Expressiveness and tractability in knowledge representation and reasoning'

HECTOR J. LEVESQUE®
Department of Compurter Science, University of Toronto, Teronto, Ont., Canada M55 [A4

AND

RoNaLp J. Bracuman
AT&T Bell Laboratories, 600 Mountain Avenue, 3C+439, Murray Hill, NJ 07974, U.5.A.

Received November 3. 1986
Revision accepted April 8, 1987

A fundamental computational limit on automated reasoning and its cffect on knowledge representation is examined.
Basically. the problem is that it can be more difficult to reason correctly with one representational language than with another
and, morcover, that this difficulty increases dramatically as the expressive power of the language increases. This leads to a
tradeolT between the expressiveness of a representational language and its computational tractability. Here we show that this
tradeo!t can be scen to underlie the ditferences among a number of existing representational formalisms, in addition to
motivating many of the current research issues in knowledge representation.

Key words: knowledge representation, description subsumption. complexity of reasoning. first-order logic, frames. semantic
nctworks, databases.

Cet anticle érudie une limitation computationnelle fondamentale du raisonnement automatique et examine ses effets sur la
représentation de connaissances. A la base le probléme tient en ce qu'il peut étre plus difficile de raisonner avec un langage de
représentation qu’avec un autre et que cette difficulié augmente considérablement & mesure que croit le pouvoir expressif du
langage. Ceci donne lieu 4 un compromis entre le pouvoir expressif d'un langage de représentation et sa tractibilité computa-
tionnelle. Nous montrons que ce compromis peut étre vu comme 1'une des causes fondamentales de la différence qui existe
entre nombre de formalismes de représentation existants et peut motiver plusieurs recherches courantes en représentation de

connaissances.

Mots clés :
sémantiques, bases de données.

e

w

Comput. Intell. 3, 78—93 (1987)

1. Introduction

représentation de connaissanced, complexité du raisonnement, logique du premier ordre, schémas, réseaux

[Traduit par la revue]

faults, as well as systems of limited inference and hybrid

This paper examines from a general point of view a basic]| reasoning).
computational limit on automated reasoning, and the effect that E To deal with such a broad range of representational phenom-
it has on knowledge representation (KR). The problem is essen- || ena we must, of necessity, take a considerably simplified and
tially that it can be more difficult to reason correctly with one || incomplete view of KR. In particular, we focus on its com-
representational language than with another and, moreover, g putational and logical aspects, more or less ignoring its history
that this difficulty increases as the expressive power of the]! and relevance in the areas of psychology, linguistics, and phi-
language increases. There is a tradeoff between the expressive-1 ! losophy. The area of KR is still very disconnected today and
ness of a representational language and its computational trac- ; the role of logic remains quite controversial, despite what this

=kility. What we attempt to show is that this tradeoff underlie

differences among a number of representational formalisms
(such as first-order logic, databases, semantic networks, and
frames) and motivates many current research issues in KR
(such as the role of analogues, syntactic encodings, and de-

"This is a revised and substantially augmented version of “A Fun-
damental TradeotT in Knowledge Representation and Reasoning,” by
Hector J. Levesque, which appeared in the Proceedings of the
Canadian Saciety for Computational Studies of Intelligence Confer-
ence, London, Ontario, May 1984, It includes portions of two other
conference papers: “The Tractability of Subsumption in Frame-Based
Description Languages,” by Ronald J. Brachman and Hector J.
Levesque, which appeared in the Proceedings of the American Asso-
ciation for Antificial Intelligence Conference, Austin, Texas, August
1984; and "What Makes a Knowledge Base Knowledgeable? A View
of Databases from the Knowledge Level.” by the same authors, which
appeared in the Proceedings of the First Intemmational Workshop on
Expert Database Systems, Kiawah Island, South Carolina, October
1984. Much of this paper appeared as a chapter in Readings in Know!-
edge Represemtation (Morgan Kaufmann Publishers Inc., 1985),
cdited by the authors.

*Fellow of the Canadian Institute for Advanced Research.

paper may suggest. We do believe, however, that the tradeoff
discussed here is fundamental. As long as we are dealing with
computational systems that reason automatically (without any
special intervention or advice) and correctly (once we define
what that means), we will be able to locate where they stand on
the tradeoff: They will either be limited in what knowledge they
can represent or unlimited in the reasoning effort they might
require.

Our computational focus will not lead us to investigate
specific algorithms and data structures for KR and reason-
ing, however. What we discuss is something much stronger,
namely, whether or not algorithms of a certain kind can exist
at all. The analysis here is at the knowledge level (Newell 1981)
where we look at the content of what is represented (in terms
of what it says about the world) and not the symbolic structures
used to represent that knowledge. Indeed, we examine specific
representation schemes in terms of what knowledge they can
represent, rather than in terms of how they might actually
represent it.

In the next section, we discuss what a KR system is for and
what it could mean to reason correctly. Next, we investigate
how a KR service might be realized using theorem proving in

LEVESQUE AND BRACHMAN 79

first-order logic and the problem this raises. Following this, we -

present various representational formalisms and examine the
special Kinds of reasoning they suggest. We concentrate in
particular on frame-based description languages, cxamining in
some detail a simple language and a varant. In the case of this
pair of languages, the kind of tradeoff we arc talking about is
made concrete, with a dramatic result. Finally, we draw some
tentative general conclusions from this analysis.

2. The role of knowledge representation

While it is generally agreed that KR plays an important role
in (what have come to be called) knowledge-based systems. the
exact nature of that role is often hard to define. In some cases,
the KR subsystem does no more than manage a collection of
data structures, providing, for example, suitable search facili-
ties: in others, the KR subsystem is not really distinguished
from the rest of the system at all and does just about everything:
make decisions, prove theorems, solve problems, and so on. In
this section, we discuss in very general terms the role of a KR
subsystem within a knowledge-based system.’

1. The knowledge representation hypothesis

A good place to begin our discussion is with what Brian
Smith has called the knowledge representation hypothesis
(Smith 1982):

Any mechanically embodied intelligent process will be com-
prised of structural ingredicnts that (a) we as external observers
naturally take to represent a propositional account of the knowl-
edge that the overall process exhibits, and (b) independent of
such external semantical attribution, play a formaf but causal and
essential role in engendering the behaviour that manifests that
knowledge.

This hypothesis seems to underlie much of the research in KR,
if not most of the current work in Artificial Intelligence in
general. In fact, we might think of knowledge-based systems as
those that satisfy the hypothesis by design. Also, in some
sense, it is only with respect to this hypothesis that KR research
can be distinguished from any number of other areas involving
symbolic structures such as database management, program-
ming languages, and data structures.

Granting this hypothesis, there are two major properties that
“~ structures in a knowledge-based system have to satisfy.
st of all, it must be possible to interpret them as propositions
representing the overall knowledge of the system. Otherwise,
the representation would not necessarily be of knowledge at all,
but of something quite different, like numbers or circuits. Im-
plicit in this constraint is that the structures have to be expres-
sions in a language that has a truth theory. We should be able
to point to one of them and say what the world would have to
be like for it to be true. The structures themselves need not look
like sentences—there are no syntactic requirements on them at
all, other than perhaps finitcness—but we have to be able to
understand them that way.

A second requirement of the hypothesis is perhaps more
obvious. The symbolic structures within a knowlcdge-based
system must play a causal role in the behaviour of that system,

'We should emphasize that we are concentrating on the kind of
knowledge representation system that would be used as a component
of a larger Al program. KR rescarch also scems to encompass attempts
at general models of cognitive behavior. Although some of our com-
ments are applicable even to such models. we are generally ignoring
that part of the ficld here.

as opposed to, say. comments in a programming language.
Morcover. the influence they have on the behaviour of the
system should agree with our understanding of them as propo-
sitions representing knowledge. Not that the system has to be
aware in any mysterious way of the interpretation of its struc-
tures and their connection to the world:* but for us to call it
knowiedge-based, we have to be able to understand its behav-
iour as if it believed these propositions, just as we understand
the behaviour of a aumerical program as if it appreciated
the connection between bit patterns and abstract numerical
quantities.

2.2. Knowledge bases ‘

To make the above discussion a bit less abstract, we can
consider a very simple task and consider what a system facing
this task would have to be like for us to call it knowledge-
based. The amount of knowledge the system will be dealing
with will, of course, be very small.

Suppose we want a system in PROLOG that is able to print the
colours of various items. One way to implement that system
would be as follows:

printColour(snow) - !, write("It’s white.™).
printColour(grass) :- !, write(*It’s green.”).
printColour(sky) :- !, write("It’s yellow.™).
printColour(X) :- write(**Beats me.”).

A slightly different organization that leads to the same overall
behaviour is

printColour(X) :-
colour(X,Y), !, write(“It's ™), write(Y), write(*.”).
printColour(X) :- write("Beats me.”).

colour(snow,white).
colour{grass,green).
colour(sky,yellow).

The second program is characterized by explicit structures rep-
resenting the (minimal) knowledge® the system has about col-
ours and is the kind of system that we are calling knowledge-
based. In the first program, the association between the object
(we uriderstand as) referring to grass and the one referring to its
colour is implicit in the structure of the program. In the second,
we have an explicit knowledge base (or KB) that we can under-
stand as propositions relating the items to their colours. More-
over. this interpretation is justified in that these structures de-
termine what the system does when asked to print the colour of
a particular item.

One thing to notice about the example is that it is not the use
of a certain programming language or data-structuring facility
that makes a system knowledge-based. The fact that PROLOG
happens to be understandable as a subset of first-order logic is
largely irrelevant. We could probably read the first program
“declaratively” and get sentences representing some Kind of
knowledge out of it; but these would be very strange ones

*{ndeed. part of what philosophers have called the formality condi-
tion is that computation at some level has to be uninterpreted symbol
manipulation.

* Notice that typical of how the term “knowledge™ is used in Al
there is no requirement of truth. A system may be mistaken about the
colour of the sky but still be knowledge-based. “Belief™ would per-
haps be a more appropriate term, although we follow the standard Al
usage in this paper.

I mr o %

80 COMPUT INTELL. VOL. 3, 1987

dealing with writing strings and printing colours, not with the
colours of objects.

2.3. The knowledge representation subsystem

In terms of its overall goais, a knowledge-based system is
not dircctly interested in what specific structures might exist in
its KB. Rather, it is concerned with what the application do-
main 18 like—for example, what the colour of grass is. How
that knowledge is represented and made available to the overall
system is a secondary concern and one that we take to be the
responsibility of the KR subsystem. The role of a KR sub-
system, then, is to manage a KB for a knowledge-based system
and present a picture of the world based on what it has repre-
sented in the KB."

If. for simplicity, we restrict our attention to the yes—no
guestions about the world that a system might be interested in.
what is then involved is being able to determine what the KB
says regarding the truth of certain sentences. It is not whether
the sentence itself is present in the KB that counts, but whether
its truth is implicit in the KB. Stated differently, what a knowl-
edge representation system has to be able to determine, given

~a sentence o, is the answer to the following question:

Assuming the world is such that what is believed is true, is
a also true?

