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ABSTRACT 

We consider variants o f  propositional dynamic logic (PDL) augmented with the converse 

construct. Intuitively, the converse a -  of  a program a is a programs whose semantics is to run 

a backwards. While PDL consists o f  assertions about weakest preconditions, the converse con- 

struct enable us to make assertions about strongest postconditions. We investigate the interaction 

of  converse with two constructs that deal with infinite computations: loop and repeat. We show 

that converse-loop-PDL is decidable in exponential time, and converse-repeat-PDL is 

decidablc in nondeterministic exponential time. 

1. Introduction 

Propositional @namic logic (PDL) [FL79], and its extensions (e.g., [HS83a], [Sh84], [SrS0]) are formal systems 

for reasoning about input/output and ongoing behavior of programs schemes. The basic constructs in these logics 

are assertions of  the form <a>q, asserting that the program a can terminate in a state satisfying q, and assertions 

about the possibility of  infinite computations, e.g., loop(a) [HSg3a] or repeat(a) [StS0]. 

The converse construct [Pr76] enables us to reverse our mode of  reasoning. Intuitively, the converse of  a pro- 

gram a, denoted a - ,  is a program whoso semantics is to run a backwards. Thus, if the assertion <a>q is the weak- 

est precondition for the program a to terminate in a state satisfying q, the assertion <a->p is the strongest postcon- 

dition that holds after termination o f  a when sorted at a state satisfying p [dB80]. 

Intuitively, one would not expect the addition of  converse to a logic L to change the properties of L in any 

significant way. Indeed, converse- PDL, the extension of PDL with converse, satisfies the same small model pro. 

perry as PDL [FI.79], and the known decision procedures and completeness results for PDL extend without 

difficulty to converse- PDL [Pa80, Pr79, Pr80]. 

This turns out, however, to be the exception rather then the rule. In variants of  PDL, converse interacts with 

other constructs in a quite unpredictable way. For example, converse-DPDL, where atomic programs are 

required to be dclcrmini~ic, does ta~t have thc finite model property. Indeed. the converse-DPDL formula 

P/\[a- ']<a->~l '  is not satisfiablc in any finite modcl though it is satisfiable in an infinite inodel [11a83]. The 

finitc model property similarly fails for converse-loop- PDL [St82]. Thc complications arising fi'tnn the addition 

of  converse seem also to make the decision problcm much harder; the addition of  converse to repeat- PDL 

increases the running time of  the decision procedure in [St82] quintuply cxponentially (from O(exp~(n)) to 

O(exp~(n ))), 

In [VW84] it is shown that even though converse does make life harder, it does not make them as exorbitantly 

harder as it would seem fi'om the results in [St82]. Specifically, it is shown there that validity for converse - DPDL 

can be decided in time O(exp(n2)) (thc bound for DPDL is O(exp(n))[BHl'82]). The increase in the bound is 

due to a quadratic increase in the size of  closures of  formulas. 
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In this paper we show that in general converse behaves in the manner suggested in [VW84] rather than in the 

manner suggested in [St82]. That is, it does makes life harder, but not too hard. We show this by proving two 

upper bounds. We prove that validity for converse - loop-PDL can be decided in time O(exp(n2)) (the hound 

for loop - PDL is O(exp(n)) [PS83]), and we prove that the validity for converse - repeat- PDL can be decided in 

nondeterministic time O(exp(n4)) (the bound for repeat -PDL is O(exp(n2)) [VS85]. (Actually, we prove our 

results for extensions of  DPDL, from which follow the results for extensions of  PDL. No previous results about 

converse- loop-  DPDL and converse- repeat- DPDL were known.) As in [VW84], the increase in the bounds is 

due to a quadratic increase in the size of  closures of formulas, 

We prove our bounds by the automata-theoretic approach suggested in [St80] and further developed in 

[VW84] and [VS85], This approach is based on the fact that our logics have the tree model property. That is, 

models of  these logics can be viewed as labeled graphs and these graphs can be unraveled into bounded-branching 

infinite tree-structured models. This suggest that decision procedures for program logics can be obtained by reduc- 

ing satisfiabitity to the emptiness problem for certain classes of  tree automata. The idea is to construct a tree auto- 

maton A/ for a given a formula f ,  such that A/accepts  exactly the tree models o f f .  Thus f is satisfiable if  and 

only if A/ accepts some tree. 

