
The Taming of Converse: Reasoning about Two-Way Computations

Mo~e K VaMi t

C e n m r f o r S m ~ ofLangu~esandlnfonnaf ion, S t a n ~ UniversiW

ABSTRACT

We consider variants o f propositional dynamic logic (PDL) augmented with the converse

construct. Intuitively, the converse a - of a program a is a programs whose semantics is to run

a backwards. While PDL consists o f assertions about weakest preconditions, the converse con-

struct enable us to make assertions about strongest postconditions. We investigate the interaction

of converse with two constructs that deal with infinite computations: loop and repeat. We show

that converse-loop-PDL is decidable in exponential time, and converse-repeat-PDL is

decidablc in nondeterministic exponential time.

1. Introduction

Propositional @namic logic (PDL) [FL79], and its extensions (e.g., [HS83a], [Sh84], [SrS0]) are formal systems

for reasoning about input/output and ongoing behavior of programs schemes. The basic constructs in these logics

are assertions of the form <a>q, asserting that the program a can terminate in a state satisfying q, and assertions

about the possibility of infinite computations, e.g., loop(a) [HSg3a] or repeat(a) [StS0].

The converse construct [Pr76] enables us to reverse our mode of reasoning. Intuitively, the converse of a pro-

gram a, denoted a - , is a program whoso semantics is to run a backwards. Thus, if the assertion <a>q is the weak-

est precondition for the program a to terminate in a state satisfying q, the assertion <a->p is the strongest postcon-

dition that holds after termination o f a when sorted at a state satisfying p [dB80].

Intuitively, one would not expect the addition of converse to a logic L to change the properties of L in any

significant way. Indeed, converse- PDL, the extension of PDL with converse, satisfies the same small model pro.

perry as PDL [FI.79], and the known decision procedures and completeness results for PDL extend without

difficulty to converse- PDL [Pa80, Pr79, Pr80].

This turns out, however, to be the exception rather then the rule. In variants of PDL, converse interacts with

other constructs in a quite unpredictable way. For example, converse-DPDL, where atomic programs are

required to be dclcrmini~ic, does ta~t have thc finite model property. Indeed. the converse-DPDL formula

P/\[a- ']<a->~l ' is not satisfiablc in any finite modcl though it is satisfiable in an infinite inodel [11a83]. The

finitc model property similarly fails for converse-loop- PDL [St82]. Thc complications arising fi'tnn the addition

of converse seem also to make the decision problcm much harder; the addition of converse to repeat- PDL

increases the running time of the decision procedure in [St82] quintuply cxponentially (from O(exp~(n)) to

O(exp~(n))),

In [VW84] it is shown that even though converse does make life harder, it does not make them as exorbitantly

harder as it would seem fi'om the results in [St82]. Specifically, it is shown there that validity for converse - DPDL

can be decided in time O(exp(n2)) (thc bound for DPDL is O(exp(n))[BHl'82]). The increase in the bound is

due to a quadratic increase in the size of closures of formulas.

T Research supported by a giR from System Development Foundation. Address: CSLI, Ventura flail, Stanford
University, Stanford, CA 94305, 'USA.

414

In this paper we show that in general converse behaves in the manner suggested in [VW84] rather than in the

manner suggested in [St82]. That is, it does makes life harder, but not too hard. We show this by proving two

upper bounds. We prove that validity for converse - loop-PDL can be decided in time O(exp(n2)) (the hound

for loop - PDL is O(exp(n)) [PS83]), and we prove that the validity for converse - repeat- PDL can be decided in

nondeterministic time O(exp(n4)) (the bound for repeat -PDL is O(exp(n2)) [VS85]. (Actually, we prove our

results for extensions of DPDL, from which follow the results for extensions of PDL. No previous results about

converse- loop- DPDL and converse- repeat- DPDL were known.) As in [VW84], the increase in the bounds is

due to a quadratic increase in the size of closures of formulas,

We prove our bounds by the automata-theoretic approach suggested in [St80] and further developed in

[VW84] and [VS85], This approach is based on the fact that our logics have the tree model property. That is,

models of these logics can be viewed as labeled graphs and these graphs can be unraveled into bounded-branching

infinite tree-structured models. This suggest that decision procedures for program logics can be obtained by reduc-

ing satisfiabitity to the emptiness problem for certain classes of tree automata. The idea is to construct a tree auto-

maton A/ for a given a formula f , such that A/accepts exactly the tree models o f f . Thus f is satisfiable if and

only if A/ accepts some tree.

The reduction of satisfiability to emptiness for logic such as DPDL [VW84] or repeal - PDL [StS0,VS84] is

relatively straightforward. This is'not the case once converse is introduced. By their nature, tree automala arc one-

way devices, i.e., they scan the input in one direction. Computation of programs with converse are, on the other

hand, two-way computations, and it is not clear how to check assertions about two-way computations by one-way

automata. Indeed, to solve the decision problem for converse- repeat- PDL, Strectt introduced two-way automata

[St82]. The cn~x of his result is that two-way automata can be transfomed to equivalent one-way automata, but the

transformation causes a quadruply exponential blow-up.

