
Fachbereich Informatik der Universität Hamburg

Vogt-Kölln-Str. 30
�

D-22527 Hamburg / Germany

University of Hamburg - Computer Science Department

Mitteilung Nr. 302/01 • Memo No. 302/01

Undecidability of ALCRA

Michael Wessel

Arbeitsbereich KOGS

FBI-HH-M-302/01

February 2001

Undecidability of ALCRA

Michael Wessel

University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

This paper answers the question whether the logic ALCRA might be
decidable – which was left open in [4], [3], [2] – to the negative.

1 Introduction and Motivation

This paper answers a question which was left open in our previous work. We
are investigating the extension of the standard description logic ALC with
composition-based role inclusion axioms of the form S ◦ T v R1 t · · · t Rn.
Please refer to our previous work for a discussion of the considered description
logics ([4], [3], and [2]), a discussion of related work, other descriptions logics
etc.

Even though we know since [3] that the logic ALCRA	 is undecidable it was not
immediate to adopt the ALCRA	 undecidability-proof to ALCRA, since ALCRA

and ALCRA	 differ in one fundamental aspect: in contrast to ALCRA	 , ALCRA

enforces global role disjointness (see our previous work for a more thorough
discussion). Otherwise the logics are identical.

The structure of this paper is as follows: we first define the syntax and seman-
tics of ALCRA, then prove its undecidability by giving a reduction from Post’s
Correspondence Problem (PCP), which is the main contribution of this paper.

2 Syntax and Semantics of ALCRA

In the following we will define the syntax and semantics of the logic ALCRA.
We start with the set of well-formed concept expressions (concepts for short):

1

Definition 1 (Concept Expressions) Let NC be a set of concept names, and
let NR be a set of role names (roles for short), such that NC ∩ NR = ∅. The set
of concept expressions (or concepts for short) is defined inductively:

1. Every concept name C ∈ NC is a concept.

2. If C and D are concepts, and R ∈ NR is a role, then the following ex-
pressions are concepts as well: (¬C), (C u D), (C t D), (∃R.C), and
(∀R.C).

The set of concepts is the same as for the language ALC. If a concept starts
with “(”, we call it a compound concept, otherwise a concept name or atomic
concept. Brackets may be omitted for the sake of readability if the concept is
still uniquely parsable.

We use the following abbreviations: if R1, . . . , Rn are roles, and C is a concept,
then we define (∀R1 t · · · tRn.C) =def (∀R1.C)u · · · u (∀Rn.C) and ∃R1 t · · · t
Rn.C =def (∃R1.C)t · · · t (∃Rn.C). Additionally, for some CN ∈ NC we define
> =def CN t ¬CN and ⊥ =def CN u ¬CN (therefore, >I = ∆I , ⊥I = ∅).

Before we can proceed, we need some auxiliary definitions. The set of roles
being used within a concept C is defined:

Definition 2 (Used Roles, roles(C))

roles(C) =def

∅ if C ∈ NC

roles(D) if C = (¬D)
roles(D) ∪ roles(E) if C = (D u E)

or C = (D t E)
{R} ∪ roles(D) if C = (∃R.D)

or C = (∀R.D)

For example, roles(((∀R.(∃S.C)) u ∃T.D)) = {R, S, T}.

As already noted, we are investigating the satisfiability of ALC concepts w.r.t. a
set of role axioms of the form S ◦T v R1 t · · · tRn. More formally, the syntax
of these role axioms and of the considered role boxes containing these axioms is
as follows:

Definition 3 (Role Axioms, Role Box, Admissible Role Box) If
S, T, R1, . . . , Rn ∈ NR, then the expression S ◦ T v R1 t · · · t Rn, n ≥ 1, is
called a role axiom. If ra = S ◦ T v R1 t · · · tRn, then pre(ra) =def (S, T) and
con(ra) =def {R1, . . . , Rn}.

If n = 1, then ra is called a deterministic role axiom. In this case we also write
T = con(ra) instead of T ∈ con(ra).

2

A finite set � of role axioms is called a role box.

Let roles(ra) =def {S, T, R1, . . . , Rn}, and roles(�) =def

⋃

ra∈ � roles(ra).

The semantics of a concept is specified by giving a Tarski-style interpretation I
that has to satisfy the following conditions:

Definition 4 (Interpretation) An interpretation I =def (∆I , ·I) consists of
a non-empty set ∆I , called the domain of I, and an interpretation function ·I

that maps every concept name to a subset of ∆I , and every role name to a
subset of ∆I × ∆I .

Additionally, for all roles R, S ∈ NR, R 6= S: RI ∩ SI = ∅. All roles are
interpreted disjointly then.

The following functions on I will be used: The universal relation of I is defined
as UR(I) =def

⋃

R∈NR
RI , and the universal relation w.r.t. a set of role names

R as UR(I,R) =def

⋃

R∈R RI .

If <i, j> ∈ UR(I), the edge is called an incoming edge for j.

Given an interpretation I, every (possibly compound) concept C can be uniquely
interpreted (“evaluated”) by using the following definitions (we write XI instead
of ·I(X)):

(¬C)I =def ∆I \ CI

(C u D)I =def CI ∩ DI

(C t D)I =def CI ∪ DI

(∃R.C)I =def { i ∈ ∆I | ∃j ∈ CI : <i, j> ∈ RI }
(∀R.C)I =def { i ∈ ∆I | ∀j : <i, j> ∈ RI ⇒ j ∈ CI }

It is therefore sufficient to provide the interpretations for the concept names and
roles, since the extension CI of every concept C is uniquely determined then.

In the following we specify under which conditions a given interpretation is a
model of a syntactic entity (we also say an interpretation satisfies a syntactic
entity):

Definition 5 (The Model Relationship) An interpretation I is a model of
a concept C, written I |= C, iff CI 6= ∅.

An interpretation I is a model of a role axiom S ◦ T v R1 t · · · t Rn, written
I |= S ◦ T v R1 t · · · t Rn, iff SI ◦ T I ⊆ RI

1 ∪ · · · ∪ RI
n.

An interpretation I is a model of a role box � , written I |= � , iff for all role
axioms ra ∈ � : I |= ra.

3

An interpretation I is a model of (C, �), written I |= (C, �), iff I |= C and
I |= � .

Definition 6 (Satisfiability) A syntactic entity (concept, role box, concept
with role box, etc.) is called satisfiable iff there is an interpretation which
satisfies this entity; i.e., the entity has a model.