The reduction of satisfiability to emptiness for logic such as DPDL [VW84] or repeal - PDL [StS0,VS84] is 

relatively straightforward. This is'not the case once converse is introduced. By their nature, tree automala arc one- 

way devices, i.e., they scan the input in one direction. Computation of  programs with converse are, on the other 

hand, two-way computations, and it is not clear how to check assertions about two-way computations by one-way 

automata. Indeed, to solve the decision problem for converse- repeat- PDL,  Strectt introduced two-way automata 

[St82]. The cn~x of  his result is that two-way automata can be transfomed to equivalent one-way automata, but the 

transformation causes a quadruply exponential blow-up. 

What we show in this paper is how to reduce satisfiability in the presence of  converse to emptiness of  one-way 

automata. The key to our reduction is the extension of  the closure by assertiol~s about cycling computations, tntui- 

tivety, cycle(a) holds in a state u if there is a computation of  a that starts and terminates at u. We show that two- 

way computations can be viewed as one-way computations with cycles. Thus assertions about two-way computa- 

tions can be checked by one-way automata. 

2. Converse - DPDL 

We assume familiarity with dynamic logic [Pr76], with propositional dynamic logic (PDL)  [FL79], and with 

detemlinistic propositional dynamic logic (DPDL) [BHP82]. We also assume familiarity with the neccs~ry 

automata-theoretic background (scc [VW84]). We will consider a valiant of  DPDI., in which programs are 

described by sequential automata rather than by regular expressions (c.f. [IqS83b,PrS1]). This variant is called 

ADI'DL. ADPDL is more succinct than DI'DL and also has the advantage of fitting nicely with our automata- 

theoretic techniques. As the translation fi'um regular expressions to automala is linear, our results for ADPDL 

apply easily to DPDL. In this section we describe Vardi and Wolper's approach to converse-ADPDL [VW84]. 

In the sequel we extend this approach to converse- loop-  DPDL and converse- repeat- DPDL, 

Formulas of converse - ADPDL are built from a set of atomic propositions Prop and a set Prog of atomic 

programs, The sets of  formulas, tests, backward programs, and programs are defined inductively as follows: 

• every proposition pEProp is a formula. 

• if f l  and ./'2 are formulas, then m f l  and f l / \  f 2  are formulas. 

• I f f  is a formula, then f ?  is a test. 

• If  a is an atomic program, then a -  is a backward program. 

e if a is a program and f is a formula, then ( a > f  is a formula 
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• If  a is a sequential automaton over an alphabet E] where Z is a finite set of  atomic programs, backward pro- 

grams, and tests, then a is a program. (A sequential automaton is a tuple (E.S,p,s,F). where E is a finite 

alphabet, S is a finite set of  states, p : S X E - ~ 2  s is a nondeterministic transition function, sES is the starting 

state, and FCS is a set of accepting states.) A word w accepted by a is called an execution sequence of a. 

Let Prog' be the set of atomic and backward programs. 

Converse-ADPDL formulas are interpreted over structures M=(W,R,FI) where W is a set of states, 

R :Prog--*2 wxw is a deterministic transition relation (for each state u and atomic program a there is at most one 

pair (u,u')CR(a)), and FI: W-~2 e~°p assigns troth values to the propositions in Prop for each state in W. We now 

extend R to all programs and define satisfaction of  a formula f in a state u of a stl~cture M, denoted M,u ~ f ,  
inductively: 

• R(f?)={(u,u):M,u ~ f } .  

• R(a-)={(v,u):(u,v)£R(a)}. 

• R(a)={(u,u'): there exists an execution sequence w=wl ' - -  wn of a and states uo, ul, . . . .  u, of  W such 

that u =u0, u' =u,~ and for all l<_i<n we have (ui-l,ui)£R(wi)}. 

• For a proposition pEProp, M,u ~ p iffpEI'I(u), 

• M,u ~ f l / \  f2 iff M,u ~ f l  and M,u ~ f2. 

• m,u  1= ~ f a  iff not M,u ~ f l .  

• M,u ~ <a>f iff there exists a state d such that (u,u')CR (a) and M,u' ~ f .  

Note that only atomic programs are required to be deterministic, while non-atomic programs can be nondeterminis- 

tic. 

A formula f is satisfioble if  there is a structure M and a state u in the structure such that M,u ~ f .  The 

satisfiability problem is to determine, given a formula f ,  whether f is satisfiable. 

To use the automata-theoretic technique, we first have to prove that converse-ADPDL has the tree model 
property. A tree structure for a formula f is a structure M =(W,R ,FI) such that: 

1) WC[n]*, where n is bounded by the length o f f  and W~:IZI. 

2) xiEW only if x£W. 

3) (x,y)£R(a) for an atomic or a backward program a only if x is the predecessor or the successor t r y  and 

(x,y)~R(b) for any other atomic or backward program b. 

A tree structure M = ( W,R ,FI) is a tree model for f if M,A ~ f  (note that since W ~ ,  hE W). 

