The Taming of Converse: Reasoning about Two-Way Computations

Moshe Y. Vardit
Center for Study of Languages and Information, Stanford University

ABSTRACT

We consider variants of propositional dynamic logic (PDL) augmented with the converse
construct. Intuitively, the converse a™ of a program a is a programs whose semantics is to run
o backwards. While PDL consists of asscrtions about weakest preconditions, the converse con-
struct enable us to make assertions about strongest postconditions. We investigate the interaction
of converse with two constructs that deal with infinite computations: loop and repeat. We show
that converse —loop — PDL is decidable in exponential time, and converse — repeat — PDL is
decidable in nondeterministic exponential time.

1. Introduction

Propositional dynamic logic (PDL) [FL79}, and its extensions (e.g., [HS83a], [Sh84], {St80]) are formal systems
for reasoning about input/output and ongoing behavior of programs schemes. The basic constructs in these logics
arc assertions of the form <a>g, asserting that the program a can terminate in a state satisfying ¢, and assertions
about the possibility of infinite computations, e.g., loop(a) [HS83a] or repeat(a) [St80].

The converse construct [Pr76] enables us to reverse our mode of reasoning. Intuitively, the converse of a pro-
gram a, denoted a”, is a program whose semantics is to run a backwards. Thus, if the assertion <a>g is the weak-
est precondition for the program a to terminate in a state satisfying g, the assertion <a ™ >p is the strongest postcon-
dition that holds after termination of « when started at a state satisfying p [dB80].

Intuitively, one would not expect the addition of converse to a logic L to change the propertics of L in any
significant way. Indeed, converse — PDI., the extension of PDL with converse, satisfics the same small model pro-
perty as PDI [FL79], and the known decision procedures and completencss results for PDL extend without
difficulty to converse — PDIL. [Pa80, Pr79, Pr80].

This turns out, however, to be the exception rather then the rule. In variants of PDL, converse interacts with
other constructs in a quitc unpredictable way. For cxample, converse —DPDI., where atomic programs are
required to be dcterministic, docs not have the fluite model property. Indeed, the converse — DPDI. formula
P [a"]<a'>"1i’ is not satisflable in any finitc model though it is satisfiable in an infinite model [11a83]. The
finite model property similarly fails for converse —loop — PDL [S182). The complications arising from the addition
of converse scem also to make the decision problem much harder; the addition of converse to repeat — PDL
increases the running time of the decision procedurc in [St82] quintuply exponcntially (from OfexpXn)) to
Ofexp¥(m))).

In [VW84] it is shown that cven though converse does make life harder, it docs not make them as cxorbitantly
harder as it would scem from the results in [St82]. Specifically, it is shown there that validity for converse — DPDL,
can be decided in time Ofexp(n?) (the bound for DPDL is O(exp(n))[BHP82)). The increase in the bound is
due to a quadratic increase in the size of closures of formulas.

Rescarch supported by a giflt from System Development Foundation, Address: CSLI, Ventura Hall, Stanford
University, Stanford, CA 94305, USA.

414

In this paper we show that in general converse behaves in the manner suggested in [VW84] rather than in the
manner suggested in [St82]. That is, it does makes life harder, but not too hard. We show this by proving two
upper bounds. We prove that validity for converse —loop — PDL can be decided in time Ofexp(n?) (the bound
for Joop — PDL is Ofexp{n)) [PS83]), and we prove that the validity for converse — repeat — PDL can be decided in
nondeterministic time O (exp(n*) (the bound for repeat — PDL is Ofexp(n?) [VS85]. (Actually, we prove our
results for extensions of DPDL, from which follow the results for extensions of PDL. No previous resuits about
converse —loop — DPDL and converse — repeat — DPDL were known.) As in [VW84}, the increase in the bounds is
due to a quadratic increase in the size of closures of formulas,

We prove our bounds by the automata-theoretic approach suggested in [St80] and further devcloped in
[VW84] and [VS85]. This approach is based on the fact that our logics have the tree model property. That is,
models of these logics can be viewed as labeled graphs and thesc graphs can be unraveled into bounded-branching
infinite trec-structured models. This suggest that decision procedures for program logics can be obtained by reduc-
ing satisfiability to the emptiness problem for certain classes of free automata. The idea is to construct a tree auto-
maton 4; for a given a formula f, such that A4, accepts exactly the trce models of /. Thus f is satisfiable if and
only if A, accepts some tree.

The reduction of satisfiability to emptiness for logic such as DPDL [VW84] or repear — PDL [S180,VS84] is
relatively straightforward, This isnot the case once converse is introduced. By their nature, tree automala arc one-
way devices, i.e., they scan the input in one direction. Computation of programs with converse are, on the other
hand, two-way computations, and it is not clear how to check assertions about two-way computations by onc-way
automata. Indeed, to solve the decision problem for converse ~ repeat — PDL, Streett introduced two-way automata
[St82]. The crux of his result is that two-way automata can be transfomed to cquivalent onc-way automata, but the
transformation causes a quadruply exponential blow-up.