Then, the satisfiability problem is to decide whether a syntactic entity is satisfi-
able or not.

In order to demonstrate the consequences of disjointness for roles, please con-
sider � = {R◦S v AtB, S◦T v XtY, A◦T v U, B◦T v V, R◦X v U, R◦Y v
V }. Then, (∃R.((∃S.∃T.>) u ∀Y.⊥) u ∀A.⊥, � (C)) is unsatisfiable, since ∀A.⊥
forces to choose B ∈ con(R, S), and ∀Y.⊥ forces to choose X ∈ con(S, T). Due
to B ◦ T v V and R ◦ X v U there must be a non-empty intersection between
U and V . The unsatisfiability is caused by a subtle interplay between the role
box and the concept.

An important relationship between concepts is the subsumption relationship,
which is a partial ordering on concepts w.r.t. their specificity:

Definition 7 (Subsumption Relationship) A concept D subsumes a con-
cept C, C v D (w.r.t. to �), iff CI ⊆ DI holds for all interpretations I (that
are also models �).

Since a full negation operator if provided, the subsumption problem can be
reduced to the concept satisfiability problem: C v D iff Cu¬D is unsatisfiable.

Proposition 1 ALCRA does not have the finite model property, i.e. there are
pairs (C, �) that have no finite models.

Proof 1 As a counter-example to a finite model property assumption in
ALCRA, please consider (∃R.∃R.>) u (∀S.∃R.>) w.r.t. {R ◦ R v S, R ◦ S v
S, S ◦ R v S, S ◦ S v S}, which has no finite model (see [4],[3] for a proof). �

Intuitively, the disjointness requirement ensures that the given example can only
be fulfilled by infinite models: whenever one tries to create a finite model, it must
by cyclical. But then, the presence of the cycle invalidates the model, since the
role axioms will enforce a non-empty intersection between the roles R and S
(RI ∩ SI 6= ∅).

4

3 Proving Undecidability of ALCRA

Basically, the proof is by means of a reduction from Post’s Correspondence Prob-
lem (PCP). It is well-known that checking whether a given PCP of sufficiently
large size has a solution is an undecidable problem.

In order to make the proof more transparent and comprehensible (since the
reduction is rather technical, see below) we use terminology from formal lan-
guage theory. The structure of the proof is as follows: Given a PCP K,
we define two corresponding context-free grammars G1,K and G2,K such that
L(G1,K) ∩ L(G2,K) 6= ∅ iff the PCP K has a solution. The grammars G1,K and
G2,K are transformed into the grammars G ′

1,K and G ′
2,K , that have the follow-

ing properties: w1w2 . . . wn ∈ L(G1,K) iff w1#w2# . . . wn# ∈ L(G1,K), and
w1w2 . . . wn ∈ L(G2,K) iff #w1#w2 . . .#wn ∈ L(G ′

2,K); i.e., they differ from
their original versions with respect to an “odd”- resp. “even”-interleaving of
the new symbol “#”. By construction of these grammars we obviously have
L(G ′

1,K) ∩ L(G ′
2,K) = ∅. It will subsequently become clear why this property is

of utmost importance. The reader should bear in mind that this complicated
construction is necessary in order to ensure that the disjointness requirement of
ALCRA does not become violated. Moreover, the original PCP K has a solu-
tion iff {#}L(G ′

1,K) ∩ L(G ′
2,K){#} 6= ∅.1 We will then define a role box ���

and a concept term E such that (E, ���) is satisfiable iff LK = ∅. Basically,
��� is constructed by reversing the productions of the grammars G ′

1,K, G ′
2,K.

The construction of G ′
1,K and G ′

2,K is rather technical, since a certain “normal
form” of the productions must be achieved in order to be able to reverse them
into syntactically well-formed role axioms. This normal form is quite similar to
the well-known Chomsky Normal Form. Since the emptiness problem for LK is
undecidable, satisfiability for (E, ���) is as well.

We start with some basic definitions:

Definition 8 (Context-Free Grammar, Language) A context-free gram-
mar G is a quadruple (V, Σ,P, S), where V is a finite set of variables or non-
terminal symbols, Σ is finite alphabet of terminal symbols with V ∩ Σ = ∅, and
P ⊆ V × (V ∪ Σ)+ is a set of productions or grammar rules. S ∈ V is the start
variable. The language generated by a context-free grammar G is defined as
L(G) = {w | w ∈ Σ+, S

?
→ w } (see [1]). In the following, we will only consider

languages with ε /∈ L(G) – ε is the empty word – and we can therefore write

L(G) = {w | w ∈ Σ+, S
+
→ w } .

1The expression {#}L(G ′

1,K) ∩ L(G′

2,K){#} denotes the language LK =def

{#α# | α# ∈ L(G′

1,K), #α ∈ L(G′

2,K) }

5

Definition 9 (PCP) A Post’s Correspondence Problem (PCP) K over an al-
phabet A is given by a finite set of pairs K = {(x1, y1), (x2, y2), . . . (xk, yk)},
where xi, yi are (non-empty!) words over a given alphabet A: xi, yi ∈ A+. A
solution to a PCP is sequence of indices (i1, i2, . . . , in) ∈ {1 . . . k} with n ≥ 1
such that xi1xi2 . . . xin = yi1yi2 . . . yin (see [1]).

For example, the PCP K = {(1, 101), (10, 00), (011, 11)} has the solution
(1,3,2,3), since x1x3x2x3 = 1 011 10 011 = 101110011 = 101 11 00 11 =
y1y3y2y3 (the example is taken from [1]).

Lemma 1 (PCP Undecidable) It is undecidable whether a given PCP with
|A| ≥ 2 and k ≥ 9 has a solution (see [1]).

In the following it suffices to consider (sufficiently large) PCPs with |A| = 2.
Whatever A is, we name its elements by a1 and a2: A = {a1, a2}.

Definition 10 (Auxiliary Definitions) Let x ∈ A+, x = a1 . . . an. We define
|x| =def n, first(x) =def a1, and rest(x) =def a2 . . . an. Let postfixes(x) =def

{w | ∃v ∈ A? : x = vw, w 6= ε } (e.g. postfixes(1011) = {1011, 011, 11, 1}).
Additionally, even#(a1 . . . an) =def a1# . . . an#, and odd#(a1 . . . an) =def

#a1 . . .#an (e.g. even#(abc) = a#b#c#, odd#(abc) = #a#b#c).