We will let the notation KB = o mean that « is implied (in this
sense) by what is in the KB.

One thing to notice about this view of a KR system is that an
understanding of the service it provides to a knowledge-based
system depends only on the truth theory of the.language of
representation. Depending on the particular truth theory, deter-
mining if KB = a might require not just simple retrieval capa-
bilities, but also inference of some sort. This is not to say that
the only service to be performed by a KR subsystem is
question-answering. If we imagine the overall system existing
over a period of time, then we will also want it to be able to
augment the KB as it acquires new information about the
world.” In other words, the responsibility of the KR system is
to use appropriate symbolic structures to represent knowledge,
and to use appropriate reasoning mechanisms both to answer
questions and to assimilate new information, in accordance
with the truth theory of the underlying representation

“nguage.

So our view of KR makes it depend only on the semantics of
the representation language, unlike other possible accounts that
might have it defined in terms of a set of formal symbol manip-
ulation routines (¢.g., a proof theory). This is in keeping with
what we have called elsewhere a functional view of KR (see
Levesque (1984h) and Brachman er al. (1983)). where the
service performed by a KR system is defined separately from
the techniques a system might use to realize that service.

3. The logical approach

To make a lot of the above more concrete, it is useful to look
at an example of the kinds of knowledge that might be available
in a given domain and how it might be represented in a KB. The

® As hinted carlier, this is not the only role that we could imagine
for such a subsystem. but this approach is consonant with the majority
of work in the ficld.

"It is this management of a KB over time that makes a KR sub-
system much more than just the implementation of a static deductive
calculus.

language that will be used to represent knowledge is that of a
standard first-order logic (FOL).?

3.1. Using first-order logic

The first and most prevalent type of knowledge to consider
representing is what might be called simple facts about the
world. such as

* Joc is married to Sue.
* Bill has a brother with no children.
* Henry’s friends are Bill's cousins.

These might be complicated in any number of ways, for exam-
ple. by including time parameters and certainty factors.

Simple observations such as these do not exhaust what might
be known about the domain, however. We may also have
knowledge about the terminology used in these observations,
such as

* Ancestor is the transitive closure of parent,
* Brother is sibling restricted to males.
* Favourite-cousin is a special type of cousin.

These could be called definitions except for the fact that neces-
sary and sufficient conditions might not always be available (as
in the last example above). In this sense, they are much more
like standard dictionary entries.

The above two sets of examples concentrate on what might
be called declarative knowledge about the world. We might
also have to deal with procedural knowledge that focuses not
on the individuals and their interrelationships, but on advice for
reasoning about these. For example, we might know that

* To find the father of someone, it is better to search for a
parent and then check if he is male, than to check each male to
see if he is a parent.

* To see if x is an ancestor of y, it is better to search up from
v than down from x.

One way to think of this last type of knowledge is not neces-
sarily as advice to a reasoner, but as declarative knowledge that
deals implicitly with the combinatorics of the domain as a
whole.

This is how the above knowledge might be represented in
FOL:

1. The first thing to do is to “translate” the simple facts into
sentences of FOL. This would lead to sentences like

Vx Friend(henry, x) = Cousin(bill, x)

2. To deal with terminology in FOL, the easiest way is to
“extensionalize™ it. that is. to pretend that it is a simple obser-
vation about the domain. For example, the brother statement
above would become’

VxVy Brother(x, y) = (Sibling(x,y) /\ Male(y))

3. Typically. the procedural advice would not be represented
explicitly at all in a FOL KB, but would show up in the form
of (1) and (2) above. Another alternative would be to use

*The usc of FOL per se is not an essential feature of the arguments
to follow. Any language that allows us to express what we can in FOL
would suffice.

“This is a little misleading since it will make the brother sentence
appear to be no different in kind from the one about Henry's friends,
though we surcly do not want to say that Henry's friends arc defined
to be Bill’s cousins.

LEVESQUE AND BRACHMAN 81

extra-logical annotations like the kind used in PROLOG or those
described in Moore (1982).

The end result of this process would be a first-order knowl-
edge base: a collection of sentences in FOL representing what
was known about the domain. A major advantage of FOL is
that given a yes—no question also expressed in this language.
we can give a very precise definition of KB £ a (and thus,
under what conditions the question should be answered ves, no,
or unknown): :

KB [aiff every interpretation satisfying all of the sentences
in the KB also satisfies a."

There is. moreover. another property of FOL that makes its
use in KR even more simple and direct. If we assume that the
KB is a finite set of sentences and let KB stand for their
conjunction, it can be shown that

KB | aiff - (KB D «)

In other words, the question as to whether or not the truth of «
is implicit in the KB reduces to whether or not a certain sen-

~tence is a theorem of FOL. Thus. the question-answering oper-

.tion becomes one of theorem proving in FOL.

3.2. The problem

The good news in reducing the KR service to theorem prov-
ing is that we now have a very clear, very specific notion of
what the KR system should do. The bad news is that it is also
clear that this service cannot be provided. The'sad fact of the
matter is that deciding whether or not a sentence of FOL is a
theorem (i.e., the decision problem) is unsolvable. Moreover,
even if we restrict the language practically to the point of
triviality by eliminating the quantifiers, the decision problem,
though now solvable, does not appear to be solvable in any-
where near reasonable time.'' It is important to realize that this
is not a property of particular algorithms that people have
looked at but of the problem itself: there cannot be an algorithm
that does the theorem proving correctly in a reasonable amount
of time. This bodes poorly, to say the least, for a service that
is supposed to be only a part of a larger knowledge-based
system.

One aspect of these intractability results that should be men-

__tioned, however, is that they deal with the worst case behaviour

f algorithms. In practice, a given theorem-proving algorithm
may work quite well. In other words, it might be the case that
for a wide range of questions, the program behaves properly,
even though it can be shown that there will always be short
questions whose answers will not be returned for a very long
time, if at all.

How serious is the problem, then? To a large extent this
depends on the kind of question you would like to ask of a KR
subsystem. The worst case prospect might be perfectly toler-
able if you are interested in a mathematical application and the
kind of question you ask is an open problem in mathematics.
Provided progress is being made, you might be quite willing to
stop and redirect the theorem prover after a few months if it
seems to be thrashing. Never mind worst case behaviour; this
might be the only case you are interested in.

"*The assumption here is that the semantics of FOL specify in the
usual way what an interpretation is and under what conditions it will
satisfy a sentence.

" Technically. the problem is now co-NP-complete. meaning that
it is strongly believed to be computationally intractable.

But imagine, on the other hand. a robot that needs to know
about its external world (such_as whether or not it is raining
outside or where its umbrella is) before it can act. If this robot
has to call a KR system utility as a subroutine, the worst case
prospect is much more serious. Bogging down on a logically
difficult but low-level subgoal and being unable to continue
without human intervention is clearly an unreasonabie form of
behaviour for something aspiring to intelligence.

Not that *‘on the average™ the robot might not do alright. The
trouble is that nobody seems to be able to characterize what an
“average” case might be like."* As responsible computer sci-
entists, we should not be providing a general inferential service
if all that we can say about it is that by and large it will probably
work satisfactorily."

It the KR service is going to be used as a utility and is not
available for introspection or control. then it had better be
dependable both in terms of its correctness and the resources it
consumes. Unfortunately, this scems to rule out a service based
on full theorem proving (in full first-order logic).

3.3. Two pseudosolutions

There are at least two fairly obvious ways to minimize the
intractability problem. The first is to push the computational
barrier as far back as possible. Research in automatic theorem
proving has concentrated on techniques for avoiding redun-
dancies and speeding up certain operations in theorem provers.
Significant progress has been achieved here, allowing open
questions in mathematics to be answered (Winker 1982; Wos
et al. 1984). Along similar lines, VLSI and parallel architec-
tural support stands to improve the performance of theorem
provers at least as much as it would any search program.

The second way to make theorem provers more usable is to
relax our notion of correctness. A very simple way of doing this
is to make a theorem-proving program always return an answer
after a certain amount of time." If it has been unable to prove
either that a sentence or its negation is implicit in the KB, it
could assume that it was independent of the KB and answer
unknown (or maybe reassess the importance of the question and
try again). This form of error (i.e., one introduced by an in-
complete theorem prover) is not nearly as serious as returning
a yes for a no, and is obviously preferrable to an answer that
neveg arrives. This is of course especially true if the program
uses its resources wisely, in conjunction with the first sug-
gestion above.

"*This seems to account more than anything for the fact that there
are so few average casc results regarding decidability.

* ""As we noted carlier, not all KR-related research is aimed at
providing an inferential component for a larger, knowledge-based
system. Work in a similar spirit sometimes has as its goal the realistic
modeling of cognitive agents, imperfections and all. While the central
concern of this paper is directed less at such rescarch than at that KR
work intent on providing a KR service, we believe that this issue of
carcfully and precisely characterizing the KR system holds equally
well for both. To be informative, cognitive models must be correct and
timely, no matter what they are modeling. There is a big difference
between a precise and predictable model of (say) sloppy reasoning,
and a sloppy model of perfect (or other) reasoning. If the model itself
is not well understood or may not even be working properly, it is not
going 10 inform us about anything. Thus, while the system being
modeled (e.g., a human) may only by and large work satisfactorily,”
the model must work reliably, predictably, and completely, or it will
not do its job.

"“The resource limitation here should obviously be a function of
how important it might be to answer the question either quickly or
correctly.

82 COMPUT INTELL. VOL. 3. 1987

However, from the point of view of KR, both of these are
only pscudosolutions. Clearly, the first alone does not help us
guarantee anything about an inferential service. The second. on
the other hand. might allow us to guarantce an answer within
certain time bounds. but would make it very hard for us to tell
how seriously to take that answer. If we think of the KR service
as reasoning according to a certain logic, then the logic being
followed is immensely complicated (compared to that of FOL)
when resource limitations are present. Indeed, the whole notion
of the KR system calculating what is implicit in the KB (which
was our original goal) would have to be replaced by some other
notion that went beyond the truth theory of the representation
language to include the inferential power of a particular
theorem-proving program. In a nutshell. we can guarantee
getting an answer, but not necessarily the one we want.

One final observation about this intractability is that it is not
a problem that is due to the formalization of knowledge in
FOL. If we assume that the goal of our KR service is to
calculate what is implicit in the KB, then as long as the truth
theory of our representation language is upward-compatible
with that of FOL. we will run into the same problem. In
“icular, using English (or any other natural or artificial lan-
zuage) as our representation language does not avoid the prob-
lem as long as we can express in it at least what FOL allows us
to express.

4. Expressiveness and tractability,

It appears that we have run into a serious difficulty in trying
to develop a KR service that calculates what is implicit in a KB
and yet does so in a reasonable amount of time. One option we
have not yet considered, however, is to /imit what can be in the
KB so that its implications are more manageable computation-
ally. Indeed. as we will demonstrate in this section, much of
the research in KR can be construed as trading expressiveness
in a representation language for a more tractable form of infer-
ence. Moreover, unlike the restricted dialects of FOL typical of
those analyzed in the logic and computer science literatures
{e.g.. in terms of nestings of quantifiers), the languages consid-
ered here have at least proven themselves quite useful in prac-
tice, however contrived they may appear on the surface.

