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Motivation

• We can already do a lot with propositional logic.

• But it is unpleasant that we cannot access the structure of atomic sentences.

• Atomic formulas of propositional logic are too atomic – they are just statement

which my be true or false but which have no internal structure.

• In First Order Logic (FOL) the atomic formulas are interpreted as statements

about relationships between objects.
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Predicates and Constants

Let’s consider the statements:

• Mary is female

John is male

Mary and John are siblings

In propositional logic the above statements are atomic propositions:

• Mary-is-female

John-is-male

Mary-and-John-are-siblings

In FOL atomic statements use predicates, with constants as argument:

• Female(mary)

Male(john)

Siblings(mary,john)
(3/41)



Variables and Quantifiers

Let’s consider the statements:

• Everybody is male or female

• A male is not a female

In FOL predicates may have variables as arguments, whose value is bounded by

quantifiers:

• ∀x. Male(x) ∨ Female(x)

• ∀x. Male(x) → ¬Female(x)

Deduction (why?):

• Mary is not male

• ¬Male(mary)
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Functions

Let’s consider the statement:

• The father of a person is male

In FOL objects of the domain may be denoted by functions applied to (other)

objects:

• ∀x. Male(father(x))
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Syntax of FOL: atomic sentences

Countably infinite supply of symbols (signature):

• variable symbols: x, y, z, . . .

n-ary function symbols: f, g, h, . . .

individual constants: a, b, c, . . .

n-are predicate symbols: P,Q,R, . . .

Terms: t → x variable

| a constant

| f(t1, . . . , tn) function application

Ground terms: terms that do not contain variables

Formulas: φ → P (t1, . . . , tn) atomic formulas

E.g., Brother(kingJohn, richardTheLionheart)

> (length(leftLegOf(richard)), length(leftLegOf(kingJohn)))
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Syntax of FOL: propositional sentences

Formulas: φ, ψ→ P (t1, . . . , tn) atomic formulas

| ⊥ false

| > true

| ¬φ negation

| φ ∧ ψ conjunction

| φ ∨ ψ disjunction

| φ→ ψ implication

| φ↔ ψ equivalence

• (Ground) atoms and (ground) literals.

E.g. Sibling(kingJohn, richard) → Sibling(richard, kingJohn)

>(1, 2) ∨ ≤(1, 2)

>(1, 2) ∧ ¬>(1, 2)
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Syntax of full FOL

Formulas: φ, ψ→ P (t1, . . . , tn) atomic formulas

| ⊥ false

| > true

| ¬φ negation

| φ ∧ ψ conjunction

| φ ∨ ψ disjunction

| φ→ ψ implication

| φ↔ ψ equivalence

| ∀x. φ universal quantification

| ∃x. φ existential quantification

E.g. Everyone in England is smart: ∀x. In(x, england) → Smart(x)

Someone in France is smart: ∃x. In(x, france) ∧ Smart(x)
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Summary of Syntax of FOL

• Terms

• variables

• constants

• functions

• Literals

• atomic formula

• relation (predicate)

• negation

• Well formed formulas

• truth-functional connectives

• existential and universal quantifiers
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Semantics of FOL: intuition

• Just like in propositional logic, a (complex) FOL formula may be true (or false)

with respect to a given interpretation.

• An interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence P (t1, . . . , tn) is true in a given interpretation

iff the objects referred to by t1, . . . , tn

are in the relation referred to by the predicate P .

• An interpretation in which a formula is true is called a model for the formula.
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Models for FOL: Example

objects

relations: sets of tuples of objects

< < < <{ , , , , . .. {

functional relations: all tuples of objects + "value" object

< < < <{ , , , , . .. {
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Semantic of FOL: Interpretations

Interpretation: I = 〈∆, ·I〉 where ∆ is an arbitrary non-empty set and I is a

function that maps

• n-ary function symbols to functions over ∆:

fI ∈ [∆n → ∆]

• individual constants to elements of ∆:

aI ∈ ∆

• n-ary predicate symbols to relation over ∆:

P I ⊆ ∆n
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Semantic of FOL: Satisfaction

Interpretation of ground terms:

(f(t1, . . . , tn))I = fI(t1
I , . . . , tn

I) (∈ ∆)

Satisfaction of ground atoms P (t1, . . . , tn):

I |= P (t1, . . . , tn) iff 〈t1
I , . . . , tn

I〉 ∈ P I
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Examples

∆ = {d1, . . . , dn, n > 1}

aI = d1

bI = d2

BlockI = {d1}

RedI = ∆

I |= Red(b)

I 6|= Block(b)

∆ = {1, 2, 3, . . .}

1I = 1

2I = 2
...

EvenI = {2, 4, 6, . . .}

succI = {(1 7→ 2), (2 7→ 3), . . .}

I 6|= Even(3)

I |= Even(succ(3))
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Semantics of FOL: Variable Assignments

V set of all variables. Function α:V → ∆.

Notation: α[x/d] is identical to α except for the variable x.

Interpretation of terms under I, α:

xI,α = α(x)

aI,α = aI

(f(t1, . . . , tn))I,α = fI(t1
I,α, . . . , tn

I,α)

Satisfiability of atomic formulas:

I, α |= P (t1, . . . , tn) iff 〈t1
I,α, . . . , tn

I,α〉 ∈ P I
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Variable Assignment example

α = {(x 7→ d1), (y 7→ d2)}

I, α |= Red(x)

I, α[y/d1] |= Block(y)
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Semantics of FOL: Satisfiability of formulas

A formula φ is satisfied by (is true in) an interpretation I under a variable

assignment α,

I, α |= φ :

I, α |= P (t1, . . . , tn) iff 〈t1
I,α, . . . , tn

I,α〉 ∈ P I

I, α |= ¬φ iff I, α 6|= φ

I, α |= φ ∧ ψ iff I, α |= φ and I, α |= ψ

I, α |= φ ∨ ψ iff I, α |= φ or I, α |= ψ

I, α |= ∀x. φ iff for all d ∈ ∆ :

I, α[x/d] |= φ

I, α |= ∃x. φ iff there exists a d ∈ ∆ :

I, α[x/d] |= φ
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Examples

∆ = {d1, . . . , dn, } n > 1

aI = d1

bI = d1

BlockI = {d1}

RedI = ∆

α = {(x 7→ d1), (y 7→ d2)}

1. I, α |= Block(c) ∨ ¬Block(c)?

2. I, α |= Block(x) → Block(x) ∨ Block(y)?

3. I, α |= ∀. x Block(x) → Red(x)?

4. Θ =







Block(a), Block(b)

∀x (Block(x) → Red(x))







I, α |= Θ?
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Example

Find a model of the formula:

∃y. [ P (y) ∧ ¬Q(y) ] ∧ ∀z. [ P (z) ∨Q(z) ]

∆ = {a, b}

P I = {a}

QI = {b}
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Satisfiability and Validity

An interpretation I is a model of φ under α, if

I, α |= φ.

Similarly as in propositional logic, a formula φ can be satisfiable, unsatisfiable,

falsifiable or valid—the definition is in terms of the pair (I, α).

A formula φ is

• satisfiable, if there is some (I, α) that satisfies φ,

• unsatisfiable, if φ is not satisfiable,

• falsifiable, if there is some (I, α) that does not satisfy φ,

• valid (i.e., a tautology), if every (I, α) is a model of φ.
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Equivalence

Analogously, two formulas are logically equivalent (φ ≡ ψ), if for all I, α we

have:

I, α |= φ iff I, α |= ψ

Note: P(x) 6≡ P(y)!
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Free and Bound Variables

∀x. (R( y , z ) ∧ ∃ y. (¬P(y,x) ∨ R(y, z )))

Variables in boxes are free; other variables are bound.