Let K = {(x1, y1), (x2, y2), . . . (xk, yk)} be a PCP over the alphabet A. It is
well-known from formal language theory that the emptiness problem for in-
tersections of context-free languages is undecidable. Given a PCP K, we can
define two grammars G1,K and G2,K such that K has the solution (i1, . . . , in)
iff iin . . . ii2ii1xi1xi2 . . . xin ∈ L(G1,K) ∩ L(G2,K) iff iin . . . ii2ii1yi1yi2 . . . yin ∈
L(G1,K) ∩ L(G2,K). Please note that the PCP solution (i1, . . . , in) appears re-
versed in the word.

Let A′ = A ∪ {i1, . . . , ik}. Then, the context-free grammars G1,K and G2,K are
defined as follows (see also [1]):

• G1,K = ({S1},A′,P1, S1), where
P1 = {S1 → i1x1 | . . . | ikxk} ∪ {S1 → i1S1x1 | . . . | ikS1xk}, and

• G2,K = ({S2},A′,P2, S2), where
P2 = {S2 → i1y1 | . . . | ikyk} ∪ {S2 → i1S2y1 | . . . | ikS2yk}.

It is interesting to note that these grammars are deterministic – each word of
the generated languages has one unique parse tree. Applied to the example PCP
K = {(1, 101), (10, 00), (011, 11)} we get the two context-free grammars

6

• G1,K = ({S1}, {0, 1} ∪ {i1, i2, i3},P1, S1), where
P1 = {S1 → i11 | i210 | i3011} ∪ {S1 → i1S11 | i2S110 | i3S1011}, and

• G2,K = ({S2}, {0, 1} ∪ {i1, i2, i3},P2, S2), where
P2 = {S2 → i1101 | i200 | i311} ∪ {S2 → i1S2101 | i2S200 | i3S211}.

It is easy to verify that i3i2i3i1101110011 ∈ L(G1,K) ∩ L(G2,K), since (1, 3, 2, 3)
is a solution to K.

We already mentioned that we are aiming at a grammar whose productions can
be “reversed” in order to get a valid role box. In a second step we therefore
transform G1,K and G2,K and get the grammars G ′

1,K and G ′
2,K, which have the

“odd and even interleaving-property” (see above). These grammars are defined
as follows:

• G ′
1,K = (V ′

1,A′ ∪ {#},P ′
1, S1)

V ′
1 = {S1} ∪

{ a# | a ∈ A′ } ∪
{ w# | x ∈ {x1, . . . , xk},

w ∈ postfixes(x) } ∪
{ S1x# | x ∈ {x1, . . . , xk} }

P ′
1 = { a# → a# | a ∈ A′ } ∪

{S1 → i1# x1# | · · · | ik# xk# } ∪
{S1 → i1# S1x1# | · · · | ik# S1xk# } ∪
{S1x1# → S1 x1# , . . . , S1xk# → S1 xk# } ∪
{ x# → first(x)# rest(x)# | n ∈ 1 . . . k,

x ∈ postfixes(xn), |x| ≥ 2 }

• G ′
2,K = (V ′

2,A′ ∪ {#},P ′
2, S2)

V ′
2 = {S2} ∪

{ #a | a ∈ A′ } ∪
{ #w | y ∈ {y1, . . . , yk},

w ∈ postfixes(y) } ∪
{ S2#y | y ∈ {y1, . . . , yk} }

P ′
2 = { #a → #a | a ∈ A′ } ∪

{S2 → #i1 #y1 | · · · | #ik #yk } ∪
{S2 → #i1 S2#y1 | · · · | #ik S2#yk } ∪
{S2#y1 → S2 #y1 , . . . , S2#yk → S2 #yk } ∪
{ #y → #first(y) #rest(y) | n ∈ 1 . . . k,

y ∈ postfixes(yn), |y| ≥ 2 }

7

If we write expressions like “#y → #first(y) #rest(y) ” and for example, y =

101, then this construction denotes the production “#101 → #1 #01”, since
first(y) = 1 and rest(y) = 01. What happens if for some i, j ∈ 1 . . . k, i 6= j,
xi = xj (or yi = yj)? In this case, also xi# = xj# and S1xi# = S1xj#. If,
for example, x1 = 11 and x2 = 11, G ′

1,K would contain the productions S1 →
i1# 11#, S1 → i2# 11# as well as S1 → i1# S111# and S1 → i2# S111#
(and S111# → S1 11# , 11# → 1# 1# etc., of course).

As already noted, due to the construction, we have G ′
1,K ∩ G ′

2,K = ∅, since words
in G ′

1,K have the form iin# . . .#ii2#ii1#xi1#xi2# . . .#xin#, and words in G ′
2,K

have the form #iin# . . .#ii2#ii1#yi1#yi2# . . .#yin. The relationship with the
PCP K is the following:

Corollary 1 A PCP K has the solution (i1, . . . , in) iff
#iin# . . .#ii2#ii1#xi1#xi2# . . .#xin# ∈ ({#}L(G ′

1,K)) ∩ (L(G ′
2,K){#}).

Consequently, K has no solution iff ({#}L(G ′
1,K)) ∩ (L(G ′

2,K){#}) = ∅.
Emptiness for this language is therefore undecidable.

Applied to the example

• G1,K = ({S1}, {0, 1, i1, i2, i3},P1, S1),

P1 = {S1 → i11 | i210 | i3011} ∪ {S1 → i1S11 | i2S110 | i3S1011}

becomes

G ′
1,K = (V ′

1, {#, 0, 1, i1, i2, i3},P ′
1, S1) with

V ′
1 = { S1, 0# , 1# ,

i1# , i2# , i3# ,
10# , 011# , 11# ,
S11# , S110# , S1011# }

P ′
1 = { 0# → 0#, 1# → 1#, i1# → i1#, i2# → i2#, i3# → i3#} ∪

{S1 → i1# 1# , S1 → i2# 10# , S1 → i3# 011#} ∪
{S1 → i1# S11# , S1 → i2# S110# , S1 → i3# S1011#} ∪
{S11# → S1 1# , S110# → S1 10# , S1011# → S1 011#} ∪
{ 10# → 1# 0# , 011# → 0# 11# , 11# → 1# 1#}, and

