Fachbereich Informatik der Universität Hamburg
 Vogt-Kölln-Str. $30 \diamond$ D-22527 Hamburg / Germany
 University of Hamburg - Computer Science Department

Mitteilung Nr. 302/01 • Memo No. 302/01

Undecidability of $\mathcal{A L C}_{\mathcal{R A}}$

Michael Wessel

Arbeitsbereich KOGS

FBI-HH-M-302/01

Undecidability of $\mathcal{A} \mathcal{L} \mathcal{C}_{\mathcal{R A}}$

Michael Wessel

University of Hamburg, Computer Science Department, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

This paper answers the question whether the logic $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ might be decidable - which was left open in [4], [3], [2] - to the negative.

1 Introduction and Motivation

This paper answers a question which was left open in our previous work. We are investigating the extension of the standard description logic $\mathcal{A} \mathcal{L C}$ with composition-based role inclusion axioms of the form $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$. Please refer to our previous work for a discussion of the considered description logics ([4], [3], and [2]), a discussion of related work, other descriptions logics etc.

Even though we know since [3] that the logic $\mathcal{A L C}_{\mathcal{R A}}$ is undecidable it was not immediate to adopt the $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ undecidability-proof to $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$, since $\mathcal{A L C}_{\mathcal{R A}}$ and $\mathcal{A L C}_{\mathcal{R A}} \ominus$ differ in one fundamental aspect: in contrast to $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}, \mathcal{A L C}_{\mathcal{R A}}$ enforces global role disjointness (see our previous work for a more thorough discussion). Otherwise the logics are identical.
The structure of this paper is as follows: we first define the syntax and semantics of $\mathcal{A L C}_{\mathcal{R A}}$, then prove its undecidability by giving a reduction from Post's Correspondence Problem (PCP), which is the main contribution of this paper.

2 Syntax and Semantics of $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$

In the following we will define the syntax and semantics of the logic $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$. We start with the set of well-formed concept expressions (concepts for short):

Definition 1 (Concept Expressions) Let $\mathcal{N}_{\mathcal{C}}$ be a set of concept names, and let $\mathcal{N}_{\mathcal{R}}$ be a set of role names (roles for short), such that $\mathcal{N}_{\mathcal{C}} \cap \mathcal{N}_{\mathcal{R}}=\emptyset$. The set of concept expressions (or concepts for short) is defined inductively:

1. Every concept name $C \in \mathcal{N}_{\mathcal{C}}$ is a concept.
2. If C and D are concepts, and $R \in \mathcal{N}_{\mathcal{R}}$ is a role, then the following expressions are concepts as well: $(\neg C),(C \sqcap D),(C \sqcup D),(\exists R . C)$, and $(\forall R . C)$.

The set of concepts is the same as for the language $\mathcal{A L C}$. If a concept starts with "(", we call it a compound concept, otherwise a concept name or atomic concept. Brackets may be omitted for the sake of readability if the concept is still uniquely parsable.
We use the following abbreviations: if R_{1}, \ldots, R_{n} are roles, and C is a concept, then we define $\left(\forall R_{1} \sqcup \cdots \sqcup R_{n} . C\right)=_{\text {def }}\left(\forall R_{1} . C\right) \sqcap \cdots \sqcap\left(\forall R_{n} . C\right)$ and $\exists R_{1} \sqcup \cdots \sqcup$ $R_{n} . C==_{\text {def }}\left(\exists R_{1} . C\right) \sqcup \cdots \sqcup\left(\exists R_{n} . C\right)$. Additionally, for some $C N \in \mathcal{N}_{\mathcal{C}}$ we define $\top={ }_{\text {def }} C N \sqcup \neg C N$ and $\perp==_{\text {def }} C N \sqcap \neg C N$ (therefore, $\top^{\mathcal{I}}=\Delta^{\mathcal{I}}, \perp^{\mathcal{I}}=\emptyset$).
Before we can proceed, we need some auxiliary definitions. The set of roles being used within a concept C is defined:

Definition 2 (Used Roles, roles (C))

$$
\operatorname{roles}(C)=_{\text {def }} \begin{cases}\emptyset & \text { if } C \in \mathcal{N}_{\mathcal{C}} \\ \operatorname{roles}(D) & \text { if } C=(\neg D) \\ \operatorname{roles}(D) \cup \operatorname{roles}(E) & \text { if } C=(D \sqcap E) \\ & \text { or } C=(D \sqcup E) \\ \{R\} \cup \operatorname{roles}(D) & \text { if } C=(\exists R . D) \\ & \text { or } C=(\forall R . D)\end{cases}
$$

For example, roles $(((\forall R .(\exists S . C)) \sqcap \exists T . D))=\{R, S, T\}$.
As already noted, we are investigating the satisfiability of $\mathcal{A L C}$ concepts w.r.t. a set of role axioms of the form $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$. More formally, the syntax of these role axioms and of the considered role boxes containing these axioms is as follows:

Definition 3 (Role Axioms, Role Box, Admissible Role Box) If $S, T, R_{1}, \ldots, R_{n} \in \mathcal{N}_{\mathcal{R}}$, then the expression $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}, n \geq 1$, is called a role axiom. If $r a=S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$, then pre $(r a)={ }_{d e f}(S, T)$ and $\operatorname{con}(r a)={ }_{\text {def }}\left\{R_{1}, \ldots, R_{n}\right\}$.

If $n=1$, then $r a$ is called a deterministic role axiom. In this case we also write $T=\operatorname{con}(r a)$ instead of $T \in \operatorname{con}(r a)$.

A finite set \mathfrak{R} of role axioms is called a role box.
Let $\operatorname{roles}(r a)={ }_{\text {def }}\left\{S, T, R_{1}, \ldots, R_{n}\right\}$, and $\operatorname{roles}(\mathfrak{R})==_{\text {def }} \bigcup_{r a \in \mathfrak{R}}$ roles $(r a)$.
The semantics of a concept is specified by giving a Tarski-style interpretation \mathcal{I} that has to satisfy the following conditions:

Definition 4 (Interpretation) An interpretation $\mathcal{I}=\operatorname{def}^{\left(\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right) \text { consists of }}$ a non-empty set $\Delta^{\mathcal{I}}$, called the domain of \mathcal{I}, and an interpretation function $\cdot{ }^{\mathcal{I}}$ that maps every concept name to a subset of $\Delta^{\mathcal{I}}$, and every role name to a subset of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.
Additionally, for all roles $R, S \in \mathcal{N}_{\mathcal{R}}, R \neq S: \quad R^{\mathcal{I}} \cap S^{\mathcal{I}}=\emptyset$. All roles are interpreted disjointly then.
The following functions on \mathcal{I} will be used: The universal relation of \mathcal{I} is defined as $\mathcal{U R}(\mathcal{I})={ }_{\text {def }} \bigcup_{R \in \mathcal{N}_{\mathcal{R}}} R^{\mathcal{I}}$, and the universal relation w.r.t. a set of role names \mathcal{R} as $\mathcal{U R}(\mathcal{I}, \mathcal{R})=_{\text {def }} \bigcup_{R \in \mathcal{R}} R^{\mathcal{I}}$.
If $\langle i, j\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})$, the edge is called an incoming edge for j.
Given an interpretation \mathcal{I}, every (possibly compound) concept C can be uniquely interpreted ("evaluated") by using the following definitions (we write $X^{\mathcal{I}}$ instead of $\left.{ }^{\mathcal{I}}(X)\right)$:

$$
\begin{array}{rll}
(\neg C)^{\mathcal{I}} & =_{\text {def }} & \Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
(C \sqcap D)^{\mathcal{I}} & =_{\text {def }} C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
(C \sqcup D)^{\mathcal{I}} & =_{\text {def }} C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
(\exists R . C)^{\mathcal{I}} & ={ }_{\text {def }} \quad\left\{i \in \Delta^{\mathcal{I}} \mid \exists j \in C^{\mathcal{I}}:<i, j>\in R^{\mathcal{I}}\right\} \\
(\forall R . C)^{\mathcal{I}} & =_{\text {def }} \quad\left\{i \in \Delta^{\mathcal{I}} \mid \forall j:<i, j>\in R^{\mathcal{I}} \Rightarrow j \in C^{\mathcal{I}}\right\}
\end{array}
$$

It is therefore sufficient to provide the interpretations for the concept names and roles, since the extension $C^{\mathcal{I}}$ of every concept C is uniquely determined then.
In the following we specify under which conditions a given interpretation is a model of a syntactic entity (we also say an interpretation satisfies a syntactic entity):

Definition 5 (The Model Relationship) An interpretation \mathcal{I} is a model of a concept C, written $\mathcal{I} \models C$, iff $C^{\mathcal{I}} \neq \emptyset$.

An interpretation \mathcal{I} is a model of a role axiom $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$, written $\mathcal{I} \models S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$, iff $S^{\mathcal{I}} \circ T^{\mathcal{I}} \subseteq R_{1}^{\mathcal{I}} \cup \cdots \cup R_{n}^{\mathcal{I}}$.

An interpretation \mathcal{I} is a model of a role box \mathfrak{R}, written $\mathcal{I} \models \mathfrak{R}$, iff for all role axioms $r a \in \mathfrak{R}: \mathcal{I} \models r a$.

An interpretation \mathcal{I} is a model of (C, \mathfrak{R}), written $\mathcal{I} \models(C, \mathfrak{R}), \quad$ iff $\mathcal{I} \models C$ and $\mathcal{I} \models \mathfrak{R}$.

Definition 6 (Satisfiability) A syntactic entity (concept, role box, concept with role box, etc.) is called satisfiable iff there is an interpretation which satisfies this entity; i.e., the entity has a model.

Then, the satisfiability problem is to decide whether a syntactic entity is satisfiable or not.