What we show in this paper is how to reduce satisfiability in the presence of converse to emptiness of one-way

automata. The key to our reduction is the extension of the closure by assertiol~s about cycling computations, tntui-

tivety, cycle(a) holds in a state u if there is a computation of a that starts and terminates at u. We show that two-

way computations can be viewed as one-way computations with cycles. Thus assertions about two-way computa-

tions can be checked by one-way automata.

2. Converse - DPDL

We assume familiarity with dynamic logic [Pr76], with propositional dynamic logic (PDL) [FL79], and with

detemlinistic propositional dynamic logic (DPDL) [BHP82]. We also assume familiarity with the neccs~ry

automata-theoretic background (scc [VW84]). We will consider a valiant of DPDI., in which programs are

described by sequential automata rather than by regular expressions (c.f. [IqS83b,PrS1]). This variant is called

ADI'DL. ADPDL is more succinct than DI'DL and also has the advantage of fitting nicely with our automata-

theoretic techniques. As the translation fi'um regular expressions to automala is linear, our results for ADPDL

apply easily to DPDL. In this section we describe Vardi and Wolper's approach to converse-ADPDL [VW84].

In the sequel we extend this approach to converse- loop- DPDL and converse- repeat- DPDL,

Formulas of converse - ADPDL are built from a set of atomic propositions Prop and a set Prog of atomic

programs, The sets of formulas, tests, backward programs, and programs are defined inductively as follows:

• every proposition pEProp is a formula.

• if f l and ./'2 are formulas, then m f l and f l / \ f 2 are formulas.

• I f f is a formula, then f ? is a test.

• If a is an atomic program, then a - is a backward program.

e if a is a program and f is a formula, then (a > f is a formula

415

• If a is a sequential automaton over an alphabet E] where Z is a finite set of atomic programs, backward pro-

grams, and tests, then a is a program. (A sequential automaton is a tuple (E.S,p,s,F). where E is a finite

alphabet, S is a finite set of states, p : S X E - ~ 2 s is a nondeterministic transition function, sES is the starting

state, and FCS is a set of accepting states.) A word w accepted by a is called an execution sequence of a.

Let Prog' be the set of atomic and backward programs.

Converse-ADPDL formulas are interpreted over structures M=(W,R,FI) where W is a set of states,

R :Prog--*2 wxw is a deterministic transition relation (for each state u and atomic program a there is at most one

pair (u,u')CR(a)), and FI: W-~2 e~°p assigns troth values to the propositions in Prop for each state in W. We now

extend R to all programs and define satisfaction of a formula f in a state u of a stl~cture M, denoted M,u ~ f ,
inductively:

• R(f?)={(u,u):M,u ~ f } .

• R(a-)={(v,u):(u,v)£R(a)}.

• R(a)={(u,u'): there exists an execution sequence w=wl ' - - wn of a and states uo, ul, u, of W such

that u =u0, u' =u,~ and for all l<_i<n we have (ui-l,ui)£R(wi)}.

• For a proposition pEProp, M,u ~ p iffpEI'I(u),

• M,u ~ f l / \ f2 iff M,u ~ f l and M,u ~ f2.

• m,u 1= ~ f a iff not M,u ~ f l .

• M,u ~ <a>f iff there exists a state d such that (u,u')CR (a) and M,u' ~ f .

Note that only atomic programs are required to be deterministic, while non-atomic programs can be nondeterminis-

tic.

A formula f is satisfioble if there is a structure M and a state u in the structure such that M,u ~ f . The

satisfiability problem is to determine, given a formula f , whether f is satisfiable.

To use the automata-theoretic technique, we first have to prove that converse-ADPDL has the tree model
property. A tree structure for a formula f is a structure M =(W,R ,FI) such that:

1) WC[n]*, where n is bounded by the length o f f and W~:IZI.

2) xiEW only if x£W.

3) (x,y)£R(a) for an atomic or a backward program a only if x is the predecessor or the successor t r y and

(x,y)~R(b) for any other atomic or backward program b.

A tree structure M = (W,R ,FI) is a tree model for f if M,A ~ f (note that since W ~ , hE W).

Proposition 2.1: [VW84] Converse- ADPDL has the tree model property. •

In tree models for ADPDL eventualities are accomplished by "downward" paths. That is, if<a>g is satisfied

in a state x, then the sequence of states that leads to a slate that satisfies g is of the form x,xil,xili2,xili2i3, • • •.

Thus an automaton that checks for satisfaction of eventualities only needed to go down the tree (we view the trees

as growing downwards). In the presence of the converse construct, however, eventualities may require "two-way

paths". Indeed, in [St82] two-way automata arc defined in order to deal with converse. Unfortunately, the way the

emptiness problem is solved for these automata is to convert them to one-way automata with a fourfold exponential

increase in the number of states.