. Incomplete knowledge

To see where this tradeoff between expressiveness and trac-
tability originates. we have to look at the use of the expressive
power of FOL in KR and how it differs from its use in mathe-
matics.

In the study of mathematical foundations, the main use of
FOL is in the formalization of infinite collections of entities.
So, for example. we have first-order number and set theories
that use quantificrs to range over these classes, and conditionals
1o state what propertics these entities have. This is exactly how
Frege intended his formalism to be used.

In KR, on the other hand, the domains being characterized
are usually finite. The power of FOL is used not so much to
deal with infinities. but to deal with incomplete knowledge
(Moore 1982: Levesque 1982). Consider the kind of facts'* that
might be represented using FOL:

"“The use of FOL to capture terminology or laws is somewhat
different. Sce Brachman and Levesque (1982) for details.

1. T Student(john).
This sentence says that John is not a student without saying
what he 1s.

2. Parent(sue bill) \/ Parent(sue,george).
This sentence says that either Bill or George is a parent of Sue,
but does not specify which.

3. 3 Cousingbill, x) A Male(x).
This sentence says that Bill has at least one male cousin but
does not say who that cousin is.

4. Vx Friend(george, x) D 3y Child(x, v).
This sentence says that all of George's friends have children
without saying who those friends or their children are or even
if there are any.

The main feature of these examples is that FOL is not used to
capture complex details about the domain, but to avoid having
to represent details that may not be known. The expressive
power of FOL determines not so much what can be said, but
what can be left unsaid.

For a system that has to be able to acquire knowledge in a
piecemeal fashion, there may be no alternative to using all of
FOL. But if we can restrict the kind of the incompleteness that
has to be dealt with, we can also avoid having to use the full
expressiveness of FOL. This, in turn, might lead to a more
manageable inference procedure.

The last pseudosolution to the tractability problem, then, is
to restrict the logical form of the KB by controlling the incom-
pleteness of the knowedge represented. This is still a pseudo-
solution, of course. Indeed, provably, there cannot be a real
solution to the problem. But this one has the distinct advantage
of allowing us to calculate exactly the picture of the world
implied by the KB, precisely what a KR service was supposed
to do. In what follows, we will show how restricting the logical
form of a KB can lead to very specialized, tractable forms of
inference.'®

4.2. Database form

The most obvious type of restriction to the form of a KB is
what might be called database form. The idea is to restrict a KB
so that it can only contain the kinds of information that can be
represented in a standard database. Consider, for example, a
very simple database that talks about university courses. It
might contain a relation (or record type or whatever) like

COURSE
D NAME DEPT ENROLL- INSTRUCTOR
MENT

csc248 Programming Computer 42 S. I. Hurtubise
Languages Science

matl00 History of Mathematics 137 R. Cumberbatch
Mathematics)

csc373 Anificial Computer 853 T. Slothrop
Intelligence Science

'* As we have mentioned. there are other ways of dealing with the
tradeoff, but the tactic of limiting the form of the representation seems
to account for the vast majority of current practice. Indeed, the only
style of representation proven so far to scale up to realistic sizes—
database technology —falls under this account,

LEVESQUE AND BRACHMAN 83

If we had to characterize in FOL the information that this relation contained, we could use a collection of function-free

atomic sentences like!’

COURSE(csc248) DEPT(csc248.ComputerScience)
COURSE(mat100) DEPT(mat100.Mathematics)

In other words, the tabular database format characterizes
exactly the positive instances of the various predicates. But
more to the point. since our list of FOL sentences never ends
up with ones like

DEPT(mat100,Mathematics) \/ DEPT(mat!00.History).

the range of uncertainty that we arc dealing with is quite
limited.

There is, however, additional information contained in the
database not captured in the simple FOL translation. To see
this, consider, for instance, how we might try to determine the
answer to the question:

~tHow many courses are offered by the Computer Science
Department?

The knowledge expressed by the above collection of FOL sen-
tences is insufficient to answer this question; nothing about our
set of atomic sentences implies that computer science has at
least two courses (since ¢sc373 and c¢sc248 could be names of
the same individual), and nothing implies that Tt has at most
two courses (since there could be courses other than those
mentioned in the list of sentences). On the other hand, from a
database point of view, we could apparently successfully an-
swer our question using our miniature database by phrasing it
something like

Count ¢ in COURSE where ¢.DEPT = ComputerScience;

this yields the definitive answer, “2”. The crucial difference
here, between failing to answer the question at all and an-
swering it definitively, is that we have actually asked rwo
different questions. The formal query addressed to the database
must be understood as

How many tuples in the COURSE relation have Computer
" Science in their DEPT field?

This is a question not about the world being modelled at all, but
about the dara itself. In other words, the database retrieval
version of the question asks about the structures in the database
itself, and not about what these structures represent.'®

To be able to reinterpret the database query as the intuitive
question originally posed about courses and departments

"This is not the only way to characterize this information. For
example, we could treat the ficld names as function symbols or use 1D
as an additional rclation or function symbol. Also. for thc sake of
simplicity, we arc ignoring here integrity constraints (saying. for
example, that cach course has a unique enrollment). which may con-
tain quantificational and other logical operations, but typically are
only used to verify the consistency of the database, not to infer new
facts. None of these decisions affect the conclusions we will draw
below.,

** The hallmark. it would appear, of conventional database manage-
ment is that its practitioners take their role to be providing users access
to the data, rather than using the data to answer questions about the
world. The difference between the two points of view is especially
evident when the database is very incomplete (Levesque 1984a).

ENROLLMENT(csc248.42)

(rather than as one about tuples and fields), we must account
for additional information taking us beyond the stored data
itself. In particular, we need FOL sentences of the form

o

for distinct constants ¢, and ¢,, stating that each constant repre-
sents a unique individual. In addition, for each predicate, we
need a sentence similar in form to

Vx{COURSE(x) D x = csc248 \/...\/ x = mat100]

saying that the only instances of the predicate are the ones
named explicitly." If we now consider a KB consisting of all
of the sentences in FOL we have listed so far, a KR system
could, in fact, conclude that there were exactly two computer
science courses, just like its database management counterpart.
We have included in the imagined KB all of the information,
both explicit and implicit, contained in the database.

One important property of a KB in this final form is that it
is much easier to use than a general first-order KB. In particu-
lar, since the first part of the KB (the atomic sentences) does
not use negation, disjunction, or existential quantifications, we
know the exact instances of every predicate of interest in the
language. There is no incompleteness in our knowledge at all.
Because of this, inference reduces to calculation. To find out
how many courses there are, all we have to do is to count how
many appropriate tuples appear in the COURSE relation. We
do not, for instance, have to reason by cases or by con-
tradiction, as we would have to in the more general case. For
example, if we also knew that either csc148 or csc149 or both
were computer science courses but that no computer science
course other than ¢sc373 had an odd identification number, we
could still determine that there were three courses, but not by
simply counting. But a KB in database form does not allow us
to express this kind of uncertainty and, because of this expres-
sive limitation, the KR service is much more tractable. Specif-
ically, we can represent what is known about the world using
just these sets of tuples, exactly like a standard database sys-
tem. From this perspective, a database is a knowledge base
whose limited form permits a very special form of inference.

This limitation on the logical form of a KB has other inter-
esting features. Essentially, what it amounts to is making sure
that there is very close structural correspondence between the
(explicit) KB and the domain of interest: For each entity in the
domain, there is a unique representational object that stands for
it; for each relationship that it participates in, there is a tuple in
the KB that corresponds to it. In a very real sense, the KB is
an analogue of the domain of interest, not so different from
other analogues such as maps or physical models. The main
advantage of having such an analogue is that it can be used
directly to answer questions about the domain. That is, the
calculations on the model itself can play the role of more
general reasoning techniques much the way arithmetic can re-

' This is onc form of what has been called the closed-world as-
sumption (Reiter 1978b).

84 COMPUT INTELL. VOL. }, 1987

place reasoning with Peano’s axioms. The disadvantage of an
analogue, however, should also be clear: Within a certain de-
scriptive language, it does not allow anything to be left unsaid
about the domain.™ In this sense. an analogue representation
can be viewed as a special case of a propositional one where the
information it contains is relatively complete.

4.3, Logic-program form

The second restriction on the form of a KB we will consider
15 a generalization of the previous one that is found in programs
writien in PROLOG. PLANNER., many production systems, and
refated fanguages. A KB in logic-program form also has an
explicit and an implicit part. The explicit KB in a proLOG
program is a collection of first-order sentences (called Hom
sentences) of the form

Vi o [Py AL AP, D P

where m = 0 and cach P, is atomic. In the case where m = 0
and the arguments to the predicates are all constants, the logic-
program form coincides with the database form. Otherwise,
because of the possible nesting of functions. the set of relevant
te~s (whose technical name is the Herbrand universe) is much
lu. .<r and may be infinite.

As in the database case, if we were only interested in the
universe of terms, the explicit KB would be sufficient. How-
ever, 1o understand the KB as being about the world, but in a
way that is compatible with the answers provided by a PROLOG
processor, we again have to include additional facts in an
implicit KB. In this case, the implicit KB is normally infinite
since it must contain a set of sentences of the form (45/,# 1), for
any two distinct terms in the Herbrand universe. As in the
database case, it must also contain a version of the closed-
world assumption which is now a set containing the negation
of every ground atomic sentence not implied by the Horn
sentences in the explicit KB.

The net result of these restrictions is a KB that once again has
complete knowledge of the world (within a given language),
but this time, may require inference to answer questions.?' The
reasoning in this case, is the execution of the logic program.
For example, given an explicit PROLOG KB consisting of

parent(bill,mary).
narent(bill,sam).
sther(X.Y) :- parent(X.Y). female(Y).
female{mary).

we know exactly who the mother of Bill is, but only after
having executed the program.

In one sense, the logic-program form does not provide any
computational advantage to a reasoning system since deter-

*The same is true for the standard analogues. One of the things a
map docs not allow you to say, for cxample, is that a river passcs
through onc of two widely separated towns, without specifying which.
Similarly, a plastic model of a ship cannot tell us that the ship it
represents docs not have two smokestacks, without also telling us how
many it does have. This is not to say that there is no uncertainty
associated with an analogue. but that this uncertainty is due to the
coarseness of the analogue (e.g.. how carefully the map is drawn)
rather than to its content.

' Notice that it is impossible to state in a KB of this form that
(P \/ g) is true without stating which, or that 3x P(x) is true without
saying what that x is. However, sce the comments below regarding the
usc of encodings.

mining what is in the implicit KB is, in general, undecidable.?
On the other hand. the form is much more manageable than in
the general case since the necessary inference can be split very
nicely into two components: a retrieval component that extracts
(atomic) facts from a database by pattern-matching and a
search component that tries to use the nonatomic Hom sen-
tences to complete the inference. In actual systems like PROLOG
and PLANNER, morcover, the search component is partially un-
der user control, giving him the ability to incorporate some of -
the kinds of procedural knowledge (or combinatoric advice)
referred to carlier. The only purely automatic inference is the
retrieval component.