In order to demonstrate the consequences of disjointness for roles, please consider $\mathfrak{R}=\{R \circ S \sqsubseteq A \sqcup B, S \circ T \sqsubseteq X \sqcup Y, A \circ T \sqsubseteq U, B \circ T \sqsubseteq V, R \circ X \sqsubseteq U, R \circ Y \sqsubseteq$ $V\}$. Then, $(\exists R .((\exists S . \exists T . \top) \sqcap \forall Y . \perp) \sqcap \forall A . \perp, \mathfrak{R}(C))$ is unsatisfiable, since $\forall A . \perp$ forces to choose $B \in \operatorname{con}(R, S)$, and $\forall Y . \perp$ forces to choose $X \in \operatorname{con}(S, T)$. Due to $B \circ T \sqsubseteq V$ and $R \circ X \sqsubseteq U$ there must be a non-empty intersection between U and V. The unsatisfiability is caused by a subtle interplay between the role box and the concept.
An important relationship between concepts is the subsumption relationship, which is a partial ordering on concepts w.r.t. their specificity:

Definition 7 (Subsumption Relationship) A concept D subsumes a concept $C, C \sqsubseteq D$ (w.r.t. to \mathfrak{R}), iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all interpretations \mathcal{I} (that are also models \mathfrak{R}).

Since a full negation operator if provided, the subsumption problem can be reduced to the concept satisfiability problem: $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable.

Proposition $1 \mathcal{A L C}_{\mathcal{R A}}$ does not have the finite model property, i.e. there are pairs (C, \mathfrak{R}) that have no finite models.

Proof 1 As a counter-example to a finite model property assumption in $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$, please consider ($\exists R . \exists R$. $\left.\top\right) \sqcap(\forall S . \exists R$. $\top)$ w.r.t. $\{R \circ R \sqsubseteq S, R \circ S \sqsubseteq$ $S, S \circ R \sqsubseteq S, S \circ S \sqsubseteq S\}$, which has no finite model (see [4],[3] for a proof).

Intuitively, the disjointness requirement ensures that the given example can only be fulfilled by infinite models: whenever one tries to create a finite model, it must by cyclical. But then, the presence of the cycle invalidates the model, since the role axioms will enforce a non-empty intersection between the roles R and S $\left(R^{\mathcal{I}} \cap S^{\mathcal{I}} \neq \emptyset\right)$.

3 Proving Undecidability of $\mathcal{A L C}_{\mathcal{R A}}$

Basically, the proof is by means of a reduction from Post's Correspondence Problem ($P C P$). It is well-known that checking whether a given PCP of sufficiently large size has a solution is an undecidable problem.

In order to make the proof more transparent and comprehensible (since the reduction is rather technical, see below) we use terminology from formal language theory. The structure of the proof is as follows: Given a PCP K, we define two corresponding context-free grammars $\mathcal{G}_{1, K}$ and $\mathcal{G}_{2, K}$ such that $\mathcal{L}\left(\mathcal{G}_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}_{2, K}\right) \neq \emptyset$ iff the PCP K has a solution. The grammars $\mathcal{G}_{1, K}$ and $\mathcal{G}_{2, K}$ are transformed into the grammars $\mathcal{G}^{\prime}{ }_{1, K}$ and $\mathcal{G}^{\prime}{ }_{2, K}$, that have the following properties: $w_{1} w_{2} \ldots w_{n} \in \mathcal{L}\left(\mathcal{G}_{1, K}\right)$ iff $w_{1} \# w_{2} \# \ldots w_{n} \# \in \mathcal{L}\left(\mathcal{G}_{1, K}\right)$, and $w_{1} w_{2} \ldots w_{n} \in \mathcal{L}\left(\mathcal{G}_{2, K}\right)$ iff $\# w_{1} \# w_{2} \ldots \# w_{n} \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$; i.e., they differ from their original versions with respect to an "odd"- resp. "even"-interleaving of the new symbol "\#". By construction of these grammars we obviously have $\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)=\emptyset$. It will subsequently become clear why this property is of utmost importance. The reader should bear in mind that this complicated construction is necessary in order to ensure that the disjointness requirement of $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ does not become violated. Moreover, the original PCP K has a solution iff $\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\} \neq \emptyset .{ }^{1}$ We will then define a role box $\mathfrak{R}_{\mathfrak{K}}$ and a concept term E such that $\left(E, \Re_{\mathfrak{K}}\right)$ is satisfiable iff $\mathcal{L}_{\mathcal{K}}=\emptyset$. Basically, $\mathfrak{R}_{\mathfrak{K}}$ is constructed by reversing the productions of the grammars $\mathcal{G}^{\prime}{ }_{1, K}, \mathcal{G}^{\prime}{ }_{2, K}$. The construction of $\mathcal{G}^{\prime}{ }_{1, K}$ and $\mathcal{G}^{\prime}{ }_{2, K}$ is rather technical, since a certain "normal form" of the productions must be achieved in order to be able to reverse them into syntactically well-formed role axioms. This normal form is quite similar to the well-known Chomsky Normal Form. Since the emptiness problem for $\mathcal{L}_{\mathcal{K}}$ is undecidable, satisfiability for $\left(E, \Re_{\mathfrak{K}}\right)$ is as well.

We start with some basic definitions:
Definition 8 (Context-Free Grammar, Language) A context-free gram$\operatorname{mar} \mathcal{G}$ is a quadruple $(\mathcal{V}, \Sigma, \mathcal{P}, S)$, where \mathcal{V} is a finite set of variables or nonterminal symbols, Σ is finite alphabet of terminal symbols with $\mathcal{V} \cap \Sigma=\emptyset$, and $\mathcal{P} \subseteq \mathcal{V} \times(\mathcal{V} \cup \Sigma)^{+}$is a set of productions or grammar rules. $S \in \mathcal{V}$ is the start variable. The language generated by a context-free grammar \mathcal{G} is defined as $\mathcal{L}(\mathcal{G})=\left\{w \mid w \in \Sigma^{+}, S \xrightarrow{\star} w\right\}$ (see [1]). In the following, we will only consider languages with $\epsilon \notin \mathcal{L}(\mathcal{G})-\epsilon$ is the empty word - and we can therefore write $\mathcal{L}(\mathcal{G})=\left\{w \mid w \in \Sigma^{+}, S \xrightarrow{+} w\right\}$.

[^0]Definition 9 (PCP) A Post's Correspondence Problem (PCP) K over an alphabet \mathcal{A} is given by a finite set of pairs $K=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{k}, y_{k}\right)\right\}$, where x_{i}, y_{i} are (non-empty!) words over a given alphabet $\mathcal{A}: x_{i}, y_{i} \in \mathcal{A}^{+}$. A solution to a PCP is sequence of indices $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1 \ldots k\}$ with $n \geq 1$ such that $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}}$ (see [1]).

For example, the PCP $K=\{(1,101),(10,00),(011,11)\}$ has the solution $(1,3,2,3)$, since $x_{1} x_{3} x_{2} x_{3}=101110 \mid 011=101110011=101110011=$ $y_{1} y_{3} y_{2} y_{3}$ (the example is taken from [1]).

Lemma 1 (PCP Undecidable) It is undecidable whether a given PCP with $|\mathcal{A}| \geq 2$ and $k \geq 9$ has a solution (see [1]).

In the following it suffices to consider (sufficiently large) PCPs with $|\mathcal{A}|=2$. Whatever \mathcal{A} is, we name its elements by a_{1} and $a_{2}: \mathcal{A}=\left\{a_{1}, a_{2}\right\}$.

Definition 10 (Auxiliary Definitions) Let $x \in \mathcal{A}^{+}, x=a_{1} \ldots a_{n}$. We define $|x|={ }_{\text {def }} n$, first $(x)={ }_{\text {def }} a_{1}$, and rest $(x)={ }_{\text {def }} a_{2} \ldots a_{n}$. Let postfixes $(x)={ }_{\text {def }}$ $\left\{w \mid \exists v \in \mathcal{A}^{\star}: x=v w, w \neq \epsilon\right\} \quad($ e.g. postfixes(1011) $=\{1011,011,11,1\})$. Additionally, $\operatorname{even}_{\#}\left(a_{1} \ldots a_{n}\right)={ }_{\text {def }} a_{1} \# \ldots a_{n} \#$, and $\operatorname{odd}_{\#}\left(a_{1} \ldots a_{n}\right)={ }_{\text {def }}$ $\# a_{1} \ldots \# a_{n}\left(\mathrm{e} . \mathrm{g} . \operatorname{even}_{\#}(a b c)=a \# b \# c \#, \operatorname{odd}_{\#}(a b c)=\# a \# b \# c\right)$.

Let $K=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{k}, y_{k}\right)\right\}$ be a PCP over the alphabet \mathcal{A}. It is well-known from formal language theory that the emptiness problem for intersections of context-free languages is undecidable. Given a PCP K, we can define two grammars $\mathcal{G}_{1, K}$ and $\mathcal{G}_{2, K}$ such that K has the solution $\left(i_{1}, \ldots, i_{n}\right)$ iff $i_{i_{n}} \ldots i_{i_{2}} i_{i_{1}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} \in \mathcal{L}\left(\mathcal{G}_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}_{2, K}\right) \quad$ iff $i_{i_{n}} \ldots i_{i_{2}} i_{i_{1}} y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}} \in$ $\mathcal{L}\left(\mathcal{G}_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}_{2, K}\right)$. Please note that the PCP solution $\left(i_{1}, \ldots, i_{n}\right)$ appears reversed in the word.
Let $\mathcal{A}^{\prime}=\mathcal{A} \cup\left\{i_{1}, \ldots, i_{k}\right\}$. Then, the context-free grammars $\mathcal{G}_{1, K}$ and $\mathcal{G}_{2, K}$ are defined as follows (see also [1]):

- $\mathcal{G}_{1, K}=\left(\left\{S_{1}\right\}, \mathcal{A}^{\prime}, \mathcal{P}_{1}, S_{1}\right)$, where $\mathcal{P}_{1}=\left\{S_{1} \rightarrow i_{1} x_{1}|\ldots| i_{k} x_{k}\right\} \cup\left\{S_{1} \rightarrow i_{1} S_{1} x_{1}|\ldots| i_{k} S_{1} x_{k}\right\}$, and
- $\mathcal{G}_{2, K}=\left(\left\{S_{2}\right\}, \mathcal{A}^{\prime}, \mathcal{P}_{2}, S_{2}\right)$, where $\mathcal{P}_{2}=\left\{S_{2} \rightarrow i_{1} y_{1}|\ldots| i_{k} y_{k}\right\} \cup\left\{S_{2} \rightarrow i_{1} S_{2} y_{1}|\ldots| i_{k} S_{2} y_{k}\right\}$.

