
This is a reconstruction of the paper

Subsumption in KL-ONE is Undecidable
from the old MS-Word files, published in 1989

Due to Microsoft’s permanently changing MS-Word-standards this
must be clumsily done by hand. The paper is now typesetted using
LaTeX.
The layout may have changed slightly, the page numbers are differ-
ent, but there is (almost) no other correction or change, in particular
the numbering of sections, lemmas, theorems and corollaries is the
same.

The current address of the author is:

Manfred Schmidt-Schauß
Institut für Informatik,
J.-W.-Goethe-Universität,
Postfach 11 19 32,
D-60054 Frankfurt,
Germany

Tel: (+49)69-798-28597,
Fax: (+49)69-798-28919,
E-mail: schauss@ki.informatik.uni-frankfurt.de

1

Subsumption in KL-ONE is Undecidable
Manfred Schmidt-Schauß

DFKI, Universität Kaiserslautern
PO-box 3049, D-6750 Kaiserslautern

F.R. Germany

Abstract. It is shown that in the frame-based language KL-ONE it is
undecidable whether one concept is subsumed by another concept. In
fact a rather small sublanguage of KL-ONE called ALR is used which
has only the concept forming operators conjunction, value restriction,
and role value maps using only ’=’. In particular, number restrictions
are not used. The language ALR can be viewed as an extension of fea-
ture terms without complements and unions, where features have sets
as values instead of elements. Our result shows that there is a basic
difference between feature terms and KL-ONE, since the complexity of
subsumption switches from quasi-linear to undecidable if the restriction
is dropped that roles are functional.

1 Introduction

The knowledge representation language KL-ONE [Brachman and Schmolze,
1985, Brachman et. al., 1985, Schmolze and Israel, 1983] permits describing
concepts on the basis of unary predicates (concepts, frames) and binary pred-
icates (roles, slots). It is a language supporting the definition and exploitation
of taxonomical knowledge including multiple inheritance, and has as advan-
tage a declarative semantics that permits to compare implementations. Several
KL-ONE-related languages are currently being used as the basis of knowledge
representation systems [Brachman and Schmolze, 1985, von Luck et. al. 1987,
Kaczmarek et. al., 1986, Mac Gregor, 1988], in particular for natural language
processing.

The terminological component (T-Box) of KL-ONE gives a potential user the
possibility to structure a domain of interest by using concepts and roles (frames
and slots). Usually, such a description starts by postulating certain primitive
concepts and roles, and afterwards defining concepts using the operators avail-
able. An example for such concepts may be person, animal, female, male, thing,
and examples for roles are child (has-child) and father (father-of). New concepts
can be defined via conjunction (“a person that is female”), via value restriction
with respect to some role (“a person with every male friend is a doctor”), via
number restriction (“a person with more than three children”), via role value
maps (“a man with every child of a child of his father is also a child”), and
some other formation possibilities. It is also possible to restrict models by some
axioms, for example by requiring that certain concepts are disjoint or that some
concepts form a covering of another concept.

Research in computational linguistics has lead to a related knowledge rep-
resentation method as the basis of unification grammars [Kay, 1985, Shieber,

2

1986], also called feature structures. H. Aı̈t-Kaci has independently developed a
very similar mechanism [Aı̈t-Kaci, 1984, Aı̈t-Kaci and Nasr, 1986] with the in-
tention to apply it in knowledge representation systems. The so-called Ψ -terms
are defined and implemented in a Logic Programming language. A similar device
are the feature terms, described in [Smolka and Aı̈t-Kaci, 1987, Smolka, 1988],
where concepts are called sorts and roles are called features. We give an example
for feature terms: Let car be a sort symbol (concept) and let speed and age be
features applicable to cars. Then (car u (age ↓ speed)) is a feature term de-
noting the set of all cars that have equal age and speed. A feature term used in
linguistic application may be (sentence u ((subj number) ↓ (pred number))),
which denotes sentences with agreeing number of subject and number of predi-
cate. The difference to knowledge representation á la KL-ONE is that features
denote partial functions. The term forming rules for feature terms directly cor-
respond to the concept forming possibilities conjunction, value restriction and
role-value maps available in KL-ONE. In addition, feature terms may be defined
using a predefined lattice structure on sorts (the primitive concepts). Indeed,
the expressiveness of feature terms can be viewed as a subset of KL-ONE where
all roles are functional.