• G2,K = ({S2}, {0, 1, i1, i2, i3},P2, S2),

P2 = {S2 → i1101 | i200 | i311} ∪ {S2 → i1S2101 | i2S200 | i3S211}

becomes

G ′
2,K = (V ′

2, {#, 0, 1, i1, i2, i3},P ′
2, S2) with

8

i3 #

i3#

i2 #

i2#

i3 #

i3#

i1 #

i1#

1 #

1#

S1

0 #

0#

1 #

1#

1 #

1#

11#

011#

S1011#

S1

1 #

1#

0 #

0#

10#

S110#

S1

0 #

0#

1 #

1#

1 #

1#

11#

011#

S1011#

S1

Figure 1: i3#i2#i3#i1#1#0#1#1#1#0#0#1#1# ∈ L(G ′
1,K)

V ′
2 = { S2, #0 , #1 ,

#i1 , #i2 , #i3 ,
#10 , #011 , #11 ,
S2#101 , S2#00 , S2#11 }

P ′
2 = {#0 → #0, #1 → #1, #i1 → #i1, #i2 → #i2, #i3 → #i3} ∪

{S2 → #i1 #101 , S2 → #i2 #00 , S2 → #i3 #11} ∪
{S2 → #i1 S2#101 , S2 → #i2 S2#00 , S2 → #i3 S2#11 } ∪
{S2#101 → S2 #101 , S2#00 → S2 #00 , S2#11 → S2 #11} ∪
{#101 → #1 #01 , #01 → #0 #1 ,

#00 → #0 #0 , #11 → #1 #1}.

We can verify that i3#i2#i3#i1#1#0#1#1#1#0#0#1#1# ∈ L(G ′
1,K) (see

Figure 1) and #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1 ∈ L(G ′
2,K) (see Figure

2).

The grammars G ′
i,K, i ∈ {1, 2} have the following important property: whenever

a word w is derivable by some non-terminal A ∈ V ′
i such that A

+
→ w, then

there is no other non-terminal B ∈ V ′
i with A 6= B such that also B

+
→ w. We

can even put “the grammars together”, and still this property holds:

9

i3

#i3

i2

#i2

i3

#i3

i1

#i1

1

#1

0

#0

1

#1

#01

#101

S2

1

#1

1

#1

#11

S2#11

S2

0

#0

0

#0

#00

S2#00

S2

1

#1

1

#1

#11

S2#11

S2

Figure 2: #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1 ∈ L(G ′
2,K)

Lemma 2 Let GK =def (V ′
1 ∪ V ′

2, {#, 0, 1, i1, i2, i3},P ′
1 ∪ P ′

2, ∅) be the union
of the two grammars G ′

1,K and G ′
2,K as defined above.2

Then, for all w ∈ {#, 0, 1, i1, i2, i3}+, for all A, B ∈ V ′
1 ∪ V ′

2, if A
+
→ w and

B
+
→ w, then A = B.

Proof 2 First of all note that V ′
1 ∩ V ′

2 = ∅. Now assume A ∈ V ′
1, B ∈ V ′

2, and

there is a word w such that A
+
→ w and B

+
→ w. Since V ′

1 ∩ V ′
2 = ∅, A 6= B

would follow, a contradiction. We must therefore show that there is no such

w. It can be easily verified that {w | A
+
→ w } ∩ {w | B

+
→ w } = ∅, since the

“odd-even-interleaving” of “#” holds not only for A = S1 and B = S2, but for
all words derivable by some pair of non-terminals A, B. But then we must have
A, B ∈ V ′

i, for some i ∈ {1, 2} – in the following we will show the lemma for
i = 1; the case for i = 2 is analogous and left out here for the sake of brevity.

The proof is a simple induction on |w|. Obviously, for each w with A
+
→ w for

some A ∈ V ′
1 we have |w| = 2j for some j ∈ IN \ {0}:

2This grammar has no starting symbol, since we do not consider the language of this
grammar. Its purpose is just to act as a “container data structure”.

10

• If j = 1, |w| = 2 and A
+
→ w, then w = a# for a ∈ {0, 1, i1, i2, i3}.

Therefore, A = a# and a# → a# ∈ P ′
1, which is the only rule with

“a#” on its right hand side. Therefore, B 6
+
→ a#, if A 6= B.

• If |w| = 2j, j ≥ 2, j ∈ IN and A
+
→ w, then there must be a production

P ∈ P ′
1 with P = (A → XY), X, Y ∈ V ′

1. In the following we can forget
about the productions with A = a#, since they derive words of length

two. We have w = wXwY , and X
+
→ wX , Y

+
→ wY . Since |wX | < |w|,

|wY | < |w| (note that there are no productions of the form X → ε!), the

induction hypothesis holds, and thus there are no X ′ 6= X with X ′ +
→ wX

or Y ′ 6= Y with Y ′ +
→ wY . Therefore, X and Y uniquely determine

the production P = (A → XY). One can easily check that there is no
production P ′ = (B → XY) with B 6= A.3

However, we also need to argue that there is no other partition of w, with

w = w′
Xw′

Y , w′
X 6= wX , w′

Y 6= wY , such that X ′ +
→ w′

X , Y ′ +
→ w′

Y and
P ′ = (B → X ′Y ′), P ′ ∈ P ′

1 with A 6= B. If X ′ = X and Y ′ = Y , we
already know that A = B, since P ′ is the only production with X and Y
on its right hand side. Otherwise we can make a case distinction, assuming
A 6= B and derive a contradiction in every case:

– P = (S1 → in# xn#), A = S1, X = in#, Y = xn#, for some
n ∈ 1 . . . k,

∗ P ′ = (S1xm# → S1 xm#), B = S1xm#, X ′ = S1, Y ′ = xm#:
note that w′

X = in# . . . (since w = wXwY = w′
Xw′

Y and wX =

in# . . ., due to in#
+
→ wX). Since also w′

X ∈ L(G1,K), this shows
that w′

X = in# . . . even#(xn). Since already w = in#even#(xn)
and w = w′

Xw′
Y it follows that w′

X = w and therefore w′
Y = ε

which contradicts w′
Y = even#(xm) (note that the PCP K does

not contain empty words in its word list).

∗ P ′ = (x# → first(x)# rest(x)#), B = x#, X ′ = first(x)# ,

Y ′ = rest(x)# , for some n ∈ 1, . . . , k, x ∈ postfixes(xn), |x| ≥
2 (where xn is the nth word in the PCP K): obvious, since
first(x) 6= in, because x ∈ {a1, a2}? (recall that {a1, a2} is the
alphabet of the PCP K), but in /∈ {a1, a2}.