It is interesting to note that these grammars are deterministic - each word of the generated languages has one unique parse tree. Applied to the example PCP $K=\{(1,101),(10,00),(011,11)\}$ we get the two context-free grammars

- $\mathcal{G}_{1, K}=\left(\left\{S_{1}\right\},\{0,1\} \cup\left\{i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}_{1}, S_{1}\right)$, where $\mathcal{P}_{1}=\left\{S_{1} \rightarrow i_{1} 1\left|i_{2} 10\right| i_{3} 011\right\} \cup\left\{S_{1} \rightarrow i_{1} S_{1} 1\left|i_{2} S_{1} 10\right| i_{3} S_{1} 011\right\}$, and
- $\mathcal{G}_{2, K}=\left(\left\{S_{2}\right\},\{0,1\} \cup\left\{i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}_{2}, S_{2}\right)$, where $\mathcal{P}_{2}=\left\{S_{2} \rightarrow i_{1} 101\left|i_{2} 00\right| i_{3} 11\right\} \cup\left\{S_{2} \rightarrow i_{1} S_{2} 101\left|i_{2} S_{2} 00\right| i_{3} S_{2} 11\right\}$.

It is easy to verify that $i_{3} i_{2} i_{3} i_{1} 101110011 \in \mathcal{L}\left(\mathcal{G}_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}_{2, K}\right)$, since $(1,3,2,3)$ is a solution to K.
We already mentioned that we are aiming at a grammar whose productions can be "reversed" in order to get a valid role box. In a second step we therefore transform $\mathcal{G}_{1, K}$ and $\mathcal{G}_{2, K}$ and get the grammars $\mathcal{G}^{\prime}{ }_{1, K}$ and $\mathcal{G}^{\prime}{ }_{2, K}$, which have the "odd and even interleaving-property" (see above). These grammars are defined as follows:

$$
\begin{aligned}
& \text { - } \mathcal{G}^{\prime}{ }_{1, K}=\left(\mathcal{V}^{\prime}{ }_{1}, \mathcal{A}^{\prime} \cup\{\#\}, \mathcal{P}^{\prime}{ }_{1}, S_{1}\right) \\
& \begin{aligned}
\mathcal{V}^{\prime}{ }_{1}= & \left\{S_{1}\right\} \cup \\
& \left\{\left\{\begin{array}{l}
a \# \mid \\
w \# \mid \\
\left.w \in \mathcal{A}^{\prime}\right\} \cup \\
\end{array}, x \in\left\{x_{1}, \ldots, x_{k}\right\},\right.\right.
\end{aligned} \\
& w \in \operatorname{postfixes}(x)\} \cup \\
& \left\{S_{1} x \# \mid x \in\left\{x_{1}, \ldots, x_{k}\right\}\right\} \\
& \mathcal{P}^{\prime}{ }_{1}=\left\{a \# \rightarrow a \# \mid a \in \mathcal{A}^{\prime}\right\} \cup \\
& \left\{S_{1} \rightarrow i_{1} \# x_{1} \#|\cdots| i_{k} \# x_{k} \#\right\} \cup \\
& \left\{S_{1} \rightarrow \overline{i_{1} \#} \left\lvert\, \begin{array}{|l|l|l|l|l|l|}
S_{1} x_{1} \# & \cdots \mid i_{k} \# & S_{1} x_{k} \# \\
\hline
\end{array}\right.\right. \\
& \left\{S_{1} x_{1} \# \rightarrow S_{1} x_{1} \#, \ldots, S_{1} x_{k} \# \rightarrow S_{1} x_{k} \#\right\} \cup \\
& \{x \# \rightarrow \text { first }(x) \# \operatorname{rest}(x) \# \mid n \in 1 \ldots k, \\
& \left.x \in \operatorname{postfixes}\left(x_{n}\right),|x| \geq 2\right\}
\end{aligned}
$$

- $\mathcal{G}^{\prime}{ }_{2, K}=\left(\mathcal{V}^{\prime}{ }_{2}, \mathcal{A}^{\prime} \cup\{\#\}, \mathcal{P}^{\prime}{ }_{2}, S_{2}\right)$

$$
\begin{aligned}
& \mathcal{V}^{\prime}{ }_{2}=\left\{S_{2}\right\} \cup \\
& \left\{\# a \mid a \in \mathcal{A}^{\prime}\right\} \cup \\
& \left\{\# w \mid y \in\left\{y_{1}, \ldots, y_{k}\right\},\right. \\
& w \in \operatorname{postfixes}(y)\} \cup \\
& \left\{S_{2} \# y \mid y \in\left\{y_{1}, \ldots, y_{k}\right\}\right\} \\
& \begin{aligned}
\mathcal{P}^{\prime}{ }_{2}= & \left\{\# a \rightarrow \# a \mid a \in \mathcal{A}^{\prime}\right\} \cup \\
& \left\{S_{2} \rightarrow \# i_{1} \# y_{1}|\cdots| \# i_{k} \mid \# y_{k}\right\} \cup
\end{aligned} \\
& \left\{S_{2} \rightarrow \# i_{1}\left|S_{2} \# y_{1}\right| \cdots\left|\# i_{k}\right| \mid S_{2} \# y_{k}\right\} \cup \\
& \left\{S_{2} \# y_{1} \rightarrow S_{2} \# y_{1}, \ldots, S_{2} \# y_{k} \rightarrow S_{2} \# y_{k}\right\} \cup \\
& \{\# y \rightarrow \# \text { first }(y) \# \operatorname{rest}(y) \mid n \in 1 \ldots k, \\
& \left.y \in \operatorname{postfixes}\left(y_{n}\right),|y| \geq 2\right\}
\end{aligned}
$$

If we write expressions like ' $\# y \rightarrow \#$ first (y) \#rest (y) ' and for example, $y=$ 101, then this construction denotes the production " $\# 101 \rightarrow \# 1 \# 01$ ', since $\operatorname{first}(y)=1$ and $\operatorname{rest}(y)=01$. What happens if for some $i, j \in 1 \ldots k, i \neq j$, $x_{i}=x_{j}$ (or $y_{i}=y_{j}$)? In this case, also $x_{i} \#=x_{j} \#$ and $S_{1} x_{i} \#=S_{1} x_{j} \#$. If, for example, $x_{1}=11$ and $x_{2}=11, \mathcal{G}^{\prime}{ }_{1, K}$ would contain the productions $S_{1} \rightarrow$ $i_{1} \# 11 \#, S_{1} \rightarrow i_{2} \# 11 \#$ as well as $S_{1} \rightarrow i_{1} \# S_{1} 11 \#$ and $S_{1} \rightarrow i_{2} \# S_{1} 11 \#$ (and $S_{1} 11 \# \rightarrow S_{1} 11 \#, 11 \# \rightarrow 1 \# 1 \#$ etc., of course).
As already noted, due to the construction, we have $\mathcal{G}^{\prime}{ }_{1, K} \cap \mathcal{G}^{\prime}{ }_{2, K}=\emptyset$, since words in $\mathcal{G}^{\prime}{ }_{1, K}$ have the form $i_{i_{n}} \# \ldots \# i_{i_{2}} \# i_{i_{1}} \# x_{i_{1}} \# x_{i_{2}} \# \ldots \# x_{i_{n}} \#$, and words in $\mathcal{G}^{\prime}{ }_{2, K}$ have the form $\# i_{i_{n}} \# \ldots \# i_{i_{2}} \# i_{i_{1}} \# y_{i_{1}} \# y_{i_{2}} \# \ldots \# y_{i_{n}}$. The relationship with the PCP K is the following:

Corollary 1 A PCP K has the solution $\left(i_{1}, \ldots, i_{n}\right)$ iff $\# i_{i_{n}} \# \ldots \# i_{i_{2}} \# i_{i_{1}} \# x_{i_{1}} \# x_{i_{2}} \# \ldots \# x_{i_{n}} \# \in\left(\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)\right) \cap\left(\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}\right)$. Consequently, K has no solution iff $\left(\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)\right) \cap\left(\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}\right)=\emptyset$. Emptiness for this language is therefore undecidable.

Applied to the example

- $\mathcal{G}_{1, K}=\left(\left\{S_{1}\right\},\left\{0,1, i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}_{1}, S_{1}\right)$,

$$
\mathcal{P}_{1}=\left\{S_{1} \rightarrow i_{1} 1\left|i_{2} 10\right| i_{3} 011\right\} \cup\left\{S_{1} \rightarrow i_{1} S_{1} 1\left|i_{2} S_{1} 10\right| i_{3} S_{1} 011\right\}
$$

becomes

$$
\begin{aligned}
& \mathcal{G}^{\prime}{ }_{1, K}=\left(\mathcal{V}^{\prime}{ }_{1},\left\{\#, 0,1, i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}^{\prime}{ }_{1}, S_{1}\right) \text { with } \\
& \mathcal{V}^{\prime}{ }_{1}=\left\{S_{1}, 0 \#, 1 \#,\right. \\
& i_{1} \#, i_{2} \#, i_{3} \# \text {, } \\
& \text { 10\#, 011\#, } 11 \# \text {, } \\
& \left.S_{1} 1 \#, S_{1} 10 \#, S_{1} 011 \#\right\} \\
& \mathcal{P}^{\prime}{ }_{1}=\left\{0 \# \rightarrow 0 \#, 1 \# \rightarrow 1 \#,, i_{1} \# \rightarrow i_{1} \#,, i_{2} \# \rightarrow i_{2} \#, i_{3} \# \rightarrow i_{3} \#\right\} \cup \\
& \left\{S_{1} \rightarrow i_{1} \# 1 \#, S_{1} \rightarrow i_{2} \# 10 \#, S_{1} \rightarrow i_{3} \# 011 \#\right\} \cup \\
& \left\{S_{1} \rightarrow i_{1} \# S_{1} 1 \#, S_{1} \rightarrow i_{2} \# S_{1} 10 \#, S_{1} \rightarrow i_{3} \# S_{1} 011 \#\right\} \cup \\
& \left\{S_{1} 1 \# \rightarrow S_{1} 1 \#, S_{1} 10 \# \rightarrow S_{1} 10 \#, S_{1} 011 \# \rightarrow S_{1} 011 \#\right\} \cup \\
& \{10 \# \rightarrow 1 \# 0 \#, 011 \# \rightarrow 0 \# 11 \#, 11 \# \rightarrow 1 \# 1 \#\} \text {, and }
\end{aligned}
$$