Proposition 2.1: [VW84] Converse- ADPDL has the tree model property. • 

In tree models for ADPDL eventualities are accomplished by "downward" paths. That is, if<a>g is satisfied 

in a state x, then the sequence of  states that leads to a slate that satisfies g is of the form x,xil,xili2,xili2i3, • • •. 

Thus an automaton that checks for satisfaction of eventualities only needed to go down the tree (we view the trees 

as growing downwards). In the presence of the converse construct, however, eventualities may require "two-way 

paths". Indeed, in [St82] two-way automata arc defined in order to deal with converse. Unfortunately, the way the 

emptiness problem is solved for these automata is to convert them to one-way automata with a fourfold exponential 

increase in the number of  states. 

To avoid this difficulty we extend the logic by adding formulas that deal with "'cycling" computations. If  a is 

a program, then cycle(a) is a formula. Let M =(W,R,FI)  and uEW, then M,u ~cycle(a) if(u,u)CR(a). That is, 

cycle(a) holds in the state u if there is a computation of a that starts and terminates at u. Note that we do not 

consider cycle formulas as formulas of  converse- ADPDL, but they will be helpful in the decision procedure, 

because they enable us to check eventualities using "one-way" automata. (It is interesting to note that the extended 

logic, i.e., the logic that contains also the cycle formulas, is undecidable [Da84]). 
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It is not clear yet how cycle formulas help us solve our problem. Furthermore, how are we going to check 

satisfaction of  cycle formulas by one-way automata? The solution is to add directed cycle formulas, in which the 

direction of the computation is specified. The semantics of  such formulas is defined only on tree structures. If a is 

a program, then both cyclea(a) and cycleu(a) are formulas. We call these formulas directed cycle formulas. For- 

mulas o f  the first type are called downward cycle formulas, and formulas of  the second type are called upward cycle 

formulas. We now define the semantics of  these formulas. 

Let M = ( W , R , F D  be a tree structure, and let x C W .  M , x  ~cyclea(a) if there are an execution sequence 

w = w l  • • • win, m ~ l ,  accepted by a and nodes xo, x l  . . . . .  Xm of W such that 

• x = x o a n d x = x m ,  

• (xi,xi+l)ER(wi+l) for all fi<i<_m - 1 ,  and either 

• m = 1 ( s o  w is  a test), or  

• m>l  and xi properly succeeds x for l < _ i ~ m  - 1 .  

That is, cycled(a) is satisfied at x if there is an accepting computation that consists only of  a test or if it is accom- 

plished downwardly by a computation that does not go through x except at the beginning and at the end. 

Let M =(W,R,YI)  be a tree structure, and let x E W .  M , x  ~cycleu(a) if  there are an execution sequence 

w = wl • • • win, r e > l ,  accepted by a and nodes Xo, Xl . . . . .  xm of W such that 

• X = x o a n d x = x m ,  

• (xi,Xi+l)CR(Wi+l) for all O<_i<.m - 1 ,  and 

• Xl = Xm- ~ is the predecessor of  x.  

That is, cycleu(a) is satisfied at x if it is accomplished upwardly. Note that cycleu(a) can be satisfied at a node x 

even if the computation goes through x at some other points than its beginning and end. This implies that the 

definitions of  downward cycle formulas and upward cycle formulas are not symmetric. 

The relationship between the various cycle formulas is expressed in the following proposition. Let 

a=(Z,S,p ,so,  F) be a program, and l e t p , q £ S .  We denote by the program (Z,S ,o ,p ,F)  by ap, (E,S,p ,s ,{q})  by 

a q, and (E,S,o,p ,[q})  by a q. As we shall see later, when dealing with cycle formulas it suffices to consider pro- 

grams of  the form a q. 

Proposition 2.2: [VW84] Let M = ( W , R , H )  be a tree structure, let x C W .  and let a=(E ,S ,p , s , { t } )  be a program. 

Then M , x  ~ cycle(a) if and only if there are states sjl . . . . .  sjk in S,  where l < k  < l  S I, such that s h = s, sjk = t, 

and for all l < i < k  - 1 ,  i fp  =s  h and q =sji+l, then M , x  ~cycle~(a q) or M , x  ~cyclea(aq). • 

As with cycle formulas, wc distinguish between downward and upward accomplishment of  eventualities. We 

therefnre introduce two new types o f  formulas, whose semantics is dcfincd only on trec structures. If a is a program 

and g is a formula, then both <a>ag and <a>ug are formulas. Wc call these formulas directed eventualities. For- 

mulas of  tile lbmlcr type are called downward eventualities, and formulas of  the latter type are called tq~ward even. 

tualities. We now define the semantics of  directed eventualities. 

