
The GMD Data Model and Algebra

for Multidimensional Information

Enrico Franconi1 and Anand Kamble1,2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy,
franconi@inf.unibz.it, anand.kamble@unibz.it

2 Department of Computer Science, University of Manchester, UK

Abstract. In this paper we introduce GMD, an abstract but rich data
model for representing multidimensional information, equipped with logic-
based semantics and seamlessly integrated with a fully compositional al-
gebra also equipped with logic-based semantics. The aim of this work is
to propose an homogeneous approach to formally represent all the as-
pects of multidimensional data, as proposed by the various data models
presented in the literature.

1 Introduction

In this paper we introduce a novel data model for multidimensional information,
GMD, generalising the MD data model first proposed in [Cabibbo and Torlone,
1998]. A preliminary introduction to the GMD data model discussing only the
core representational abilities but not the algebra nor the extended features
can be found in [Franconi and Kamble, 2003]. The aim of this work is not to
propose yet another data model, but to find a very general logic-based formalism
encompassing the main features of all the proposals for a logical data model in
the data warehouse field, as for example summarised in [Vassiliadis and Sellis,
1999]. Our proposal is compatible with all these proposals, making therefore
possible a formal comparison of the different expressivities of the models in the
literature. The GMD data model provides a very precise and, we believe, very
elegant and uniform way to model multidimensional information. It turns out
that most of the proposals in the literature make many hidden assumptions which
may harm the understanding of the advantages or disadvantages of the proposal
itself. An embedding in our model would make all these assumptions explicit.
For lack of space, in the last section of this paper we only briefly suggest the
encodings. So far, we have considered, together with the classical basic star and
snowflake ER-based models and multidimensional cubes, the logical data models
introduced in [Cabibbo and Torlone, 1998; Golfarelli et al., 1998; Agrawal et al.,
1997; Gray et al., 1996; Vassiliadis, 1998; Vassiliadis and Skiadopoulos, 2000;
Franconi and Sattler, 1999; Gyssens and Lakshmanan, 1997; Tsois et al., 2001;
Abello et al., 2001].

This work has been partially supported by the EU projects Sewasie, KnowledgeWeb,
and Interop.

GMD is completely defined using a logic-based model theoretic approach.
We start introducing the notion of data warehouse signature, which has a data
warehouse state as its model theoretic counterpart in the semantics. The data
model is able to speak in a well founded manner of facts, dimensions, levels,
level hierarchies, level attributes, measures, domains. We then introduce the
data warehouse schema, which is nothing else than a collection of compositional
fact definitions (i.e., axioms on the structure of the cubes), which restricts (i.e.,
constrains) the set of legal data warehouse states associated to the schema.
By systematically defining how the various operators used in a fact definition
compositionally constrain the legal data warehouse states, we give a formal logic-
based account of the GMD data model. We introduce the aggregation (roll-up)
operator with compound aggregation functions, the derivation of attributes, the
slice and the multislice operators, the join, union, intersection, and difference
operators.

2 The GMD logical data model

We introduce in this Section the GMD logical data model. A data warehouse
signature gives the building blocks for a data warehouse, but is does not pro-
vide any cube definition yet. A data warehouse schema basically introduces the
structures of the cubes that will populate the warehouse, together with the types
allowed for the components of the structures. Moreover, a schema may contain
the definition of complex cubes obtained by composing other cubes through al-
gebraic operations,. The operations that we will introduce are the typical basic
OLAP operation.

Definition 1 (GMD signature). A GMD signature is a tuple
< F ,D,L,M,V,A >, where

– F is a finite set of fact names (like SALES, PURCHASES)
– D is a finite set of dimension names (like Date, Product)
– L is a finite set of level names (like year, month; brand, category),

each one associated to a finite set of level elements (like 2003, 2004;
heineken, drink); level elements are also called dimension values

– A is a finite set of level attribute names (like is-leap, country-of-origin)
– M is a finite set of measure names (like Price, UnitSales)
– V is a finite set of domain names (like String, Integer, Boolean),

each one associated to a finite set of domain values; domain values are
also called measure values

Having just defined GMD signatures, we introduce now their semantics
through a well founded model theory. We first define the notion of a data ware-
house state, namely a collection of cells with their dimensions and measures, in
agreement with the signature.

Definition 2 (Data Warehouse State). A data warehouse state over the
GMD signature
< F ,D,L,M,V,A > is a tuple I = < ∆,Λ, Γ, ·I >, where

– ∆ is a non-empty finite set of individual facts (elements in ∆ are the
object identifiers for the cells in a multidimensional cube);

– Λ is a finite set of level elements;
– Γ is a finite set of domain values;
– ·I is a function (the interpretation function) such that

FI ⊆ ∆ for each F ∈ F , where FI is disjoint from any other EI in F

LI ⊆ Λ for each L ∈ L, where LI is disjoint from any other HI in L

VI ⊆ Γ for each V ∈ V, where VI is disjoint from any other WI in V

DI : ∆ −→ Λ for each D ∈ D

MI : ∆ −→ Γ for each M ∈ M

(AL

i)I : L −→ Γ for each L ∈ L and AL

i ∈ A for some i

The interpretation functions defines a specific data warehouse state given a
GMD signature. It associates to a fact name a set of cells (individual facts),
which are meant to form a cube. To each cell corresponds a level element for
some dimension name: the sequence of these level elements is meant to be the
“coordinate” of the cell. Moreover, to each cell corresponds a value for some
measure name.