- $\mathcal{G}_{2, K}=\left(\left\{S_{2}\right\},\left\{0,1, i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}_{2}, S_{2}\right)$,
$\mathcal{P}_{2}=\left\{S_{2} \rightarrow i_{1} 101\left|i_{2} 00\right| i_{3} 11\right\} \cup\left\{S_{2} \rightarrow i_{1} S_{2} 101\left|i_{2} S_{2} 00\right| i_{3} S_{2} 11\right\}$
becomes
$\mathcal{G}^{\prime}{ }_{2, K}=\left(\mathcal{V}^{\prime}{ }_{2},\left\{\#, 0,1, i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}^{\prime}{ }_{2}, S_{2}\right)$ with

Figure 1: $i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$

$$
\begin{aligned}
& \mathcal{V}^{\prime}{ }_{2}=\left\{S_{2}, \# 0, \# 1,\right. \\
& \# i_{1}, \# i_{2}, \# i_{3} \text {, } \\
& \# 10, \# 011, \text { \#11, } \\
& \left.S_{2} \# 101, S_{2} \# 00,, S_{2} \# 11\right\} \\
& \mathcal{P}^{\prime}{ }_{2}=\left\{\# 0 \rightarrow \# 0, \# 1 \rightarrow \# 1, \# i_{1} \rightarrow \# i_{1}, \# i_{2} \rightarrow \# i_{2}, \# i_{3} \rightarrow \# i_{3}\right\} \cup \\
& \left\{S_{2} \rightarrow \# i_{1} \# 101, S_{2} \rightarrow \# i_{2} \# 00, S_{2} \rightarrow \# i_{3} \# 11\right\} \cup \\
& \left\{S_{2} \rightarrow \# i_{1}\left|S_{2} \# 101, S_{2} \rightarrow \# i_{2}\right| S_{2} \# 00, S_{2} \rightarrow \# i_{3} \mid S_{2} \# 11\right\} \cup \\
& \left\{S_{2} \# 101 \rightarrow S_{2} \# 101,, S_{2} \# 00 \rightarrow S_{2} \# 00, S_{2} \# 11 \rightarrow S_{2} \# 11\right\} \cup
\end{aligned}
$$

We can verify that $i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$ (see Figure 1) and $\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$ (see Figure 2).

The grammars $\mathcal{G}^{\prime}{ }_{i, K}, i \in\{1,2\}$ have the following important property: whenever a word w is derivable by some non-terminal $A \in \mathcal{V}^{\prime}{ }_{i}$ such that $A \xrightarrow{+} w$, then there is no other non-terminal $B \in \mathcal{V}^{\prime}{ }_{i}$ with $A \neq B$ such that also $B \xrightarrow{+} w$. We can even put "the grammars together", and still this property holds:

Figure 2: $\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$

Lemma 2 Let $\mathcal{G}_{K}={ }_{\text {def }}\left(\mathcal{V}^{\prime}{ }_{1} \cup \mathcal{V}^{\prime}{ }_{2},\left\{\#, 0,1, i_{1}, i_{2}, i_{3}\right\}, \mathcal{P}^{\prime}{ }_{1} \cup \mathcal{P}^{\prime}{ }_{2}, \emptyset\right)$ be the union of the two grammars $\mathcal{G}^{\prime}{ }_{1, K}$ and $\mathcal{G}^{\prime}{ }_{2, K}$ as defined above. ${ }^{2}$
Then, for all $w \in\left\{\#, 0,1, i_{1}, i_{2}, i_{3}\right\}^{+}$, for all $A, B \in \mathcal{V}_{1}^{\prime} \cup \mathcal{V}^{\prime}{ }_{2}$, if $A \xrightarrow{+} w$ and $B \xrightarrow{+} w$, then $A=B$.

Proof 2 First of all note that $\mathcal{V}^{\prime}{ }_{1} \cap \mathcal{V}^{\prime}{ }_{2}=\emptyset$. Now assume $A \in \mathcal{V}^{\prime}{ }_{1}, B \in \mathcal{V}^{\prime}{ }_{2}$, and there is a word w such that $A \xrightarrow{+} w$ and $B \xrightarrow{+} w$. Since $\mathcal{V}^{\prime}{ }_{1} \cap \mathcal{V}^{\prime}{ }_{2}=\emptyset, A \neq B$ would follow, a contradiction. We must therefore show that there is no such w. It can be easily verified that $\{w \mid A \xrightarrow{+} w\} \cap\{w \mid B \xrightarrow{+} w\}=\emptyset$, since the "odd-even-interleaving" of "\#" holds not only for $A=S_{1}$ and $B=S_{2}$, but for all words derivable by some pair of non-terminals A, B. But then we must have $A, B \in \mathcal{V}^{\prime}{ }_{i}$, for some $i \in\{1,2\}$ - in the following we will show the lemma for $i=1$; the case for $i=2$ is analogous and left out here for the sake of brevity.
The proof is a simple induction on $|w|$. Obviously, for each w with $A \xrightarrow{+} w$ for some $A \in \mathcal{V}^{\prime}{ }_{1}$ we have $|w|=2 j$ for some $j \in \mathbb{N} \backslash\{0\}$:

[^1]- If $j=1,|w|=2$ and $A \xrightarrow{+} w$, then $w=a \#$ for $a \in\left\{0,1, i_{1}, i_{2}, i_{3}\right\}$. Therefore, $A=a \#$ and $a \# \rightarrow a \# \in \mathcal{P}^{\prime}{ }_{1}$, which is the only rule with " $a \#$ " on its right hand side. Therefore, $B \nrightarrow a \#$, if $A \neq B$.
- If $|w|=2 j, j \geq 2, j \in \mathbb{N}$ and $A \xrightarrow{+} w$, then there must be a production $P \in \mathcal{P}^{\prime}{ }_{1}$ with $P=(A \rightarrow X Y), X, Y \in \mathcal{V}^{\prime}{ }_{1}$. In the following we can forget about the productions with $A=a \#$, since they derive words of length two. We have $w=w_{X} w_{Y}$, and $X \xrightarrow{+} w_{X}, Y \xrightarrow{+} w_{Y}$. Since $\left|w_{X}\right|<|w|$, $\left|w_{Y}\right|<|w|$ (note that there are no productions of the form $X \rightarrow \epsilon!$), the induction hypothesis holds, and thus there are no $X^{\prime} \neq X$ with $X^{\prime} \xrightarrow{+} w_{X}$ or $Y^{\prime} \neq Y$ with $Y^{\prime} \xrightarrow{+} w_{Y}$. Therefore, X and Y uniquely determine the production $P=(A \rightarrow X Y)$. One can easily check that there is no production $P^{\prime}=(B \rightarrow X Y)$ with $B \neq A .^{3}$

However, we also need to argue that there is no other partition of w, with $w=w_{X}^{\prime} w_{Y}^{\prime}, w_{X}^{\prime} \neq w_{X}, w_{Y}^{\prime} \neq w_{Y}$, such that $X^{\prime} \xrightarrow{+} w_{X}^{\prime}, Y^{\prime} \xrightarrow{+} w_{Y}^{\prime}$ and $P^{\prime}=\left(B \rightarrow X^{\prime} Y^{\prime}\right), P^{\prime} \in \mathcal{P}^{\prime}{ }_{1}$ with $A \neq B$. If $X^{\prime}=X$ and $Y^{\prime}=Y$, we already know that $A=B$, since P^{\prime} is the only production with X and Y on its right hand side. Otherwise we can make a case distinction, assuming $A \neq B$ and derive a contradiction in every case:
$-P=\left(S_{1} \rightarrow i_{n} \# x_{n} \#\right), A=S_{1}, X=i_{n} \#, Y=x_{n} \#$, for some $n \in 1 \ldots k$,

* $P^{\prime}=\left(S_{1} x_{m} \# \rightarrow S_{1} x_{m} \#\right), B=S_{1} x_{m} \#, X^{\prime}=S_{1}, Y^{\prime}=x_{m} \#:$ note that $w_{X}^{\prime}=i_{n} \# \ldots$ (since $w=w_{X} w_{Y}=w_{X}^{\prime} w_{Y}^{\prime}$ and $w_{X}=$ $i_{n} \# \ldots$, due to $\left.i_{n} \# \xrightarrow{+} w_{X}\right)$. Since also $w_{X}^{\prime} \in \mathcal{L}\left(\mathcal{G}_{1, K}\right)$, this shows that $w_{X}^{\prime}=i_{n} \# \ldots$ even $_{\#}\left(x_{n}\right)$. Since already $w=i_{n} \# \operatorname{even}_{\#}\left(x_{n}\right)$ and $w=w_{X}^{\prime} w_{Y}^{\prime}$ it follows that $w_{X}^{\prime}=w$ and therefore $w_{Y}^{\prime}=\epsilon$ which contradicts $w_{Y}^{\prime}=\operatorname{even}_{\#}\left(x_{m}\right)$ (note that the PCP K does not contain empty words in its word list).
* $P^{\prime}=\left(x \# \rightarrow\right.$ first $(x) \#$ rest $(x) \#, B=x \#, X^{\prime}=\mathrm{first}(x) \#$, $Y^{\prime}=\operatorname{rest}(x) \#$, for some $n \in 1, \ldots, k, x \in \operatorname{postfixes}\left(x_{n}\right),|x| \geq$ 2 (where x_{n} is the nth word in the PCP K): obvious, since $\operatorname{first}(x) \neq i_{n}$, because $x \in\left\{a_{1}, a_{2}\right\}^{\star}$ (recall that $\left\{a_{1}, a_{2}\right\}$ is the alphabet of the PCP K), but $i_{n} \notin\left\{a_{1}, a_{2}\right\}$.
$-P=\left(\widehat{S_{1} x_{n} \#} \rightarrow S_{1} x_{n} \#\right), A=S_{1} x_{n} \#, X=S_{1}, Y=x_{n} \#$, for some $n \in 1 \ldots k$