Let M =(W,R,FI)  bc a tree structure, and let x £ W .  We have that M , x  ~<a>ag if there are an execution 

sequence w = wl" • • win, m >0,  accepted by a and nodes xo, x l  . . . . .  xm of W such that: 

• X = 3 ¢  0, 

• (Xi,Xi+l)ER(Wi+l) for all O ~ i ~ m  - 1 ,  

• M,X m ~ g, and 

• there is 0 < k < m  such that xk = x  and xi properly succeeds x for all k + l < i < m  (this is vacuously true if 

k =m) .  
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Let M =(W,R, I I )  be a tree structure, and let xEW. We have that M,x ~<a>=g if  there are an execution 

sequence w = Wl" • • win, m >1,  accepted by a and nodes xo, xl, . . . .  xr~ of  I'V such that: 

• X = X0, 

• (xi,xi+l)ER(wi+ 1) for all O<i<m -1, 

• M,X m ~ g, and 

• there is 0 < k  < m  such that xk is the predecessor of  x. 

}qote that an upward eventuality actually requires that the computation eventually goes upward, while a downward 

eventuality does not require that the computation eventually goes downward. Also note that an eventuality can be 

satisfied both upwards and downwards. The relationship between the various types of  eventualities is expressed in 

the next proposition. 

Proposition 2.3: [VW84] Let M=(W,R,YI) be a trce structure, let x6W,  let a be a program, and let g be a for- 

mula. Then M,x ~<a>g if and only if either M.x ~<a>ag or M,x ~<a>ug. • 

We now define the extended closure, ecl(f), of  a converse- ADPDL formula f (we identify a formula - t ~ g  

with g): 

• fEeclO e) 

• If gl/\g2Eecl(f) then gl,g2Eecl(f). 

• If  ~gEecl(f)  then g6ecl(f). 

• IfgEecl(f)then ~gEeclO0. 

• If<a>gEecl(f) then gEect(f), 

• If<a>gEecl(f). where a=(E,S,p,so, F), then g'6ecl(f) for all g'?EX 

• If<a>g6ecl(f), where a=(E,S,p,sQ,F), then <as>g,<as>ag,<a~>ugEecl(f) for all sES. 

• If<a>gEecl(f), where a=(X,S,p,sQ, F), then cycle(ag,cyclea(a~,cycleu(agEecl(f) for all s,tES, 

It is not hard to verify that the size of  ecl(f) is at most quadratic in the length o f f .  

To stablish a decision procedure for ADPDL, we reduce the satisfiability problem to the emptiness problem 

for Bfichi automata. To this end we a~sociate an infinite n-ary tree o v e r  2 cl(f)UPr°g'U[-l} with the tree model 

M '=(W',R ',I]') constructed above in a natural way: every node in 14/' is labeled by the formulas in eel{f) that are 

satisfied at that node, and the other nodes are labeled by the special symbol J_. We also label nodes by atomic pro- 

grams, and the labeling is to be interpreted as follows: if a node x is labeled by atomic program b and the prede- 

cessor of  x is y, then (x,y)ER(b). Note that a node cannot be labeled by more than one atomic program, Trees 

that correspond to tree models satisfy some special properties. 

A Hintikka tree for a converse-ADPDL fonnula f is an n-ary tree T:[n]'--*2 ect~r~er°g'U{±! that satisfies 

the following Himikka conditions: 

1) f6T(A.), 

and for all x£[nl~:  

2) 

3) 

2.1) IT(x)NProg'l<_l, 

2.2) i fy ,z  are two distinct successors of  x, aEPmg, and a-ET(y), then a -ET(z) ,  

2.3) i fy  is a successor of x, aEProg, and a6r(x), then a-ET(t,), 
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3.1) either T(x)={_l.} or.J_~T(x) and gET(x) iff ~g~.T(x), 

3.2) gl/\g2ET(x) iff glET(x) and g2ET(x), 

4) if a = (Z,S,p,s,{t}) is a program, then 

4.1) cycle(a)ET(x) if  and only if there are states s~ . . . .  Sm in S, where 0<m<lSI, such that so=s, 

Sm = t, and for all O~i~m - 1  either cycle,(a~i+1)ET(x) or cyclea(a~t+l)ET(x), 

4.2) i f y  is the predecessor of  x,  then cycleu(a)ET(x) if and only if there are states p,qES and a bEProg' 
such that 

• b E T(x),  

• cycle(a~)ET(y), 

• p Ep(s,b) and tEp(q,b-), 

4.3) cycled(a)ET(x) if either there is a test g? such that gET(x) and tEp(g?,s), or there are states 

sl, . . . .  sm in S,  l < m  ~ [ S I, a program b EProg' and a successor y o f  x such that 