What we show in this paper is how to reduce satisfiability in the presence of converse to emptiness of onc-way
automata. The key to our reduction is the extension of the closure by assertions about cycling computations. Intui-
tively, cycle(a) holds in a state u if there is a computation of a that starts and terminates at u. We show that two-
way computations can be viewed as one-way computations with cycles. Thus assertions about two-way computa-
tions can be checked by one-way automata.

2. Converse — DPDL

We assume familiarity with dynamic logic [Pr76}, with propositional dynamic logic {PD1.) [FL79], and with
deterministic propositional dynamic logic (DPDI) [BHP82l. We also assume familiarity with the necessary
automata-theoretic background (scc [VW384]), We will consider a variant of DPDJ., in which programs are
described by sequential automata rather than by regular expressions (c.f. [HS83b.Pi81]). This variant is called
ADPDL. ADPDI s more succinct than DPDJ, and also has the advantage of fitting nicely with our automata-
theoretic techniques. As the translation from regular cxpressions to automalta is lincar, our results for ADPDL
apply casily to DPDL. In (his scction we describe Vardi and Wolper's approach to converse — ADPDI. [VW84].
In the sequel we extend this approach to converse — loop — DI and converse — repeat — DPDL.

Formulas of converse — ADPDIL are built from a set of atomic propositions Prop and a sct Prog of atomic
programs. The scts of formulas, tests, backward programs, and programs arc defined inductively as follows:

e every proposition p € rop is a formula,

e if £y and f; are formulas, then 3£y and fy /\ f, arc formulas.
e If fis a formula, then f7 is a test,

e If g is an atomic program, then a™ is a backward program,

e if ais aprogram and f is a formula, then <a>f is a formula

415

e If « is a sequential automaton over an alphabet £, where X is a finite set of atomic programs, backward pro-
grams, and tests, then a is a program. (A sequential automaton is a tuple (2.5,p,5,F), where Z is a finite
alphabet, S is a finitc set of states, p:SXT—>25 is a nondeterministic transition function, s€S is the starting
state, and 'CS is a set of accepting states.) A word w accepted by a is called an execution sequence of a.

Let Prog’ be the set of atomic and backward programs,

Converse — ADPDL formulas are interpreted over structures M =(W,R,TI) where W is a set of states,
R:Prog—2">¥ js a deterministic transition relation (for each state u and atomic program « there is at most one
pair (u,u' YER{a)), and TI: W->27™P assigns truth values to the propositions in Prop for each statc in W. We now
extend R to all programs and define satisfaction of a formula f in a state # of a structure M, denoted M, u Ef,
inductively:

o R(MD={wurMuEsf}

o Ria™)={(v,u){u,v)ER(a)}.

o R{a)={(u.u'): there exists an execution sequence w=wy - - - w, of a and stales ug,uy, . . ., 4, of W such
that u =ug, 4 =u, and for all 1<i<n we have (4;_1,4;)ER (w))}.

e For a proposition p€ Prop, M u = p iff pE€TT(u).

o Mulk fi/\ fLif MuE frand Muf= fo.

e Mulk —fiifnotMuk f1.

e M,uk <a>f iff there exists a state v’ such that (u,u'YER(«) and M ' = f.

Note that only atomic programs arce required to be deterministic, while non-atomic programs can be nondeterminis-

tic.

A formula f is satisfiable if there is a structure M and a state 4 in the structure such that M uEf. The
satisflability problem is to determine, given a formula f, whether £ is satisfiable.

To use the automata-theoretic technique, we first have to prove that converse — ADPDL has the tree model
property. A free structure for a formula f is a structure M = (W,R ,IT) such that:

1) WC[nl*, where n is bounded by the length of f and W#@.
2) xi€W onlyif x€W,

3 (x,»)ER(a) for an atomic or a backward program a only if x is the predecessor or the successor of y and
(x,y)Y2R{(b) for any other atomic or backward program b.

A tree structure M =(W R T1} is a tree model for £ if M A= f (note that since W=@, A\EW).
Proposition 2.1: [VW84] Converse ~ ADPDL has the tree model property. B

In tree models for ADPDI. cventualitics are accomplished by “downward” paths, That is, if <a>g is satisfied
in a state x, then the sequence of states that leads o a state that satisfics g is of the form X, xiy,xiyig,xiqiaiz, =+ * .
Thus an automaton that checks for satisfaction of eventualitics only necded to go down the tree (we view the trees
as growing downwards). In the presence of the converse construct, however, cventualitics may require “two-way
paths”. Indced, in [S82] two-way automata are defined in order to deal with converse. Unfortunately, the way the
cmptiness problem is solved for these automata is to convert them to ene-way automata with a fourfold exponential
increase in the number of states.