[^2]* $P^{\prime}=\left(S_{1} \rightarrow i_{m} \# x_{m} \#\right), B=S_{1}, X^{\prime}=i_{m} \#, Y^{\prime}=x_{m} \#: w_{X}^{\prime}$ must start with $i_{m} \#$. This shows that w_{X} must start with $i_{m} \#$ and thus has the form $w_{X}=i_{m} \# \ldots \operatorname{even}_{\#}\left(x_{m}\right)$. This leads to the conclusion that $w_{Y}=\epsilon$ which contradicts $w_{Y}=\operatorname{even}_{\#}\left(x_{n}\right)$.
* $P^{\prime}=(x \# \rightarrow$ first $(x) \# \mathrm{rest}(x) \#), B=x \#, X^{\prime}=\mathrm{first}(x) \#$, $Y^{\prime}=\operatorname{rest}(x) \#$: obvious, see above.
$-P=(x \# \rightarrow$ first $(x) \# \operatorname{rest}(x) \#), A=x \#, X=\operatorname{first}(x) \#, Y=$ $\operatorname{rest}(x) \#$, for some $n \in 1, \ldots, k, x \in \operatorname{postfixes}\left(x_{n}\right),|x| \geq 2$ (where x_{n} is the nth word in the PCP K)
* $P^{\prime}=\left(x^{\prime} \# \rightarrow\right.$ first $\left.\left(x^{\prime}\right) \# \operatorname{rest}\left(x^{\prime}\right) \#\right), B=x \#, X^{\prime}=$ first $\left(x^{\prime}\right) \#$, $Y^{\prime}=\operatorname{rest}\left(x^{\prime}\right) \#$, for some $n \in 1, \ldots, k, x^{\prime} \in \operatorname{postfixes}\left(x_{n}\right),|x| \geq 2$: obviously, $A=B$ iff $x^{\prime}=x$. Therefore, $A \neq B$ iff $x^{\prime} \neq x$. However, then either $\operatorname{first}(x) \neq \operatorname{first}\left(x^{\prime}\right)$ or $\operatorname{rest}(x) \neq \operatorname{rest}\left(x^{\prime}\right)$. In both cases the contradiction is immediate, since $w=w_{X} w_{Y}=$ $\operatorname{even}_{\#}(x)$ and $w=w_{X}^{\prime} w_{Y}^{\prime}=\operatorname{even}_{\#}\left(x^{\prime}\right)$.
* $P^{\prime}=\left(S_{1} \rightarrow i_{m} \# x_{m} \#\right), B=S_{1}, X^{\prime}=i_{m} \#, Y^{\prime}=x_{m} \#$: obvious, since w_{X}^{\prime} starts with $i_{m} \#$ and $i_{m} \notin\left\{a_{1}, a_{2}\right\}$.
$* P^{\prime}=\left(\widehat{S_{1} x_{m} \#} \rightarrow S_{1} x_{m} \#\right), B=S_{1} x_{m} \#, X^{\prime}=S_{1}, Y^{\prime}=x_{m} \#:$ obvious, since w_{X}^{\prime} starts with $i_{n} \#$ for some $n \in 1 \ldots k$ and $i_{n} \notin$ $\left\{a_{1}, a_{2}\right\}$.

The key-observation is now that one can simply reverse the productions of the grammar \mathcal{G}_{K} in order to get a role box $\mathfrak{R}_{\mathfrak{R}}$. That is, each production of the form $A \rightarrow B C \in \mathcal{P}^{\prime}{ }_{1} \cup \mathcal{P}^{\prime}{ }_{2}$ yields a role axiom $B \circ C \sqsubseteq A \in \mathfrak{R}_{\mathfrak{K}}$. The terminals and non-terminals of \mathcal{G}_{K} are considered as roles now. If a word can be derived "top down" by the grammar using a derivation tree, then it is possible to "parse" this word in a bottom-up style using the role axioms. The previous lemma ensures that the disjointness-requirement of $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ cannot be violated during this "bottom-up" parsing process.
The following lemma fixes the relationship between words that are derivable by the grammar (by some non-terminal, not necessarily only S_{1} or S_{2}) and the models of the role box corresponding to this grammar:

Lemma 3 Let $\mathcal{G}_{K}=(\mathcal{V}, \Sigma, \mathcal{P}, S)$ be the grammar constructed in Lemma 2. W.l.o.g. we assume $(\mathcal{V} \cup \Sigma) \subseteq \mathcal{N}_{\mathcal{R}}$. Let $w \in \Sigma^{+}, w=w_{1} \ldots w_{n}$ be a word with $n \geq 2$, and \mathcal{I} be a model of $\left(\exists w_{1} \ldots \exists w_{n} \cdot \top, \mathfrak{R}_{\mathfrak{R}}\right)$ with $\mathfrak{R}_{\mathfrak{K}}={ }_{\text {def }}\{B \circ C \sqsubseteq$ $A \mid A \rightarrow B C \in \mathcal{P}\}$.

Let $\left.\left\langle x_{0}, x_{1}\right\rangle \in w_{1}^{\mathcal{I}}, \ldots<x_{n-1}, x_{n}\right\rangle \in w_{n}^{\mathcal{I}}$ be an arbitrary path in the model \mathcal{I} corresponding to w. Note that the individuals x_{i} must not necessarily be distinct (e.g., there might be i, j such that $x_{i}=x_{j}$).

Let $A \in \mathcal{V}$ be an arbitrary non-terminal of \mathcal{G}_{K}. Then, $\left\langle x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ holds in all models \mathcal{I} of $\left(\exists w_{1} \ldots \exists w_{n} \cdot \top, \Re_{\mathfrak{K}}\right)$ iff there is a derivation of w having A as the root node: we write $A \xrightarrow{+} w$.

Proof 3 " \Leftarrow " If $A \xrightarrow{+} w$, then $|w|=2 j, j \in \mathbb{N} \backslash\{0\}$. Using induction we show that $\left\langle x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ (again we focus on $\mathcal{G}^{\prime}{ }_{1, K}$):

- If $|w|=2$, then there must be a production of the form $a \# \rightarrow$ $a \# \in \mathcal{P}$, for $a \in\left\{a_{1}, a_{2}, i_{1}, \ldots, i_{k}\right\}$. This shows that $w=a \#$. If \mathcal{I} is a model of $\mathfrak{R}_{\mathfrak{K}}$ and $\left\langle x_{0}, x_{1}\right\rangle \in a^{\mathcal{I}},\left\langle x_{1}, x_{2}\right\rangle \in \#^{\mathcal{I}}$, then, due to $a \circ \# \sqsubseteq a \# \in \mathfrak{R}_{\mathfrak{K}}$ we have $\left\langle x_{0}, x_{2}>\in a \#^{\mathcal{T}}\right.$ in all models.
- If $|w|=2 j, j \geq 2$, then there must be a production of the form $A \rightarrow$ $X Y \in \mathcal{P}$ such that $w=w_{X} w_{Y}, w_{X}=w_{1} \ldots w_{m}, w_{Y}=w_{m+1} \ldots w_{2 j}$, $X \xrightarrow{+} w_{X}, Y \xrightarrow{+} w_{Y}$. Since $\left|w_{X}\right|<|w|$ and $\left|w_{Y}\right|<|w|$ the induction hypothesis holds and therefore, $\left\langle x_{0}, x_{m}\right\rangle \in X^{\mathcal{I}}$ and $\left\langle x_{m+1}, x_{2 j}\right\rangle \in$ $X^{\mathcal{I}}$ in all models. Therefore, due to $X \circ Y \sqsubseteq A \in \mathfrak{R}_{\mathfrak{K}}$ also $\left.<x_{0}, x_{2 j}\right\rangle \in$ $A^{\mathcal{I}}$ in all models.
$" \Rightarrow$ " If $\left\langle x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ holds in all models \mathcal{I} of $\left(\exists w_{1} \ldots \exists w_{n} \cdot \top, \mathfrak{R}_{\mathfrak{K}}\right)$, then we may say (with a slight abuse of terminology) that the presence of $\left.<x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ is a logical consequence of $\left(\exists w_{1} \ldots \exists w_{n} \cdot \top, \mathfrak{R}_{\mathfrak{K}}\right)$. Please note that among the models with $\left\langle x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ there is also a model \mathcal{I} in which the x_{i} 's are distinct individuals such that $\Delta^{\mathcal{I}}=\left\{x_{0}, \ldots, x_{n}\right\}$, and $\left.<x_{0}, x_{1}>\in w_{1}^{\mathcal{I}}, \ldots<x_{n-1}, x_{n}\right\rangle \in w_{n}^{\mathcal{I}}$ corresponds to a linear path of direct edges. An edge $\langle x, z\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})$ is called direct if there is no $y \in \Delta^{\mathcal{I}}$, $y \neq x, y \neq z$ such that $\langle x, y\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})^{+}$and $\langle y, z\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})^{+}$. Now one can easily construct a derivation tree for w showing that $A \xrightarrow{+} w$ by inspecting the nesting of role compositions leading to $\left\langle x_{0}, x_{n}\right\rangle \in A^{\mathcal{I}}$ in this model. More formally this could be shown by using induction as well, and the proof would be very similar to the previous one.

Given an arbitrary word w, the expression $\exists w \cdot C$ is defined in the obvious way: $\exists w \cdot C={ }_{\operatorname{def}} C$ if $w=\epsilon$, and $\exists w \cdot C==_{\text {def }} \exists$ first $(w) .(\exists \operatorname{rest}(w) \cdot C)$ otherwise (if $w \neq \epsilon$).

We still need to argue that the role box $\mathfrak{R}_{\mathfrak{R}}$ admits models; i.e., given an arbitrary word w, is it always the case that $\left(\exists w \cdot \top, \mathfrak{R}_{\mathfrak{K}}\right)$ is satisfiable? Please note that this is not granted for arbitrary role boxes in $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$, due to the disjointnessrequirement. However, for the role box $\mathfrak{R}_{\mathfrak{K}}$ we know this for sure:

Corollary 2 Let w be a word over some alphabet. Then, $\left(\exists w . \top, \mathfrak{R}_{\mathfrak{R}}\right)$ is satisfiable (in $\mathcal{\mathcal { L L C } _ { \mathcal { R A } }}$).