• b-ET(y), 

• cyclea(a~i<)ET{y) for all l ~ i ~ m  -1,  

• slEp(s,b) and tEp(sm,b-), 

4.4) cyclea(a)ET(x) only if there is a finite subset W'C[n]" with xEW'  and a mapping ¢p:W'-~2 edq') such 

that cyclea(a)E~p(x), and if yEW'  and cycle,~(a~Eep(y), then either there is a test g? such that gET(y) 
and p Ep(q,g?), or there are states sl, . . . .  Sm in S, l < m  < [S I, a program b EPmg' and a successor 

zEW'  o f y  such that 

• b-Er(z), 

• cyclea(a~*+I)Efp(z) for all l<<i<_m -1 ,  

• slEp(p.b) and qEp(sm,b-). 

5) if a = (Z,S,p,s,F) is a program and g is a formula, then 

5.1) <a>gET(x) if and only if either <a>agET(x) or (a>ugET(x). 

5.2) if y is the predecessor of  x.  then <a>ugET(x) if and only if there are states p,qES and a program 

b E Prog', such that 

• cycle(aOET(x), 

• qEp(p,b), 

• bET(x), 

• (otq>gET(y), 

5.3) <a>a g E T(x) i f either cycle (a')E T(x ) and g £ T(x), or there are states p ,q  £S ,  a program b E Prog', and 

a successor y of  x,  such that 

• cycle(aOET(x), 

• qEp(p,b), 

• b -ETa) ,  

• <Otq>agET{y), 

5.4) <a>agET(x) only if there are nodes x0, . . . .  xk, states soto, . . . .  sk,tk of  S,  and programs 

bl, . . . .  b~ EProg' such that 
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• x 0 = x ,  s0=s ,  tkCF, and St+lCp(ti,bi+l) for all 0 < i < k - 1 ,  

• Xi+l is a successor of  xi and b.~-i CT(xi+l)  for all O<_i<k - 1 ,  

t i 
• cycle(a~)ET(xi)  for O ~ i < k ,  

• gCT(xk) .  

Proposition 2.4: [VW84] A converse - ADPDL formula f has a tree model if and only if it has a Hintikka tree. • 

It remains now to construct a Bl~chi tree automaton .4£ that accepts precisely the Hintikka trees for f .  This is 

described in [VW84]. .4f  has O(exp(n2)) states, where n is the length o f f .  This yields a decision procedure whose 

running time is O (exp(n2)). 

3. Converse - loop - ADPDL 

Conver se -ADPDL is a logic to reason about input/output behavior o f  programs. This is not adequate for 

reasoning about the behavior of  nonterminating programs such as operating systems. To this end we extend the 

logic by constructs that deal with infinite computations. One such construct is the loop construct [HS83a]. Intui- 

tively, the formula loop(a) holds in a state if there is an infinite computation o f  a from that state. Sherman and 

Pnueli have shown that loop - PDL is decidablc in exponential time [PS83], and Vardi and Wolper have shown by 

automata-theoretic techniques that l o o p -  DPDL is also decidable in exponential time [VW84]. We now show how 

the automata-theoretic framework can bc extended to converse-  l o o p -  ADPDL,  for which no previous results were 

known. 

Formally, we get converse- l o o p -  ADPDL by extending the definition of  of  converse-  ADPDL by the fol- 

lowing syntactic and semantic clauses. 

• If a is a program, then loop(a) is a formula. 

• M,u  ~loop(a),  where a=(E,S ,p ,so ,  F), iff there are an infinite word w = w l w 2 "  • over E,  an infinite 

sequence s0,sl, • ' • of  states of  S,  and an infinite sequence uo,ul," • " of nodes o f  W such that: 

• u o = u ,  s o = s  and 

• for all i > 1 ,  siCP(si_l,w i) and (Ut-l, Ui)CR(wi). 

Proposition 3.1: C o n v e r s e - l o o p - A D P D L  has the tree model property. • 

As with eventualities, we distinguish between downward and npward fulfilfinent o f  loop formulas. We intro- 

duce two new types of  fimnulas, whose semantics is defined only on tree structures. If a is a program, then both 

loopd(a) and loopu(a) are fi)lTnulas. We call these fi~rmulas directed loop formulas, Formulas o f  the former type 

are called downward loop fi)rmulas, and formulas of  the latter type are called upward loop formulas. We now define 

the semantics of  directed loop formulas. 