Free variables of a formula (inductively defined over the structure of expressions):

free(x) = {x}

free(a) = ∅

free(f(t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)

free(P (t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn)

free(¬φ) = free(φ)

free(φ ∗ ψ) = free(φ) ∪ free(ψ), ∗ = ∨,∧, . . .

free(∀x. φ) = free(φ) − {x}

free(∃x. φ) = free(φ) − {x}
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Open and Closed Formulas

• A formula is closed or a sentence if no free variables occurs in it. When

formulating theories, we only use closed formulas.

• Note: For closed formulas, the properties logical equivalence, satisfiability,

entailment etc. do not depend on variable assignments. If the property holds

for one variable assignment then it holds for all of them.

• For closed formulas, the symbol α on the left hand side of the “|=” sign is

omitted.

I |= φ
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Entailment

Entailment is defined similarly as in propositional logic.

The formula φ is logically implied by a formula ψ, if φ is true in all models of ψ

(symbolically, ψ |= φ):

ψ |= φ iff I |= φ for all models I of ψ
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More Exercises

• |= ∀x. (P (x) ∨ ¬P (x))

• ∃x. [ P (x) ∧ (P (x) → Q(x)) ] |= ∃x. Q(x)

• |= ¬(∃x. [ ∀y. [ P (x) → Q(y) ] ])

• ∃y. [ P (y) ∧ ¬Q(y) ] ∧ ∀z. [ P (z) ∨Q(z) ] satisfiable
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Equality

• Equality is a special predicate.

• t1 = t2 is true under a given interpretation (I, α |= t1 = t2)

if and only if t1 and t2 refer to the same object:

t1
I,α = t2

I,α

E.g., ∀x. (×(sqrt(x), sqrt(x)) = x) is satisfiable

2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent:

∀x, y.

Sibling(x, y) ↔

(¬(x = y) ∧

∃m, f .¬(m = f) ∧ Parent(m,x) ∧ Parent(f, x) ∧

Parent(m, y) ∧ Parent(f, y) )
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Universal quantification

Everyone in England is smart: ∀x. In(x, england) → Smart(x)

(∀x. φ) is equivalent to the conjunction of all possible instantiations in x of φ:

In(kingJohn, england) → Smart(kingJohn)

∧ In(richard, england) → Smart(richard)

∧ In(england, england) → Smart(england)

∧ . . .

Typically, → is the main connective with ∀.

Common mistake: using ∧ as the main connective with ∀:

∀x. In(x, england) ∧ Smart(x)

means “Everyone is in England and everyone is smart”
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Existential quantification

Someone in France is smart: ∃x. In(x, france) ∧ Smart(x)

(∃x. φ) is equivalent to the disjunction of all possible instantiations in x of φ

In(kingJohn, france) ∧ Smart(kingJohn)

∨ In(richard, france) ∧ Smart(richard)

∨ In(france, france) ∧ Smart(france)

∨ . . .

Typically, ∧ is the main connective with ∃.

Common mistake: using → as the main connective with ∃:

∃x. In(x, france) → Smart(x)

is true if there is anyone who is not in France!
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Properties of quantifiers

(∀x.∀y.φ) is the same as (∀y.∀x.φ) (Why?)

(∃x.∃y.φ) is the same as (∃y. ∃x.φ) (Why?)

(∃x.∀y.φ) is not the same as (∀y. ∃x.φ)

∃x.∀y.Loves(x, y)

“There is a person who loves everyone in the world”

∀y.∃x.Loves(x, y)

“Everyone in the world is loved by at least one person” (not necessarily the same)

Quantifier duality: each can be expressed using the other:

∀x.Likes(x, iceCream) ¬∃x.¬Likes(x, iceCream)

∃x.Likes(x, broccoli) ¬∀x.¬Likes(x, broccoli)
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Equivalences

(∀x.φ) ∧ ψ ≡ ∀x. (φ ∧ ψ) if x not free in ψ

(∀x.φ) ∨ ψ ≡ ∀x. (φ ∨ ψ) if x not free in ψ

(∃x.φ) ∧ ψ ≡ ∃x. (φ ∧ ψ) if x not free in ψ

(∃x.φ) ∨ ψ ≡ ∃x. (φ ∨ ψ) if x not free in ψ

∀x.φ ∧ ∀x.ψ ≡ ∀x. (φ ∧ ψ)