Proof 4 Suppose that $w=w_{1} \ldots w_{n},\left(\exists w_{1} \ldots \exists w_{n} \cdot \top, \mathfrak{R}_{\mathfrak{R}}\right)$ is unsatisfiable. Obviously, $\left(\exists w_{1} \ldots . \exists w_{n} . \top, \mathfrak{R}_{\mathfrak{K}}\right)$ can only become unsatisfiable if the disjointness requirement cannot be fulfilled, e.g. in any interpretation \mathcal{I} in which $\mathcal{I} \models \exists w_{1} \ldots . \exists w_{n} . \top$ and $\mathcal{I} \models \mathfrak{R}_{\mathfrak{R}}$ holds there exist at least two roles $S, T \in \mathcal{N}_{\mathcal{R}}$ such that $S^{\mathcal{I}} \cap T^{\mathcal{I}} \neq \emptyset$ is enforced by the role box. Then, every model must contain $S^{\mathcal{I}} \cap T^{\mathcal{I}} \neq \emptyset$ (otherwise we could find another model, and ($\exists w . \top, \mathfrak{R}_{\mathfrak{K}}$) would be satisfiable). Of course, for $n=1,\left(\exists w_{1} \cdot \top, \mathfrak{R}_{\mathfrak{R}}\right)$ is always satisfiable. According to Lemma 3, for $n \geq 2$ we have $\left\langle x_{0}, x_{n}\right\rangle \in S^{\mathcal{I}}$ in every model iff $S \xrightarrow{+} w$ and $\left\langle x_{0}, x_{n}\right\rangle \in T^{\mathcal{I}}$ in every model iff $T \xrightarrow{+} w$. However, this is a contradiction to Lemma 2.

Returning to our example PCP K, the following role box will be constructed:

$$
\begin{aligned}
& \mathfrak{R}_{\mathfrak{K}}=\{0 \circ \# \sqsubseteq 0 \#, 1 \circ \# \sqsubseteq 1 \#, \\
& i_{1} \circ \# \sqsubseteq i_{1} \#, i_{2} \circ \# \sqsubseteq i_{2} \#, i_{3} \circ \# \sqsubseteq i_{3} \#,
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
S_{1} \circ 1 \# \sqsubseteq S_{1} 1 \#, S_{1} \circ 10 \# \sqsubseteq S_{1} 10 \#, S_{1} \circ 011 \# \sqsubseteq S_{1} 011 \#, \\
1 \# \# 0 \# \sqsubseteq 10 \#, 0 \# \circ 11 \# \sqsubseteq 011 \#, 1 \# \circ 1 \# \sqsubseteq 11 \#\} \cup
\end{array} \\
& \{\# \circ 0 \sqsubseteq \# 0, \# \circ 1 \sqsubseteq \# 1 \text {, } \\
& \# \circ i_{1} \sqsubseteq \# i_{1} \text {, } \# \circ i_{2} \sqsubseteq \# i_{2}, \# \circ i_{3} \sqsubseteq \# i_{3} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& S_{2} \circ \# 101 \sqsubseteq S_{2} \# 101, S_{2} \circ \# 00 \sqsubseteq S_{2} \# 00, S_{2} \circ \# 11 \sqsubseteq S_{2} \# 11 \text {, } \\
& \# 1 \circ \# 01 \sqsubseteq \# 101, \# 0 \circ \# 1 \sqsubseteq \# 01 \text {, } \\
& \# 0 \circ \# 0 \sqsubseteq \# 00, \# 1 \circ \# 1 \sqsubseteq \# 11\} .
\end{aligned}
$$

The "first part" of this role box corresponds to $\mathcal{P}^{\prime}{ }_{1}$, and the "second part" to $\mathcal{P}^{\prime}{ }_{2}$.
One can now use this role box to solve the membership problem of $\mathcal{L}_{\mathcal{K}}$. For example, consider $w \in \mathcal{L}_{\mathcal{K}}$, with $w=\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \#$. The following concept term is unsatisfiable w.r.t. $\mathfrak{R}_{\mathfrak{K}}$, since $w \in \mathcal{L}_{\mathcal{K}}$. Recall that $w \in \mathcal{L}_{\mathcal{K}}$ iff $w=\# \alpha \#, \alpha \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$ and $\# \alpha \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$. Consider

$$
\begin{aligned}
& \left(\left(\left(\forall \# . \forall S_{1} \cdot C\right) \sqcap\left(\forall S_{2} \cdot \forall \# \cdot D\right) \sqcap\right.\right. \\
& \left.\left.\quad \exists \# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \# . \neg(C \sqcap D)\right), \mathfrak{R}_{\mathfrak{R}}\right)
\end{aligned}
$$

Any model of this example would also be a model of $\left(\exists \# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \# . \top, \Re_{\mathfrak{K}}\right)$. Let $<x_{0}, x_{1}>\in \#^{\mathcal{I}}$, $\left\langle x_{1}, x_{2}\right\rangle \in i_{3}^{\mathcal{I}},\left\langle x_{3}, x_{4}\right\rangle \in \#^{\mathcal{I}},\left\langle x_{4}, x_{5}\right\rangle \in i_{2}^{\mathcal{I}}, \ldots,\left\langle x_{26}, x_{27}\right\rangle \in \#^{\mathcal{I}}$ (see also

Figure 3: "Bottom up parsing" of $\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \#$

Figure 3). Due to Lemma 3, since $i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \# \in$ $\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$, we have $\left\langle x_{1}, x_{27}\right\rangle \in S_{1}^{\mathcal{I}}$. But then, due to $x_{0} \in\left(\forall \# . \forall S_{1} . C\right)^{\mathcal{I}}$, also $x_{27} \in C^{\mathcal{I}}$. Since $\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$, we have $<x_{0}, x_{26}>\in S_{2}^{\mathcal{I}}$. But then, due to $x_{0} \in\left(\forall S_{2} . \forall \# . C\right)^{\mathcal{I}}$, also $x_{27} \in D^{\mathcal{I}}$. However, this contradicts $x_{27} \in(\neg(C \sqcap D))^{\mathcal{I}}$. The example is therefore unsatisfiable. Considering Figure 3, it can be seen that the role box performs a "bottom up parsing" of the word $\# i_{3} \# i_{2} \# i_{3} \# i_{1} \# 1 \# 0 \# 1 \# 1 \# 1 \# 0 \# 0 \# 1 \# 1 \#$. The two derivation trees shown in Figure 1 and 2 can be immediately discovered in Figure 3. One can also clearly see that all roles are interpreted disjointly.
With the auxiliary machinery at hand, we can now show the main result of the paper:

Theorem 1 The satisfiability problem of $\mathcal{A L C}_{\mathcal{R A}}$ is undecidable.
Proof 5 We give an example for a pair $\left(E, \Re_{\mathfrak{K}}\right)$ for which no algorithm exists that is capable of checking its satisfiability.
Let $\mathcal{G}_{K}=(\mathcal{V}, \Sigma, \mathcal{P}, S)$ be the grammar of Lemma 2. Let

$$
\mathfrak{\Re}_{\mathfrak{K}}={ }_{\text {def }}\{B \circ C \sqsubseteq A \mid A \rightarrow B C \in \mathcal{P}\} .
$$

Let $R_{\text {? }} \notin \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}\right)$, and let

$$
\begin{aligned}
\mathfrak{R}_{\mathfrak{K}}^{\prime}=\text { def } & \mathfrak{R}_{\mathfrak{K}} \cup\left\{R \circ S \sqsubseteq \sqcup_{T \in\left(\text { roles }\left(\Re_{\mathfrak{R}}\right) \cup R_{?}\right)} T \mid\right. \\
& R, S \in\left(\left\{R_{?}\right\} \cup \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}\right)\right), \\
& \left.\neg r a \in \mathfrak{R}_{\mathfrak{K}}: \operatorname{pre}(r a)=(R, S)\right\}
\end{aligned}
$$

be the completion of $\mathfrak{R}_{\mathfrak{K}}$. In the following, the so-called "don't care role" $R_{\text {? }}$ plays a special role.

Then, $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is satisfiable iff $\mathcal{L}_{\mathcal{K}}=\emptyset$, where $\mathcal{L}_{\mathcal{K}}={ }_{\text {def }}\left(\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)\right) \cap$ $\left(\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}\right)$ (due to Corollary $1, K$ has no solution then). The concept E is defined as

$$
\begin{gathered}
E=_{\operatorname{def}} X \sqcap \neg(C \sqcap D) \sqcap Y \sqcap\left(\forall \# . \forall S_{1} \cdot C\right) \sqcap\left(\forall S_{2} . \forall \# . D\right) \text {, with } \\
X==_{\operatorname{def}} \sqcap_{a \in \Sigma} \exists a . \top \text { and } \\
Y=_{\operatorname{def}} \sqcap_{R \in \operatorname{roles}\left(\Re_{\xi}^{\prime}\right)} \forall R .(X \sqcap \neg(C \sqcap D)) .
\end{gathered}
$$

We have to show that $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is satisfiable iff $\mathcal{L}_{\mathcal{K}}=\emptyset$:
$" \Rightarrow$ " We prove the contra-positive: if $\mathcal{L}_{\mathcal{K}} \neq \emptyset$, then $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is unsatisfiable. Assume to the contrary that $\mathcal{L}_{\mathcal{K}} \neq \emptyset$, but $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is satisfiable. Let \mathcal{I} be a model of $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$. Because \mathcal{I} satisfies $\mathfrak{R}_{\mathfrak{F}}^{\prime}$, it holds that $\left\langle x_{0}, x_{n}\right\rangle \in$ $\left(\bigcup_{R \in \operatorname{roles}\left(\Re_{\S}^{\prime}\right)} R^{\mathcal{I}}\right)^{+}$implies $\left\langle x_{0}, x_{n}\right\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})$. This is ensured by the fact