I~et M =( W,R ,FI) be a tree structtire, and let x £ W. We have that M,x ~ loop, l(a), where a = (E,S,p,so,F), 

it" there are an infinite word w = w l w 2 " "  over E. an infinite sequence so,s1, • . .  of  states of  S ,  and an infinite 

sequence xo,xl, • • • of  nodes of  W such that: 

• X o = X  , So=$ and 

• for all i > l ,  s~£p(si-l,wi) and (xi- l ,x i )ER(wl) .  

• i f t h e r e s o m e i > O s u c h t h a t x i = x a n d x j ~ t x f o r a l l j > i ,  t h e n x y p r o p e r l y s u c c e e d s x f o r a l l j > i ,  

Let M =(W,R,Ff )  be a tree structure, and let x E W .  We have that M,x  ~loopu(a), where a=(E,S ,p ,so ,  F), 

iff there are an infinite word w = w l w 2 " "  over E, an infinite sequence s o , s 1 , ' "  o f  states of  S ,  and an infinite 

sequence x0,xl, • - • o f  nodes o f  W such that: 

• Xo=X, So=S and 
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* for all i>1 ,  s~£p(si_:,~) and (xi_:,xi)ER(wt). 

• there is some i _  1 such that xt is the predecessor of  x.  

Note that a downward loop formula actually requires that the computation eventually goes downward (unless it 

loops forever on the same state), while an upward eventuafity does not require that the computation eventually goes 

upward. Also note that a loop formula can be satisfied both upwards and downwards. The relationship between the 

various types of  loop formulas is expressed in the next proposition. 

Proposition 3.2: [VW84] Let M=(W,R, f I )  be a tree structure, let x £ W ,  and let a be a program. Then 

M ,x ~ loop(a) if and only if either M,x ~ loopd(a) or M,x ~ loopu(a). • 

To deal with loop formulas, we extend the definition of  the extended closure by the following clause: 

• If loop(a)Cecl(f), where a =(X,S,p,so,F), then loop(a~),looPd(as),loopu(as)Cecl(f) for all sES. 

The size ofecl( f )  is of  comv;e still at most quadratic in the length o f f .  

We can now define Hintikka trees for converse - loop - ADPDL formulas. 

A Hintikka tree for a converse-loop-ADPDL formula f is an n-ary tree T:[n]*-->2 eet(f)Ue•g'UU} that 

satisfies Hintikka conditions 1-5 and also 

6) if  a - - (E,S,p ,s ,F)  is a program then 

6.1) loop(a)ET(x) if and only if either loopd(a)ET(x) or loopu(a)ET(x). 

6.2) if  y is the predecessor of  x,  then loopu(a)ET(x) if and only if there are states p,qES and an atomic 

program b, such that 

• cycle(aD£T(x), 

• qEp(p,b), 

• bET(x), 

• loop(aq)ET(y), 

6.3) if loop, t(a)ET(x), where a = (Z,S,p,s,F), then there exists a state p £S such that either 

a) cyele(aDET(x) and cycle(a~)ET(x), or 

b) there ttre a state qES, a program bEProg', and successor y o fx  such that 

• cycle(aDET(x), 

• q£p(p,b), 

• b-ET(y) ,  

• loop, l(aq)CT(y). 

6A) if ~loop, l(a)CT(x) then, there is a finite subset W'C[n]" with x E W '  and a mapping rp: W'--~2 eetff) 

such tlvat -'aloopa(c~ JE ep(x ), and if yE W' and "-a [OOl:(a p )C tp(y ), then 

• there is no state p E S  such that cycle(aP)ETO ,) and cycle(aP)ET(y), 

• if for some states p ,q  E S ,  b £ Prog', and z successor of  y we have that 

• cycle (a~), 

* q~p(p,b), and 

• b-ET(z) ,  

then z C W' and -lloopa(aq)ET(.z). 

Proposition 3.3; A converse -loop -ADPDL formula f has a tree model if and only if it has a Hintikka tree. 
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It remains now to construct a Blichi tree automaton A f  that accepts precisely the Hintikka trees for f .  The 

method is that of  [VW84]. A / h a s  O(exp(n2)) states, where n is the length o f f .  This yields a decision pro- 

cedure whose running time is O(exp(n2)). 

4. Converse - repeat - A D P D L  

Another construct that deal with infinite computations is the repeat construct [St80] (repeat is denoted 

by A in [St80]). Intuitively, the formula repeat(a) is true in a state if there is a way to repeatedly execute a 

without stopping. It is known that the construct repeat is strictly more powerful than the construct loop 

[HS83a]. The addition of  repeat to P D L  seems to make the decision problem quite harder. The best known 

upper bound for repeat - ( D ) P D L  is nondeterministic time O(exp(n2)) [VS85]. We now show how to extend 

our technique to converse-  r epea t -  A D P D L  for which no previous results were known. 

