¬̇D)r} ∪
{El | > v E ∈ Tl} ∪ {Er | > v E ∈ Tr} and g0.availability = unexpanded.
T is then expanded by repeatedly applying the tableau expansion rules in such a way
that if more than one rule is applicable at the same time then the first applicable rule in
the list [R⊥,Ru,Rt,R∃] is chosen. The expansion continues until none of the rules is
applicable to T. Such a tableau is called complete.



Let T be a complete tableau for 〈C,D, Tl, Tr〉. The type of a node g is determined
as follows: g.type = or-node if Rt has been applied to g, and g.type = and-node
otherwise. Until it is no more possible to assign a status to a node in V , we run the
following algorithm.

– Pick a node g ∈ V .
– If g is a sink node1 with g.status 6= unsat then g.status := sat.
– If g.type = and-node and
• all g’s direct successors have status sat then g.status := sat;
• one of g’s direct successors has status unsat then g.status := unsat.

– If g.type = or-node and
• all g’s direct successors have status unsat then g.status := unsat;
• one of g’s direct successors has status sat then g.status := sat.

If g0.status is still undefined then for every g ∈ V with g.status 6= unsat, set
g.status := sat.

A complete tableau for 〈C,D, Tl, Tr〉 is closed if g0 has status unsat and it is
open, otherwise. If the tableau algorithm constructs an open tableau for 〈C,D, Tl, Tr〉
then it returns “T 6|= C v D”, and “T |= C v D” otherwise.

Termination is a consequence of using proxies and cll∪ clr being finite. In the worst
case, there are 2O(](cll∪clr)) nodes in a complete tableau T. Checking for proxies and
determining the status of g0 both take polynomial number of steps in the size of T. As it
is apparent, we use a refutation proof for T |= C v D, i.e., we check the unsatisfiability
of C u ¬̇D w.r.t. T . For soundness, given a model I of T such that (C u ¬̇D)I 6= ∅,
we can guide the tableau algorithm to construct an open tableau for 〈C,D, Tl, Tr〉 by
making use of the information in I. As for completeness, we can construct a model I
of T such that (C u ¬̇D)I 6= ∅ from an open tableau for 〈C,D, Tl, Tr〉. Combining all
these, we get the following theorem.

Theorem 5 ([8]). Let C, D be ALC-concepts and T be an ALC-TBox. The tableau
algorithm decides T |= C v D in time exponential in |C|+ |D|+ |T |.

4.2 An Algorithm for Calculating Interpolants

As is clear from the definition of the tableau expansion rules, we use some additional
bookkeeping (compared with the algorithm of [8]) for calculating interpolants. In par-
ticular, it is necessary to identify from which TBox (Tl or Tr) or concept (C or D) a
concept in the content of a node is derived. After we have that information, we can
extract an interpolant from a closed tableau.

The interpolant calculation rules are presented in Figure 2. Given a closed tableau T
for 〈C,D, Tl, Tr〉, the interpolant calculation algorithm starts by calculating a concept
int(g) for every sink node g in T with g.status = unsat2 using C⊥. While g0 is not
assigned a concept int(g0), it repeatedly applies the following steps.

1. Pick a node g such that int(g) is undefined and g.status = unsat.

1 a node with no outgoing edges
2 Note that a node g in T with g.status = unsat is a sink if and only if R⊥ is applied to g.



The C⊥ rule The Ct rule
int(g) := ⊥, if λ = κ = l; int(g) := int(g′) t int(g′′), if λ = l;
int(g) := C, if λ = l and κ = r; int(g) := int(g′) u int(g′′), if λ = r.
int(g) := >, if λ = κ = r;
int(g) := ¬̇C, if λ = r and κ = l.
The Cu rule The C∃ rule
int(g) := int(g′). int(g) := ∃Ri.int(gi), if λi = l;

int(g) := ∀Ri.int(gi), if λi = r for some i ∈ {1, . . . , n}.

Fig. 2. Interpolant calculation rules for ALC.