Figure 4: Illustration of the constructed model for $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$. Not all edges are shown; please note that each edge is also a member of $\mathcal{U} \mathcal{R}$, even if not labeled with $\mathcal{U R}$.
that the composition of two arbitrary roles from roles $\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is always defined in $\mathfrak{R}_{\mathfrak{K}}^{\prime}$, due to the completion process. Since \mathcal{I} is a model of E, there is some $x_{0} \in E^{\mathcal{I}}$. Due to $x_{0} \in(X \sqcap Y)^{\mathcal{I}}$ it holds that $x_{0} \in\left(\left(\sqcap_{a \in \Sigma} \exists a . \top\right) \sqcap\right.$ $\left.\left(\sqcap_{R \in \text { roles }\left(\Re_{\kappa}^{\prime}\right)} \forall R .\left(\sqcap_{a \in \Sigma} \exists a . \top\right)\right)\right)^{\mathcal{I}}$. The model \mathcal{I} therefore represents all possible words $w \in \Sigma^{+}$. Let $w \in \mathcal{L}_{\mathcal{K}}$, with $w=w_{1} \ldots w_{n-1} w_{n}$. Please note that $w=\# \alpha \#$, where $\alpha \in \Sigma^{+}$, since $\mathcal{L}_{\mathcal{K}}={ }_{\operatorname{def}}\left(\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right) \cap\left(\mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}\right)\right.$, and therefore $\alpha \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$ and $\# \alpha \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)$. Obviously, \mathcal{I} is also a model of $\exists \# \alpha \# . \top$, with $x_{0} \in(\exists \# \alpha \# . \top)^{\mathcal{I}}$. Let $x_{0}, x_{1}, \ldots, x_{n}$ be the path in the model corresponding to the word $\# \alpha \#$, i.e. $\left\langle x_{0}, x_{1}\right\rangle \in \#^{\mathcal{I}}, \ldots$, $<x_{n-1}, x_{n}>\in \#^{\mathcal{I}}$. Due to $\mathfrak{R}_{\mathfrak{K}} \subseteq \mathfrak{R}_{\mathfrak{K}}^{\prime}, \mathcal{I}$ is also a model of $\mathfrak{R}_{\mathfrak{K}}$, and therefore Lemma 3 is applicable. Since $S_{1} \xrightarrow{+} \alpha \#$ we have $\left\langle x_{1}, x_{n}\right\rangle \in S_{1}^{\mathcal{I}}$. Since
$S_{2} \xrightarrow{+} \# \alpha$ we have $<x_{0}, x_{n-1}>\in S_{2}^{\mathcal{I}}$. However, in every model of E we also have $x_{0} \in\left(\left(\forall \# . \forall S_{1} . C\right) \sqcap\left(\forall S_{2} . \forall \# . D\right)\right)^{\mathcal{I}}$, and therefore $x_{n} \in(C \sqcap D)^{\mathcal{I}}$. But this contradicts $x_{n} \in \neg(C \sqcap D)^{\mathcal{I}}$ caused by $<x_{0}, x_{n}>\in \mathcal{U} \mathcal{R}(\mathcal{I})$ and $x_{0} \in\left(\sqcap_{R \in \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)} \forall R . \neg(C \sqcap D)\right)^{\mathcal{I}}$, and $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is therefore unsatisfiable.
${ }^{*} \Leftarrow "$ If $\mathcal{L}_{K}=\emptyset$, then we show that $\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$ is satisfiable by constructing an infinite model. The model \mathcal{I} is constructed incrementally, e.g. $\mathcal{I}_{0} \subset \mathcal{I}_{1} \subset$ $\mathcal{I}_{2} \subset \cdots \subset \mathcal{I}_{\omega}, \mathcal{I}=\mathcal{I}_{\omega}$. In the following construction, we refer to the set $\mathcal{U} \mathcal{R}(\mathcal{I}, \Sigma)$ (not to be confused with $\mathcal{U} \mathcal{R}(\mathcal{I})$!) as the skeleton of the model \mathcal{I}. The skeleton has the form of an infinite tree. An illustration of \mathcal{I} is given in Figure 4. Each node in the model \mathcal{I} has $|\Sigma|$ different direct successors in the skeleton; the skeleton of \mathcal{I} is a tree with branching factor $|\Sigma|$.

For each $n \in \mathbb{N} \cup\{0\}$, the skeleton of the interpretation \mathcal{I}_{n} is a tree of depth n, encoding all words w with $|w| \leq n$, i.e. $w \in \bigcup_{i \in\{0, \ldots, n\}} \Sigma^{i}$. Each word w of length $i=|w|, i \leq n$, corresponds to a path from the root node $x_{0,0}$ to some node $x_{i, m}$ at depth i, in all skeletons of the models \mathcal{I}_{n}. Therefore, the skeleton of \mathcal{I} represents all words from Σ^{+}.

Intuitively, the terminal symbols of the words to be parsed by the role box are represented as direct edges in the skeleton of the model, whereas the indirect edges in this model are inserted to mimic the "bottom-up parsing process" of these words, which is performed by the role box. The model \mathcal{I} is constructed as follows:

- $\mathcal{I}_{0}=\left(\Delta_{0}^{\mathcal{I}}, \cdot{ }_{0}^{\mathcal{I}}\right), \Delta_{0}^{\mathcal{I}}:=\left\{x_{0,0}\right\}, \cdot{ }_{0}^{\mathcal{I}}:=\{ \}$
- For $n \in 0,1, \ldots$,
$\mathcal{I}_{n+1}=\left(\Delta_{n+1}^{\mathcal{I}}, \cdot{ }_{n+1}^{\mathcal{I}}\right)$ is constructed from $\mathcal{I}_{n}=\left(\Delta_{n}^{\mathcal{I}},{ }_{n}^{\mathcal{I}}\right)$ as follows:

1. $\Delta_{n+1}^{\mathcal{I}}:=\Delta_{n}^{\mathcal{I}} \cup\left\{x_{n+1, j} \mid j \in\left\{1, \ldots,|\Sigma|^{n+1}\right\}\right\}$,
2. $\Sigma=\left\{b_{1}, \ldots, b_{k}\right\}, \forall b_{r} \in\left\{b_{1}, \ldots, b_{k}\right\}:$ $b_{r}^{\mathcal{I}_{n+1}}:=b_{r}^{\mathcal{I}_{n+1}} \cup$ $\left\{<x_{n, j}, x_{n+1, k(j-1)+r}>\mid\right.$
$\left.x_{n, j} \in \Delta_{n}^{\mathcal{I}}, x_{n+1, k(j-1)+r} \in \Delta_{n+1}^{\mathcal{I}}\right\}$
3. while $\mathcal{I}_{n+1} \not \vDash \mathfrak{R}_{\mathfrak{K}}$ do for each $R \circ S \sqsubseteq T \in \mathfrak{R}_{\mathfrak{K}}$ do
$T^{\mathcal{I}_{n+1}}:=T^{\mathcal{I}_{n+1}} \cup R^{\mathcal{I}_{n+1}} \circ S^{\mathcal{I}_{n+1}}$ od
od
4. $R_{?}^{\mathcal{I}_{n+1}}:=\left\{<x_{i, j}, x_{n+1, k}>\mid i<n+1, x_{i, j}, x_{n+1, k} \in \Delta_{n+1}^{\mathcal{I}}\right.$,

$$
\left.<x_{i, j}, x_{n+1, k}>\notin \mathcal{U} \mathcal{R}\left(\mathcal{I}_{n+1}, \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)\right)\right\}
$$

5. $C^{\mathcal{I}_{n+1}}:=C^{\mathcal{I}_{n+1}} \cup\left\{x_{n+1, j}\left|<x_{0,0}, x_{n+1, j}\right\rangle \in \#^{\mathcal{I}_{n+1}} \circ S_{1}^{\mathcal{I}_{n+1}}\right\}$
6. $D^{\mathcal{I}_{n+1}}:=D^{\mathcal{I}_{n+1}} \cup\left\{x_{n+1, j} \mid\left\langle x_{0,0}, x_{n+1, j}\right\rangle \in S_{2}^{\mathcal{I}_{n+1}} \circ \#^{\mathcal{I}_{n+1}}\right\}$

We show that \mathcal{I} is a model.
First we show $\mathcal{I} \models \mathfrak{R}_{\mathfrak{K}}^{\prime}$ and that all roles are disjointly interpreted. We will use induction over n, where $n \in \mathbb{N} \cup\{0\}$:
The base case for $n=0$ is immediate.
So suppose that $\mathcal{I}_{n} \models \mathfrak{R}_{\mathfrak{K}}^{\prime}$, and all roles are interpreted disjointly. Then, after step 3 in the construction we have obviously $\mathcal{I}_{n+1} \models \mathfrak{R}_{\mathfrak{K}}$. Please note that $\mathfrak{R}_{\mathfrak{K}}$ contains only deterministic role axioms, so the result of step 3 is well-defined. After step 4 we will have $\mathcal{I}_{n+1} \models \mathfrak{R}_{\mathfrak{R}}^{\prime}$: note that $\mathfrak{R}_{\mathfrak{D}}=\mathfrak{R}_{\mathfrak{K}}^{\prime} \backslash \mathfrak{R}_{\mathfrak{K}}$ is the completed part of the original role box $\mathfrak{R}_{\mathfrak{K}}$. The axioms $r a \in \mathfrak{R}_{0}$ have the form $R \circ S \sqsubseteq \sqcup_{T \in\left(\operatorname{roles}\left(\Re_{\mathfrak{R}}\right) \cup R_{?}\right)} T$, where $R, S \in\left(\left\{R_{?}\right\} \cup \operatorname{roles}\left(\Re_{\mathfrak{R}}\right)\right)$, and there exists no other role axiom(s) $r a^{\prime} \in \mathfrak{R}_{\mathfrak{R}}$ such that pre $(r a)=(R, S)$. If $\left\langle x_{i, j}, x_{n+1, k}\right\rangle$ with $i<n+1, x_{i, j}, x_{n+1, k} \in \Delta_{n+1}^{\mathcal{I}}$ has not been added to $\mathcal{U} \mathcal{R}\left(\mathcal{I}_{n+1}, \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)\right)$ in step 3 and we therefore have $\left\langle x_{i, j}, x_{n+1, k}\right\rangle \notin$ $\mathcal{U} \mathcal{R}\left(\mathcal{I}_{n+1}, \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)\right)$, then $\left\langle x_{i, j}, x_{n+1, k}\right\rangle \in R_{?}^{\mathcal{I}_{n+1}}$ has been added by step 4. Because $R_{\text {? }}$ occurs on the right hand side of every role axiom $r a^{\prime} \in \mathfrak{R}_{\mathfrak{d}}$ we have $\mathcal{I}_{n} \models \mathfrak{R}_{\mathfrak{K}}^{\prime}$ after step 4 .
However, we also need to argue that all roles are still interpreted disjointly after step 4 . Since $\mathcal{L}_{K}=\emptyset$ and due to Lemma 2 and Lemma 3 we know that all roles are interpreted disjointly after step 3. To see that this still holds after step 4 , observe that \mathfrak{R}_{δ} is tailored in such a way that it is always safe to add $\left\langle x_{i, j}, x_{n+1, k}\right\rangle \in R_{?}^{\mathcal{I}_{n+1}}$ in step 4. The $R_{?}$-edges act as "don't care" edges and simply cannot violate the disjointness requirement: suppose we added $\left\langle x_{i^{\prime}, j^{\prime}}, x_{n+1, k}\right\rangle \in R_{?}^{\mathcal{I}_{n+1}}$, but \mathcal{I}_{n+1} already contained $\left\langle x_{i, j}, x_{i^{\prime}, j^{\prime}}\right\rangle \in R^{\mathcal{I}_{n+1}}$, and $\left\langle x_{i, j}, x_{n+1, k}\right\rangle \in S^{\mathcal{I}_{n+1}}$ (added by step 3). Since there is no role axiom $r a \in \mathfrak{R}_{\mathfrak{R}}$ with pre $(r a)=\left(R, R_{\text {? }}\right)$, but instead $R \circ R_{\text {? }} \sqsubseteq$ $\sqcup_{T \in\left(\text { roles }\left(\Re_{\mathfrak{R}}\right) \cup R_{?}\right)} \in \mathfrak{R}_{\mathbf{0}}$, the insertion of $R_{\text {? }}$ did not "invalidate" the model, since the role S appears on the right hand side of this role axioms.