To avoid this difficulty we extend the logic by adding formulas that deal with "'cycling" computations. If a is

a program, then cycle(a) is a formula. Let M =(W,R,FI) and uEW, then M,u ~cycle(a) if(u,u)CR(a). That is,

cycle(a) holds in the state u if there is a computation of a that starts and terminates at u. Note that we do not

consider cycle formulas as formulas of converse- ADPDL, but they will be helpful in the decision procedure,

because they enable us to check eventualities using "one-way" automata. (It is interesting to note that the extended

logic, i.e., the logic that contains also the cycle formulas, is undecidable [Da84]).

416

It is not clear yet how cycle formulas help us solve our problem. Furthermore, how are we going to check

satisfaction of cycle formulas by one-way automata? The solution is to add directed cycle formulas, in which the

direction of the computation is specified. The semantics of such formulas is defined only on tree structures. If a is

a program, then both cyclea(a) and cycleu(a) are formulas. We call these formulas directed cycle formulas. For-

mulas o f the first type are called downward cycle formulas, and formulas of the second type are called upward cycle

formulas. We now define the semantics of these formulas.

Let M = (W , R , F D be a tree structure, and let x C W . M , x ~cyclea(a) if there are an execution sequence

w = w l • • • win, m ~ l , accepted by a and nodes xo, x l Xm of W such that

• x = x o a n d x = x m ,

• (xi,xi+l)ER(wi+l) for all fi<i<_m - 1 , and either

• m = 1 (s o w is a test), or

• m>l and xi properly succeeds x for l < _ i ~ m - 1 .

That is, cycled(a) is satisfied at x if there is an accepting computation that consists only of a test or if it is accom-

plished downwardly by a computation that does not go through x except at the beginning and at the end.

Let M =(W,R,YI) be a tree structure, and let x E W . M , x ~cycleu(a) if there are an execution sequence

w = wl • • • win, r e > l , accepted by a and nodes Xo, Xl xm of W such that

• X = x o a n d x = x m ,

• (xi,Xi+l)CR(Wi+l) for all O<_i<.m - 1 , and

• Xl = Xm- ~ is the predecessor of x.

That is, cycleu(a) is satisfied at x if it is accomplished upwardly. Note that cycleu(a) can be satisfied at a node x

even if the computation goes through x at some other points than its beginning and end. This implies that the

definitions of downward cycle formulas and upward cycle formulas are not symmetric.

The relationship between the various cycle formulas is expressed in the following proposition. Let

a=(Z,S,p ,so, F) be a program, and l e t p , q £ S . We denote by the program (Z,S ,o ,p ,F) by ap, (E,S,p ,s ,{q}) by

a q, and (E,S,o,p ,[q}) by a q. As we shall see later, when dealing with cycle formulas it suffices to consider pro-

grams of the form a q.

Proposition 2.2: [VW84] Let M = (W , R , H) be a tree structure, let x C W . and let a=(E ,S ,p , s , { t }) be a program.

Then M , x ~ cycle(a) if and only if there are states sjl sjk in S, where l < k < l S I, such that s h = s, sjk = t,

and for all l < i < k - 1 , i fp =s h and q =sji+l, then M , x ~cycle~(a q) or M , x ~cyclea(aq). •

As with cycle formulas, wc distinguish between downward and upward accomplishment of eventualities. We

therefnre introduce two new types o f formulas, whose semantics is dcfincd only on trec structures. If a is a program

and g is a formula, then both <a>ag and <a>ug are formulas. Wc call these formulas directed eventualities. For-

mulas of tile lbmlcr type are called downward eventualities, and formulas of the latter type are called tq~ward even.

tualities. We now define the semantics of directed eventualities.

Let M =(W,R,FI) bc a tree structure, and let x £ W . We have that M , x ~<a>ag if there are an execution

sequence w = wl" • • win, m >0, accepted by a and nodes xo, x l xm of W such that:

• X = 3 ¢ 0,

• (Xi,Xi+l)ER(Wi+l) for all O ~ i ~ m - 1 ,

• M,X m ~ g, and

• there is 0 < k < m such that xk = x and xi properly succeeds x for all k + l < i < m (this is vacuously true if

k =m) .

417

Let M =(W,R, I I) be a tree structure, and let xEW. We have that M,x ~<a>=g if there are an execution

sequence w = Wl" • • win, m >1, accepted by a and nodes xo, xl, xr~ of I'V such that:

• X = X0,

• (xi,xi+l)ER(wi+ 1) for all O<i<m -1,

• M,X m ~ g, and

• there is 0 < k < m such that xk is the predecessor of x.

}qote that an upward eventuality actually requires that the computation eventually goes upward, while a downward

eventuality does not require that the computation eventually goes downward. Also note that an eventuality can be

satisfied both upwards and downwards. The relationship between the various types of eventualities is expressed in

the next proposition.