∃x.φ ∨ ∃x.ψ ≡ ∃x. (φ ∨ ψ)

¬∀x.φ ≡ ∃x.¬φ

¬∃x.φ ≡ ∀x.¬φ

& propositional equivalences
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The Prenex Normal Form

Quantifier prefix + (quantifier free) matrix

∀x1∀x2∃x3 . . . ∀xnφ

1. Elimination of → and ↔

2. push ¬ inwards

3. pull quantifiers outwards

E.g. ¬∀x. ((∀x. p(x)) → q(x))

¬∀x. (¬(∀x. p(x)) ∨ q(x))

∃x. ((∀x. p(x)) ∧ ¬q(x))

and now?

Notation: renaming of variables. Let φ[x/t] be the formula φ where all

occurrences of x have been replaced by the term t.
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The Prenex Normal Form: theorems

Lemma. Let y be a variable that does not occur in φ.

Then we have ∀xφ ≡ (∀xφ)[x/y] and ∃xφ ≡ (∃xφ)[x/y].

Theorem. There is an algorithm that computes for every formula its prenex

normal form.
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FOL at work: reasoning by cases

Γ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧

LOVES(susan,andrea) ∧

LOVES(andrea,bill) ∧

Female(susan) ∧

¬Female(bill)

bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES
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Γ = bill: ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

Does John have a female friend loving a male (i.e. not female) person?

YES!

Γ |= ∃X, Y . FRIEND(john, X) ∧ Female(X) ∧

LOVES(X, Y ) ∧ ¬Female(Y )
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john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES
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bill: ¬Female

[¬Female] andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

FRIEND(john,susan), Female(susan),

LOVES(susan,andrea), ¬ Female(andrea)
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bill: ¬Female

[Female] andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

FRIEND(john,andrea), Female(andrea),

LOVES(andrea,bill), ¬ Female(bill)
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Theories and Models

Γ1 = FRIEND(john, susan) ∧

FRIEND(john, andrea) ∧

LOVES(susan, andrea) ∧

LOVES(andrea, bill) ∧

Female(susan) ∧

Male(bill) ∧

∀X . Male(X) ↔ ¬Female(X)

bill: Male Male
.
= ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES
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Γ1 = bill: Male Male
.
= ¬Female

andrea susan: Female

john

?

�

�
�

��	

@
@

@@R

FRIEND FRIEND

LOVES

LOVES

Does John have a female friend loving a male person?

Γ1 |= ∃X, Y . FRIEND(john, X) ∧ Female(X) ∧

LOVES(X, Y ) ∧ Male(Y )
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Γ =FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧

LOVES(susan,andrea) ∧

LOVES(andrea,bill) ∧

Female(susan) ∧

¬Female(bill)

∆ = {john, susan, andrea, bill}

FemaleI = {susan}

Γ1 = FRIEND(john, susan) ∧

FRIEND(john, andrea) ∧

LOVES(susan, andrea) ∧

LOVES(andrea, bill) ∧

Female(susan) ∧

Male(bill) ∧

∀X . Male(X) ↔ ¬Female(X)

∆I1 = {john, susan, andrea, bill}

FemaleI1 = {susan, andrea}

MaleI1 = {bill, john}

∆I2 = {john, susan, andrea, bill}

FemaleI2 = {susan}

MaleI2 = {bill, andrea, john}

∆I1 = {john, susan, andrea, bill}

FemaleI1 = {susan, andrea, john}

MaleI1 = {bill}

∆I2 = {john, susan, andrea, bill}

FemaleI2 = {susan, john}

MaleI2 = {bill, andrea}
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Γ 6|= Female(andrea)

Γ 6|= ¬Female(andrea)

Γ1 6|= Female(andrea)

Γ1 6|= ¬Female(andrea)

Γ1 6|= Male(andrea)

Γ1 6|= ¬Male(andrea)
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Exercise

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

?

Is it true that the top block is on a white block touching a black block?
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