We now prove that $x_{0,0} \in E^{\mathcal{I}}$, i.e. $x_{0,0} \in\left(\left(\sqcap_{a \in \Sigma} \exists a\right.\right.$. $\left.\top\right) \sqcap$ $\left.\left(\sqcap_{R \in \text { roles }\left(\Re_{\Omega}^{\prime}\right)} \forall R .\left(\sqcap_{a \in \Sigma} \exists a . \top\right)\right) \sqcap\left(\forall \# . \forall S_{1} . C\right) \sqcap\left(\forall S_{2} . \forall \# . D\right)\right)^{\mathcal{I}}$. For each node $x_{i, j} \in \Delta^{\mathcal{I}}$ with $i \neq 0, j \neq 0$ we have $\left\langle x_{0,0}, x_{i, j}\right\rangle \in \mathcal{U} \mathcal{R}(\mathcal{I})$ (note that $\left\{R_{?}^{\mathcal{I}} \subseteq \mathcal{U} \mathcal{R}(\mathcal{I})\right.$, and $R_{?} \in \operatorname{roles}\left(\mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$), and each node has the required $k=|\Sigma|$ direct successors, b_{1}, \ldots, b_{k}. Since this holds for $x_{0,0}$ and for any (arbitrarily chosen) $x_{i, j}$ as well, we have $x_{0,0} \in X^{\mathcal{I}}, x_{i, j} \in X^{\mathcal{I}}$, and finally $x_{0,0} \in\left(\sqcap_{R \in \text { roles }\left(\Re_{\xi}^{\prime}\right)} \forall R . X\right)^{\mathcal{I}}$. However, also $x_{0,0} \in\left(\sqcap_{R \in \text { roles }\left(\Re_{\xi}^{\prime}\right)} \forall R . \neg(C \sqcap\right.$ $D))^{\mathcal{I}}$ holds: assume the contrary. Let n be the smallest level in the tree corresponding to the skeleton of \mathcal{I} for which there is some node $x_{n, i_{n}} \in \Delta^{\mathcal{I}}$ with $x_{n, i_{n}} \in C^{\mathcal{I}}, x_{n, i_{n}} \in D^{\mathcal{I}}$. Since this node lies at depth
n in the skeleton, we already have $x_{n, i_{n}} \in C^{\mathcal{I}_{n}}, x_{n, i_{n}} \in D^{\mathcal{I}_{n}}$. Due to the construction, $x_{n, i_{n}} \in C^{\mathcal{I}_{n}}$ iff $\left.<x_{0,0}, x_{n, i_{n}}\right\rangle \in \#^{\mathcal{I}_{n}} \circ S_{1}^{\mathcal{I}_{n}}$, and $x_{n, i_{n}} \in D^{\mathcal{I}_{n}}$ iff $\left.<x_{0,0}, x_{n, i_{n}}\right\rangle \in S_{2}^{\mathcal{I}_{n}} \circ \#^{\mathcal{I}_{n}}$. Let w be the corresponding path of (maximal) length n in the skeleton, with $w=w_{1} \ldots w_{n},\left\langle x_{0,0}, x_{1, i_{1}}\right\rangle \in w_{1}^{\mathcal{I}_{n}}$, $\ldots<x_{n-1, i_{n-1}}, x_{n, i_{n}}>\in w_{n}^{\mathcal{I}_{n}}$, with $w_{i} \in\left\{a_{1}, a_{2}, \#, i_{1}, \ldots, i_{k}\right\}$, leading from $x_{0,0}$ to $x_{n, i_{n}}$. By construction of \mathcal{I} we know that \#-edges can only occur as part of the skeleton, and therefore we must have $w_{1}=\#$ and $w_{n}=\#$. But this means that w has the form $w=\# \alpha \#-$ we have $<x_{0,0}, x_{1, i_{1}>}>\in \#^{\mathcal{I}_{n}}$, $<x_{1, i_{1}}, x_{n, i_{n}}>\in S_{1}^{\mathcal{I}_{n}}$ and $\# \alpha \in\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right)$, and also $<x_{0,0}, x_{n-1, i_{n-1}}>\in$ $S_{2}^{\mathcal{I}_{n}},<x_{n-1, i_{n-1}}, x_{n, i_{n}}>\in \#^{\mathcal{I}_{n}}$, therefore $\alpha \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}$. This shows that $w \in \mathcal{L}_{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} \neq \emptyset$, contradicting the assumption. Therefore it holds that $x_{0,0} \in\left(\sqcap_{R \in \operatorname{roles}\left(\Re_{\S}^{\prime}\right)} \forall R . \neg(C \sqcap D)\right)^{\mathcal{I}}$. Hence, it is shown that $\mathcal{I} \models\left(E, \mathfrak{R}_{\mathfrak{K}}^{\prime}\right)$.

4 Discussion \& Conclusion

The decidability status of $\mathcal{A L C}_{\mathcal{R A}}$ was an open question for quite a time now. $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ was first defined in [4], where we even conjectured that it might be decidable.

It should be noted that, even though full $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ is undecidable, there might be certain classes of admissible role boxes that might be useful for spatial reasoning applications with description logics. E.g., it is still unsolved whether $\mathcal{A} \mathcal{L C}_{\mathcal{R A}}$ instantiated with a role box corresponding to the RCC8 composition table might be decidable. Perhaps special-purpose (and therefore decidable) reasoning calculi can be invented to turn special instantiations of $\mathcal{A L C}_{\mathcal{R A}}$ into suitable and computable frameworks for spatial reasoning with description logics. Please note that we have identified a decidable fragment of $\mathcal{A L C}_{\mathcal{R A}}$, called $\mathcal{A} \mathcal{L C}_{\mathcal{R A S G}}$ which offers a special class of admissible role boxes (see [2]). However, we must admit that $\mathcal{A} \mathcal{L C}_{\mathcal{R A S G}}$ in its current form (with its very strong admissibility criterion) is not very useful for spatial reasoning with description logics. However, perhaps the insights gained from $\mathcal{A} \mathcal{L C}_{\mathcal{R A S G}}$ can be further exploited in order to design a less restrictive admissibility criterion for role boxes. But this is future work.

5 Acknowledgments

I would like to thank Volker Haarslev, Bernd Neumann and Ralf Möller for valuable discussions on the topics covered in this paper.

References

[1] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
[2] M. Wessel. Decidable and undecidable extensions of $\mathcal{A L C}$ with compositionbased role inclusion axioms. Technical Report FBI-HH-M-301/01, University of Hamburg, Computer Science Department, December 2000. Available at http://kogs-www.informatik. uni-hamburg.de/~mwessel/report5.\{ps.gz | pdf\}.
[3] M. Wessel. Obstacles on the way to spatial reasoning with description logics undecidability of $\mathcal{A L C}_{\mathcal{R} \mathcal{A} \ominus}$. Technical Report FBI-HH-M-297/00, University of Hamburg, Computer Science Department, October 2000. Available at http://kogs-www.informatik.uni-hamburg.de/~mwessel/report4.\{ps.gz | pdf\}.
[4] M. Wessel, V. Haarslev, and R. Möller. $\mathcal{A L C}_{\mathcal{R} \mathcal{A}}-\mathcal{A L C}$ with Role Axioms. In F. Baader and U. Sattler, editors, Proceedings of the International Workshop in Description Logics 2000 (DL2000), number 33 in CEUR-WS, pages 2130, Aachen, Germany, August 2000. RWTH Aachen. Proceedings online available from http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/.

[^0]: ${ }^{1}$ The expression $\{\#\} \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right) \cap \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\{\#\}$ denotes the language $\mathcal{L}_{K} \quad=_{\text {def }}$ $\left\{\# \alpha \# \mid \alpha \# \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{1, K}\right), \# \alpha \in \mathcal{L}\left(\mathcal{G}^{\prime}{ }_{2, K}\right)\right\}$

[^1]: ${ }^{2}$ This grammar has no starting symbol, since we do not consider the language of this grammar. Its purpose is just to act as a "container data structure".

[^2]: ${ }^{3}$ As already noted, if there were some $x_{i}=x_{j}$ (in the PCP K of size k) for $i \neq j$, $i, j \in 1 \ldots k$, then the productions $S_{1} x_{i} \# \rightarrow S_{1} x_{i} \#$ and $S_{1} x_{j} \# \rightarrow S_{1} x_{j} \#$ would coincide, since $x_{i} \#=x_{j} \#$ and also $S_{1} x_{i} \#=S_{1} x_{j} \#$.