Formally, we get converse-  repea t -  A D P D L  by extending the definition of converse-  A D P D L  by the 

following syntactic and semantic clauses: 

a If a is a program, then repeat(a) is a formula. 

t M ,u  ~repeat(a),  where a=(~:,S,p,so, F), iff there are an infinite sequence wl,w2 • • • of  execution 

sequences of  a,  and an infinite sequence Uo,Ul ,""  of  nodes of W such that: uo=u and 

(Ui_l,Ui)ER(w i) for all i > l .  

Rather than deal with c o n v e r s e - r e p e a t - A D P D L ,  we deal with an equivalent logic, 

converse - B ~ c h i -  A D P D L .  The latter logic has infinite programs described by Bt~chi automata. 

Formally, we get c o n v e r s e - B ~ t c h i - A D P D L  by extending the definition of of  c o n v e r s e - A D P D L  by the 

following syntactic and semantic clauses. 

• If a is a program, then (<:a) is a formula, 

• M,u ~ (a )> ,  where a =(E,S,p,so,F) ,  iff there are an infinite word w = wlw2" • " over E, an infinite sequence 

so,s1, • • • of states of S,  and an infinite sequence Uo,U l," "" of  nodes of  W such that: 

e uo=u and so=s,  

• for some s E F  we have l { i : s i = s } ~ t o  (i.e., some state in F occurs infinitely often in the sequence 

so, sl, " • • ), and 

• for all i :>l ,  siEp(sj_l,wi) and (Uj-l,  Ui)CR(wl). 

Note that the semantics of ~:a>> is very closed to the semantics of  loop(a); the only difference is the additional 

requirement that some state in F repeats infinitely often~ This condition is essentially Bfichi acceptance condition 

fur automata on infinite words [Bu62]. 

Proposition 4.1. There is linear translation fi'om c o n v e r s e - r e p e a t - A D P D L  to c o n v e r s e - B ~ c h i - A D P D L .  

N~mlcly, there is i, Iogspilce mapping 7 such that if ~ is a c o n v e r s e - r e p e a t - A D P D I ,  formula, then -t,(rp) is a 

c o n v e r s e - B ~ c h i - A D P D L  tbnuula, I'~(w)l =o(1~1), and ¢p is logically equivalent to ),(tp). Similarly, there is 

quadratic translation from converse - B ~chi - ADI 'DL to converse - repeat - A D P I ) L .  II 

Thus it suffices to consider converse - B ~chi - A D P D L .  

Proposition 4.2: Converse-  B ~ c h i -  A D P D L  has the tree model property. II 

It turns out that cycle formulas, and even directed cycle formulas, are not sufficient to enable us to deal with 

tree models for converse-  B ~ c h i -  A D P D L  by one-way automata. What we need is to strengthen our cycle formu- 

las in the following way. If  a = ( X , S , p , s , F )  is a program, then seycle(a) is a formula. Let M =(W,R,H)  and 

u C W, then M , u  ~ scycle(a) if there are a sequence s~ . . . .  sk, o f  states in S,  an execution sequence w l "  " wk of  

a, and a sequence u~ . . . .  uk of  nodes in W, k_>l, such that so=s ,  u o = u k = u ,  sigp(sj-l ,wg) and 

( u i - l , u i ~ R ( w i )  for all l<_i<_k, and s iEF  for some l<_i<_k. That is, seycte(a) holds in the state u if there is a 
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computation of  a that starts and terminates at u and goes through a state in F.  

We now can strengthen also directed cycle formulas in an analogous way. In fact the whole treatment of cycle 

formulas [VW84] can be strengthened in a straightforward way to deal with the requiremcnt that the cycling compu- 

tations go through designated states. To deal with <<>> formulas, we extend the definition of  extended closure by 

the following clauses: 

® If<<a>>gEecl(f), where a =(X,S,p,so, F), then scycle(a~, scycled(at), scycle,(c~)Cecl(f) for all s.tES, 

• If(a>>Cecl(f), where a=(Z,S,p,so, F), then<at)<at>>Eeclff) for all tES. 

It is not hard to verify that the size of  eclO r) is still at most quadratic in the length o f f .  

