Elimination of TBox and ABox

ABox elimination

- **In extensions of ALCQ:** ABox consistency problem is reduced to (and hence has the same complexity as) the concept satisfiability problem, as follows: an ABox A is consistent w.r.t. a TBox T iff the following concept is satisfiable w.r.t. the same TBox T:

$$
\bigwedge_{a \text{ occurs in } A} \exists U. \left(\{a\} \sqcap \bigwedge_{a \in C \in A} C \sqcap \bigwedge_{aRb \in A} \exists R. \{b\} \right)
$$

where U is a fresh role name (i.e., not occurring in A, T).

TBox elimination

Given a TBox T, denote $C_T := \bigwedge_{(D \sqsubseteq E) \in T} (\neg D \sqcup E)$. So, T is equivalent to the TBox $\{\top \sqsubseteq C_T\}$.

In the following cases, a general TBox can be “internalized”, so that reasoning w.r.t. TBox can be reduced to (and hence has the same complexity as) reasoning without TBox.

- **In extensions of ALCQ:** a concept C is satisfiable w.r.t. a TBox T iff the following concept is satisfiable (w.r.t. empty TBox):

$$
C \sqcap \{a\} \sqcap \exists U.\{a\} \sqcap \forall U.C_T \sqcap \bigwedge_{R \in \text{Roles}} \forall U.\forall R.\exists U^{-}.\{a\},
$$

where the role name U and the nominal $\{a\}$ are fresh (i.e., not occurring in C, T) and Roles is the set of role names occurring in C and T and inverses thereof.

- **In extensions of SHI:** a concept C is satisfiable w.r.t. a TBox T and RBox R iff the concept $C \sqcap C_T \sqcap \forall U.C_T$ is satisfiable w.r.t. empty TBox and the following RBox:

$$
R_U := R \cup \{ \text{Trans}(U) \} \cup \{ R \sqsubseteq U \mid R \in \text{Roles} \},
$$

where U is a role name not occurring in C, T, R, and Roles is the set of all role names occurring in C, T, R (and their inverses, if the language under consideration has the inverse role constructor).

- **In extensions of ALC(\sqcup, \ast):** a concept C is satisfiable w.r.t. a TBox T iff the following concept is satisfiable (w.r.t. empty TBox):

$$
C \sqcap \forall (R_1 \sqcup \ldots \sqcup R_n)\ast.C_T,
$$

where $\{R_1, \ldots, R_n\}$ is the set of role names occurring in C, T (and their inverses, if the language under consideration has the role inverse constructor).