The basic service provided by all these languages is a reasoning facility called
’classification’ that informs the user whether one of his already defined concepts
is subsumed by some other already defined concept. H. Levesque and R. Brach-
man strongly argue in several papers [Brachman and Levesque, 1984, Levesque
and Brachman, 1985, Levesque and Brachman, 1987] that classification should
be executable in polynomial time. They showed that there is a tradeoff be-
tween expressivity of the concept description language and the complexity of
the subsumption test. In particular they proved that reasonably expressive con-
cept description languages have a co-NP-hard subsumption problem.

In the feature term language the main inference is called ’unification’. Ba-
sically, unification of two feature terms amounts to computing a simplified rep-
resentation of their conjunction and a test, whether this conjunction denotes a
nonempty set. The test for consistency is in fact a classification problem. It was
shown by H. Aı̈t-Kaci [1984], that classification can be performed in quasi-linear
time. Recently it was shown that the classification problem for feature terms
including negation is co-NP-complete [Smolka, 1988].

In my opinion, knowledge representation formalisms that don’t admit a poly-
nomial classification algorithm are nevertheless useful, since for example most
NP-complete problems permit algorithms that require polynomial time in aver-
age. However, a formalism with an undecidable subsumption is unsatisfactory,
since in this case it may even be the case that consistency of concepts is not recur-
sively enumerable. Using a formalism with undecidable subsumption in practice
means that the corresponding classification is either incomplete or that further
constraints to restrict concept formation are to be employed. If the latter is
the case, then these restriction should show up in the theory, possibly yielding
a decidable subsumption for the restricted language. A further argument for
decidability of subsumption is that only in this case it is sensible to combine

3

such a formalism with a first-order language (A-Box) with the intention to ex-
ploit the mechanisms and algorithms of the knowledge representation formalism,
since otherwise the T-Box is already as powerful as any programming language.
However, there are some recent approaches using feature terms as constraints
[Höhfeld and Smolka, 1988, Bläsius and Hedtstück, 1988]. These methods use a
lazy classification and can thus tolerate undecidable subproblems by postponing
the decision until further information is available. Both approaches are restricted
to feature terms, however, an extension to KL-ONE-like concept terms appears
possible.

Although there is agreement that role value maps provide complications,
there are systems allowing them as descriptive possibility and use them also in
the (incomplete) classification algorithm. For example NIKL [Kaczmarek et. al.,
1986] admits the full expressive power of role value maps, whereas for example
in BACK [von Luck et. al., 1987] role value maps are strongly restricted. There
are several knowledge representation systems using feature terms and role value
maps in the restricted form of agreements. Since for feature terms it is known
that the consistency check is quasilinear, and co-NP-complete if complements are
permitted, the demand which suggests itself is to extend features to arbitrary
binary predicates (or roles).

In this paper it is shown that subsumption in ALR, a rather small sub-
language of KL-ONE is undecidable. This result was a surprise, since the very
similar language of feature terms has a tractable classification problem, and my
and other peoples expectation was that extending feature terms by set-valued
features would only moderately increase the complexity of classification. This
shows that role value maps in the restricted form are acceptable, but that their
general form as used in KL-ONE should be restricted.

For this result, conjunction, value restriction, and role value maps using only
= are needed, but not more. The proof uses the undecidability of the word
problem in groups. This is more convenient than the word problem in semigroups,
since using the latter one can only show undecidability of subsumption if ⊆ is
permitted as comparison operator in role value maps.