To avoid this difficulty we cxtend the logic by adding formulas that deal with “cycling” computations. If « is
a program, then cyele(a) is a formula. Lot M =(W R 1T and u €W, then M ,u Eeyelea) if (u u)ER (a). That is,
eycle(a) holds in the state u if there is a computation of a that starts and terminates at 4. Notc that we do not
consider cycle formulas as formulas of converse — ADPDL, but they will be helpful in the decision procedure,
because they enable us to check cventualitics using “one-way” automata, (It is interesting to note that the extended
logic, i.c., the Jogic that contains also the cycle formulas, is undecidable [1a84]).

416

It is not clear yet how cycle formulas help us solve our problem. Furthermore, how are we going to check
satisfaction of cycle formulas by one-way automata? The solution is to add directed cycle formulas, in which the
direction of the computation is specified. The semantics of such formulas is defined only on tree structures. If o« is
a program, then both cycle;s(@) and cycle,(a) are formulas. We call these formulas directed cycle formulas. For-
mulas of the first type are called downward cycle formulas, and formulas of the second type are called upward cycle
Jormulas. We now define the semantics of these formulas.

Let M =(W R ,II) be a tree structurc, and let x€W. M x [=cycle;(a) if there are an execution sequence
W=wy - Wy, m21, accepted by a and nodes xg,x1, . . ., X, of W such that
e x=xgand x =x,,

o (% DER(w; 4y for all 0<i<m —1, and either

e m=1(s0 wisa test), or

e m>1 and x; properly succeeds x for 1<i<m —1.

That is, cycley(a) is satisfied at x if there is an accepting computation that consists only of a test or if it is accom-
plished downwardly by a computation that does not go through x except at the beginning and at the end.

Let M =(W,R,IT) be a tree structure, and let x€EW. M ,x |=cycle,(e) if there are an execution sequence
W=Wwy" " Wy, m>1, acceptcd by a and nodes xg,x3, . . ., X, of W such that
e x=Xxpand x =x,,

o (XX DER(w;) for all 0<i<m —1, and

e x1=X,_ is the predccessor of x.

That is, cycle,(a) is satisfied at x if it is accomplished upwardly. Note that cycle,{a) can be satisfied at a node x
even if the computation goes through x at some other points than its beginning and end. This implies that the
definitions of downward cycle formulas and upward cycle formulas are not symmetric.

The rclationship between the various cycle formulas is expressed in the following proposition. Let
a=(Z,5,p,50,7) be a program, and let p,g€S. We denote by the program (Z,5,p.p.F7) by a,. (Z,5,p,5,{¢}) by
a%, and (2,5.p.p.{q}) by ag. As we shall sce later, when dealing with cycle formulas it suffices to consider pro-
grams of the form a .

Proposition 2.2; [VW84] Let M =(W,R.T1) be a tree structure, let x€W, and let a =(E,5,p,s,{(}) be a program.
Then M .x |=cyele(a) if and only if there are states sy, ..., 55, in S, where ISk | S|, such that s5;=s, s =1,
and for all 1<i<k—1, if p=3; and ¢ =5;, , then M .x Eeyele,(af) or M x Ecycley(af). B

As with cycle formulas, we distinguish between downward and upward accomplishment of cventualitics. We
therefore introduce two new types of formulas, whose scmantics is defined only on tree structures, 1f a is a program
and g is a formula, then both <adgg and <a>, g arc formulas. We call these formulas directed eventualities. For-
mulas of the former type are called downward eventualities, and formulas of the latter type are catled upward even-
tualities. We now define the semantics of dirccted cventualitics.

Let M =(W,R,II) be a tree structure, and let xEW. We have that M ,x E<adyg if there are an cxccution
sequence w=wy * - - Wy, m >0, accepted by a and nodes xg,x3, . . ., X, of W such that:

. X =Xg,

o (xx1)ER(w; 4y for all 0<i<m ~1,

e Myx, g and

e there is 0<k <m such that x; =x and x; properly succeeds x for all k+1<i<m (this is vacuously true if
k=m).

417

Let M =(W R II) be a tree structure, and let x€EW. We have that M ,x E<aD, g if there are an execution
sequence w=wy - < - Wy, m2>1, accepted by a and nodes xg,xy, . . ., X,, of W such that:

e X=X
(Xi,Xi+1)€R(Wi+1) for all OSISm ""1,
o Myx, g, and

e there is 0<k <m such that x; is the predecessor of x.