Up to this stage, no cube definition is considered yet. That is, there is still no
schema associated to the signature. Therefore, the dimensions and the measures
associated to cells are still completely arbitrary. We now introduce the notion
of GMD schema, which may contain various types of constraints and defini-
tions. The simplest one is the definition of a basic fact, which is a cube whose
dimensions and measures are well defined.

Definition 3 (GMD Schema: Fact Definitions). A GMD schema includes
a finite set of fact definitions of the form

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
},

where E,F ∈ F ,Di ∈ D,Li ∈ L,Mj ∈ M,Vj ∈ V.
We call the fact name F a defined fact. We say that F is based on E; that the

fact F has the listed dimensions each one restricted to the corresponding level;
and that the fact F has the listed measures each one restricted to the correspond-
ing domain.. A fact name not appearing at the left hand side of a definition is
called an undefined fact. We will generally call fact either a defined fact or an
undefined fact. A fact based on an undefined fact is called basic fact. A fact based
on a defined fact is called aggregated fact. A fact is dimensionless if n = 0; it
is measureless if m = 0. The orderings in a defined fact among dimensions and
among measures are irrelevant.

We have here introduced the building block of a GMD schema: the fact
definition. A basic fact corresponds to the base data of any data warehouse: it
is the cube structure that contains all the data on which any other cube will be
built upon. In the following example, BASIC-SALES is a basic fact, including
base data about sale transactions, organised by date, product, and store (which

are the dimensions of the fact) which are respectively restricted to the levels day,
product, and store, and with unit sales and sale price as measures:

BASIC-SALES
.
=

SALES {Date|day, Product|product, Store|store} :
{UnitSales|int, SalePrice|int,UnitCost|int}

Level attribute names are properties associated to levels; for example:

product
.
= {prodname|string, prodnum|int, prodsize|int, prodweight|int}

In the following, in order to give a semantics to fact definitions, we will
introduce the notion of legal data warehouse state, which is the data warehouse
state which conforms to the constraints imposed by the cube definitions. In
general, a data warehouse state will be called legal for a given GMD schema if
it is a data warehouse state in the signature of the GMD schema and it satisfies
the additional conditions found in the GMD schema. In this case, we want that
the data warehouse state satisfies the cube conditions as defined in the schema.

Please note that in the following we will omit the ·I interpretation function
applied to some symbol whenever this is non ambiguous.

Definition 4 (Legal Data Warehouse State: the Cube Conditions). A
data warehouse state I = < ∆,Λ, Γ, ·I > over the signature < F ,D,L,M,V,A >

is legal with respect to a GMD schema if for each fact F
.
= E {D1 |L1

, . . . ,Dn |Ln

} : {M1 |V1
, . . . ,Mm |Vm

} in the schema:

1. the function associated to a dimension which does not appear in a fact is
undefined for its cells:

∀f. F(f) → f 6∈ dom(D)

for each D ∈ D such that D 6= Di for each i ≤ n, where dom(D) is the
domain of the function D

2. each cell of a fact has a unique set of dimension values at the appropriate
level:

∀f. F(f) → ∃l1, . . . , ln. D1(f) = l1 ∧ L1(l1) ∧ . . . ∧ Dn(f) = ln ∧ Ln(ln)

3. a set of dimension values identifies a unique cell within a fact:

∀f, f ′, l1, . . . , ln. F(f) ∧ F(f ′) ∧
D1(f) = l1 ∧ D1(f

′) = l1 ∧ . . . ∧ Dn(f) = ln ∧ Dn(f ′) = ln →
f = f ′

4. the function associated to a measure which does not appear in a fact is un-
defined for its cells:

∀f. F(f) → f 6∈ dom(M)

for each M ∈ M such that M 6= Mi for each i ≤ n

5. each cell of a fact has a unique set of measures:

∀f. F(f) → ∃m1, . . . ,mm.

M1(f) = m1 ∧ V1(m1) ∧ . . . ∧ Mm(f) = mm ∧ Vm(mm)

Condition 1 states that the level elements associated to a cell of a fact should
correspond only to the dimensions declared in the fact definition of the schema.
That is, a cell has only the declared dimensions in any legal data warehouse
state. Condition 2 states that the level elements associated to a cell of a fact are
unique for each dimension declared for the fact in the schema. So, a cell has a
unique dimension value for each declared dimension in any legal data warehouse
state. Condition 3 states that a sequence of level elements associated to a cell
of a fact are associated only to that cell. Therefore, the sequence of dimension
values can really be seen as an identifying coordinate for the cell. In other words,
these conditions enforce the legal data warehouse state to really model a cube
according the specification given in the schema. Condition 4 states that the
measure values associated to a cell of a fact in a legal data warehouse state
should correspond only to the measures explicitly declared in the fact definition
of the schema. Condition 5 states that the measure values associated to a cell of
a fact are unique for each measure explicitly declared for the fact in the schema.
So, a cell has a unique measure value for each declared measure in any legal data
warehouse state.

3 Aggregated Cubes

We now introduce the first algebraic component in a GMD schema: the definition
of aggregated cubes. An aggregated cube is based on another defined cube if
in the schema it is defined how the measures of the aggregated cube can be
computed from the measures of the cube it is based on. Moreover, it is possible
to aggregate a cube by changing the levels of the involved dimensions.

Definition 5 (GMD Schema: Aggregated Facts). A GMD schema may
also include:

– a finite set of measure definitions of the form

N
.
= f(g(M1, . . . ,Mk))

where N,M1, . . . ,Mk ∈ M, f is an aggregation function f : B(V) −→ W
for some V,W ∈ V, and g is a function (called attribute function) g :
V1 × . . .×Vk −→ V for some V1, . . . ,Vk,V ∈ V. B(V) is the finite set of all
bags obtainable from domain values in V whose cardinality is bound by some
finite integer Ω.