– P = (S1xn# → S1 xn#), A = S1xn#, X = S1, Y = xn#, for
some n ∈ 1 . . . k

3As already noted, if there were some xi = xj (in the PCP K of size k) for i 6= j,
i, j ∈ 1 . . . k, then the productions S1xi# → S1 xi# and S1xj# → S1 xj# would coincide,

since xi# = xj# and also S1xi# = S1xj# .

11

∗ P ′ = (S1 → im# xm#), B = S1, X ′ = im#, Y ′ = xm#: w′
X

must start with im#. This shows that wX must start with im#
and thus has the form wX = im# . . . even#(xm). This leads to
the conclusion that wY = ε which contradicts wY = even#(xn).

∗ P ′ = (x# → first(x)# rest(x)#), B = x#, X ′ = first(x)# ,

Y ′ = rest(x)# : obvious, see above.

– P = (x# → first(x)# rest(x)#), A = x#, X = first(x)# , Y =

rest(x)# , for some n ∈ 1, . . . , k, x ∈ postfixes(xn), |x| ≥ 2 (where xn

is the nth word in the PCP K)

∗ P ′ = (x′# → first(x′)# rest(x′)#), B = x#, X ′ = first(x′)# ,

Y ′ = rest(x′)# , for some n ∈ 1, . . . , k, x′ ∈ postfixes(xn), |x| ≥ 2:
obviously, A = B iff x′ = x. Therefore, A 6= B iff x′ 6= x.
However, then either first(x) 6= first(x′) or rest(x) 6= rest(x′). In
both cases the contradiction is immediate, since w = wXwY =
even#(x) and w = w′

Xw′
Y = even#(x′).

∗ P ′ = (S1 → im# xm#), B = S1, X ′ = im#, Y ′ = xm#:
obvious, since w′

X starts with im# and im /∈ {a1, a2}.

∗ P ′ = (S1xm# → S1 xm#), B = S1xm#, X ′ = S1, Y ′ = xm#:
obvious, since w′

X starts with in# for some n ∈ 1 . . . k and in /∈
{a1, a2}.

�

The key-observation is now that one can simply reverse the productions of the
grammar GK in order to get a role box ��� . That is, each production of the form
A → BC ∈ P ′

1 ∪ P ′
2 yields a role axiom B ◦ C v A ∈ ��� . The terminals and

non-terminals of GK are considered as roles now. If a word can be derived “top
down” by the grammar using a derivation tree, then it is possible to “parse”
this word in a bottom-up style using the role axioms. The previous lemma
ensures that the disjointness-requirement of ALCRA cannot be violated during
this “bottom-up” parsing process.

The following lemma fixes the relationship between words that are derivable by
the grammar (by some non-terminal, not necessarily only S1 or S2) and the
models of the role box corresponding to this grammar:

Lemma 3 Let GK = (V, Σ,P, S) be the grammar constructed in Lemma 2.
W.l.o.g. we assume (V ∪ Σ) ⊆ NR. Let w ∈ Σ+, w = w1 . . . wn be a word
with n ≥ 2, and I be a model of (∃w1. . . .∃wn.>, ���) with ��� =def {B ◦ C v
A | A → B C ∈ P } .

12

Let <x0, x1> ∈ wI
1 , . . .<xn−1, xn> ∈ wI

n be an arbitrary path in the model I
corresponding to w. Note that the individuals xi must not necessarily be distinct
(e.g., there might be i, j such that xi = xj).

Let A ∈ V be an arbitrary non-terminal of GK . Then, <x0, xn> ∈ AI holds in
all models I of (∃w1. . . .∃wn.>, � �) iff there is a derivation of w having A as

the root node: we write A
+
→ w.

Proof 3 “⇐” If A
+
→ w, then |w| = 2j, j ∈ IN \ {0}. Using induction we show

that <x0, xn> ∈ AI (again we focus on G ′
1,K):

• If |w| = 2, then there must be a production of the form a# →
a# ∈ P, for a ∈ {a1, a2, i1, . . . , ik}. This shows that w = a#. If I
is a model of ��� and <x0, x1> ∈ aI , <x1, x2> ∈ #I , then, due to

a ◦ # v a# ∈ ��� we have <x0, x2> ∈ a#
I

in all models.

• If |w| = 2j, j ≥ 2, then there must be a production of the form A →
XY ∈ P such that w = wXwY , wX = w1 . . . wm, wY = wm+1 . . . w2j ,

X
+
→ wX , Y

+
→ wY . Since |wX | < |w| and |wY | < |w| the induction

hypothesis holds and therefore, <x0, xm> ∈ XI and <xm+1, x2j> ∈
XI in all models. Therefore, due to X ◦Y v A ∈ ��� also <x0, x2j> ∈
AI in all models.

“⇒” If <x0, xn> ∈ AI holds in all models I of (∃w1. . . .∃wn.>, ���), then
we may say (with a slight abuse of terminology) that the presence of
<x0, xn> ∈ AI is a logical consequence of (∃w1. . . .∃wn.>, ���). Please
note that among the models with <x0, xn> ∈ AI there is also a model I in
which the xi’s are distinct individuals such that ∆I = {x0, . . . , xn}, and
<x0, x1> ∈ wI

1 , . . .<xn−1, xn> ∈ wI
n corresponds to a linear path of direct

edges. An edge <x, z> ∈ UR(I) is called direct if there is no y ∈ ∆I ,
y 6= x, y 6= z such that <x, y> ∈ UR(I)+ and <y, z> ∈ UR(I)+. Now

one can easily construct a derivation tree for w showing that A
+
→ w by

inspecting the nesting of role compositions leading to <x0, xn> ∈ AI in
this model. More formally this could be shown by using induction as well,
and the proof would be very similar to the previous one. �

Given an arbitrary word w, the expression ∃w.C is defined in the obvious way:
∃w.C =def C if w = ε, and ∃w.C =def ∃first(w).(∃rest(w).C) otherwise (if
w 6= ε).

We still need to argue that the role box ��� admits models; i.e., given an arbitrary
word w, is it always the case that (∃w.>, ���) is satisfiable? Please note that
this is not granted for arbitrary role boxes in ALCRA, due to the disjointness-
requirement. However, for the role box ��� we know this for sure:

13

Corollary 2 Let w be a word over some alphabet. Then, (∃w.>, ���) is satis-
fiable (in ALCRA).