2. If g.type = and-node, and g has a direct successor g′ (gi for some i ∈ {1, . . . , n})
with int(g′) (resp. int(gi)) defined then apply Cu (resp. C∃) .

3. If g.type = or-node, and for all direct successors g′, g′′ of g we have that int(g′)
and int(g′′) defined then apply Ct.

This algorithm terminates in time polynomial in the size of T because all sink nodes
with status unsat are reachable from g0, and it is guaranteed to have nodes satisfy-
ing conditions 2 and 3 by the virtue of g0.status = unsat. The correctness of the
algorithm is shown in two steps: first we show that our interpolant calculation rules
are sound, i.e., they compute interpolants; second we show completeness, i.e., that we
always find an interpolant. The proofs of these theorems are very similar to the corre-
sponding ones we presented in [6]. Lemma 1 now follows straightforwardly from the
termination and correctness of the interpolant calculation algorithm, and Theorem 5.

5 Beth Definability in Extensions of ALC

In this section, we present a polynomial reduction from SHI KB satisfiability to ALC
KB satisfiability. This reduction allows us to prove Beth definability and definitorial
completeness properties for any extension of ALC with constructors from {S,H, I}.
Ten Cate et al. [5] showed that these logics are definitorially complete but because of
their model theoretic argument, they provide no information on the size of the resulting
TBoxes. In this section, we establish a tight upper bound for explicit definitions in these
logics.

We will proceed in three steps: first reduce SHI-concept satisfiability w.r.t. a KB
to the same problem in ALCHI, then ALCHI to ALCI, and finally ALCI to ALC.
All these reductions use the axiom schema instantiation technique [9] which is based on
the idea of removing the constructor at hand by instantiating its corresponding (modal)
axiom schema [10] for each concept in cl or a relevant concept closure, and adding
these instances to the TBox to obtain an equi-satisfiable KB. The first and third of these
reductions are given in [11] and [12], respectively. To the best of our knowledge, the
second one has not beed used before.

Definition 9. Let C0 be a SHI-concept and K = (T ,H) be an SHI-KB. Then
τS(C0,K) is defined as the ALCHI KB (T ∪ T ′,H′), where



– T ′ = {∀R.C v ∀S.∀S.C | ∀R.C ∈ cl(C0,K), S vH R and Trans(R) ∈ H}.
– H′ is obtained fromH by removing all transitivity axioms.

Theorem 6 ([11]). A SHI-concept C0 is satisfiable w.r.t. a SHI-KB K = (T ,H) if
and only if C0 is satisfiable w.r.t. the ALCHI-KB τS(C0,K).

Definition 10. Let C0 be anALCHI-concept and letK = (T ,H) be anALCHI-KB.
Then τH(C0,K) is defined as theALCI-KB (T ∪T ′, ∅), where T ′ = {∀S.C v ∀R.C |
∀S.C ∈ cl(C0,K), R vH S, and R 6= S}.

Theorem 7. An ALCHI-concept C0 is satisfiable w.r.t. an ALCHI-KB K = (T ,H)
if and only if C0 is satisfiable w.r.t. the ALCI KB τH(C0,K).

Dealing with inverse roles is a bit more intricate because the signature of the original KB
needs to be changed. Let the ALC-concept ζ(C) be like the ALCI-concept C except
that every occurrence of each inverse role R− in C is replaced with a new role name
Rc; the renaming transformation ζ(·) extends to TBoxes in the natural way. Moreover,
let ι(·) be the inverse of ζ(·), i.e., ι(ζ(C)) = C.

Definition 11. LetC0 be anALCI-concept and let T be anALCI-TBox. Then τI(C0, T )
is defined as the ALC-TBox T1 ∪ T2, where:

1. T1 = ζ(T ).
2. T2 is the set of all concept inclusion axioms of the formsC v (∀R.∃Rc.C) andC v

(∀Rc.∃R.C) such that C is in cl(ζ(C0), T1) and R is a role name in rol(C0, T ).

Theorem 8 ([12]). An ALCI-concept C0 is satisfiable w.r.t. an ALCI-TBox T if and
only if the ALC-concept ζ(C0) is satisfiable w.r.t. the ALC-TBox τI(C0, T ).