– a partial order (L,≤) on the levels in L.

We call � the immediate predecessor relation on L induced by ≤.

– a finite set of roll-up partial functions between level elements

ρLi,Lj
: Li −→ Lj

for each Li,Lj such that Li � Lj, and (ρLi,Li1
◦ ρLi1

,Li2
◦ · · · ◦ ρLin−1

,Lin
◦

ρLin ,Lj
) = (ρLi,Lk1

◦ ρLk1
,Lk2

◦ · · · ◦ ρLkn−1
,Lkn

◦ ρLkn ,Lj
) for any two paths

in the partial order between any two level elements Li and Lj.
We call ρ∗Li,Lj

the reflexive transitive closure of the roll-up functions
inductively defined as follows:

ρ∗
Li,Li

= id

ρ∗
Li,Lj

= ρLi,Lk
◦ ρ∗

Lk,Lj
for some k such that Li � Lk

– a finite set of level attribute names definitions:

L
.
= {A1 |V1

, . . . ,An |Vn
}

where L ∈ L, Ai ∈ A and Vi ∈ V for each i, 1 ≤ i ≤ n.

Levels and facts are subject to additional syntactical well-foundedness conditions:

– The connected components of (L,≤) must have a unique least element each,
which is called basic level.

– For each undefined fact there can be at most one basic fact based on it (this
allows us to disregard undefined facts, which are in one-to-one correspon-
dence with basic facts).

– Each aggregated fact must be congruent with the defined fact it is based on,
i.e., for each aggregated fact G and for the defined fact F it is based on such
that

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F {D1 |R1

, . . . ,Dp |Rp
} : {N1 |W1

, . . . ,Nq |Wq
}

the following must hold (for some reordering on the dimensions):
• the dimensions in the aggregated fact G are among the dimensions of the

fact F it is based on:
p ≤ n

• the level of a dimension in the aggregated fact G is above the level of the
corresponding dimension in the fact F it is based on:

Li ≤ Ri for each i ≤ p

• each measure Ni in the aggregated fact G is computed via an aggregation
function from some measure of the defined fact F it is based on:
Ni

.
= fi(gi(Mji(1), . . . ,Mji(ki))

for each i ≤ q and for some ki ≤ m, where ji is a permutation function
Moreover the range and the domain of the aggregation functions fi and
the attribute functions gi should be in agreement each other and with the
domains specified in the aggregated fact G and in the fact F it is based
on. If gi is the identity function then it can be omitted. For measureless
facts, the aggregated measure may only have the form Ni

.
= count(?).

Measure definitions are used to compute values of measures in an aggregated
fact from values of the fact it is based on. For example:

Total-UnitSales
.
= sum(UnitSales)

Total-Profit
.
= sum(SalePrice - UnitCost)

The partial order defines the taxonomy of levels. For example: day � month
� quarter and day � week; product � type � category. When in a schema
various hierarchically organised levels are introduced for a dimension, it is also
necessary to introduce a roll-up function for them. A roll-up function defines how
elements of one level map to elements of a superior level. Since we just require
for the roll-up function to be a partial order, it is possible to have elements of a
level which roll-up to an upper level, while other elements may skip that upper
level to be mapped to a superior one. For example, ρday,month(1/1/01) = Jan-01,
ρday,month(2/1/01) = Jan-01, . . . ρquarter,year(Qtr1-01) = 2001, ρquarter,year(Qtr2-
01) = 2001, . . .
The basic level contains the finest grained level elements, on top of which all the
facts are identified. For example, store � city � country; store is a basic level.

In the definition above, a precise characterisation of an aggregated fact is
given: its dimensions should be among the dimensions of the fact it is based
on, its levels should be generalised from the corresponding ones in the fact it is
based on, and its measures should be all computed from the fact it is based on.
For example, given the basic fact BASIC-SALES:

BASIC-SALES
.
=

SALES {Date|day, Product|product, Store|store} :
{UnitSales|int, SalePrice|int,UnitCost|int}

the following SALES-BY-MONTH-AND-TYPE is an aggregated fact computed
from the BASIC-SALES fact:

SALES-BY-MONTH-AND-TYPE
.
=

BASIC-SALES {Date|month, Product|type} :
{Total-UnitSales|int, Avg-SalePrice|real,Total-Profit|int}

with the following aggregated measures:

Total-UnitSales
.
= sum(UnitSales)

Avg-SalePrice
.
= average(SalePrice)

Total-Profit
.
= sum(SalePrice - UnitCost)

Consider now as an example the measureless fact:

STUD-ENROL
.
= ENROL {Date|year, Student|student, Course|course}

The number of student per year is obtained as follows:

ENROL-BY-YEAR
.
= STUD-ENROL {Date|year} : {No of student|int}

No of students
.
= count(?)

Again, a data warehouse state is legal for a given GMD schema if it is a
data warehouse state in the signature of the GMD schema and it satisfies the
additional conditions found in the GMD schema. In this case, we want that
the data warehouse state satisfies the additional aggregated cube definitions as
defined in the schema.