Proof 4 Suppose that w = w1 . . . wn, (∃w1. . . .∃wn.>, � �) is unsatisfiable.
Obviously, (∃w1. . . .∃wn.>, ���) can only become unsatisfiable if the disjoint-
ness requirement cannot be fulfilled, e.g. in any interpretation I in which
I |= ∃w1. . . .∃wn.> and I |= ��� holds there exist at least two roles S, T ∈ NR

such that SI ∩ T I 6= ∅ is enforced by the role box. Then, every model must
contain SI ∩ T I 6= ∅ (otherwise we could find another model, and (∃w.>, � �)
would be satisfiable). Of course, for n = 1, (∃w1.>, ���) is always satisfiable.
According to Lemma 3, for n ≥ 2 we have <x0, xn> ∈ SI in every model iff

S
+
→ w and <x0, xn> ∈ T I in every model iff T

+
→ w. However, this is a

contradiction to Lemma 2. �

Returning to our example PCP K, the following role box will be constructed:

��� = { 0 ◦ # v 0# , 1 ◦ # v 1# ,
i1 ◦ # v i1# , i2 ◦ # v i2# , i3 ◦ # v i3# ,
i1# ◦ 1# v S1, i2# ◦ 10# v S1, i3# ◦ 011# v S1,
i1# ◦ S11# v S1, i2# ◦ S110# v S1, i3# ◦ S1011# v S1,
S1 ◦ 1# v S11# , S1 ◦ 10# v S110# , S1 ◦ 011# v S1011# ,
1# ◦ 0# v 10# , 0# ◦ 11# v 011# , 1# ◦ 1# v 11# } ∪

{ # ◦ 0 v #0 , # ◦ 1 v #1 ,
◦ i1 v #i1 , # ◦ i2 v #i2 , # ◦ i3 v #i3 ,
#i1 ◦ #101 v S2, #i2 ◦ #00 v S2, #i3 ◦ #11 v S2,
#i1 ◦ S2#101 v S2, #i2 ◦ S2#00 v S2, #i3 ◦ S2#11 v S2,
S2 ◦ #101 v S2#101 , S2 ◦ #00 v S2#00 , S2 ◦ #11 v S2#11 ,
#1 ◦ #01 v #101 , #0 ◦ #1 v #01 ,
#0 ◦ #0 v #00 , #1 ◦ #1 v #11 }.

The “first part” of this role box corresponds to P ′
1, and the “second part” to

P ′
2.

One can now use this role box to solve the membership problem of LK. For ex-
ample, consider w ∈ LK, with w = #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1#.
The following concept term is unsatisfiable w.r.t. ��� , since w ∈ LK. Recall that
w ∈ LK iff w = #α#, α# ∈ L(G ′

1,K) and #α ∈ L(G ′
2,K). Consider

(((∀#.∀S1.C) u (∀S2.∀#.D) u
∃#i3#i2#i3#i1#1#0#1#1#1#0#0#1#1#.¬(C u D)), ���)

Any model of this example would also be a model of
(∃#i3#i2#i3#i1#1#0#1#1#1#0#0#1#1#.>, ���). Let <x0, x1> ∈ #I,
<x1, x2> ∈ iI3 , <x3, x4> ∈ #I , <x4, x5> ∈ iI2 , . . . , <x26, x27> ∈ #I (see also

14

P
S
fr

a
g

re
p
la

ce
m

en
ts

1
1

1
1

1
1

0
0

0
#

#
#

#
#

#
#

#
#

#
#

#
#

#
i 1

i 2
i 3

i 3

i 1
#

i 2
#

i 3
#

i 3
#

#
i 1

#
i 2

#
i 3

#
i 3

1
#

1
#

1
#

1
#

1
#

1
#

0
#

0
#

0
#

#
1

#
1

#
1

#
1

#
1

#
1

#
0

#
0

#
0

S
1

S
1

S
1

S
1 S
2

S
2

S
2

S
2

1
0
#

1
0
#

1
1
#

1
1
#

1
1
#

0
1
1
#

0
1
1
#

#
1
1

#
1
1

#
1
1

#
0
0

#
0
1

#
0
1

#
1
0
1

S
2
#

1
1

S
2
#

1
1 S
2
#

0
0

S
1
0
1
1
#

S
1
0
1
1
#

S
1
1
0
#

Figure 3: “Bottom up parsing” of #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1#

15

Figure 3). Due to Lemma 3, since i3#i2#i3#i1#1#0#1#1#1#0#0#1#1# ∈
L(G ′

1,K), we have <x1, x27> ∈ SI
1 . But then, due to x0 ∈ (∀#.∀S1.C)I , also

x27 ∈ CI. Since #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1 ∈ L(G ′
2,K), we have

<x0, x26> ∈ SI
2 . But then, due to x0 ∈ (∀S2.∀#.C)I , also x27 ∈ DI. However,

this contradicts x27 ∈ (¬(C u D))I. The example is therefore unsatisfiable.
Considering Figure 3, it can be seen that the role box performs a “bottom
up parsing” of the word #i3#i2#i3#i1#1#0#1#1#1#0#0#1#1#. The two
derivation trees shown in Figure 1 and 2 can be immediately discovered in
Figure 3. One can also clearly see that all roles are interpreted disjointly.

With the auxiliary machinery at hand, we can now show the main result of the
paper:

Theorem 1 The satisfiability problem of ALCRA is undecidable.

Proof 5 We give an example for a pair (E, ���) for which no algorithm exists
that is capable of checking its satisfiability.

Let GK = (V, Σ,P, S) be the grammar of Lemma 2. Let

� � =def {B ◦ C v A | A → B C ∈ P }.

Let R? /∈ roles(���), and let

� ′
� =def � � ∪ {R ◦ S v tT∈(roles(� �)∪R?)T | R, S ∈ ({R?} ∪ roles(���)),

¬∃ra ∈ ��� : pre(ra) = (R, S) }

be the completion of ��� . In the following, the so-called “don’t care role” R?

plays a special role.