Proposition 2.3: [VW84] Let M=(W,R,YI) be a trce structure, let x6W, let a be a program, and let g be a for-

mula. Then M,x ~<a>g if and only if either M.x ~<a>ag or M,x ~<a>ug. •

We now define the extended closure, ecl(f), of a converse- ADPDL formula f (we identify a formula - t ~ g

with g):

• fEeclO e)

• If gl/\g2Eecl(f) then gl,g2Eecl(f).

• If ~gEecl(f) then g6ecl(f).

• IfgEecl(f)then ~gEeclO0.

• If<a>gEecl(f) then gEect(f),

• If<a>gEecl(f). where a=(E,S,p,so, F), then g'6ecl(f) for all g'?EX

• If<a>g6ecl(f), where a=(E,S,p,sQ,F), then <as>g,<as>ag,<a~>ugEecl(f) for all sES.

• If<a>gEecl(f), where a=(X,S,p,sQ, F), then cycle(ag,cyclea(a~,cycleu(agEecl(f) for all s,tES,

It is not hard to verify that the size of ecl(f) is at most quadratic in the length o f f .

To stablish a decision procedure for ADPDL, we reduce the satisfiability problem to the emptiness problem

for Bfichi automata. To this end we a~sociate an infinite n-ary tree o v e r 2 cl(f)UPr°g'U[-l} with the tree model

M '=(W',R ',I]') constructed above in a natural way: every node in 14/' is labeled by the formulas in eel{f) that are

satisfied at that node, and the other nodes are labeled by the special symbol J_. We also label nodes by atomic pro-

grams, and the labeling is to be interpreted as follows: if a node x is labeled by atomic program b and the prede-

cessor of x is y, then (x,y)ER(b). Note that a node cannot be labeled by more than one atomic program, Trees

that correspond to tree models satisfy some special properties.

A Hintikka tree for a converse-ADPDL fonnula f is an n-ary tree T:[n]'--*2 ect~r~er°g'U{±! that satisfies

the following Himikka conditions:

1) f6T(A.),

and for all x£[nl~:

2)

3)

2.1) IT(x)NProg'l<_l,

2.2) i fy ,z are two distinct successors of x, aEPmg, and a-ET(y), then a -ET(z) ,

2.3) i fy is a successor of x, aEProg, and a6r(x), then a-ET(t,),

418

3.1) either T(x)={_l.} or.J_~T(x) and gET(x) iff ~g~.T(x),

3.2) gl/\g2ET(x) iff glET(x) and g2ET(x),

4) if a = (Z,S,p,s,{t}) is a program, then

4.1) cycle(a)ET(x) if and only if there are states s~ Sm in S, where 0<m<lSI, such that so=s,

Sm = t, and for all O~i~m - 1 either cycle,(a~i+1)ET(x) or cyclea(a~t+l)ET(x),

4.2) i f y is the predecessor of x, then cycleu(a)ET(x) if and only if there are states p,qES and a bEProg'
such that

• b E T(x),

• cycle(a~)ET(y),

• p Ep(s,b) and tEp(q,b-),

4.3) cycled(a)ET(x) if either there is a test g? such that gET(x) and tEp(g?,s), or there are states

sl, sm in S, l < m ~ [S I, a program b EProg' and a successor y o f x such that

• b-ET(y),

• cyclea(a~i<)ET{y) for all l ~ i ~ m -1,

• slEp(s,b) and tEp(sm,b-),

4.4) cyclea(a)ET(x) only if there is a finite subset W'C[n]" with xEW' and a mapping ¢p:W'-~2 edq') such

that cyclea(a)E~p(x), and if yEW' and cycle,~(a~Eep(y), then either there is a test g? such that gET(y)
and p Ep(q,g?), or there are states sl, Sm in S, l < m < [S I, a program b EPmg' and a successor

zEW' o f y such that

• b-Er(z),

• cyclea(a~*+I)Efp(z) for all l<<i<_m -1 ,

• slEp(p.b) and qEp(sm,b-).

5) if a = (Z,S,p,s,F) is a program and g is a formula, then

5.1) <a>gET(x) if and only if either <a>agET(x) or (a>ugET(x).

5.2) if y is the predecessor of x. then <a>ugET(x) if and only if there are states p,qES and a program

b E Prog', such that

• cycle(aOET(x),

• qEp(p,b),

• bET(x),

• (otq>gET(y),

5.3) <a>a g E T(x) i f either cycle (a')E T(x) and g £ T(x), or there are states p ,q £S , a program b E Prog', and

a successor y of x, such that

• cycle(aOET(x),

• qEp(p,b),

• b -ETa) ,

• <Otq>agET{y),

5.4) <a>agET(x) only if there are nodes x0, xk, states soto, sk,tk of S, and programs

bl, b~ EProg' such that

419

• x 0 = x , s0=s , tkCF, and St+lCp(ti,bi+l) for all 0 < i < k - 1 ,

• Xi+l is a successor of xi and b.~-i CT(xi+l) for all O<_i<k - 1 ,

t i
• cycle(a~)ET(xi) for O ~ i < k ,

• gCT(xk) .