This suggests a different way of looking at the inferential
service provided by a KR system (without even taking into
account the logical form of the KB). Instead of automatically
performing the full deduction necessary to answer questions, a
KR system could manage a limited form of inference and leave
to the rest of the knowledge-based system (or to the user) the
responsibility of intelligently completing the inference. As sug-
gested in Frisch and Allen (1982), the idea is to take the
“muscle” out of the automatic component and leave the diffi-
cult part of reasoning as a problem that the overail system can
(meta-)reason about and plan to solve (Genesereth 1983; Smith
and Genesereth 1985).

While this may be a promising approach, especially for a KB
of a fully general logical form, it does have its problems. First
of all, it is far from clear what primitives should be available
to a program to extend the reasoning performed by the KR
subsystem. It is not as if it were a simple matter to generalize
the meager PROLOG control facilities to handle a general theo-
rem prover, for example.” The search space in this case seems
to be much more complex.

Moreover. it is not clear what the KR service itself should
be. If all a KR utility does is perform explicit retrieval over
sentences in a KB, it would not be much help. For example, if
asked about (p \/ ¢), it would fail if it only had {g \/ p) in the
KB. What we really need is an automatic inferential service
that lies somewhere between simple retrieval and fuil logical
inference. But finding such a service that can be motivated
semantically (the way logical deduction is) and defined inde-
pendenq‘y of how any program actually operates is a nontrivial
matter, though we have taken some steps towards this in
Levesque (1984¢) (and see Patel-Schneider (1985, 1986)).

4.4. Semantic-network form

Semantic networks and similar hierarchic representational
frameworks have been in common use in Al for perhaps 20
years. The form of such representations has been apparently
dictated by need and a somewhat natural fit to problems under
consideration in the field. But, as we shall see next, semantic
networks can also be viewed as making a trade of expressive
power for a kind of computational tractability.

A first observation about a KB in what we will call
“semantic-network form™ is that it contains only unary and
binary predicates. For example, instead of representing the fact
that John's grade in cs100 was 85 by

23]

n other words. determining if a ground atomic sentence is im-
plied by a collection of Horn sentences (containing function symbols)
is undecidable. This is not true, however, if the Herbrand universe is
finite, the case that arises almost exclusively in the type of production
system uscd in expert systems. In fact, in the propositional case, it is
not hard to prove that the implicit KB can be calculated in linear time.
*'Though see Stickel (1984) for some ideas in this direction.

—

LEVESQUE AND BRACHMAN 85

Grade(john, cs100, 85)

we would postulate the cxistence of objects called
“grade-assignments™ and represent the fact about John in terms
of a particular grade-assignment g-al as

Grade-assignment(g-al) /A Student(g-al.john)
A\ Course(g-al.cs100) A Mark(g-al,85)

This part of a KB in semantic-network form is also in database
form: a collection of function-free ground atoms, sentences
stating the uniqueness of constants, and the closed-world as-
sumption.

The main feature of a semantic net (and of the frame form
below), however, is not how individuals are handled, but the
treatment of the (“generic™) predicates (the unary ones we will
call vpes. the binary ones we will call arrributes™). First of all,
the types are organized into a taxonomy, which, for our pur-
poses, can be represented by a set of sentences of the form™

Yx[B(x) D A(x)]

Thus the basic skeleton of the taxonomy is provided by a

versally quantified conditional, or “is-a™ connection. For
example, “Student IS-A Person™ would amount to a statement
that all Students are Persons, or

V.x[Student(x) D Person(x)]

The second kind of sentence in the generic KB places a con-
straint on an attribute as it applies to instances of a type:

Vx[B(x) D Ay(R(x,y) /A V(y))] v
ar
Yx[B(x) D R(x,)]

This latter form corresponds to “value restriction™ in KL-ONE
and other languages. For example, equating Graduate with
“Person with an Undergraduate Degree” would be the equiv-
alent of

Vx[Graduate(x) D 3y(Degree(x, y)
/\ UndergraduateDegree(y))]

This completes the semantic-network form.
—ne property of a KB in this form is that it can be represented
. 4 labelled directed graph (and displayed in the usual way).
The nodes are cither constants or types. and the edges are either
labelled with an attribute or with the special label is-a.*’ The
significance of this graphical representation is that it allows
centain Kinds of inference to be performed by simple graph-
searching techniques. For example, to find out if a particular
individual has a certain attribute, it is sufficient to search from

*We use “type” and “attribute” here for consistency. In some
systems (like KL-ONE (Brachman and Schmolze 1985)) the former arc
called “concepts” and the latter “roles."”

*See Brachman (1983) for a discussion of some of the subtletics
involved here.

*There are other forms possible for this constraint. For example,
we might want to say that every R rather than some R is a V. See also
Hayes (1979). For the variant we have here, however, note that the
KB is no longer in logic-program form.

source and traget are constants or types. For example, from a constant
¢ to a type B, is-a means 8(c), but from a type B to a type A, it is a
taxonomic sentence (again, see Brachman (1983)).

*"Note that the interpretation of an edge depends on whether it?‘

—al

the constant representing that individual, up is-a links, for a
node having an edge labelled with the attribute. By placing the
attribute as high as possible in the taxonomy, all individuals
below it can inherir the property. Computationally, any mech-
anism that speeds up this type of graph-searching can be used
to improve the performance of inference in a KB of this form.

In addition, the graph representation suggests different kinds
of inference that are based more directly on the structure of the
KB than on its logical content. For example, we can ask how
two nodes are related and answer by finding a path in the graph
between them. Given. for instance, Clyde the elephant and
Jimmy Carter, we could end up with an answer saying that
Clyde is an clephant and that the favourite food of elephants is
peanuts which is also the major product of a farm owned by
Jimmy Carter. A typical method of producing this answer
would be to perform a “spreading activation™ search beginning
at the nodes for Clyde and Jimmy. Obviously, this form of
question would be very difficult to answer for a KB that was not
in semantic-network form.*

For better or worse, the appeal of the graphical nature of
semantic nets has led to forms of reasoning (such as default
reasoning (Reiter 19784)) that do not fall into standard logical
categories and are not yet very well understood (Etherington

and Reiter 1983).” This is a case of a representational notation °

taking on a life of its own and motivating a completely different
style of use not necessarily grounded in a truth theory. It is
unfortunately much easier to develop-an algorithm that appears
to reason over structures of a certain kind than to justify its
reasoning by explaining what the structures are saying about
the world.

This is not to say that defaults are not a crucial part of our
knowledge about the world. Indeed, the ability to abandon a
troublesome or unsuccessful line of reasoning in favour of a
default answer intuitively seems to be a fundamental way of
coping with incomplete knowledge in the presence of resource
limitations. The problem is to make this intuition precise. Para-
doxically, the best formal accounts we have of defaults (such
as Reiter (1980)) would claim that reasoning with them is even
more difficult than reasoning without them, so research remains
to be done (but see Lifschitz (1985)).

One Tinal observation concerns the elimination of higher
arity predicates in semantic networks. It seems to be fairly
commonplace to try to sidestep a certain generality of logical
form by introducing special representational objects into the
domain. In the example above, a special “grade-assignment”
object took the place of a 3-place predicate. Another example
is the use of encodings of sentences as a way of providing (what
appears to be) a completely extensional version of modal logic
(Moore 1980).% Not that exactly the same expressiveness is
preserved in these cases; but what is preserved is still fairly

*Quillian (1968) proposed a “semantic intersection™ approach to
answering guestions in his original work on semantic nets. See also
Collins and Loftus (1975) for follow-up work on the same topic.

** A simple example of a default would be to make elephant have
the colour grey but to allow things below clephant (such as albino-
elephant) to be linked to a different colour value. Determination of the
colour of an individual would involve searching up for a value and
stopping when the first one is found, allowing it to preempt any higher
ones. Sec also Brachman (1985) and Touretzky (1986).

“ Indeed, some modern semantic network formalisms (such as
Shapiro (1979)) actually include all of FOL by encoding sentences as
terms.

_\

TR

e

36 COMPUT INTELL. VOL. 3, 1987

mysterious and descrves serious investigation, especially given
its potential impact on the tractability of inference.

4.5. Frame-description form

The final form we will consider, the frame-description form,
is mainly an elaboration of the scmantic-network one. The
emphasis. in this case. is on the structure of types themselves
(usually called frames). particularly in terms of their attributes
(called slots). Typically, the kind of detail involved with the
specification of attributes includes

1. values. stating exactly what the attribute of an instance
should be. Alternatively, the value may be just a defauls. in
which case an individual inherits the value provided he does not
override it.

2. restrictions, stating what constraints must be satisfied by
attribute values. These can be value restrictions, specified by a
type that attribute values should be instances of, or number
restrictions, specified in terms of a minimum and a maximum
number of attribute values.

3. attached procedures, providing procedural advice on how

~he attribute should be used. An if-needed procedure says how

calculate attribute values if nonc have been specified; an

if-added procedure says what should be done when a new value
1s discovered.

Like semantic networks, frame languages tend to take liberties
with logical form and the developers of these languages have
been notoriously lax in characterizing their Yruth theories
(Brachman 1985; Etherington and Reiter 1983; Hayes 1979).
What we can do, however, is restrict ourselyes’to a non-
controversial subset of a frame language that supports descrip-
tions of the following form:

(Student
with a dept is computer-science and
with = 3 enrolled-course is a
(Graduate-Course
with a dept is a Engineering-Department))

This is intended to be a structured type that describes computer

science students taking at least three graduate courses in de-

partments within engineering. If this type had a name (say A),

_we could express the type in FOL by a “meaning postulate™ of
: form

Vx A(x) = [Student(x) /\ dept(x, computer-science) A\
Ivinn #Ny #3 Ay #p A
enrolled-course(x, v;) /A Graduate-Course(y,) N\
J:z(dept(y,, z) /\ Engineering-Department(z)) N\
enrolled-course(x. v;) /\ Graduate-Course(y.) N\
3:z(dept(y, 2) /\ Engineering-Department(z)) A
enrolied-course(x, y3) N Graduate-Course (yy) N
3=(dept(yy, 2) N Engineering-Department(:)))]

Similarly, it should be clear how to state equally clumsily® in
FOL that an individual is an instance of this type.

One interesting property of these structured types is that we
do not have to state explicitly when one of them is below
another in the taxonomy. The descriptions themselves im-
plicitly define a taxonomy of subsumption, where type A sub-

" What makes these sentences especially awkward in FOL is the
number restrictions. For example. the sentence “There are a hundred
hillion stars in the Milky Way Galaxy” would be translated into an
FOL sentence with about 10°* conjuncts.

sumes type 8 if, by virtue of the form of A and B, every
instance of B must be an instance of A. For example, without
any world knowledge, we can determine that the type Person
subsumes

(Person with every male friend is a Doctor)
which in turn subsumes

(Person with every friend is a
(Doctor with a specialty is surgery))

Similarly,
(Person with =2 children)
subsumes

(Person with =3 male children).