Then, (E, � ′
�) is satisfiable iff LK = ∅, where LK =def ({#}L(G ′

1,K)) ∩
(L(G ′

2,K){#}) (due to Corollary 1, K has no solution then). The concept E is
defined as

E =def X u ¬(C u D) u Y u (∀#.∀S1.C) u (∀S2.∀#.D), with

X =def ua∈Σ∃a.> and

Y =def uR∈roles(� ′�)∀R.(X u ¬(C u D)).

We have to show that (E, � ′
�) is satisfiable iff LK = ∅:

“⇒” We prove the contra-positive: if LK 6= ∅, then (E, � ′
�) is unsatisfiable.

Assume to the contrary that LK 6= ∅, but (E, � ′
�) is satisfiable. Let I

be a model of (E, � ′
�). Because I satisfies � ′

� , it holds that <x0, xn> ∈
(
⋃

R∈roles(� ′�) RI)+ implies <x0, xn> ∈ UR(I). This is ensured by the fact

16

PSfrag replacements

X u ¬(C u D) u Y u (∀#.∀S1.C) u (∀S2.∀#.D)

...
...

...
...

...
...

...
...

...

S1

S2
b1b1b1

b2

b2b2b2

b3

b3 b3 b3

UR
UR

URURURUR
URURUR

#

#

x0,0

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

C,¬(C u D),¬D D,¬(C u D),¬C

¬(C u D)¬(C u D) ¬(C u D)

etc.

Figure 4: Illustration of the constructed model for (E, � ′
�). Not all edges are

shown; please note that each edge is also a member of UR, even if not labeled
with UR.

that the composition of two arbitrary roles from roles(� ′
�) is always de-

fined in � ′
� , due to the completion process. Since I is a model of E, there

is some x0 ∈ EI . Due to x0 ∈ (X u Y)I it holds that x0 ∈ ((ua∈Σ∃a.>) u
(uR∈roles(� ′�)∀R.(ua∈Σ∃a.>)))I . The model I therefore represents all possi-
ble words w ∈ Σ+. Let w ∈ LK, with w = w1 . . . wn−1wn. Please note that
w = #α#, where α ∈ Σ+, since LK =def ({#}L(G ′

1,K) ∩ (L(G ′
2,K){#}),

and therefore α# ∈ L(G ′
1,K) and #α ∈ L(G ′

2,K). Obviously, I is also a

model of ∃#α#.>, with x0 ∈ (∃#α#.>)I . Let x0, x1, . . . , xn be the path
in the model corresponding to the word #α#, i.e. <x0, x1> ∈ #I , . . . ,
<xn−1, xn> ∈ #I. Due to ��� ⊆ � ′

� , I is also a model of ��� , and therefore

Lemma 3 is applicable. Since S1
+
→ α# we have <x1, xn> ∈ SI

1 . Since

17

S2
+
→ #α we have <x0, xn−1> ∈ SI

2 . However, in every model of E we
also have x0 ∈ ((∀#.∀S1.C)u (∀S2.∀#.D))I , and therefore xn ∈ (C uD)I.
But this contradicts xn ∈ ¬(C u D)I caused by <x0, xn> ∈ UR(I) and
x0 ∈ (uR∈roles(� ′�)∀R.¬(C u D))I, and (E, � ′

�) is therefore unsatisfiable.

“⇐” If LK = ∅, then we show that (E, � ′
�) is satisfiable by constructing an

infinite model. The model I is constructed incrementally, e.g. I0 ⊂ I1 ⊂
I2 ⊂ · · · ⊂ Iω, I = Iω. In the following construction, we refer to the
set UR(I, Σ) (not to be confused with UR(I)!) as the skeleton of the
model I. The skeleton has the form of an infinite tree. An illustration of
I is given in Figure 4. Each node in the model I has |Σ| different direct
successors in the skeleton; the skeleton of I is a tree with branching factor
|Σ|.

For each n ∈ IN ∪ {0}, the skeleton of the interpretation In is a tree of
depth n, encoding all words w with |w| ≤ n, i.e. w ∈

⋃

i∈{0,...,n} Σi. Each

word w of length i = |w|, i ≤ n, corresponds to a path from the root
node x0,0 to some node xi,m at depth i, in all skeletons of the models In.
Therefore, the skeleton of I represents all words from Σ+.

Intuitively, the terminal symbols of the words to be parsed by the role box
are represented as direct edges in the skeleton of the model, whereas the
indirect edges in this model are inserted to mimic the “bottom-up parsing
process” of these words, which is performed by the role box. The model I
is constructed as follows:

• I0 = (∆I
0
, ·I

0
), ∆I

0
:= {x0,0}, ·I0 := {}

• For n ∈ 0, 1, . . .,
In+1 = (∆I

n+1
, ·I

n+1
) is constructed from In = (∆I

n
, ·I

n
) as follows:

1. ∆I
n+1

:= ∆I
n
∪ { xn+1,j | j ∈ {1, . . . , |Σ|n+1} },

·I
n+1

:= ·I
n

2. Σ = {b1, . . . , bk}, ∀br ∈ {b1, . . . , bk} :
bIn+1

r := bIn+1

r ∪
{<xn,j, xn+1,k(j−1)+r> |

xn,j ∈ ∆I
n
, xn+1,k(j−1)+r ∈ ∆I

n+1
}

3. while In+1 6|= � � do

for each R ◦ S v T ∈ ��� do

T In+1 := T In+1 ∪ RIn+1 ◦ SIn+1

od

od

4. R
In+1

? := {<xi,j, xn+1,k> | i < n + 1, xi,j, xn+1,k ∈ ∆I
n+1

,
<xi,j, xn+1,k> /∈ UR(In+1 , roles(� ′

�)) }

18

5. CIn+1 := CIn+1 ∪ { xn+1,j | <x0,0, xn+1,j> ∈ #In+1 ◦ S
In+1

1 }

6. DIn+1 := DIn+1 ∪ { xn+1,j | <x0,0, xn+1,j> ∈ S
In+1

2 ◦ #In+1 }

We show that I is a model.

First we show I |= � ′
� and that all roles are disjointly interpreted. We

will use induction over n, where n ∈ IN ∪ {0}:

The base case for n = 0 is immediate.