Proposition 2.4: [VW84] A converse - ADPDL formula f has a tree model if and only if it has a Hintikka tree. •

It remains now to construct a Bl~chi tree automaton .4£ that accepts precisely the Hintikka trees for f . This is

described in [VW84]. .4f has O(exp(n2)) states, where n is the length o f f . This yields a decision procedure whose

running time is O (exp(n2)).

3. Converse - loop - ADPDL

Conver se -ADPDL is a logic to reason about input/output behavior o f programs. This is not adequate for

reasoning about the behavior of nonterminating programs such as operating systems. To this end we extend the

logic by constructs that deal with infinite computations. One such construct is the loop construct [HS83a]. Intui-

tively, the formula loop(a) holds in a state if there is an infinite computation o f a from that state. Sherman and

Pnueli have shown that loop - PDL is decidablc in exponential time [PS83], and Vardi and Wolper have shown by

automata-theoretic techniques that l o o p - DPDL is also decidable in exponential time [VW84]. We now show how

the automata-theoretic framework can bc extended to converse- l o o p - ADPDL, for which no previous results were

known.

Formally, we get converse- l o o p - ADPDL by extending the definition of of converse- ADPDL by the fol-

lowing syntactic and semantic clauses.

• If a is a program, then loop(a) is a formula.

• M,u ~loop(a), where a=(E,S ,p ,so , F), iff there are an infinite word w = w l w 2 " • over E, an infinite

sequence s0,sl, • ' • of states of S, and an infinite sequence uo,ul," • " of nodes o f W such that:

• u o = u , s o = s and

• for all i > 1 , siCP(si_l,w i) and (Ut-l, Ui)CR(wi).

Proposition 3.1: C o n v e r s e - l o o p - A D P D L has the tree model property. •

As with eventualities, we distinguish between downward and npward fulfilfinent o f loop formulas. We intro-

duce two new types of fimnulas, whose semantics is defined only on tree structures. If a is a program, then both

loopd(a) and loopu(a) are fi)lTnulas. We call these fi~rmulas directed loop formulas, Formulas o f the former type

are called downward loop fi)rmulas, and formulas of the latter type are called upward loop formulas. We now define

the semantics of directed loop formulas.

I~et M =(W,R ,FI) be a tree structtire, and let x £ W. We have that M,x ~ loop, l(a), where a = (E,S,p,so,F),

it" there are an infinite word w = w l w 2 " " over E. an infinite sequence so,s1, • . . of states of S , and an infinite

sequence xo,xl, • • • of nodes of W such that:

• X o = X , So=$ and

• for all i > l , s~£p(si-l,wi) and (xi- l ,x i)ER(wl) .

• i f t h e r e s o m e i > O s u c h t h a t x i = x a n d x j ~ t x f o r a l l j > i , t h e n x y p r o p e r l y s u c c e e d s x f o r a l l j > i ,

Let M =(W,R,Ff) be a tree structure, and let x E W . We have that M,x ~loopu(a), where a=(E,S ,p ,so , F),

iff there are an infinite word w = w l w 2 " " over E, an infinite sequence s o , s 1 , ' " o f states of S , and an infinite

sequence x0,xl, • - • o f nodes o f W such that:

• Xo=X, So=S and

420

* for all i>1 , s~£p(si_:,~) and (xi_:,xi)ER(wt).

• there is some i _ 1 such that xt is the predecessor of x.

Note that a downward loop formula actually requires that the computation eventually goes downward (unless it

loops forever on the same state), while an upward eventuafity does not require that the computation eventually goes

upward. Also note that a loop formula can be satisfied both upwards and downwards. The relationship between the

various types of loop formulas is expressed in the next proposition.

Proposition 3.2: [VW84] Let M=(W,R, f I) be a tree structure, let x £ W , and let a be a program. Then

M ,x ~ loop(a) if and only if either M,x ~ loopd(a) or M,x ~ loopu(a). •

To deal with loop formulas, we extend the definition of the extended closure by the following clause:

• If loop(a)Cecl(f), where a =(X,S,p,so,F), then loop(a~),looPd(as),loopu(as)Cecl(f) for all sES.

The size ofecl(f) is of comv;e still at most quadratic in the length o f f .

We can now define Hintikka trees for converse - loop - ADPDL formulas.

A Hintikka tree for a converse-loop-ADPDL formula f is an n-ary tree T:[n]*-->2 eet(f)Ue•g'UU} that

satisfies Hintikka conditions 1-5 and also

6) if a - - (E,S,p ,s ,F) is a program then

6.1) loop(a)ET(x) if and only if either loopd(a)ET(x) or loopu(a)ET(x).