Note that an upward eventuality actually requires that the computation eventually goes upward, while a downward
eventuality does not require that the computation cventually goes downward. Also note that an eventuality can be
satisfied both upwards and downwards, The relationship between the various types of eventualities is expressed in
the next proposition.

Proposition 2.3: [VW84] Let M =(W,R M) be a trce structure, let x€ W, let a be a program, and let g be a for-
mula. Then M,x =<a>g if and only if either M ,x E<adsg or M ,x E<ad,g. B

We now define the extended closure, ecl(f), of a converse — ADPDL formula f {we identify a formula =g
with g}
o fEecl()
o If gy/\gy€ecl(f) then gy.g.€eci(f).
s Ifmg€ecl(f) then g€ecl(f).
o If g€ecl(f) then —g€ecl(f).
o If<adg€eci(f) then g€ecl(f).
o If<adg€ecl(f), where a=(Z,5,p,50,F), then g'€ecl(f) for all g’'?€Z.
e If<adg€ecl(f), where a=(Z,8,p,50,F), then <adg.ladq8.Ca;>, g€ecl(f) for all s€S.
e If<adg€eci(f), where a=(%,S,p,5,F), then cycle(al),cycles(ad),cycle,(ad)€ecl(f) for all s4ES.
It is not hard to verify that the size of ec/(f) is at most quadratic in the length of f.

To cstablish a decision procedure for ADPDL, we reduce the satisfiability problem to the emptiness problem

for Blichi automata. Te this cnd we associate an infinite n-ary tree over 2°UUPPgULLY with the tree model
M'=(W'.R"TT") constructed above in a natural way: cvery node in W' is labeled by the formulas in ec/(f) that are
satisficd at that node, and the other nodes are labeled by the special symbol |, We also label nodes by atomic pro-
grams, and the labeling is to be interpreted as follows: if a node x is labeled by atomic program b and the prede-
cessor of x is y, then (x,y)ER(b). Note that a node cannot be labeled by more than onc atomic program, Trees
that correspond to tree models satisfy some special propertics.

A Hintikka trec for a converse — ADPDI, formula £ is an n-ary trec T:[n]" —>20/UNPrs" KL that satisfies
the following Hintikka conditions:
b rery,
and for all x€{n}*:
2
21) TGN Prog’| <1,
22) if y,z are two distinct successors of x, a€lrog, and @~ €T(y), then a~€7T(z),
2.3) ify is a successor of x, @ € Prog, and a €T(x), then a~€T(y),
3)

4

5

418

3.1) either T(x)={1} or 1€T(x) and g€T(x) iff g €T (x),

3.2) g1/\@ET(x)iff g1€T(x) and g,€T(x),

if a=(2,5,0,5,{t}) is a program, then

4.1) cycle(a)€T(x) if and only if there are states sq, ...,s, in S, where 0<m<|S|, such that sp=s,
sn =1, and for all 0<i<m —1 either cycle,(a ;’ NET(x) or cycled(a;,“‘l)E T(x),

42) if y is the predecessor of x, then cyele, {a)€T(x) if and only if there are states p,g€S and a b€ Prog’
such that
o DHET(x),
o cycle(a)ET(y),
e p€pls,h)and t€p(g,b™),

43) cycles(a)E€T(x) if cither there is a test g? such that g€T(x) and (€p(g?,s), or there are states
Sp.-..5, 05, 1<m<}S|, a program b€ Prog’ and a successor y of x such that

o bTET(),
o cpclea HET() for all 1Ki<m ~1,
o 5:€p(s,b) and 1€p(s,,,57),
4.4) cycley(a)€T(x) only if there is a finite subset W'C[n}* with x €W’ and a mapping @: W =220 such
that cycleg(@)Ep(x). and if yEW' and cycle,{af)E(y), then cither there is a test g? such that g€T(y)

and p€p(q,8?), or there are states sy, .. .,5, in S, 1<m<|S |, a program b€ Prog’ and a successor
z€EW' of y such that

e b ET(2),
. cycled(a;"”)ﬁp(z) for all 1<i<m ~1,
o 51€p(p.b) and g€p(s,,07).
if a=(Z,8,p,5,F) is a program and g is a formula, then
5.1) <a>g€T(x)if and only if cither <a>;2€T(x) or <a>, g €T (x).