We can now define Hintikka trees for converse - B  ~chi-  ADPDL formulas, 

A Hintikka tree for a converse-Bgtchi-ADPDL formula f is an n-ary tree T:[n]'~2 scl(f)ue'°z'u{~ that 

satisfies Hintikka conditions 1-5 and also 

7) if a = (E,S,o,s,{t }) is a program, then 

7.1) scycle (a)E T(x) if and only if there are states so, . . . .  Sm in S,  where l < m  < l  s l, such that 

• S o : S ,  S m m l ,  

• for all O ~ i ~ m  - 1  either cycleu(a~'+gET(x) or cyctea(a~'+l)ET(x), 

• for some O<i<m - 1  either scycleu(a~+l)ET(x) or scyclea(a~l+l)ET(x), 

7.2) if) ,  is the predecessor of  x. then scycleu(~)ET(x) if  and only if there are states p,qES and a program 

b E Prog' such that 

• b E T(x), 

• cycle(c~fl)ETfy), and ifp.q~.F then scycte(aff)ET(y), 

• p Ep(s,b) and tEp(q,b-), 

7.3) scyclej(et)ET(x) if either there is a test g? such that gET(x)  and tEp(g?,s)nF, or there are 'states 

sl . . . . .  s m in S,  l < m  < I S  I, a program b EProg', and a successor y of  x such that 

• b-ET(y) ,  
8 

• cyclea(a~]~l)ET(y) for all l < . i < m - 1 ,  and scyclea(a~l'l)ET(y) fol some l ~ t < : m - 1 ,  

• slEp(s,b) and t Ep(sra,b-), 

7.5) scyclea(a)ET(x) only if there is a finite subset W'C[n]* with xEW'  and a mapping ~:W"-->2 ed(f) 

such that cyclea(a)E~p(x), and if y £  W' and cyclej(%q)Ecp(y), then cithcr there is a test g? such that 

gET(y) and pEp(q,g?)nF, or there are states sl . . . . .  s m in S,  t < m < t S  1, a program bEProg' and 

a successor z E W' o f y  such that 

• b-ET(z) ,  

• cyclea(a~ t~ I)E~(z) for all l ~ i < m  --1, and cycled(ot~l)E~(z) for some l < i < m  --1, 

• slEp(p,b) and qEp(sm,b-), 

8) if  ct = (Z,S,p,s,F) is a program then 

8,1) ¢:a>)ET(x) iff<at)<(at))ET(x) for some tES ,  

8.2) ~,a>)ET(x) if there there is a state t £S  such that cycle(a~)ET(x) and scycle(a[)ET(x), 

8.3) <a) )ET(x)  if there are an infinite sequences xo,xl, • • • of  nodes in In] ' ,  infinite sequences so,sl ,"" 

and to, t1,.., of  states in S .  and an infinite sequcnce bo,bl," • • of programs in Prog' such that 
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• xo= x and xi+l is a successor of xi for all i_>0, 
r l  

• so=s, cycle(a~ l )£T(xi), si+lEp(ti,bi), and bi-ET(xi+l) for all i_>0, 

• there is a sequence 0<_i0<il, • • • such that i f p  =sij and q = t~) then scycle(aq)ET(xij) for all j>_0. 

Theorem 4.3: A converse - B ~chi - ADPDL f has a tree model if and only if it has a Hintikka tree. • 

It seems that all that remains now is to construct a B~chi automaton that accepts precisely the Hintikka trees 

for f .  Unlortunatcly, this is impossible (the impossibility follows from results by Rabin [Ra70].) The difficulty 

comes from condition 8.3, since, using the techniques of  [VW84], it is not hard to construct a B[~dhi automaton that 

check the other conditions. Thus, rather than u ~  Bfichi automata to accept Hintikka trees for 

converse - repeat - ADPI)L, we have to use the more powerful hybrid automata of Vai'di and Stockmeyer [VS85]. 

A hybrid tree automaton H is a pair (A ,B), whel'e A is a Rabin tree automaton and B is a Btlchi sequential 

automaton, both over the same alphabet Z. H accepts a tree T if 7' is accepted by A and, tbr every infinite path 

P starting at ~, B rejects the infinite word T(P). We need not concern ourselves here with Rabin automata; it 

suffices to say that ever)' Brfichi automaton can be viewed as a Rabin automaton. The key ~act about hybrid auto- 

mata, proven in [VS85], is that given a hybrid automata H=(A,B),  we can test whether H accepts some tree in 

nondcterministic time that is polynomial in the size of A and exponenti',d (O(2n2)) in the size o f / L  

To construct a hybrid automaton that accepts that Hintikka trees of f ,  we construct a Bfichi tree antomaton 

Af that check all the co~ditions except for 8.3, and we construct a Bfichi sequential automaton B/ that checks for 

violations of condition 8.3. The hybrid automaton Hf =(Af,Bf) accepts precisely the Hintikka trees of f .  While 

Af has O(2 n2) states, B 1. has only O(n 2) states. This yields a decision procedure that runs in nondeterministic time 

O (exp(n4)). 
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