6.2) if y is the predecessor of x, then loopu(a)ET(x) if and only if there are states p,qES and an atomic

program b, such that

• cycle(aD£T(x),

• qEp(p,b),

• bET(x),

• loop(aq)ET(y),

6.3) if loop, t(a)ET(x), where a = (Z,S,p,s,F), then there exists a state p £S such that either

a) cyele(aDET(x) and cycle(a~)ET(x), or

b) there ttre a state qES, a program bEProg', and successor y o fx such that

• cycle(aDET(x),

• q£p(p,b),

• b-ET(y) ,

• loop, l(aq)CT(y).

6A) if ~loop, l(a)CT(x) then, there is a finite subset W'C[n]" with x E W ' and a mapping rp: W'--~2 eetff)

such tlvat -'aloopa(c~ JE ep(x), and if yE W' and "-a [OOl:(a p)C tp(y), then

• there is no state p E S such that cycle(aP)ETO ,) and cycle(aP)ET(y),

• if for some states p ,q E S , b £ Prog', and z successor of y we have that

• cycle (a~),

* q~p(p,b), and

• b-ET(z) ,

then z C W' and -lloopa(aq)ET(.z).

Proposition 3.3; A converse -loop -ADPDL formula f has a tree model if and only if it has a Hintikka tree.

421

It remains now to construct a Blichi tree automaton A f that accepts precisely the Hintikka trees for f . The

method is that of [VW84]. A / h a s O(exp(n2)) states, where n is the length o f f . This yields a decision pro-

cedure whose running time is O(exp(n2)).

4. Converse - repeat - A D P D L

Another construct that deal with infinite computations is the repeat construct [St80] (repeat is denoted

by A in [St80]). Intuitively, the formula repeat(a) is true in a state if there is a way to repeatedly execute a

without stopping. It is known that the construct repeat is strictly more powerful than the construct loop

[HS83a]. The addition of repeat to P D L seems to make the decision problem quite harder. The best known

upper bound for repeat - (D) P D L is nondeterministic time O(exp(n2)) [VS85]. We now show how to extend

our technique to converse- r epea t - A D P D L for which no previous results were known.

Formally, we get converse- repea t - A D P D L by extending the definition of converse- A D P D L by the

following syntactic and semantic clauses:

a If a is a program, then repeat(a) is a formula.

t M ,u ~repeat(a), where a=(~:,S,p,so, F), iff there are an infinite sequence wl,w2 • • • of execution

sequences of a, and an infinite sequence Uo,Ul ,"" of nodes of W such that: uo=u and

(Ui_l,Ui)ER(w i) for all i > l .

Rather than deal with c o n v e r s e - r e p e a t - A D P D L , we deal with an equivalent logic,

converse - B ~ c h i - A D P D L . The latter logic has infinite programs described by Bt~chi automata.

Formally, we get c o n v e r s e - B ~ t c h i - A D P D L by extending the definition of of c o n v e r s e - A D P D L by the

following syntactic and semantic clauses.

• If a is a program, then (<:a) is a formula,

• M,u ~ (a)> , where a =(E,S,p,so,F) , iff there are an infinite word w = wlw2" • " over E, an infinite sequence

so,s1, • • • of states of S, and an infinite sequence Uo,U l," "" of nodes of W such that:

e uo=u and so=s,

• for some s E F we have l { i : s i = s } ~ t o (i.e., some state in F occurs infinitely often in the sequence

so, sl, " • •), and

• for all i :>l , siEp(sj_l,wi) and (Uj-l, Ui)CR(wl).

Note that the semantics of ~:a>> is very closed to the semantics of loop(a); the only difference is the additional

requirement that some state in F repeats infinitely often~ This condition is essentially Bfichi acceptance condition

fur automata on infinite words [Bu62].

Proposition 4.1. There is linear translation fi'om c o n v e r s e - r e p e a t - A D P D L to c o n v e r s e - B ~ c h i - A D P D L .

N~mlcly, there is i, Iogspilce mapping 7 such that if ~ is a c o n v e r s e - r e p e a t - A D P D I , formula, then -t,(rp) is a

c o n v e r s e - B ~ c h i - A D P D L tbnuula, I'~(w)l =o(1~1), and ¢p is logically equivalent to),(tp). Similarly, there is

quadratic translation from converse - B ~chi - ADI 'DL to converse - repeat - A D P I) L . II

Thus it suffices to consider converse - B ~chi - A D P D L .

Proposition 4.2: Converse- B ~ c h i - A D P D L has the tree model property. II

It turns out that cycle formulas, and even directed cycle formulas, are not sufficient to enable us to deal with

tree models for converse- B ~ c h i - A D P D L by one-way automata. What we need is to strengthen our cycle formu-

las in the following way. If a = (X , S , p , s , F) is a program, then seycle(a) is a formula. Let M =(W,R,H) and

u C W, then M , u ~ scycle(a) if there are a sequence s~ sk, o f states in S, an execution sequence w l " " wk of

a, and a sequence u~ uk of nodes in W, k_>l, such that so=s , u o = u k = u , sigp(sj-l ,wg) and

(u i - l , u i ~ R (w i) for all l<_i<_k, and s iEF for some l<_i<_k. That is, seycte(a) holds in the state u if there is a

422

computation of a that starts and terminates at u and goes through a state in F.