5.2) if y is the predecessor of x, then <ad>,g€T(x) if and only if there are states p,g€S and a program
b€ Prog’, such that

o cycle(aP)ET(x),
e q€p(p,b),

o bHET(x),

o La,>g€T(),

5.3) <a>yg€T{x) if cither cycle(a)€T(x) and g €T (x), or there are states p,g€S, a program b € Prog’, and
a successor y of x, such that

o cycle(af)ET(x),
s g€p(.b)

o bLTET(y),

o <Lay>g€T(y),

54) <ad,g€T(x) only if there are nodes xp ...,X, states solp...,S.% of §, and programs
by, ..., b €Prog’ such that

419

o xo=x,5p=5, 4EF, and 5,1€p(f,b; 1) for all 0Ki<k ~1,

e x.1is asuccessor of x; and 5731 €7(x 1) for all 0<i<k—1,

. cycle(a:i‘)GT(x;) for 0<i<k,

e g€T(x)
Proposition 2.4: [VW84] A converse — ADPDL formula f has a tree model if and only if it has a Hintikka tree. m
It remains now to construct a Blichi trce automaton 4, that accepts precisely the Hintikka trees for f. This is

described in [VW84]. A, has O(exp(n®) states, where » is the length of f. This yicids a decision procedure whose
running time is O (exp(n?)).

3. Converse —loop — ADPDL

Converse — ADPDL is a logic to reason about input/output behavior of programs. This is not adequate for
reasoning about the behavior of nonterminating programs such as operating systems. To this end we extend the
logic by constructs that deal with infinite computations. One such construct is the loop construct [HS83a]. Intui-
tively, the formula loop(w) holds in a state if there is an infinite computation of « from that state. Sherman and
Pnueli have shown that Joop — PDL is decidable in exponential time [PS83], and Vardi and Wolper have shown by
automata-theoretic techniques that Joop — DPDL is also decidable in exponential time [VW84]. We now show how
the automata-theoretic framework can be extended to converse — loop — ADPDL, for which no previous results were
known,

Formally, we get converse — loop — ADPDI, by extending the definition of of converse — ADPDL by the fol-
lowing syntactic and semantic clauses.

e If & is a program, then loop{a) is a formula.
o Muklop{a), where a=(Z,5,p,50,F), iff there are an infinite word w=wiw, -+ over ¥, an infinite
sequence so,51, * * + of states of S, and an infinite sequence ug,uy, - - - of nodes of W such that:
* ug=u,sp=s and
o foralli>], 5€p(s5_1.w;) and (u; _1.4,)ER(wy).
Proposition 3.1: Converse —loop — ADPDL has the tree model property, ®
As with cventualitics, we distinguish between downward and upward fulfillment of loop formulas. We intro-
duce two new types of formulas, whose semantics is defined only on tree structures. If « is a program, then both
loop,(a) and loop,(a) arc formulas. We call these formulas directed loop formulas. Formulas of the former type

are called downward loop formulas, and formulas of the latter type are called upward loop formulas. We now define
the scmantics of directed loop formulas.

Let M =(W R .TT) be a tree structure, and Tet x €W, We have that M ,x k= loopy(a), where a=(2,5,p.50,F),
iff there are an infinitc word w=wyw, - -+ over E, an infinitc scquence sg,51, * * + of states of S, and an infinite
sequence xg,x3, + - - of nodes of W such that:

. Xg=X, Sp=5 and
o forall i>1, 5;€p(s;..1,w;) and (x;_1.x)YER (wy).
e ifthere some i >0 such that x; =x and x; x for all j>i, then x; properly succeeds x for all j>i.

Let M =(W ,R,IT) be a tree structure, and let x €W, We have that M ,x |=loop, («), where a=(2,S,p,50.F),
iff there are an infinite word w=wyw; - -+ over Z, an infinitc scquence sg,51, - -+ of states of S, and an infinite
sequence xg.x1, - - - of nodes of W such that:

e Xxpm=x, sp=s and

420

o forall i>1, 5€p(s5;_1,w;) and (x; -1, 5 YER {w;).
e there is some /> 1 such that x; is the predecessor of x.

Note that a downward loop formula actually requires that the computation cventually goes downward (unless it
loops forever on the same state), while an upward cventuality does not require that the computation eventually goes
upward. Also note that a loop formula can be satisfied both upwards and downwards. The relationship between the
various types of loop formulas is expressed in the next proposition.

Proposition 3.2: [VW84] Let M =(W,R IT) be a tree structure, let x€W, and let a be a program. Then
M ,x = loop(a) if and only if cither M ,x |=loopy(a) or M ,x [=loop,(a). M

To deal with Joop formulas, we extend the definition of the extended closure by the following clause:
o If loop(a)€ecl(f), where a=(Z,5,p,50,F), then loop (e)loop{a,).loop,(a)Eecl(f) for all s€S.
The size of ec/(f) is of course still at most quadratic in the length of f.
We can now define Hintikka trees for converse — loop — ADPDL formulas.
A Hintikka tree for a converse ~ loop — ADPDL formula f is an n-ary trec T:n] -0/ Prg' UL} (gt
satisfics Hintikka conditions 1-5 and also
6) ifa=(2,8,p,5,F) is a program then
6.1) loop{a)ET(x) if and only if cither loop;{a)ET(x) or loop,(a)E T(x).