Also. we might say that two types are disjoint if no instance of
one can be an instance of the other. An example of disjoint

types is

(Person with =3 young children)
and

(Person with =2 children).

Analytic relationships like subsumption and disjointness are
properties of structured types that are not available in a seman-
tic net where all of the types are atomic.

There are very good reasons to be interested in these analytic
relationships (Brachman and Levesque 1982). In KRYPTON
(Brachman et al. 1983, 1985), a full first-order KB is used to
represent facts about the world. However, subsumption and
disjointness information is made available without having to
enlarge the KB with a collection of meaning postulates repre-
senting the structure of the types, but rather via a separate
“terminological component” based on a language in frame-
description form. This is significant because, while sub-
sumption and disjointness can be defined in terms of logical
implication,” there are good special-purpose algorithms for
calculating these relationships in KRYPTON’s frame-description
language.” Again. because the logical form is sufficiently con-
strained, the required inference can be much more tractable.

4.6. A detailed example of the tradeoff

As it turns out, frame-description languages and the sub-
sumption inference provide a rich domain for studying the
tradeoff between cxpressiveness and tractability. To illustrate
this, we will consider in some detail a simple frame-description
language, which we will call F£. ¥

F¥ has the following grammar:

1= (atom)
| (AND (nype,) .. . (rvpe,))
| (ALL (autribute) {rvpe))
| (SOME (aitribute))
{attribute) ::= {(atom)
| (RESTRICT (attribute) (rype))

(eype)

" Specifically, type A subsumes type B iff the meaning postulates
for A and 8 logically imply the sentence. Vx[B(x) D A(x)].

"In particular, see the next section. Also, sce Stickel (1985) for
details on speedups achicved in this fashion.

" Please note that the style of this scction constitutes a significant
departure from that of previous sections, presenting enough technical
detail 1o make the point truly concrete.

LEVESQUE AND BRACHMAN 87

Intuitively, we think of types in FIE as representing (sets of)
individuals, and autributes as representing relations between
individuals.

While the linear syntax is a bit unorthodox, Ff is actually
a distillation of the operators in typical frame languages; in
particular. it is the frame-description kernel derived from years
of expericnce with languages like KL-ONE (Brachman and
Schmolze 1985) and kryprON (Brachman and Levesque 1982;
Brachman et al. 1983,.1985):

+ Atoms are the names of primitive (undefined) types.

* AND constructions represent conjoined types. so. for ex-
ample, (AND adult male person) would represent the concept
of something that was at the same time an adult, a male, and
a person (i.e.. a man). In general. x is an (AND 1,) iff
xisanand arand ... and a¢,. This allows us to put several
properties (i.e., supertypes or attribute restrictions) together in
the definition of a type.

* The ALL construct provides a type-restriction on the values
of an attribute (x is an (ALL a 1) iff each a of x is a). Thus
(ALL child doctor) corresponds to the concept of something all

—-of whose children are doctors. It is a way to restrict the value
of a slot at a frame (a “value restriction™ in KL-ONE).

* The SOME operator guarantees that there will be at least
one value for the attribute named (x is a (SOME a) iff x has at
least one a). For instance, (AND person (SOME child)) would
represent the concept of a parent. This is a way to introduce a
slot at a frame. v

Note that in the more common frame languages, the ALL and
SOME are not broken out as separate operators. but instead,
either every attribute restriction is considered to have both
universal and existential import, or exclusively one or the other
(or it may even be left unspecified).” Our language allows for
arbitrary numbers of attribute values, and allows the SOME
and ALL restrictions to be specified independently.

* Finally, the RESTRICT construct accounts for attributes
constrained by the types of their values, e.g., (RESTRICT
child male) for a child who is a male, that is, a son (in general,
yvis a (RESTRICT a r) of x iff vy is an a of x and y is a 1).

The F£ language can be considered a simplified (though

~less readable) version of the frame-based language used in the

previous section. So, for example, where we would previously
have written a description like

(person with every male friend is a
(doctor with a specialty))

the equivalent F£ type is written as

(AND person (ALL (RESTRICT friend male)
(AND doctor (SOME specialty))))

To specify exactly what these constructs mean, we now
briefly define a straightforward extensional semantics for F£.
As a result, we will provide a precise definition of sub-
sumption. This will be done as follows: imagine that associated
with each description is the set of individuals (individuals for

" Sec Hayes (1979) for some further discussion of the import of
languages like KRL. As it turns out, the universal/existential dis-
tinction is most often moot, because most frame languages allow only
single-valued slots. Thus the slot's meaning is reduced to a simple
predication on a single-valued function (e.g., the slot/value pair
age:integer means integer(uge(x))).

types, pairs of individuals for attributes) that it describes. Call
that set the extension of the description. Notice that by virtue
of the structure of descriptions, their extensions are not inde-
pendent (for example, the extension of (AND ¢, 1,) should be
the intersection of those of #; and 1,). In general, the structures
of two descriptions can imply that the extension of one is
always a superset of the extension of the other. In that case, we
will say that the first subsumes the second (so. in the case just
mentioned, f, would be said to subsume (AND 1, 1,)).

More formally, let 2 be any set and ‘€ be any function from
types to subsets of & and attributes to subsets of the Cartesian
product, & X . So

ElCc @
and
Ela] T Y X W

for any type ¢

for any attribute a

We will say that € is an extension function over 4 if and only
if
.EI(AND ¢,...1,)] = N,E[1,]
JEALLan)) = {x ED|Vyif(x,y) EEa] theny € E[1]}
. €|(SOME a)] = {x € Z|3¥[(x,¥) € §[a]l}
. €[(RESTRICT a 1)] = {{x.yv) € D x G|

(x.y) € €la] and y € €[1]}

Finally, for any two types f, and ,, we can say that f is
subsumed by 1, if and only if for any set 9 and any extension
function € over @, €[t,] C é[4]). That is, one type is subsumed
by a second type when all instances of the first—in all
extensions—are also instances of the second. From a semantic
point of view, subsumption dictates a kind of necessary set
inclusion.

Given a precise definition of subsumption, we can now con-
sider algorithms for calculating subsumption between descrip-
tions. Intuitively, this seems to present no real problems. To
determine if s subsumes ¢, what we have to do is make sure that
each component of s is “implied” by some component (or
componens) of r. Moreover, the type of “implication” we need
should be fairly simple since £ has neither a negation nor a
disjunction operator.

Ynfortunately, such intuitions can be nastily out of line. In
particular, let us consider a slight variant of #%—call it #£~.
FX£~ includes all of F£ except for the RESTRICT operator.
On the surface, the difference between F£~ and F£ seems
expressively minor.* But it turns out that it is computationally
-very significant. In particular, we have found an O(n?) algo-
rithm for determining subsumption in £~ but have proven
that the same problem for FX£ is intractuble. In the rest of this
section, we sketch the form of our algorithm for £~ and the
proof that subsumption for £ is as hard as testing for propo-
sitional tautologies, and therefore most likely unsolvable in
polynomial time. A more formal version of the algorithm and
the full proofs can be found in the Appendix.

e —

4.7. Subsumption algorithm for £~
I. Flatten both arguments s and 1 by removing all nested

1t is the case, however, that there are concepts that can be ex-
pressed in FX£ that cannot be expressed in F¥, such as the con-
cept of a person with at least one son and at least one daughter:
(AND (SOME (RESTRICT child male)) (SOME (RESTRICT child
female))). In FZ£~ all attributes are primitive, so sons and daughters
cannot play the same role (child) and yet be distinguished by
their types.

88 COMPUT INTELL. VOL. 3, 1987

AND operators. So, for example,

(AND x (AND v z) w) becomes (AND x vz w)

2. Collect all arguments to an ALL for a given attnibute. For
example,

(AND (ALL a (AND 1 v w)) x (ALL a (AND ¥ 2)))
becomes
(AND x (ALL a (AND'u v w y z)))

3. Assuming 5 is now (AND s,...s,) and 1 is (AND
4. .. t,), then return T iff for each s,,
(a) if s, is an atom or a SOME, then one of the ¢, is s..
(b if 5, is (ALL d x). then one of the ¢ is (ALL a v), where x
subsumes v, calculated recursively.

This algorithm can be shown to compute subsumption cor-
rectly (see Appendix A.2.2, Lemma 10). For the purposes of
this paper. the main property of the algorithm that we are
interested in is that it can be shown to calculate subsumption for
FX£ in O(n’) time (where n is the length of the longest argu-
ment, say). This can be shown roughly as follows (see Appen-

A.2.1, Lemma 9 for details): Step | can be done in linear
time. Step 2 might require a traversal of the expression for each
of its elements, and Step 3 might require a traversal of ¢ for each
element of s, but both of these can be done in O(n*) time.

We now turn our attention to the subsumption problem for
full F£. The proof that subsumption of descriptigns in FZ£ is
tntractable is based on a correspondence between this problem
and the problem of deciding whether a sentence of proposi-
tional logic is implied by another. Specifically, we define a
mapping w (see Appendix A.1) from propositional sentences in
conjunctive normal form to descriptions in %&£ that has the
property that for any two sentences a and 8, o logically implies
B iff w|a] is subsumed by w[B]. = itself can be calculated
quickly.

What this mapping provides is a way of answering questions
of implication by first mapping the two sentences into descrip-
tions in F&E and then seeing if one is subsumed by the
other. Moreover, because 7 can be calculated efficiently, any
good algorithm for subsumption becomes a good one for
implication.
~The key observation here, however, is that there can be no
- -d algorithm for implication. To see this, note that a sen-
tence implies (p /\ 7Ip) just in case it is not satisfiable. But
determining the satisfiability of a sentence in this form is NP-
complete (Cook 1971). Therefore, a special case of the impli-
cation problem (where the second argument is (p /\ 7p)) is the
compiement of an NP-complete one. The correspondence be-
tween implication and subsumption, then, leads to the obser-
vation that subsumption for FZ£ is co-NP hard. In other words,
since a good algorithm for subsumption would lead o a good
one for implication, subsumption over descriptions in F£ is
intractable.”

5. Conclusions and morals

In this final section, we step back from the details of the
specific representational formalisms we have examined and
attempt to draw a few conclusions.

An important observation about these formalisms is that we

7 As mentioned in Section. 3.2, the co-NP-complete problems are
strongly believed to be unsolvable in polynomial time.

cannot really say that one is berrer than any other: they simply
take different positions on the tradeoff between expressiveness
and tractability. For example, tull FOL is both more expres-
sive and less appealing computationally than a language in
semantic-net form. Nor is it reasonable to say that expressive-
ness is the pnmary issue and that the other is “merely™ one of
efficiency. In fact, we are not really talking about cfficiency
here at all; that, presumably., is an issue of algorithm and data
structure, concerns of the Symbol Level (Newell 1981). The
tractability concern we have here is much deeper and involves
whether or not it makes sense to even think of the language as
computationally based.