So suppose that In |= � ′
� , and all roles are interpreted disjointly. Then,

after step 3 in the construction we have obviously In+1 |= � � . Please note
that ��� contains only deterministic role axioms, so the result of step 3 is
well-defined. After step 4 we will have In+1 |= � ′

� : note that ��� = � ′
� \ ���

is the completed part of the original role box ��� . The axioms ra ∈ ��� have
the form R ◦ S v tT∈(roles(� �)∪R?)T , where R, S ∈ ({R?} ∪ roles(���)), and
there exists no other role axiom(s) ra′ ∈ � � such that pre(ra) = (R, S).
If <xi,j, xn+1,k> with i < n + 1, xi,j, xn+1,k ∈ ∆I

n+1
has not been added

to UR(In+1 , roles(� ′
�)) in step 3 and we therefore have <xi,j, xn+1,k> /∈

UR(In+1 , roles(� ′
�)), then <xi,j, xn+1,k> ∈ R

In+1

? has been added by step
4. Because R? occurs on the right hand side of every role axiom ra′ ∈ ���
we have In |= � ′

� after step 4.

However, we also need to argue that all roles are still interpreted disjointly
after step 4. Since LK = ∅ and due to Lemma 2 and Lemma 3 we know
that all roles are interpreted disjointly after step 3. To see that this still
holds after step 4, observe that � δ is tailored in such a way that it is
always safe to add <xi,j, xn+1,k> ∈ R

In+1

? in step 4. The R?-edges act as
“don’t care” edges and simply cannot violate the disjointness requirement:
suppose we added <xi′,j′, xn+1,k> ∈ R

In+1

? , but In+1 already contained
<xi,j, xi′,j′> ∈ RIn+1 , and <xi,j, xn+1,k> ∈ SIn+1 (added by step 3). Since
there is no role axiom ra ∈ ��� with pre(ra) = (R, R?), but instead R◦R? v
tT∈(roles(� �)∪R?) ∈ ��� , the insertion of R? did not “invalidate” the model,
since the role S appears on the right hand side of this role axioms.

We now prove that x0,0 ∈ EI , i.e. x0,0 ∈ ((ua∈Σ∃a.>) u
(uR∈roles(� ′�)∀R.(ua∈Σ∃a.>))u (∀#.∀S1.C)u (∀S2.∀#.D))I . For each node

xi,j ∈ ∆I with i 6= 0, j 6= 0 we have <x0,0, xi,j> ∈ UR(I) (note that
{RI

? ⊆ UR(I), and R? ∈ roles(� ′
�)), and each node has the required

k = |Σ| direct successors, b1, . . . , bk. Since this holds for x0,0 and for any
(arbitrarily chosen) xi,j as well, we have x0,0 ∈ XI , xi,j ∈ XI , and finally
x0,0 ∈ (uR∈roles(� ′�)∀R.X)I . However, also x0,0 ∈ (uR∈roles(� ′�)∀R.¬(C u

D))I holds: assume the contrary. Let n be the smallest level in the
tree corresponding to the skeleton of I for which there is some node
xn,in ∈ ∆I with xn,in ∈ CI, xn,in ∈ DI . Since this node lies at depth

19

n in the skeleton, we already have xn,in ∈ CIn , xn,in ∈ DIn . Due to the
construction, xn,in ∈ CIn iff <x0,0, xn,in> ∈ #In ◦ SIn

1 , and xn,in ∈ DIn

iff <x0,0, xn,in> ∈ SIn

2 ◦ #In . Let w be the corresponding path of (max-
imal) length n in the skeleton, with w = w1 . . . wn, <x0,0, x1,i1> ∈ wIn

1 ,
. . .<xn−1,in−1

, xn,in> ∈ wIn

n , with wi ∈ {a1, a2, #, i1, . . . , ik}, leading from
x0,0 to xn,in . By construction of I we know that #-edges can only occur as
part of the skeleton, and therefore we must have w1 = # and wn = #. But
this means that w has the form w = #α# – we have <x0,0, x1,i1> ∈ #In ,
<x1,i1 , xn,in> ∈ SIn

1 and #α ∈ {#}L(G ′
1,K), and also <x0,0, xn−1,in−1

> ∈

SIn

2 , <xn−1,in−1
, xn,in> ∈ #In , therefore α# ∈ L(G ′

2,K){#}. This shows
that w ∈ LK and LK 6= ∅, contradicting the assumption. Therefore it
holds that x0,0 ∈ (uR∈roles(� ′�)∀R.¬(C u D))I. Hence, it is shown that
I |= (E, � ′

�). �

4 Discussion & Conclusion

The decidability status of ALCRA was an open question for quite a time now.
ALCRA was first defined in [4], where we even conjectured that it might be
decidable.

It should be noted that, even though full ALCRA is undecidable, there might be
certain classes of admissible role boxes that might be useful for spatial reasoning
applications with description logics. E.g., it is still unsolved whether ALCRA

instantiated with a role box corresponding to the RCC8 composition table might
be decidable. Perhaps special-purpose (and therefore decidable) reasoning cal-
culi can be invented to turn special instantiations of ALCRA into suitable and
computable frameworks for spatial reasoning with description logics. Please note
that we have identified a decidable fragment of ALCRA, called ALCRASG which
offers a special class of admissible role boxes (see [2]). However, we must admit
that ALCRASG in its current form (with its very strong admissibility criterion) is
not very useful for spatial reasoning with description logics. However, perhaps
the insights gained from ALCRASG can be further exploited in order to design a
less restrictive admissibility criterion for role boxes. But this is future work.

5 Acknowledgments

I would like to thank Volker Haarslev, Bernd Neumann and Ralf Möller for
valuable discussions on the topics covered in this paper.

20

References

[1] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[2] M. Wessel. Decidable and undecidable extensions of ALC with composition-
based role inclusion axioms. Technical Report FBI–HH–M–301/01, Univer-
sity of Hamburg, Computer Science Department, December 2000. Available
at http://kogs-www.informatik.uni-hamburg.de/~mwessel/report5.{ps.gz | pdf}.

[3] M. Wessel. Obstacles on the way to spatial reasoning with description logics –
undecidability of ALCRA	. Technical Report FBI–HH–M–297/00, University
of Hamburg, Computer Science Department, October 2000. Available at
http://kogs-www.informatik.uni-hamburg.de/~mwessel/report4.{ps.gz | pdf}.

[4] M. Wessel, V. Haarslev, and R. Möller. ALCRA – ALC with Role Axioms. In
F. Baader and U. Sattler, editors, Proceedings of the International Workshop
in Description Logics 2000 (DL2000), number 33 in CEUR-WS, pages 21–
30, Aachen, Germany, August 2000. RWTH Aachen. Proceedings online
available from http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/.

21