We now can strengthen also directed cycle formulas in an analogous way. In fact the whole treatment of cycle

formulas [VW84] can be strengthened in a straightforward way to deal with the requiremcnt that the cycling compu-

tations go through designated states. To deal with <<>> formulas, we extend the definition of extended closure by

the following clauses:

® If<<a>>gEecl(f), where a =(X,S,p,so, F), then scycle(a~, scycled(at), scycle,(c~)Cecl(f) for all s.tES,

• If(a>>Cecl(f), where a=(Z,S,p,so, F), then<at)<at>>Eeclff) for all tES.

It is not hard to verify that the size of eclO r) is still at most quadratic in the length o f f .

We can now define Hintikka trees for converse - B ~chi- ADPDL formulas,

A Hintikka tree for a converse-Bgtchi-ADPDL formula f is an n-ary tree T:[n]'~2 scl(f)ue'°z'u{~ that

satisfies Hintikka conditions 1-5 and also

7) if a = (E,S,o,s,{t }) is a program, then

7.1) scycle (a)E T(x) if and only if there are states so, Sm in S, where l < m < l s l, such that

• S o : S , S m m l ,

• for all O ~ i ~ m - 1 either cycleu(a~'+gET(x) or cyctea(a~'+l)ET(x),

• for some O<i<m - 1 either scycleu(a~+l)ET(x) or scyclea(a~l+l)ET(x),

7.2) if) , is the predecessor of x. then scycleu(~)ET(x) if and only if there are states p,qES and a program

b E Prog' such that

• b E T(x),

• cycle(c~fl)ETfy), and ifp.q~.F then scycte(aff)ET(y),

• p Ep(s,b) and tEp(q,b-),

7.3) scyclej(et)ET(x) if either there is a test g? such that gET(x) and tEp(g?,s)nF, or there are 'states

sl s m in S, l < m < I S I, a program b EProg', and a successor y of x such that

• b-ET(y) ,
8

• cyclea(a~]~l)ET(y) for all l < . i < m - 1 , and scyclea(a~l'l)ET(y) fol some l ~ t < : m - 1 ,

• slEp(s,b) and t Ep(sra,b-),

7.5) scyclea(a)ET(x) only if there is a finite subset W'C[n]* with xEW' and a mapping ~:W"-->2 ed(f)

such that cyclea(a)E~p(x), and if y £ W' and cyclej(%q)Ecp(y), then cithcr there is a test g? such that

gET(y) and pEp(q,g?)nF, or there are states sl s m in S, t < m < t S 1, a program bEProg' and

a successor z E W' o f y such that

• b-ET(z) ,

• cyclea(a~ t~ I)E~(z) for all l ~ i < m --1, and cycled(ot~l)E~(z) for some l < i < m --1,

• slEp(p,b) and qEp(sm,b-),

8) if ct = (Z,S,p,s,F) is a program then

8,1) ¢:a>)ET(x) iff<at)<(at))ET(x) for some tES ,

8.2) ~,a>)ET(x) if there there is a state t £S such that cycle(a~)ET(x) and scycle(a[)ET(x),

8.3) <a))ET(x) if there are an infinite sequences xo,xl, • • • of nodes in In] ' , infinite sequences so,sl ,""

and to, t1,.., of states in S . and an infinite sequcnce bo,bl," • • of programs in Prog' such that

423

• xo= x and xi+l is a successor of xi for all i_>0,
r l

• so=s, cycle(a~ l)£T(xi), si+lEp(ti,bi), and bi-ET(xi+l) for all i_>0,

• there is a sequence 0<_i0<il, • • • such that i f p =sij and q = t~) then scycle(aq)ET(xij) for all j>_0.

Theorem 4.3: A converse - B ~chi - ADPDL f has a tree model if and only if it has a Hintikka tree. •

It seems that all that remains now is to construct a B~chi automaton that accepts precisely the Hintikka trees

for f . Unlortunatcly, this is impossible (the impossibility follows from results by Rabin [Ra70].) The difficulty

comes from condition 8.3, since, using the techniques of [VW84], it is not hard to construct a B[~dhi automaton that

check the other conditions. Thus, rather than u ~ Bfichi automata to accept Hintikka trees for

converse - repeat - ADPI)L, we have to use the more powerful hybrid automata of Vai'di and Stockmeyer [VS85].