From the point of view of those doing research in KR, this
has a very important consequence: We should continue to de-
sign and examine representation languages, ¢ven when these
languages can be viewed as special cases of FOL: What really
counts is for these special cases to be interesting both from the
point of view of what they can represent, and from the point
of view of the reasoning strategics they permit. All of the
formalisms we have examined above satisfy these two require-
ments. To dismiss a language as just a subset of FOL is proba-
bly as misleading as dismissing the notion of a context-free
grammar as just a special case of a context-sensitive one.

What truth in advertising does require, however, is that these
special cases of FOL be identified as such. Apart from allowing
a systematic comparison of representation languages (as posi-
tions on the tradeoff), this might also encourage us to consider
systems that use more than one sublanguage and reasoning
mechanism (as suggested for equality in Nelson and Oppen
(1979)). The KRYPTON language (Brachman er al. 1983, 1985),
for example, includes all of FOL and a frame-description lan-
guage. To do the necessary reasoning. the system contains both
a theorem prover and a description subsumption mechanism,
even though the former could do the job of the latter’® (but
much less efficiently). The trick with these hvbrid systems is to
factor the reasoning task so that the specialists are able to
cooperate and apply their optimized algorithms without inter-
fering with each other.

These considerations for designers of representation lan-
guages apply in a similar way to those interested in populating
a KB with a theory of some sort. A good first step might be to
write down a set of first-order sentences characterizing the
domain, but it is somewhat naive to stop there and claim that
the account could be made computational after the fact by the
inclusion of a theorem prover and a few well-chosen heuristics.
What is really needed is the (much more difficuit) analysis of
the logical form of the theory, keeping the tradeoff clearly in
mind. An excellent example of this is the representation of time
described in Allen (1983). Allen 1s very careful to point out
what kind of information about time cannot be represented in
his system, as well as the computational advantage he gains
from this limitation.

It should be noted here that we have addressed only one
approach to dealing with the tradeoff. While the tactic of lim-
iting the form of a representation™ seems to account for almost
alt current practice in knowledge representation, other ways of

*This is true only to a certain extent. See Footnote 9. Brachman
and Levesque (1982), and Brachman et al. (1983, 1985).

" Note that “restricting the form™ does not confine us to only sim-
ple. obvious types of restrictions. Useful forms of limited languages
may have no obvious syntactic relationship to standard logical lan-
guages.

LEVESQUE AND BRACHMAN 89

avoiding undue complexity should be considered. Especially
worthy of attention are weaker logics, having expressive lan-
guages but limited power to make inferences (see.for example,
Patel-Schneider (1985, 1986) and Levesque (1986)). Another
tack to take is to use assumptions as much as possible to
produce a tractable, “vivid™ knowledge base (Levesque 1986)
tbeing subsequently prepared to undo the effects of assump-
tions that turn out to be unwarranted).

Finally, one should be aware that the issues addressed here
are significant only when concered with serious scaling up of
representations. If there are only a small number of complex
seatences (i.e., involving only a small amount of incom-
pletencess), then the tradeoff is a manageable issue. Here we are
looking toward representation systems capable of rivalling
current database management systems in the number of items
stored. i

For the future. we still huve a lot to learn about the tradeoff.
It would be very helpful to accumulate a wide variety of data
points involving tractable and intractable languages.* Es-
pecially significant are crossover points where small changes in
a language change its computational character completely

““uch as that illustrated in Sect. 4.6). Moreover, we need to
~now .more about what people find easy or hard to handle.
There is no doubt that people can reason when necessary with
radically incomplete knowledge (such as that expressible in full
FOL) but apparently only by going into a special problem-
solving or logic puzzle mode. In normal commonsense situ-
ations, when reading a geography book, for instance, the abil-
ity to handle disjunctions (say) seems to be quite limited. The
question is what forms of incomplete knowledge-tan be han-
dled readily, given that the geography book is not likely to
contain any procedural advice on how to reason.

In summary, we feel that there are many interesting issues to
pursue involving the tradeoff between expressiveness and trac-
tability. Although there has always been a temptation in KR to
set the sights either too low (and provide only a data-structuring
facility with little or no inference) or too high (and provide a
full theorem-proving facility), this paper argues for the rich
world of representation that lies between these two extremes.
We should not despair that no matter what we try to do we are
faced with intractability, but rather move ahead with the in-
vestigation of ways to integrate limited forms of languages and

- 1soning, with the goal of forging a powerful system out of
tractable parts.

Acknowledgements

Many of the ideas presented here originally arose in the
context of the KRYPTON project (undertaken mainly at the Al
Lab of Schlumberger Palo Alto Research). We are indebted to
SPAR for making this research possible and to Richard Fikes.
Peter Patel-Schneider, and Victoria Gilbert for major con-
tributions. We would especially like to thank Peter, and also
Jim des Rivieres and David Etherington for providing very
helpful comments on drafts of this paper, and S. J. Hurtubise
for not.

ALLEN, J. 1983 Maintaining knowledge about temporal intervals.
Communications of the ACM, 26: 832~843.
BRACHMAN, R. J. 1983. What IS-A is and isn't: an analysis of tax-

*'Some progress has been made on this alrcady at the University of
Toronto (Gullen. A., M.Sc. thesis. Department of Computer Science,
University of Toronto, Toronto. Ontario, in preparation).

onomic links in semantic networks. [EEE Computer, 16(10):

30-13e. -

1985. 1 Licd about the Trees. Al Magazine, 6(35: 80—93.

BRACHMAN, R. J., and LEVESQUE, H. J. 1982, Competence in knowl-
cdge representation. Proceedings of the National Conference on
Artificial Intelligence. Pittsburgh, PA, pp. 1839-192,

BRACHMAN, R. J., and Sciimorze, J. G. 1985, An overview of the
KL-ONE knowledge representation system. Cognitive Science, 9(2):
171-216.

BracHMAN, R.J., FIKES, R. E., and LEVESQUE, H. J. 1983. Krypton:
a functional approach to knowledge representation. 1EEE Com-
puter, 16¢10): 67—73,

BRACHMAN, R. J.. GILBERT, V. P., and LEVESQUE, H. J. 1Y85. An
essential hybrid reasoning system: knowledge and symbol level
accounts of KRYPTON. Proceedings of the International Joint
Conference on Antificial Intellipence 1985, Los Angeles, CA.
pp. 532-539.

Coreins, A. M., and LorFTus. E. F. 1975. A spreading-activation
theory of semantic processing. Psychological Review, 82:
407-428.

CookK. S. A. 1971. The complexity of theorem-proving procedures.
Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing. Association for Computing Machinery, New York,
NY, pp. 151—158.

ETHERINGTON, D.. and REITER, R. 1983. On inheritance hierarchies
with exceptions. Proceedings of the National Conference on Arti-
ficial Intelligence, Washington, DC, pp. 104—108.

FRISCH, A.. and ALLEN. J. 1982. Knowledge representation and re-
trieval, for natural language processing. TR 104, Computer Science
Department. University of Rochester, Rochester. NY.

GENESERETH, M. R. 1983. An overview of meta-level architecture.
Proceedings of the National Conference on Artificial Intelligence,
Washington, DC, pp. 119~123.

HAYES, P. J. 1979. The logic of frames. in Frame conceptions and text
understanding. Edited by D. Metzing. Walter de Gruyter and Com-
pany. Berlin, West Germany, pp. 46—61.

LEVESQUE, H. J. 1982. A formal treatment of incomplete knowledge
bases. Technical Report No. 3, Fairchild Laboratory for Artificial
Intelligence Rescarch, Palo Alto, CA.

1984a. The logic of incomplete knowledge bases. /n On
conceptual modelling: perspectives from artificial intelligence,
databases, and programming languages. Edited by M. L. Brodie.
J. Mylopoulos. and J. Schmidt. Springer-Verlag, New York, NY,
pp. 165—186.

—— 1984b. Foundations of a functional approach to knowledge
representation. Artificial Intelligence, 23: 155-212.

1984c. A logic of implicit and explicit belief. Proceedings of

the National Conference on Antificial Intelligence, Austin, TX,

pp. 198-202.

1986. Making belicvers out of computers. Anificial Intel-
tigence, 30: 81—108.

LIFscHITZ, V. 1985. Computing circumscription. Proceedings of the
International Joint Conference on Anificial Intelligence 1985, Los
Angeles, CA, pp. 121-127.

MoORE. R. C. 1980. Reasoning about knowledge and action. Tech-
nical Note 191, SRI Intemational, Menio Park, CA.

1982, The role of logic in knowledge representation
and commonsense reasoning. Proccedings of the National Con-
ference on Artificial Intelligence, Pittsburgh. PA, pp. 428—-433.

NELSON, G.. and OppEN, D. C. 1979. Simplification by cooperating
decision procedures. ACM Transactions on Programming Lan-
guages and Systems, 1: 245-257.

NEWELL, A. 1981. The knowledge level, Al Magazine, 2(2): 1 —20.

PATEL-SCHNEIDER, P. F. 1985. A decidable first-order logic for
knowledge representation. Proceedings of the International Joint
Conference on Artificial Intelligence 1985, Los Angeles, CA.,
pp. 455—458.

1986. A four-valued semantics for frame-based description

languages. Proceedings of the National Conference on Artificial

w) COMPUT INTELL. VOL. 3, 1987

tntellience, Philadelphia, PAL pp. 344348,

QUILLIAN. M. R, 1968 Semantic memory. /a Semantic Information
Processing. Edized by M. Minsky. MIT Press, Cambridge, MA.
pp. 227-270.

Rk, R. 1978q¢. On reasoning by default. Proceedings of Theoret-
ical Issues in Natural Language Provessing-2. University of Hlinos
at Urbana-Champaign, Urbana-Champaign, IL, pp. 210-2138.

19785, On closed world data bases. /n Logic and Data Bases.

Edited by H. Gallaire and J. Minker. Plenum Press, New York,

NY. pp. 55-76.

1980. A logic for default reasoning. Artificial Intelligence,
13: 81132,

SHAPIRO, S. C. 1979. The SNePS semantic network processing sys-
tem. In Associative networks: representation and use of knowledge
by computers. Edited by N. V. Findler. Academic Press, New
York, NY, pp. 179-203.

SaiTH. B. C. 1982, Reflection and semantics in a procedural lan-
guage. Ph.D. thesis and Technical Repont MIT/LCS/TR-272.
MIT, Cambridge. MA.

SMITH. D. E.. and GENESERETH, M. R. 1985. Ordering conjunctive
queries. Artificial Intelligence, 26: 171-215.

SlLCKEL' M. E. 1984. A Prolog technology theorem prover. Pro-

“edings of the 1984 Symposium on Logical Programming. Atlan-
ac City, NJ. pp. 211217, .

1985. Automated deduction by theory resolution. Proceedings
of the International Joint Conference on Artificial Intelligence
1985. Los Angeles. CA, pp. 1181—1186.