6.2) if y is the predecessor of x, then loop, {a)ST(x} if and only if there are states p,g€S and an atomic
program b, such that

o cycle(ad)ET(x),
o g€p(p.b),
e bET(x),
o loop(a)ET(y),
6.3) if loop,(a)ET(x), where a=(Z.S,p,5,F), then there exists a state p €S such that cither
a) cyele(af)ET(x) and cycle(af)ET(x), or
b) there are a state g €8, a program b€ Prog’, and successor y of x such that
o cycle(af)ET(x),
o q€p(p.b),
. bTET(),
o loopfa)ET(y).
6.4) if —oop,(a)ET(x) then, there is a finite subsct W'Cn]" with x€W' and a mapping p: W '=>20/()
such that ~Veop,()€@(x), and if y€W' and ~oer{a, JEply), then

e therc is no state p€S such that cycle(alYET(y) and eyele{afJET(),
e if for some states p,g€S, b€ rog’, and z successor of y we have that
s cyclelad),
e g€p(p,b) and
. b €T(2),
then z€ W' and —loop,(a,JET(2).
Proposition 3.3; A converse — loop — ADPDL formula f has a trec model if and only if it has a Hintikka tree.
]

421

It remains now to construct a Blichi tree automaton A, that accepts precisely the Hintikka trees for f. The
method is that of [VW84]. A4, has O(exp(n?)) states, where n is the length of f. This yields a decision pro-
cedure whose running time is O (exp(n?).

4. Converse — repeat — ADPDL

Another construct that deal with infinitc computations is the repear construct [St80] (repear is denoted
by A in [St80]). Intuitively, the formula repear{e) is true in a state if there is a way to rcpeatedly execute a
without stopping. It is known that the construct repeas is strictly more powerful than the construct Joop
[HS83a). The addition of repear to PDL seems to make the decision problem quite harder. The best known
upper bound for repeat —(D)PDL is nondeterministic time O{exp(n?) [VS85]. We now show how to cxtend
our technique o converse — repeat — ADPDL for which no previous results were known,

Formally, we get converse — repeat — ADPDL by extending the definition of converse — ADPDL by the
following syntactic and semantic clauses:

e If « is a program, then repeat(a) is a formula.

o M,ukrepeat(a), where a=(3,5,p,5,F), iff therc are an infinite sequence wi,w; -+ - of execution
sequences of a«, and an infinite scquence wuguy,--- of nodes of W such that: wy=u and
(u; .10 YER (w)) for all i>1.
Rather than deal with converse —repeat — ADPDL, we deal with an equivalent logic,
converse — Blichi — ADPDL . The latter logic has infinite programs described by Blichi automata.

Formally, we get converse — Blichi — ADPDL by extending the definition of of converse — ADPDL by the
following syntactic and semantic clauses.

e If aisa program, then a¥ is a formula,

o M.uk<a®, where a=(2,5,p,50,F), iff there are an infinitc word w=wyw; - -+ over Z, an infinite sequence
50,53, « + + Of states of S, and an infinite scquence ug,uy, -+ of nodes of W such that:
e yp=u and sp=5,
e for some s€F we have |{i 5 =5}k w (i.c, some statc in F occurs infinitely often in the sequence
50,81, + <), and
o forall i1, 5;€p(s_1,w;) and (u;_ 1,1,)ER (w;).
Notc that the semantics of €a is very closed to the semantics of Joop(a); the only difference is the additional

requirement that some state in F* repeats infinitely often. This condition is essentially Blichi acceptance condition
for automata on infinite words [Bu62).

Proposition 4.1. 'There is lincar translation from converse — repeat — ADPDL to converse — BYichi — ADPDL.,
Namely, there is a logspace mapping y such that if @ is a converse — repeat — ARPDI. formula, then y(p) is a
converse — BlYichi — ADPDL formula, |y(p)| =0(|¢]). and ¢ is logically equivalent to y(p). Similarly, there is
quadratic translation from converse — BlYichi — ADPDL to converse — repeat — ADPDL. %

Thus it suffices to consider converse — BYichi — ADPDL.
Proposition 4.2: Converse — Blichi — ADPDL has the tree model property.

It tumns out that cycle formulas, and even directed cycle formulas, are not sufficient to enable us to deal with
tree models for converse — Blichi — ADPDL by onc-way automata. What we need is to strengthen our eycle formu-
fas in the following way. If a={Z.5,p,5,F) is a program, then seycle(a) is a formula. Let M =(W,R.TT) and
u€W, then M u = scycle(a) if there are a sequence sg, . . ., 5, of states in §, an exccution sequence wy -+ + wy of
a, and a sequence wup...,u; of nodes in W, k2>1, such that sy=s, wo=ur=u, 5€pls;_1,w;) and
(1.4 YER (w;) for all 1<i<k, and 5;€F for some 1<i<k. That is, seycle(a) holds in the state u if there s a

422

computation of a that starts and terminates at « and goes through a state in F.