The following theorem follows directly from Theorems 6, 7, and 8.

Theorem 9. A SHI-conceptC0 is satisfiable w.r.t. a SHI-KBK = (T ,H) if and only
if theALC-concept ζ(C0) is satisfiable w.r.t. theALC-KB τI(C0, τH(C0, τS(C0, (T ,H)))).

Except for the last one, all the reductions presented in this section preserve the signature
of the given KB. Therefore, an explicit definition in the less expressive logic is also an
explicit definition in the more expressive one. As for the last reduction, it is possible
to reconstruct an explicit definition in ALCI from the one in ALC by replacing role
names corresponding to inverse roles, as demonstrated by the following theorem.

Theorem 10. LetX ⊆ {S,H, I} and letK = (T ,H) be anALCX-KB. If anALCX-
concept C is implicitly definable from Σ ⊆ sig(C,K) under K then C is explicitly
definable from Σ under K, and the size of the explicit definition of C from Σ under K
is at most exponential in |T |+ |H|+ |C| .

Proof. Let K be a SHI-KB and let C and D be SHI-concepts. Furthermore, let
K? = (τI(E, τH(E, τS(E, (T ,H))))), where E = (C u ¬D) t (D u ¬C). We have
the following chain of equivalences: (†) K |= C ≡ D ⇔ E is unsatisfiable w.r.t. K
⇔ [Theorem 9] ζ(E) is unsatisfiable w.r.t. K? ⇔K? |= ζ(C) ≡ ζ(D).



Let K = (T ,H) be an ALCX-KB and let C be an ALCX-concept such that C is
implicitly definable from Σ under K. Then K ∪ K̃ |= C ≡ C̃. Every ALCX-concept
and every ALCX-KB is trivially a SHI-concept and a SHI-KB, respectively, and
therefore, by (†), we have thatK?∪K̂? |= ζ(C) ≡ ζ̂(C), where ·̂ is exactly like ·̃ except
thatΣ is substituted byΣ? = Σ∪{Rc | Rc ∈ rol(ζ(C),K?) and R ∈ Σ}. ζ(C) andK?
are anALC-concept andALC-KB, respectively. By Theorem 1 we have that there is an
explicit definitionD of ζ(C) fromΣ? underK? the size of which is at most exponential
in |τI(C, τH(C, τS(C, (T ,H))))| + |ζ(C)|. In other words, K? |= ζ(C) ≡ D and the
size ofD is at most exponential in |T |+ |H|+ |C|. By (†),K |= C ≡ ι(D), where ι(D)
is an ALCX-concept. But by Definition 4, ι(D) is an explicit definition of C from Σ
under K. ut

6 Conclusion

In this paper, we revisited the problem of definitorial completeness, i.e., whether a given
general TBox T in a DL L can be rewritten to an acyclic TBox T ′ in L . ALC and
everyALCX for X ⊆ {S,H, I} were already known to be definitorially complete [5].
Our main contribution in this paper was to establish a tight exponential bound on the
size of the resulting acyclic TBoxes.

Our results show that concept definitions can be written exponentially more suc-
cinctly in general TBoxes than in acyclic TBoxes for the logics we considered. There-
fore, general concept inclusions may help increase the readability of a TBox/ontology.
However, general concept inclusions introduce a lot of non-determinism to reasoning
algorithms. If a general TBox is used for concept definitions and our DL is definitori-
ally complete then this is not much of a restriction since an equivalent acyclic TBox
can be obtained. This suggests the use of the general TBox for user friendliness and a
precomputed acyclic counterpart for reasoning.

Definitorial completeness is a fragile property and not every DL enjoys it. For ex-
ample, ALCO does not have this property and requires the @-operator from hybrid
logics to become definitorially complete [5]. It is worthwhile to note that the algorithm
for computing acyclic TBoxes is based on tableau, and thus it is suitable for optimised
implementations. We leave as an open problem whether a tight upper bound for SHIQ
can be obtained in a similar way.
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