ToURETZKY, D. 1986. The mathematics of inheritance systems.
Morgan Kaufmann Publishers. Inc.. Los Altos, C

WINKER. S. 1982, Generation and verification of finite models and
counterexamples using an automated theorem prover answering two
open questions. Journal of the ACM, 29: 273284,

WOs. L.. WINKER, S.. SMITH. B.. VEROFF, R., and HENSCHEN, L.
1984. A new use of an automated reasoning assistant: open ques-
tions in equivalential calculus and the study of infinitc domains.
Artificial Intelligence, 22: 303—-356.

Appendix: proofs

In this appendix. we present the details of the proofs of the
complexity of subsumption for the languages FX£ and FZL".
First, we treat the intractability of & by showing a direct
relation between subsumption in the language and satisfiability
in propositional logic. Because propositional satisfiability is
difficult, we determine that there can be no good algorithm for

sumption in F£. Subsequently, we show that there exists a
sound and complete algorithm for computing subsumption in
F/£~ that operates in O(n°) time.

A, The imracrability of subsumpiion for FL!

We prove the intractability of subsumption for £ by
showing that for any two propositional formulas & and B. in
conjunctive normal form (CNF), there are types in FE, wlal,
and 7r{B] such that

E (a D B)iff wla] is subsumed by w|B]

where wla] is roughly the same length as a. Thus, a good
algorithm for subsumption in F£ would imply a good algorith
for CNF implication. However, CNF implication is difficult,
and thus there can be no good algorithm for subsumption.

We being our proof with a lemma relating CNF implication
to propositional satisfiability.

Lemma 1
CNF implication is co-NP-hard.

Proof
B (a D [p/\ TpD iff o is unsatisfiable, since otherwise, if

vie) = Tand E (a D [p A Tp)) then v(p A Tip) would have
to be T, which is impossible. But determining if a is satisfiable
is NP-hard (Cook 1971). So. determining if | (@ D {p/\ 7p))
is co-NP-hard. Since determining if F (@ D [p A\ Tphisa
special case of determining if = (a0 D B). then the latter (CNF
implication) is co-NP-hard. L

Next we define the mapping, m, which takes formulas of
propositional logic in CNF into types of F£. We assume
throughout that clauses do not use the special propositional
letters SELF or BOTTOM.

For any clause ¢. where e ={(py /.. .V PV " Pal V-V
“p, 1), define wlc] =

(AND (ALL (RESTRICT SELF py) BOTTOM)
(ALL (RESTRICT SELF p,) BOTTOM)
(SOME (RESTRICT SELF p,.,))

(SOME (RESTRICT SELF p,.)

For any well-formed formula (wff) a in CNF, where a =
(e, N\...N\ ¢,). define wla] =

(AND (ALL (RESTRICT SELF (SOME (RESTRICT
SELF BOTTOM))) BOTTOM)
(ALL (RESTRICT SELF m{c\}) BOTTOM)

(ALL (RESTRICT SELF mc,]) BOTTOM))

Note that for simplicity we will treat single clauses as degen-
erate conjunctions (so that a wff that is a single clause will be
mapped by = into a type that begins with (AND (ALL
(RESTRICT SELF (SOME (RESTRICT SELF BOTTOM)))
BOTTOM) . .).

Before giving an example of the mapping , let us introduce
a notational convention: Let (NEG p) stand for (ALL (RE-
STRICT SELF p) BOTTOM) and (POS p) stand for (SOME
(RESTRICT SELF p)). So, if, forexample. o = (p\/ g\/ 7r)
A (s\/ 0 N\ (u\/ v). then w(a] is

(AND (NEG (POS BOTTOM))
(NEG (AND (NEG p) (NEG q) (POS r)))
(NEG (AND (NEG s) (POS 1))
¥ (NEG (AND (NEG u) (NEG v)))).

A.l.1. From subsumption to implication
Now, define the following extension function, €,, over a
domain, Ly

€, = [LETTERS — {T.F}] (that is, the domain is all

’ functions that take propositional letters into T and F).
& BOTTOM | = { }

ESSELF] = {{v.)]y € Uy}

Eolp) = {"l"(/’) =T}

Lemma 2
(a) v(p) = Tiff v € &[(POS pHl.
(b) v(p) = Fiff v € ENEG p)l.

Proof

(a) v(p) = Tiff v € El p)iff
(v.v) € E,(RESTRICT SELF p)} iff
v € E,[(POS p)i.

(by v(p) = Fiff v & €l p]iff
(v, v) & EJNRESTRICT SELF p)} iff
v € &o|(ALL (RESTRICT SELF p) BOTTOM)]

(since €,BOTTOM| = { })

iff v € E,(NEG p)). n

LEVESQUE AND BRACHMAN 91

Lemma 3
For any clause ¢. and any valuation v, vt¢) = Fiff v €
Efalell.

Proof
NV JAVANRVE Vi SR VARAVIR SV IR i
Vitl si=mv(p)=Fand Vitl =i=k)yv(p,,,)=Tiff
Vil =i =< mv € ENUNEG p,) and
Vi(l =i = k)v € &(POS p,,)] by Lemma 2) iff
v € EL(AND (NEG p,) ... (NEG p,) (POS p..)
... (POS p, . N iff
veE Elwim Vo PN TP VN TPl n

Lemma 4

E{(NEG (POS BOTTOMY| = £y,

Proof

Let v € . Then v & €BOTTOM). So (v.v) &
EM(RESTRICT SELF BOTTOM)], so v & &[(POS
BOTTOM)]. so (v.v) & ENRESTRICT SELF (POS
BOTTOM))], so v € €,[(NEG (POS BOTTOM))|. u

—Lemma 5

If wla] is subsumed by w[B] then F a D B.

Proof

Assume Tia] is subsumed by w[B] and v(a) = T, where v
is any valuation. So. for each clause ¢; of a, v(¢;) = T. Thus,
by Lemma 3, v € Em[c.]]. So, {(v.v) & &[(RESTRICT
SELF 7(c;])], and so, v € E,[(NEG m{c,])]. Also, by Lemma
4, v € EIINEG (POS BOTTOM))). Thus, v € €,[(AND
(NEG (POS BOTTOM)) (NEG 7[c|]) ... (NEGar[c,]))]; that
is, v € ¢é,[mla}]. Since w[a} is subsumed by wf]. v €
Eolm[B]). So v € E(NEG =ld,])], for each clause d; of B.
Thus, v & &,|lmid;]], and by Lemma 3, v(d;) = T. Thus
v(B) = T. So for any v. if v(a) = T then v(B) = T, and so
E (a D B). n

A.l1.2. From implication to subsumption
Given an extension function € over & and an element d €
%, define v, € [LETTERS — {T,F}] by

vy(py = T iff d € E[(POS p)l.

Lemma 6

If € is an extension function over @ and d € & where d &
E[(POS BOTTOM)], then for any clause ¢, vy(¢) = Fiff d €
Elmic]].

Proof

Since d & E[(POS BOTTOM)|, Vd* (d.d*) € €|SELF] >
d* & E(BOTTOM]. So, Vd* (d.d*) € E|SELF) = d* &
Elp) iff Vd* (d.d*) € E|SELF] = d* & E[plord* €€
{BOTTOM). Thus. d & ‘E{(POS p)] iff d € E|(NEG p)|. Now,
by definition of v, v,(p,} = T iff d € ‘€[(POS p)} and so v,(p,)
=FUfd € E[(NEG). Sovidpr /- - NP " Pne i V. N/
TIp,a) = Fiff & € E{(AND (NEG py) ... (NEG p,) (POS
Past) - (POS p,) that is, d € E[nlp, V...V p. V
TPaci VeV TPa) n

Lemma 7
If E (a D B) then m[a] is subsumed by w{B].

Proof

Suppose = (a D) and € is any extension function over
some . Suppose x € E|w|al]. Then

1. x € E[(NEG (POS BOTTOM), so if {x.¥) € E[SELF)
and v € E[BOTTOM|. then ¥ & E[(POS BOTTOM)].

2.0 € EUNEG 7] for cach ¢, in a. so if (x,¥) €
EISELF] and ¥ € E\BOTTOM], then v € Elwlc]l.

Let d, be any clause of B and suppose v € ¢ [BOTTOM] and
(x.v) € ¢|SELF]. By (1), ¥y € EHPOS BOTTOM)): by (2). ¥
& &l)] forevery ¢ in a. and so by Lemma 6. v, (¢;) = T.
Thus, v.(ax) = T. But = (@ D B). so v, () = T and so v,(d)
= T. Then, by Lemma 6 again. y € €[w[d]]. So.if {x.¥) €
EISELF}and v € E[wld,]]. then v € £|BOTTOM]. Thus x €
EIINEG wld])] and overall, x € €|w[B]]. Since this applies to
any € and any x. wla] is subsumed by w[B]. n

Theorem |
Subsumption of F£ is co-NP-hard.

Proof

Consider the special case of determining if 7« is subsumed
by m(]. By Lemmas 5 and 7. this is true iff = (a D B). But
by Lemma 1. this problem is co-NP-hard. Since the size of the
expressions are within a polynomial of each other, the first
problem is co-NP-hard as well. u

a2 The tractabitit of subsumption for FL;

Our proof of the tractability of subsumption for F£~ will
proceed as follows: first we provide an alternative, “flat” form
for types of %", which makes the definition of a subsumption
algorithm straightforward. We then show that the combination
of translation of types into the flat form. coupled with the
subsumption algorithm for flat types, yields an algorithm that
operates in O(n*) time. Finally, we prove that the algorithm
presented does indeed compute subsumption.

A.2.1. Complexity of the subsumption algorithm

Define a subset of ¥~ as follows:

Definition

A type t of FZ£7 is a flat rype iff it is of the form. (AND
t...1,), where each 1, is a flar factor. A type is a flat factor iff
it is atomic, or of the form (SOME a), or of the from (ALL
a t). where 1 is a flat type. In addition, we assume that 1, # i,
fori # j, and that if t, = (ALL a «) and 1, = (ALL b v) where
i # j, thena # b.

Lemma 8

IRt is a type, then there is an O(n”) algorithm that converts
t to a flat type ¢’ such that €{¢] = ‘€[t’} for any €, and ¢’ is not
longer than ¢.

Proof

~ First replace (AND x (AND y)) by (AND x v :), working
from the inside out. This clearly does not change any exten-
sions and can be done in linear time. Next, collect arguments
to all ALL types, replacing

(AND...(ALLa...)...(ALLa..)..))
everywhere by
(AND...(ALL a (AND... ... M.,

which requires traversing the type at most once per factor.
Moreover, this preserves extensions since

‘E[(AND (ALL a 1) (ALL a 1))}
= {x|Vy (x.¥) € €la] > ¥ € €[1], and Yy (x,y)
€ €lal > y € €lul}
= {x|Vy (x.y) € €lal > vy € €[t} and v € Elu]}
= E{(AND (ALL ¢ (AND 7 u)))}. =

The algorithm for subsumption given flat types is as follows:

92 COMPUT INTELL.

SUBS?(AND x,, 1,
do
let i — 1
let covered «— true
while ((i < n) /\ covered)
do
let j «— 1
let found « false
while ((j = m) A found)
do
ifx, # (ALL a 1)
then found — (x, = ¥))
else found — ((v, = (ALL a t)) A\ SUBS?|t. u])
s}
end
covered «— found
fe—i+1
end
return covered
end

i .t.). (.’\ND 2 TES - T "'-)I:

By Lemma 8, we now need only consider subsumption for
flat types (SUBS?). It should be clear from the body of the
procedure SUBS? as defined above, that, for flat factors x, and
-vf‘

SUBS?[(AND xy...x,), (AND v, ...
Vil=si=n3djl=j=m
if x, # (ALL a 1) then x; = y;
otherwise y;, = (ALL @ «) and SUBS?(t, u]. .-

¥n)] returns T iff
4

Lemma 9
SUBS?|x, y] runs in O(|x| x |y|) time.