Definition 6 (Legal Data Warehouse State: Aggregated Cubes). A data
warehouse state I = < ∆,Λ, Γ, ·I > over the GMD signature < F ,D,L,M,V,A >

is legal with respect to a GMD schema if, in addition to the conditions stated
in Definition 4, (a) the cardinality of ∆ is smaller than Ω, (b) for each level
attribute name definition L

.
= {A1 |V1

, . . . ,An |Vn
}, the interpretation of level

attribute names (AL

i)I = L −→ Γ is in agreement with the domains specified in
the definition itself, and (c) for each aggregated fact and for the defined fact it
is based on in the schema:

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F {D1 |R1

, . . . ,Dp |Rp
} : {N1 |W1

, . . . ,Nq |Wq
}

Ni
.
= fi(gi(Mji(1), . . . ,Mji(k)) for each i ≤ q and for some k ≤ m, where j is a

permutation function

each aggregated measure function actually computes the aggregation of the
values in the corresponding measure of the fact the aggregation is based on:

∀g, v. Ni(g) = v ↔ ∃r1, . . . , rp. G(g) ∧ D1(g) = r1 ∧ . . . ∧ Dp(g) = rp∧
v = fi({|gi(Mji(1)(f), . . . ,Mji(k)(f)) |

∃l1, . . . , lp. F (f)∧
D1(f) = l1 ∧ . . . ∧ Dp(f) = lp∧
ρ∗L1,R1

(l1) = r1 ∧ . . . ∧ ρ∗Lp,Rp
(lp) = rp|})

for each i ≤ q, where {| · |} denotes a bag.

The legal data warehouse condition expressed above guarantees that if a fact
is the aggregation of another fact, then in a legal data warehouse state the mea-
sures associated to the cells of the aggregated cube should be actually computed
by applying the aggregation function to the measures of the corresponding cells
in the original cube. The correspondence between a cell in the aggregated cube
and a set of cells in the original cube is found by looking how their coordinates
– which are level elements – are mapped through the roll-up function dimension
by dimension.

To sum up, a legal data warehouse state for a GMD schema is a bunch of
multidimensional cubes, whose cells carry measure values. Each cube conforms
to the fact definition given in the GMD schema, i.e., the coordinates are in
agreement with the dimensions and the levels specified, and the measures are of
the correct type. If a cube is the aggregation of another cube, in a legal data
warehouse state it is enforced that the measures of the aggregated cubes are
correctly computed from the measures of the original cube.

4 Example

The following GMD schema summarises the examples shown in the previous
Sections:

– Signature:
• F = {SALES, BASIC-SALES, SALES-BY-MONTH-AND-TYPE, PURCHASES}
• M = {UnitSales, Price, Total-UnitSales, Avg-Price}
• D = {Date, Product, Store}
• L = {day, week, month, quarter, year, product, type, category, brand, store, city, country }

day = {1/1/01, 2/1/01, . . . , 1/1/02, 2/1/02, . . . }
month = {Jan-01, Feb-01, . . . , Jan-02, Feb-02, . . . }
quarter = {Qtr1-01, Qtr2-01, . . . , Qtr1-02, Qtr2-02, . . . }
year = {2001, 2002}
· · ·

• V = {int, real, string}
• A = {dayname, prodname, prodsize, prodweight, storenum}

– Partial order over levels:
• day � month � quarter � year, day � week; day is a basic level
• product � type � category, product � brand; product is a basic level
• store � city � country; store is a basic level

– Roll-up functions:
ρday,month(1/1/01) = Jan-01, ρday,month(2/1/01) = Jan-01, . . .
ρmonth,quarter(Jan-01) = Qtr1-01, ρmonth,quarter(Feb-01) = Qtr1-01, . . .
ρquarter,year(Qtr1-01) = 2001, ρquarter,year(Qtr2-01) = 2001, . . .
ρ∗

day,year(1/1/01) = 2001, ρ∗

day,year(2/1/01) = 2001, . . .
· · ·

– Level Attribute names:
day

.
= {dayname|string, daynum|int}

product
.
= {prodname|string, prodnum|int, prodsize|int, prodweight|int}

store
.
= {storename|string, storenum|int, address|string}

– Facts:
BASIC-SALES

.
=

SALES {Date|day, Product|product, Store|store} : {UnitSales|int, SalePrice|int}
SALES-BY-MONTH-AND-TYPE

.
=

BASIC-SALES {Date|month, Product|type} : {Total-UnitSales|int, Avg-SalePrice|real}
– Measures:

Total-UnitSales
.
= sum(UnitSales)

Avg-SalePrice
.
= average(SalePrice)

A possible legal data warehouse state for (part of) the previous example
GMD schema is shown in the following.

BASIC-SALESI = {s1, s2, s3, s4, s5, s6, s7}
SALES-BY-MONTH-AND-TYPEI = {g1, g2, g3, g4, g5, g6}

Date(s1) = 1/1/01
Date(s2) = 7/1/01
Date(s3) = 7/1/01
Date(s4) = 10/2/01
Date(s5) = 28/2/01
Date(s6) = 2/3/01
Date(s7) = 12/3/01

Product(s1) = Organic-milk-1l
Product(s2) = Organic-yogh-125g
Product(s3) = Organic-milk-1l
Product(s4) = Organic-milk-1l
Product(s5) = Organic-beer-6pack
Product(s6) = Organic-milk-1l
Product(s7) = Organic-beer-6pack

Store(s1) = Fair-trade-central
Store(s2) = Fair-trade-central
Store(s3) = Ali-grocery
Store(s4) = Barbacan-store
Store(s5) = Fair-trade-central
Store(s6) = Fair-trade-central
Store(s7) = Ali-grocery

UnitSales(s1) = 100
UnitSales(s2) = 500
UnitSales(s3) = 230
UnitSales(s4) = 300
UnitSales(s5) = 210
UnitSales(s6) = 150
UnitSales(s7) = 100