We now can strengthen also directed cycle formulas in an analogous way. In fact the whole treatment of cycle
formulas [VW84] can be strengthened in a straightforward way to deal with the requirement that the cycling compu-
tations go through designated states. To deal with <> formulas, we extend the definition of extended closure by
the following clauses:

e If<adg€ecl(f), where a=(Z,S p,50,F), then scycle(al), seycle (al), scycle,{al)€ecl{f) for all 5,1€S.
o If€ad€ecl(f), where a=(Z.5.p,50,0), then <a'><€a,>€ecl(f) for all 1E€S.
1t is not hard to verify that the size of ec/(f) is still at most quadratic in the length of £

We can now define Hintikka trees for converse — Blichi — ADPDL formulas.

A Hintikka tree for a converse — B ichi — ADPDI, formula f is an n-ary tree T:[n]" —250/0IProg’URLY thag
satisfics Hintikka conditions 1-5 and also
7 ifa=(Z.5,p.5{1}) is a program, then

7.1) scyele(a)ET(x) if and only if there arc states sg, . . . , 5, in 5, where 1<m <|S|, such that

e 5u=S5, Sp=H,

o forall 0<i<m 1 either cyc!e“(oc:f“)G T{x) or cyclesla ;““)é T{(x),

e for some 0<i<m —1 either scycle, (a :;”)G T(x) or scycled(a:l‘“)G T(x),
7.2) if y is the predecessor of x, then scycle, (@)ET(x) if and only if there are states p,g€S and a program
b€ Prog’ such that
o BET(x),
s cyclelaDET(y), and if p g €F then scycle(aDET(y),
e p€p(s.b)and t€p(g,b7),

7.3) scyeleg(e)ET(x) if either there is a test g? such that g €7(x) and (€p(g?,s)NF, or there are ‘states
Sy ...,5, in S, 1<m<|S |, a program b€ Prog’, and a successor y of x such that

e DTET(),
. cyc[e,,(a;’ NET(y) forall 1<€i<m —1, and scycled(a;’ "MET(y) for some 1<i<m—1,
o 5:€p(s,b) and (€p(s,,b7),
1.5) scycle,(aYET(x) only if there is a finite subset W'Cln]* with x€W’ and a mapping ¢: W s eelf)
such that cycle,{a)€q(x), and if yEW' and cycle,(a)E(y), then cither there is a test g2 such that

2€T(y) and p€plq,g?)NVF, or there are states sy, .. ., 8, in 8, 1<m <Y |, a program b€ Prog’ and
a successot zEW of y such that

e LTET(2),
o cyclegla ;j NEe(z) forall 1<i<m —1, and cy::led(«x;’ Neep(z) for some 1<i<m~1,
e s5:1€p(p,b)and g€p(s,,07)
8) ifa=(Z,5,p,s,F7) is a program then
8.1) LaPE€T{x)iff <a'>€a,»ET(x) for some 1€5,
8.2) €aDET(x) if there there is a state 1€ such that cyele(aYET(x) and seycle(aYET(x),

8.3) €a»ET(x) if there are an infinite scquences xg.xy, - < - of nodes in [#]°, infinite sequences sq.5, * -
and g,f1,... of states in S, and an infinite sequence by,by, - -+ of programs in Prog” such that

423

e xp=x and x;,; is a successor of x; for all i>0,

o so=s, cyele(a)ET(x), si41€p(4,07), and b~ €T (x40 for all i 20,

e there is a sequence 0<i<iy, « -+ such that if p =5, and g= 1, then S(ycle(ag)GT(xi]) for all j>0.
Theorem 4.3: A converse — Blichi — ADPDL f has a tree model if and only if it has a Hintikka tree. m

It seems that all that remains now is to construct a Blichi automaton that accepts preciscly the Hintikka trees
for f. Unfortunately, this is impossible (the impossibility follows from results by Rabin [Ra70}) The difficulty
comes from cundition §.3, since, using the techniques of [VW84], it is not hard to construct a Blichi automaton that
check the other conditions. Thus, rather than use Blichi automata to accept Hintikka trees for
converse — repeal — ADPDL, we have to use the more powerful Aybrid automata of Vaidi and Stockmeyer [VS85].

