Elimination of TBox and ABox

ABox elimination

• In extensions of \mathcal{ALCO} : ABox consistency problem is reduced to (and hence has the same complexity as) the concept satisfiability problem, as follows: an ABox \mathcal{A} is consistent w.r.t. a TBox \mathcal{T} iff the following concept is satisfiable w.r.t. the same TBox \mathcal{T} :

$$\prod_{\text{occurs in }\mathcal{A}} \exists U.(\{a\} \sqcap \prod_{a:C \in \mathcal{A}} C \sqcap \prod_{aRb \in \mathcal{A}} \exists R.\{b\})$$

where U is a *fresh* role name (i.e., not occurring in \mathcal{A}, \mathcal{T}).

a

TBox elimination

Given a TBox \mathcal{T} , denote $C_{\mathcal{T}} := \bigcap_{(D \sqsubseteq E) \in \mathcal{T}} (\neg D \sqcup E)$. So, \mathcal{T} is equivalent to the TBox $\{\top \sqsubseteq C_{\mathcal{T}}\}$.

In the following cases, a general TBox can be "internalized", so that reasoning w.r.t. TBox can be reduced to (and hence has the same complexity as) reasoning without TBox.

• In extensions of ALCIO: a concept C is satisfiable w.r.t. a TBox T iff the following concept is satisfiable (w.r.t. the empty TBox):

$$C \sqcap \{a\} \sqcap \exists U.\{a\} \sqcap \forall U.C_{\mathcal{T}} \sqcap \bigcap_{R \in \mathsf{Roles}} \forall U.\forall R.\exists U^{-}.\{a\},$$

where the role name U and the nominal $\{a\}$ are *fresh* (i.e., not occurring in C, \mathcal{T}) and **Roles** is the set of role names occurring in C and \mathcal{T} and inverses thereof.

• In extensions of SH: a concept C is satisfiable w.r.t. a TBox \mathcal{T} and RBox \mathcal{R} iff the concept $C \sqcap C_{\mathcal{T}} \sqcap \forall U.C_{\mathcal{T}}$ is satisfiable w.r.t. empty TBox and the following RBox:

$$\mathcal{R}_U := \mathcal{R} \cup \{ \operatorname{Trans}(U) \} \cup \{ R \sqsubseteq U \mid R \in \operatorname{Roles} \},\$$

where U is a role name not occurring in $C, \mathcal{T}, \mathcal{R}$, and Roles is the set of all role names occurring in $C, \mathcal{T}, \mathcal{R}$ (and their inverses, if the language under consideration has the inverse role constructor).

• In extensions of $\mathcal{ALC}(\sqcup, *)$: a concept C is satisfiable w.r.t. a TBox \mathcal{T} iff the following concept is satisfiable (w.r.t. empty TBox):

$$C \sqcap \forall (R_1 \sqcup \ldots \sqcup R_n)^* . C_{\mathcal{T}},$$

where $\{R_1, \ldots, R_n\}$ is the set of role names occurring in C, \mathcal{T} (and their inverses, if the language under consideration has the role inverse constructor).