EuroSalePrice(s1) = 71,00
EuroSalePrice(s2) = 250,00
EuroSalePrice(s3) = 138,00
EuroSalePrice(s4) = 210,00
EuroSalePrice(s5) = 420,00
EuroSalePrice(s6) = 105,00
EuroSalePrice(s7) = 200,00

Date(g1) = Jan-01
Date(g2) = Feb-01
Date(g3) = Jan-01
Date(g4) = Feb-01
Date(g5) = Mar-01
Date(g6) = Mar-01

Product(g1) = Dairy
Product(g2) = Dairy
Product(g3) = Drink
Product(g4) = Drink
Product(g5) = Dairy
Product(g6) = Drink

Total-UnitSales(g1) = 830
Total-UnitSales(g2) = 300
Total-UnitSales(g3) = 0
Total-UnitSales(g4) = 210
Total-UnitSales(g5) = 150
Total-UnitSales(g6) = 100

Avg-EuroSalePrice(g1) = 153,00
Avg-EuroSalePrice(g2) = 210,00
Avg-EuroSalePrice(g3) = 0,00
Avg-EuroSalePrice(g4) = 420,00
Avg-EuroSalePrice(g5) = 105,00
Avg-EuroSalePrice(g6) = 200,00

daynum(day) = 1 prodweight(product) = 100gm storenum(store) = S101

5 GMD Full Algebra

On top the data model described so far, we now introduced a full cube algebra,
which has the very desirable property of being compositional (any new cube is
always introduced by means of an additional definition in the schema, possibly
making use of other cube definitions), and of being equipped with a formal
semantics (in the sense that a logic based definition of legal data warehouse
state is given for all valid algebraic constructs). We introduce the operator to add
derived measures to cubes, the operator to create slices and multislices to cubes,
the join operator between two cubes, and finally the union, the intersection, and
the difference operators between pairs of cubes.

We start by defining the derived measure operator: a new cube G can be
computed from a cube F by just adding a measure whose value can be computed
from the other measures of F .

Definition 7 (Derived Measures). A GMD schema may also include defi-
nitions of the kind:

F
.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F + {N |V }

N
.
= g(Mj(1), . . . ,Mj(k))

where k ≤ m, and g is a function g : V1 × . . . × Vk −→ V for some
V1, . . . ,Vk,V ∈ V in agreement with the various domain constraints.

A data warehouse state I = < ∆,Λ, Γ, ·I > over the GMD signature
< F ,D,L,M,V,A > is legal with respect to a GMD schema if, in addition
to the conditions to be satisfied by the other parts of the schema, the following
holds:

∀f, g, l1, . . . , ln, v1, . . . , vm. (F (f) ∧ D1(f) = l1 ∧ . . . ∧ Dn(f) = ln ∧
M1(f) = v1 ∧ . . . ∧ Mm(f) = vm)
↔
(G(g) ∧ D1(g) = l1 ∧ . . . ∧ Dn(g) = ln ∧
M1(g) = v1 ∧ . . . ∧ Mm(g) = vm∧
N(g) = g(Mj(1)(f), . . . ,Mj(k)(f)))

Moreover, the fact G should satisfy the cube conditions as specified in Defi-
nition 4 with respect to the same dimension, levels and measures as for fact F

with the additional measure N .

As an example we could have as part of the schema:

DERIVED-SALES
.
= SALES + {Profit|int}

Profit
.
= SalePrice - UnitCost

Two selection operators are also available in the full GMD algebra. The
slice operation simply selects the cells of a cube corresponding to specific values
for some dimension, resulting in a cube which contains a subset of the cells of
the original one and fewer dimensions. The multislice allows for the selection of
ranges of values for a dimension, so that the resulting cube will contain a subset
of the cells of the original one but retains the selected dimension.

Definition 8 (Slice/Multislice). A GMD schema may also include defini-
tions of the kind:

(slice)
F

.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F [Di+1 |li+1

, . . . ,Dn |ln]

where 1 ≤ i ≤ n and lj is level element of a level Lj for each j, i ≤ j ≤ n.

(multislice)
F

.
= E {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= F [Di+1 |Xi+1

, . . . ,Dn |Xn
]

where 1 ≤ i ≤ n and Xj ⊆ Lj for i ≤ j ≤ n.
A data warehouse state I = < ∆,Λ, Γ, ·I > over the GMD signature

< F ,D,L,M,V,A > is legal with respect to a GMD schema if, in addition
to the conditions to be satisfied by the other parts of the schema, the following
holds:

(slice)
∀f, g, l1, . . . , li, v1, . . . , vm. (G(g) ∧ D1(g) = l1 ∧ . . . ∧ Di(g) = li ∧

M1(g) = v1 ∧ . . . ∧ Mm(g) = vm) ↔
(F (f) ∧ D1(f) = l1 ∧ . . . ∧ Di(f) = li ∧
Di+1(f) = li+1 ∧ . . . ∧ Dn(f) = ln ∧
M1(f) = v1 ∧ . . . ∧ Mm(f) = vm)

Moreover, the fact G should satisfy the cube conditions as specified in Defi-
nition 4 with respect to the same dimension, levels and measures as for fact F

less the dimensions Di+1, . . . ,Dn.

(multislice)

∀f, g, l1, . . . , li, li+1 ∈ Xi+1, . . . , ln ∈ Xn, v1, . . . , vm.