A hybrid trce automaton H is a pair (4,B), where 4 is a Rabin tree automaton and B is a Blichi sequential
automaton, both over the same alphabet X. H accepts a tree 7 if 7' is accepted by 4 and, for every infinite path
P starting at A, B rejects the infinite word T(P). We need not concern ourselves here with Rabin automata; it
suffices to say that every Blichi automaton can be viewed as a Rabin automaton. The key fact about hybrid auto-
mata, proven in [VS85], is that given a hybrid automata H =(A,B), we can test whether H accepts some tree in
nondeterministic time that is polynomial in the size of 4 and exponential (O (2n%) in the size of B.

To construct a hybrid automaton that accepts that Hintikka trees of £, we construct a Blichi tree automaton
Ay that check all the conditions except for 8.3, and we construct a Blichi sequential automaton B, that checks for
violations of condition 8.3. The hybrid automaton Hy =(A,,B;) accepts precisely the Hintikka trees of f. While
Ay has 02" states, B + has only O(n?) states. This yiclds a decision procedure that tuns in nondeterministic time
O (exp(n).

References

[BHP82] M. Ben-Ari, LY. Halpern, A. Poucli, “Deterministic Propositional Dynamic Logic: Finite Models, Com-
plexity, and Completencss™, J. Computer and Systemn Science, 25(1982), pp. 402-417.

[Bu62} J.R. Biichi, “On a Decision Mcthod in Restricted Sccond Order Arithmetic”, Proc. Int'l Congr. Logic,
Method and Phil. Sci, 1960, Stanford University Press, 1962, pp. 1-12.

[Da84] R. Danccki, “Propositionc! Dynamic Logic with Strong Looping Predicate”, 1984.

[dB80] J. de Bakker, Mathematical theory of program correctness, Prentice hall, 1980,

[FL791 M.J. Fisher, R.E. Ladner, “Propositional Dynamic Logic of Regular Programs”, J, Computer and System
Sciences, 18(2), 1979, pp. 194-211.

[Ha83] J.Y. Halpern, private communication, 1983,

[583a] 1. Harel, R. Sherman, “Looping vs. Repeating in Dynamic Logic™, Information and Control 55(1982), pp.
175-192.

[HS83b} D. Harel, R. Sherman, “Propositional 1ynamic Logic of Flowcharts™, Proc. Int. Conf. on Foundations of
Computation Theory, 1.ccture Notes in Computer Science, vol. 158, Springer-Verlag, Berlin, 1983, pp.
195-206.

[Pa80 Parikh, R.: A completeness result for PDL. Symp. on Math. Foundations of Computer Science, Zako-
pane, 1978,

[Pr76] V.R. Pratt, “*Scmantical Considerations on Floyd-Hoare Logic®, Proc. 17th 1EEE Symp. on Foundations
of Computer Science, Houston, October 1976, pp. 109-121.

[Pr791 V.R. Pratt, “Modcls of Program Logics”, Proc. 20th IEEE Symp. on Foundation of Computer Science,
San Juan, 1979, pp. 115-122,

[Pr80]

[Pr81]

[PS83]

[Ra70]

[Sh84]

{St80]

[St82]

[VSss]

[VW84]

424

V.R. Pratt, “A Near-Optimal Method for Reasoning about Action”, J. Computer and Systems Sciences
20(1980), pp. 231-254.

V.R. Pratt, “Using Graphs to understand PDL”, Proc. Workshop on Logics of Programs, (D. Kozen, ed.),
Yorktown-Heights, Lecture Notes in Computer Science, vol. 131, Springer-Verlag, Berlin, 1982, pp. 387-
396.

A. Pnueli, R. Sherman, “Propositional Dynamic Logic of Looping Flowcharts”, Technical Report,
Weizmann Institute, Rehovot, Israci, 1983.

M.O. Rabin, “Wecakly Definable Relations and Special Automata”, Proc. Symp. Math. Logic and Founda-
tions of Set Theory (Y. Bar-Hillel, ed.), North-Holland, 1970, pp. 1-23.

R. Sherman, “Variants of Propositional Dynamic Logic,” Ph.D. Dissertation, The Weizmann Inst. of Sci-
ence, 1984.

R.S. Streett, “A Propositional Dynamic Logic for Reasoning about Program Divergence”, M.Sc. Thesis,
MIT, 1980.

R.S. Streett, “Propositional Dynamic Logic of Looping and Converse is elementarily decidable”, Informa-
tion and Control 54(1982), pp. 121-141,

M.Y. Vardi, L. Stockmeyer, “Improved Upper and Lower Bounds for Modal Logics of Programs”, To
appear in Proc. 17th ACM Symp. on Theory of Computing, Providence, May 1985.

M. Y. Vardi, P. Wolper, “Automata Theoretic Techniques for Modal Logics of Programs”, IBM Research

Report, October 1984. A preliminary version appeared in Proc. ACM Symp. on Theory of Computing,
Wahington, April 1984, pp. 446-456.