Proof

By induction on the depth of ALL operators in x:

I. If depth = 0, then for each x,, we must scan all the y;
looking for equal factors, taking |.x| X |y| steps.

2. Assume true for depth = £.

3. Suppose x has maximum depth = k + 1 and let x; be a
factor. If x; # (ALL a 1) then as before, we must scan y in |y]
steps. Suppose there are { factors (ALL g, ;) in x. For each such

_factor, we must find a corresponding one in y, taking |y| steps,

d then call SUBS? recursively. By induction, this can be
done in roughly |1,] X |v| steps. so the total effort for the /
factors is
! !

2 (vl + Jullyh = 2 dul +1 1]
a)

But £!_, (] + 1) is the total length of these factors, so overall,
the procedure is completed in |x| % |y steps. L

A.2.2. Correctness of the subsumption algorithm

Now, we move on (o the proof that this algorithm indeed
calculates subsumption: first we must show that if SUBS?|x, v|
is T then x indeed subsumes y (soundness); then we must show
the converse (completeness). Before beginning, note that the
first two steps of the algorithm do not change the extensions of
x and y for any extension function, and so do not affect the
correctness of the algorithm.

Informally, to see why the algorithm is sound, suppose that
SUBS?(x, ¥] is T and consider one of the conjuncts of x—call
it x,. Either x, is among the ¥, or it is of the form (All a 1). In
the latter case, there is a (ALL a «) among the y,, where
SUBS?[t, u]. Then, by induction, any extension of u must be

VOL. 3, 1987

a subset of r's and so any extension of v, must be a subset of

X,’s. So no matter what x, is, the extension of v (which is the

conjunction of all the ¥,'s) must be a subset of x,. Since this is

true for every x,. the extension of ¥ must also be a subset of the

extension of x. So, whenever SUBS?[x. v] is T, x subsumes y.
More formally. we have the following lemma.

Lemma 10 (Algorithm soundness)
If SUBS?[(AND x,... x,). (AND ¥,... »,)] = T. then
(AND x,... x,) subsumes (AND v,... v.).

Proof

Suppose SUBS? returns T and let € be any extension func-
tion. We will show that Vi, 1| =i =un, 3j, 1 = = m, such
that €] y,] C €[x,]. by induction on the depth of ALL operators
in the x, factors.

I. Suppose x, does not contain an ALL: then, since SUBS?
returns T, 3 such that ¥, = x,; so €[y,] = €|x,].

2. Assume true for depth =k.

3. If x, = (ALL a 1) then, since SUBS? returns T, 3; such

that y; = (ALL a u). where SUBS?|1. u] is T. By induction, ¢
must subsume u, so ‘é[u] C €[t]. But then ‘E[(ALL a u)] C
‘EI(ALL a 1)).
Now suppose that, for some ¢, 1 € E[(AND y, ... y,)]. Then
Vi.l =j=m, t €%|y]. By the above, Vi, | =i =< n, 3j,
| = j = m such that €[y;] C ¢|x], so t € E[x;]. Thus,
1 € €[(AND x, ... x,)]. Since this holds for any r and any 6,
X subsumes y. L]

Now, we turn to the completeness of the subsumption algo-
rithm. Here we have to be able to show that anytime
SUBS?[x, y] is F, there is an extension function that does not
assign x to a superset of what it assigns y (i.e., in some possible
situation, a y is not an x). Prior to the proof itself, we set up two
lemmas. The formal completeness proof will hinge on our
ability in all cases where SUBS? returns F to find a factor that
is in the “lower” type but not in the “higher” type. The first
lemma (11) allows us to construct an extension function over
a domain with a distinguished object d, that will be in the
extension of every type except for a few critical exceptions.
This will be used as a counterexample to subsumption in the
proo'f: The second lemma (12) is used in one of the case
analyses in the proof,

Lemma 11

Suppose € is an extension function over &. Suppose that dj,
dy € @, that Q is a primitive type, S is an attribute, and C is
a-flat type. Furthermore, suppose ‘¢ satisfies

1. dy, € €| p] for every primitive p;

2. d, € E(p] for every primitive p except perhaps Q;

3. {du,d) € Elu] iff d = d,, for every attribute a;

4. (d\,d) € Ela] iff d = d,, for every attributc a except
perhaps S

5.(d\.d) €E E[S) only if d € E[C].

Then, for any flat factor ¢,

(A) dy € El1);

(B)ifr # Q and 1 # (SOME S), and for any « such that « does
not subsume C, r # (ALL S u), then d, € €][1]).

Proof
(A) By induction on []:
L. If r is primitive, then true by (1) above.
2. 1f ¢ is (SOME a), then (dy, dy) € €[a] by (3), s0 dy E
‘€[(SOME a)).

LEVESQUE AND BRACHMAN 93

3. 1f 1 is (ALL a), then since Vd {dy.d) € Ela] > d = d,
by (3). we have that Vd (dy.d) € Elu] > d € Elu] by
induction. So dy € &[(ALL ¢ w)].

(B) By cases on 1
1. If r is primitive, then if t # Q. d, € €fr] by (2).
2. ris (SOME a), then if a # S, {d,. dy) € E]u] by (4), so
dy € E[(SOME).
3. 1fris(ALL au) wherea # S, then by (4) Vd (d,. d) € E[a]
> d = dy. Soby part A, Vd (d,,d) € €lal > d € E[u]. So,
d, € EALL a)},
4. If tis (ALL S u), then by (5), Vd (d,,d) E €IS} > d €
EIC). As long as « subsumes C, then Vd (d,,d) € €[S]| > d
€ &lul. Thus d, € E[(ALL S w)]. n

Lemma 12

For any flat type 7. there isan €, a %, and a d € & such that
d & €[t]. (In other words, no type is “tautologous,™ i.e., a
summum g(’llllS.)

Proof

Suppose t = (AND p,... p, (SOME) ... (SOME a,)
(ALL by u)) ... (ALL b, 1,)). If I £ 0 1let D = {0}, €[p)] =
P then O € &[t]. If m # Olet &la,] =9, D = {0} then 0 &
‘€1t]. Otherwise n # 0 and by induction 3é€*, &*, d* such that
d* & &*[u,]. Let D = @* U {0} (assuming 0 & D*), € = &*
except [b,] = €*[b,) U {(0,d*)}; since d* # 0, d* & €[u,].
Thus, 0 &€ €[(ALL b, u,)], so 0 & é{¢]. =

Lemma 13 (Algorithm completeness) v
If SUBS?[(AND x,... x,), (AND y;... y,)] = F, then
(AND x, ... x,) does not subsume (AND y, s Yrm)-

Proof

Since SUBS? returns F, there must be an x; for which there
is no corresponding y,. Given this, we will show by induction
on the depth of ALL operators in x,, how to define an €, a 9,
and a d, € @ such that d, & €[x;], butVj, 1 =j=m, d, €
6[y,]. Thus, §[(AND y, ... y.)] € é[(AND x, . .. x,)], and so
the former is not subsumed by the latter.

Case . Suppose x; is a primitive, 0. Define é and 9 by

Let 9 = {0, 1}.
{0. 1} if 1+ Q
{0} otherwise.

Let €{a] = {(0.0). (1.0)}.

Letd, = 1. Clearly. | & €[Q): thus, | & Eé[x;]. Now consider
any y;. Letd, = 0. C = (AND @), and § = any attribute. The
conditions of Lemma 11 are thus satisfied, so unless y; is one
of the named exceptions to Lemma 11B, we know that | €
‘€[y,]. Moreover, y, cannot be Q since SUBS? returns F; 1 €
E(SOME S)| since (1.0) € &[S): and | € €[(ALL S u)]
since, by Lemma 11, 0 € €[u] for any u. Thus, no matter what
¥ is, 1 € €y

Let €[¢] = {

Cuse 2. Suppose x, is (SOME). Define & and 00 by

Let & = {0, 1}. :

Let &[¢} = {0, 1},
{(0.0). (1.0} ifa#S
{(0. 0%} otherwise.
Again, letdy = 1, so that | € &[x,|. Now consider any y,. Let
dy = 0, C = any flat type, and @ = any primitive. Again, the
conditions of Lemma 11 are satisfied. so unless y, is one of the
named exceptions, we know that 1 € &[y,]. Moreover, | €
€[Q1. v, cannot be (SOME §) since SUBS? retums F,and | €
‘EI(ALL S w)] for any u. Thus, no matter what y, is, 1 € ‘€[y,].

Let €(a) ={

Case 3. Suppose x, = {ALL § w), but there is no (ALL Sv)
among the v,. By Lemma 12, there are é*, ©*, d* such that
d* & E*u]. Define
@ = %* U {0, 1} (assuming 0 and 1 do not appear in 2 *).
<) = €*[1] U {0, 1}

{(0.0), (1,0} ifa#S$

{€0,0), (1, d*)} ifa=3S.

As before, let d, = 1. Since d* & {0, 1} and d* & €*[u], d*
& €lu). So, 1 & &[x,]. Now consider any y;. Let Q be any
primitive type and C be any flat type. Again, the conditions of
Lemma !1 are satistied. Morcover, | € €[Q], | € ¢[(SOME
$)), and y; € (ALL S v) for any v. So no matter what y; is.
I € €[yl

Case 4. Suppose x; = (ALL S u) and some y; = (ALL S v)
but SUBS?{u, v] = F. By induction, there is a 9* and an €*
and a d* € D* such that d* € €*[v] but d* & €*{u].

Let % = @9* U {0, 1} (assuming 0 and 1 do not appear in

%la] = €*la] U {

P¥).
Let €[¢] = €*[r] U {0, 1}.

{(0,0), (1,0} ifa+S
{0,0),(1,d®} ifa=S.

As before, let d, = 1. As in the previous case, | & €{x]. Now
consider any y,. Let Q be any primitive type and C = v. Again,
the conditions of Lemma {1 are satisfied. Moreover, 1| €
€[(01, | € €[(SOME $)], and for any z different from v, and
thys for any z that does not subsume v, y; # (ALL S z). So no
matter what y; is, | € é{y,]. .

Let €[a] = €*{a] U {

Theorem 2
There is an algorithm to calculate subsumption for FZ£~ in
O(n*) time.

E Proof

By Lemma 8, types can be flattened in O(n°) time. The
procedure SUBS? works on flattened types in O(n*) time by
Lemma 9, and by Lemmas 10 and 13, SUBS? returns T iff its
first argument subsumes its second. L