(G(g) ∧ D1(g) = l1 ∧ . . . ∧ Di(g) = li ∧
Di+1(g) = li+1 ∧ . . . ∧ Dn(g) = ln ∧
M1(g) = v1 ∧ . . . ∧ Mm(g) = vm) ↔

(F (f) ∧ D1(f) = l1 ∧ . . . ∧ Di(f) = li ∧
Di+1(f) = li+1 ∧ . . . ∧ Dn(f) = ln ∧
M1(f) = v1 ∧ . . . ∧ Mm(f) = vm)

Moreover, the fact G should satisfy the cube conditions as specified in Defi-
nition 4 with respect to the same dimension, levels and measures as for fact F

but for the dimensions Di+1, . . . ,Dn the levels being Xi+1, . . . ,Xn.

As an example we could have as part of the schema:

SALES-BY-TYPE-IN-JAN’02
.
=

SALES-BY-MONTH-AND-TYPE [Date|jan’02]

SALES-BY-MONTH-AND-TYPE-IN-1ST-QTR’02
.
=

SALES-BY-MONTH-AND-TYPE [Date|{jan’02,feb’02,mar’02}]

The GMD algebra includes a join operation defined only between cubes
sharing the same dimensions and the same levels. We argue that a more general
join operation is meaningless in a cube algebra, since it may leads to cubes whose
measures are no more consistent.

Definition 9 (Join). A GMD schema may also include definitions of the kind:

F
.
= E-1 {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= E-2 {D1 |L1

, . . . ,Dn |Ln
} : {N1 |W1

, . . . ,Nq |Wq
}

H
.
= F 1 G

A data warehouse state I = < ∆,Λ, Γ, ·I > over the GMD signature
< F ,D,L,M,V,A > is legal with respect to a GMD schema if, in addition
to the conditions to be satisfied by the other parts of the schema, the following
holds:

∀f, g, h, l1, . . . , ln, v1, . . . , vm, w1, . . . , wq.

(H(h) ∧ D1(h) = l1 ∧ . . . ∧ Dn(h) = ln ∧
M1(h) = v1 ∧ . . . ∧ Mm(h) = vm ∧
N1(h) = w1 ∧ . . . ∧ Nq(h) = wq) ↔

(F (f) ∧ D1(f) = l1 ∧ . . . ∧ Dn(f) = ln ∧
M1(f) = v1 ∧ . . . ∧ Mm(f) = vm ∧
G(g) ∧ D1(g) = l1 ∧ . . . ∧ Dn(g) = ln ∧
N1(g) = w1 ∧ . . . ∧ Nq(g) = wq)

Moreover, the fact H should satisfy the cube conditions as specified in Defi-
nition 4 with respect to the same dimension, levels as for the facts F,G and the
union of the measures of F,G.

As an example we could have as part of the schema:

SALES-BY-MONTH-AND-TYPE
.
=

BASIC-SALES {Date|month, Product |product, Store |store} : {Total-Sale-Price |real}
PURCHASES-BY-MONTH-AND-TYPE

.
=

BASIC-PURCHASES {Date|month, Product |product, Store |store} : {Total-Cost |real}

SALES&PURCHASES-BY-MONTH-AND-TYPE
.
=

SALES-BY-MONTH-AND-TYPE 1 PURCHASES-BY-MONTH-AND-TYPE

Finally, we introduce briefly the union, intersection, and difference operators.
In order to be compatible for these operators, two facts should have the same
dimensions, levels, and measures; we do not allow a general union operator like
the one proposed in [Gray et al., 1996], but it can be shown how the algebra
proposed by Gray can be reconstructed using the GMD algebra.

Definition 10 (Union, Intersection, Difference). A GMD schema may
also include definitions of the kind:

F
.
= E-1 {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

G
.
= E-2 {D1 |L1

, . . . ,Dn |Ln
} : {M1 |V1

, . . . ,Mm |Vm
}

H
.
= F

⊗
G

where
⊗

is one of {
⋃

,
⋂

, \}.
A data warehouse state I = < ∆,Λ, Γ, ·I > over the GMD signature

< F ,D,L,M,V,A > is legal with respect to a GMD schema if, in addition
to the conditions to be satisfied by the other parts of the schema, the following
holds:

∀f, g, h, l1, . . . , ln, v1, . . . , vm.

(H(h) ∧ D1(h) = l1 ∧ . . . ∧ Dn(h) = ln ∧
M1(h) = v1 ∧ . . . ∧ Mm(h) = vm) ↔

((F (f) ∧ D1(f) = l1 ∧ . . . ∧ Dn(f) = ln ∧
M1(f) = v1 ∧ . . . ∧ Mm(f) = vm)⊕

(G(g) ∧ D1(g) = l1 ∧ . . . ∧ Dn(g) = ln ∧
M1(g) = v1 ∧ . . . ∧ Mm(g) = vm))

where
⊕

is “∨” in the case of union, is “∧” in the case of intersection,
is “∧¬” in the case of difference. Moreover, the fact H should satisfy the cube
conditions as specified in Definition 4 with respect to the same dimension, levels,
and measures as for the facts F,G.

6 Related Work

As we were mentioning in the introduction, one outcome of the formal definition
of the GMD data model is in the full encoding of many data warehouse logical
data models as GMD schemas. We are able in this way to give an homogeneous
semantics (in terms of legal data warehouse states) to the logical model and the

algebras proposed in all these different approaches. The star and the snowflake
schemas, Gray’s cube, Agrawal’s and Vassiliadis’ models, MD and other mul-
tidimensional conceptual data models can be captured uniformly by GMD. In
this way it is possible to formally understand the real differences in expressivity
of the various models.