A hybrid tree automaton H is a pair (A ,B), whel'e A is a Rabin tree automaton and B is a Btlchi sequential

automaton, both over the same alphabet Z. H accepts a tree T if 7' is accepted by A and, tbr every infinite path

P starting at ~, B rejects the infinite word T(P). We need not concern ourselves here with Rabin automata; it

suffices to say that ever)' Brfichi automaton can be viewed as a Rabin automaton. The key ~act about hybrid auto-

mata, proven in [VS85], is that given a hybrid automata H=(A,B), we can test whether H accepts some tree in

nondcterministic time that is polynomial in the size of A and exponenti',d (O(2n2)) in the size o f / L

To construct a hybrid automaton that accepts that Hintikka trees of f , we construct a Bfichi tree antomaton

Af that check all the co~ditions except for 8.3, and we construct a Bfichi sequential automaton B/ that checks for

violations of condition 8.3. The hybrid automaton Hf =(Af,Bf) accepts precisely the Hintikka trees of f . While

Af has O(2 n2) states, B 1. has only O(n 2) states. This yields a decision procedure that runs in nondeterministic time

O (exp(n4)).

References

[BHP82] M. Bcn-Ari, .i'.Y. Halpcrn, A. Pnueli, "I)etenninistic Propositional Dynamic Logic: Finite Models, Com-

plexity, and Completeocss", J. Computer and System Science, 25(1982), pp. 402-417.

[Bu62] J.R. 13[~chi, "Oil a l)ecision Method in Restricted Second Order Arithmetic", Proc. Int'l Congr. Logic,

Method and l'~il. Sci. 1960. Stanford Unive~fity Press, 1962, pp. 1-12.

[1)a84] R. l_)anecki, "l'tvpositiomd Dynantic],ogic with Strong Looping l'redicate", 1984.

[dB80] J. de Bakkcr, Mathematical theory of program correctness, Prentice hall, 1980.

[FL79] M.J. Fisher, R.E.I.adncr, "q)ropositional I)ynamic Logic of Regular Programs", jr. Computer and System

Sciences, 18(2), 1979. pp. 194-2it.

[Ha83] J.Y. Halpcrn, private communication, 1983.

[1tS83a] 1). Harel, R. Sherman, "l.ooping vs. Repeating in I)ynamic 1.ogic'./nfiu'mation and Control 55(1982), pp.

175-192.

[HS83b] l). Harcl, R. Sherman, "Propositional l)ynamic I.ogic of Flowcharts", Prec. Int. Conf on Fotmdations of
Computation Theory, Lecture Notes in Computer Science. vol. 158, Springer-Verlag, Berlin, 1983, pp.

195-206.

[Pa80 Parikh, R.: A completeness result for PDL. Syrup. on Math. Foundations of Computer Science, Zako-

pane, 1978.

[Pr76] V.R. Pratt, "Semantical Considerations on Floyd-Hoare Logic", Proc. 17th IEEE Syrup. on Foundations

of Computer Science, Houston, October 1976, pp. 109-121.

[Pr79] V.R. Pratt, "Models of Program Logics", Proc. 20th 1EEE Syrup. on Foundation of Computer Science,

San Juan, 1979, pp. 115-122.

424

[Pr80]

[Pr811

[PS83]

[Ra70]

[Sh841

[St80;

[St82]

[vs851

[vws4]

V.R. Pratt, "A Near-Optimal Method for Reasoning about Action", J. Computer and Systems Sciences

20(1980), pp. 231-254.

V.R. Pratt, "Using Graphs to understand PDL", Proc. Workshop on Logics of Programs, (D. Kozen, ed.),

Yorktown-Heights, Lecture Notes in Computer Science, yol. 131, Springer-Verlag, Berlin, 1982, pp. 387-

396.

A. Pnueli, R. Sherman, "Propositional Dynamic Logic of Looping Flowcharts'; Technical Report,

Weizmann Institute, Rehovot, Israel, 1983.

M.O. Rabin, "Weakly Definable Relations and Special Automata", Proc. Symp. Math. Logic and Founda-

tions of Set Theory (Y. Bar-Hillel, ed.), North-Holland, 1970, pp. 1-23.

R. Sherman, "'Variants of Propositional Dynamic Logic," Ph.D. Dissertation, The Weizmann Inst. of Sci-

ence, 1984.

R.S. Streett, "',4 Propositional Dynamic Logic for Reasoning about Program Divergence" M.Sc. Thesis,

MIT, 1980.

R.S. Streett, "Propositional Dynamic Logic of Looping and Converse is elementarily decidable", Informa-

tion and Control 54(1982), pp. 121-141.

M.Y. Vardi, L. Stockmeyer, "Improved Upper and Lower Bounds for Modal Logics of Programs", To

appear in Proc. 17th ACM Syrup. on Theory of Computing, Providence, May 1985.

M. Y. Vardi, P. Wolper, "Automata Theoretic Techniques for Modal Logics of Programs", IBM Research
Report, October 1984. A preliminary version appeared in Proc. ACM Syrup. on Theory of Computing~

Wahington, April 1984, pp. 446-456.