The classical relational based star model comprises a single fact table at the
centre and multiple dimension tables around connected to it. The fact table
consists of a set of dimension attributes forming the primary key and several
measure non-key numeric attributes. Each dimension attribute is also foreign
key to a dimension table. Each dimension table consists of attributes including
a primary key and several non-key attributes, and it represents the properties of
elements of a single level for the dimension. The star model does not explicitly
provide the support for dimension hierarchies. In the snowflake model the di-
mension hierarchy is explicitly represented by normalising the dimension tables,
while in the fact constellation model multiple fact tables may share dimension
tables. It can be easily seen how the star, the snowflake, and the fact constel-
lation models can be encoded into corresponding GMD schemas, in a way that
the legal data warehouse states identified by the encoded GMD schema are the
same possible instantiations of the original schema.

The other classical data model for multidimensional data is the cube model,
which contains n-dimensional arrays where each dimension is associated to a
hierarchy of levels of consolidated data. The data is represented by means of
matrices whose indexes range over natural numbers. This structure has an ob-
vious mapping into the GMD data model.

The MD data model was introduced by [Cabibbo and Torlone, 1998] as a first
proposal of a homogeneous logical data model for multidimensional data. The
central element of an MD schema is a f-table representing factual multidimen-
sional data. A f-table is the abstract logical representation of a multidimensional
cube, and it is a function associating symbolic coordinates (one per involved
dimension) to measures. Dimensions are organised into hierarchies of levels ac-
cording to the various granularity of basic data. A MD dimension consists of
a finite set of levels with partial ordering on these levels. Within a dimension,
levels are related through roll-up functions. Levels can have level descriptions
that provide information about the levels. It is possible to encode a MD schema
into an equivalent GMD schema. However, GMD is richer than MD. First, in
GMD each set of connected levels is rooted through a basic level – the unique
least level in the dimension hierarchy, and there is partial order among the levels
(a notion stressed by, e.g., [Vassiliadis, 1998]); whereas in MD a uniqueness of
a least element (level) has not been considered in the partial ordering of levels.
Then, in MD, the join of fact tables is like a join of relational tables; the join
contains non-common dimensions apart from the common ones. An instance of
the resulting fact table (join) may be erroneous for an f-table entry; whereas in
GMD, a join is possible only between the cubes sharing same dimensions and
levels, and the join takes place only on common dimension values so that the
each cell is consistent with respect to the measure values. Moreover, GMD, sup-

ports correct aggregations (summarisations) irrespective of the path chosen for
the rolling up thanks to the application of transitive reflexive roll-up functions,
and an aggregated fact can be computed from another aggregated fact. Finally,
the GMD model includes in its core definition all the algebraic operators, which
are consistently and, most importantly, compositionally defined over the basic
notion of cube.

In [Agrawal et al., 1997], a logical data model has been proposed based on
the notion of multidimensional cube, together with an algebraic query language
over it. The model is characterised by a symmetric treatment for dimensions
and measures. The most notable difference with GMD is the lack of composi-
tionality in the basic definitions of the model and in the algebraic operators.
The dimension hierarchies are implemented using a special query language op-
erator whereas level hierarchies are part of the core GMD model. The algebra is
grounded on operators dealing with destruction and restriction of dimensions,
general join of cubes, and merge among levels within a cube. For example, the
aggregation is defined as the join of two cubes with a subsequent merge. It can
be shown that the algebra of cubes of [Agrawal et al., 1997] can be encoded in
GMD.

The cube operator introduced in [Gray et al., 1996] expands a relational table
by aggregating over all possible combinations of the attributes of the relation. A
cube operator is an n-dimensional generalisation of the SQL GROUP BY oper-
ator. For n attributes in the select-list, it results in 2n group-by computations.
The data cube operator builds a table containing all these values. The GMD
data model can not represent directly a cube generated by means of the cube
operator, since it is impossible to directly represent in the same fact table data at
different levels for the same dimension; this is captured in Gray’s cube with the
special aggregated level element all. We propose a possible encoding of the cube
operator in GMD which goes around this problem. The idea is based on extend-
ing the set of level element names with the special constant all for each level,
and then building the complete cube by means of a sequence of aggregations
and unions. It should be noted, however, that the introduction of the special
constant all may affect the consistency of the aggregated cubes in general, and
so it should be used only in the special case of generating the completed cube,
which itself shouldn’t be used anymore for further aggregations (like in Gray’s
approach).

[Vassiliadis and Skiadopoulos, 2000], propose a logical model equipped with
a lattice of dimension levels, so that the values of each dimension level can be
grouped into a single all special value. It is emphasised that a cube is always a
view over an underlying data set – which corresponds to the GMD basic level.
Cubes (views) are computed over a base cube which holds the most detailed
data. Aggregation is carried out with a special operator called navigate always
defined from the base data, while in GMD it is possible to aggregate already
aggregated data. It is possible to show that the composition of aggregations in
GMD down to the basic level corresponds to the navigation as proposed by
[Vassiliadis and Skiadopoulos, 2000].

In [Golfarelli et al., 1998], a multidimensional data model called Dimensional
Fact Model (DFM) has been introduced. DFM is a graphical model, independent
on the logical (multidimensional/relational) model, but substantially based on
the star model. DFM is a quasi-tree (weakly connected) of attributes, whose
root is a fact. A fact is represented by a box at the centre of the diagram
associated with a fact name and its multiple measures; the dimension attributes
are linked to the fact and are represented by circles. Non-dimensional attributes
are leaf nodes linked to the fact. Subtrees rooted in dimensions represent the
hierarchy of levels for the dimension. The hierarchies are constrained by x-to-
one (i.e., many-to-one, etc) relationships between nodes (representing the levels).
Each n-tuple of values taken from the domains of n dimensions of a fact defines
an elemental cell called a primary fact instance where one unit of information
for the data warehouse can be represented. Aggregation at different levels of
abstraction (e.g. roll-up) is called a secondary fact instance which aggregates the
set of primary fact instances. A query language is also provided for computing
fact instances (primary and secondary) with n-dimensions and selections (using
boolean predicates). DFM can easily be encoded in all its aspects as a GMD
schema.

The most important aspect of DFM is that it is associated with a very
powerful data warehouse design methodology and many supporting tools are
available for it. Since it is possible to encode in GMD various steps of the data
warehouse design methodology, it becomes possible to support those stages of
the methodology by means of some automated tool which can be proved correct
with respect to the GMD semantics. Our main line of research for the future is to
extend and adapt the powerful data warehouse design methodologies proposed
by [Golfarelli et al., 1998] to the full GMD data model. We will do this in the
spirit of the work done in [Franconi and Sattler, 1999].

[Lehner et al., 1998] introduce a generalised multidimensional normal form
(GMNF) which ensures the summarisability but restricts the roll-up function
between the hierarchical levels to be total (similar to [Hutardo et al., 1999]),
whereas in GMD the relationship between hierarchical levels is a more general
partial roll-up function. [Jagadish et al., 1999] model hierarchies in a relational
way by using SQL, overcoming the limitations on modelling hierarchies in the
snowflake schema. In this way there is a reduction in the number of joins that
are required to join the level hierarchies (dimension tables) while querying the
snowflake schema. Also in this case the roll-up functions are considered total.

7 Conclusions

In this paper we have introduced the GMD data model and algebra, an abstract
but rich data model for representing multidimensional information, equipped
with logic-based semantics and seamlessly integrated with a fully compositional
algebra also equipped with logic-based semantics. The aim of this work is to
propose an homogeneous approach to formally represent all the aspects of mul-
tidimensional data, as proposed by the various data models presented in the lit-

erature. We hinted how actually GMD captures these various proposals. Starting
with the GMD data model, our current research work is to adapt the concep-
tual data warehouse methodologies appeared in the literature – in the spirit of
[Golfarelli et al., 1998; Franconi and Sattler, 1999].

References

[Abello et al., 2001] A. Abello, J. Samos, and F. Saltor. Understanding anal-
ysis dimensions in a multidimensional object-oriented model. In Proc. of
the International Workshop on Design and Management of Data Warehouses
(DMDW’2001),Interlaken, Switzerland, pages 4–1–4–9, 2001.

[Agrawal et al., 1997] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimen-
sional databases. In Proc. of ICDE-97, 1997.

[Cabibbo and Torlone, 1998] Luca Cabibbo and Riccardo Torlone. A logical approach
to multidimensional databases. In Proc. of EDBT-98, 1998.

[Franconi and Kamble, 2003] Enrico Franconi and Anand S. Kamble. The GMD data
model for multidimensional information. In Proc. 5th International Conference on
Data Warehousing and Knowledge Discovery, pages 55–65, 2003.

[Franconi and Sattler, 1999] E. Franconi and U. Sattler. A data warehouse conceptual
data model for multidimensional aggregation. In Proc. of the Workshop on Design
and Management of Data Warehouses (DMDW-99), 1999.

[Golfarelli et al., 1998] M. Golfarelli, D. Maio, and S. Rizzi. The dimensional fact
model: a conceptual model for data warehouses. IJCIS, 7(2-3):215–247, 1998.

[Gray et al., 1996] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: a
relational aggregation operator generalizing group-by, cross-tabs and subtotals. In
Proc. of ICDE-96, 1996.

[Gyssens and Lakshmanan, 1997] M. Gyssens and L.V.S. Lakshmanan. A foundation
for multi-dimensional databases. In Proc. of VLDB-97, pages 106–115, 1997.

[Hutardo et al., 1999] Carlos Hutardo, Alberto Mendelzon, and A. Vaisman. Main-
taining data cube under dimension updates. In Proc. 15th IEEE-ICDE International
Conference, 1999.

[Jagadish et al., 1999] H.V. Jagadish, Laks V.S. Lakshmanan, and Divesh Srivastava.
What can hierarchies do for data warehouses? In Proc. 25th International Conference
on Very Large Databases (VLDB), pages 530–541, 1999.

[Lehner et al., 1998] W. Lehner, H. Albrecht, and H. Wedekind. Normal forms for
multidimensional databases. In Proc. 10th International Conference on Scientific
and Statistical Database Management (SSDBM), pages 63–73, 1998.

[Tsois et al., 2001] A. Tsois, N. Karayiannidis, and T. Sellis. MAC: Conceptual data
modelling for OLAP. In Proc. of the International Workshop on Design and Man-
agement of Warehouses (DMDW-2001), pages 5–1–5–13, 2001.

[Vassiliadis and Sellis, 1999] P. Vassiliadis and T. Sellis. A survey of logical models for
OLAP databases. In SIGMOD Record, volume 28, pages 64–69, December 1999.

[Vassiliadis and Skiadopoulos, 2000] P. Vassiliadis and S. Skiadopoulos. Modelling and
optimisation issues for multidimensional databases. In Proc. of CAiSE-2000, pages
482–497, 2000.

[Vassiliadis, 1998] P. Vassiliadis. Modeling multidimensional databases, cubes and
cube operations. In Proc. of the 10th SSDBM Conference, Capri, Italy, July 1998.