Recently, P. F. Patel-Schneider [1989] has shown that classification in NIKL
is undecidable. His sublanguage of KL-ONE requires more of the expressivity of
KL-ONE than our sublanguage, such as role value maps with ’⊆’ as comparison
operator, inverse roles and number restrictions. In the paper it is mentioned
that inverse roles can be omitted, but role value maps with ’⊆’ seem to be
indispensible. K. Schild [Schild, 1988] presents a proof showing that in a KL-
ONE related language that supports only role-definition subsumption of roles
is undecidable. The language permits the definition of complements of roles,
composition of roles and conjunction of roles.

The paper is structured as follows: In section 2 the syntax and semantics of
ALR and of ALRC are given. In section 3 we give the proof of undecidability
of subsumption by reducing the word problem in groups to it and furthermore
discuss some consequences.

4

2 The Language ALR

In the following we describe the syntax and semantics of the sublanguageALR of
the terminological language KL-ONE [Brachman and Schmolze, 1985, Schmolze
and Israel, 1983] as well as of an extension ALRC of ALR in a slightly modified
linear syntax, but the same semantics. Our language ALR allows to construct
concept expressions by the constructors given below, but it does not support the
definition of roles. Consequently we are mainly interested in concepts and their
relations.

There are disjoint sets of role symbols and concept symbols. Concept expres-
sions are:

i) concept symbols
ii) C uD, if C and D are concept expressions.
iii) ∀R : C, if R is a role symbol and C is a concept expression.
iv) P = Q if P and Q are lists of roles.
Concept expressions in ALR are composed from symbols and the three

methods of construction, possibly by inserting some brackets when nec-
essary. The concept expression for the concept “a man with every child
of a child of his father is also a child” would be something like (man u
((father, child, child) = (child))). In the NIKL-syntax this would be
(and man (all (compose father child child) child) (all child
(compose father child child) child)).

In the proofs we will use the more expressive language ALRC that extends
the language ALR by the following three formation rules for concepts:

v) C tD, if C and D are concept expressions.
vi) ∃R : C, if R is a role symbol and C is a concept expression.
vii) ¬C if C is a concept expression.

The language ALRC is an extension of the attributive concept description lan-
guage ALC [Schmidt-Schauß and Smolka, 1988] by role value maps.

We need some facts about relations, compositions of relations and applica-
tions of relations to sets and elements. Let R,S be relations over a set M , i.e.,
R,S ⊆ M ×M . The composition of R and S is defined as:

R ◦ S := {(x, y)|∃z ∈ M : (x, z) ∈ R ∧ (z, y) ∈ S}.
The application of a relation R to a set s ⊆ M is defined as follows:

sR := {y|∃x : x ∈ s ∧ (x, y) ∈ R}.

The application of R to an element x is defined analogously:

xR := {y|(x, y) ∈ R}.

Obviously, we have s(R ◦ S) = (sR)S and x(R ◦ S) = (xR)S for a set s and an
element x.

The semantics of the roles, concept symbols and concept expressions is as
usual [Levesque and Brachman, 1985, Levesque and Brachman, 1987, von Luck

5

et. al., 1987]. We give the semantics of the more general language ALRC, which
includes the semantics for ALR.

An interpretation I is a pair (M, I), where M is a set and I an interpretation
function, such that

i) for every concept symbol C : I(C) ⊆ M .
ii) for every role symbol R : I(R) ⊆ M ×M.

Lists of roles are interpreted as the composition of relations:

I((R1, . . . , Rn)) = I(R1) ◦ . . . ◦ I(Rn).

We interpret defined concepts as subsets of M as follows:

I(C uD) = I(C) ∩ I(D)
I(C tD) = I(C) ∪ I(D)
I(∀R : C) = {x ∈ M |∀y : (x, y) ∈ I(R) ⇒ y ∈ I(C)}
I(∃R : C) = {x ∈ M |∃y : (x, y) ∈ I(R) ∧ y ∈ I(C)}
I(P = Q) = {x ∈ M |x(I(P)) = x(I(Q))}
I(¬C) = M \ I(C)

where C and D are concepts, R is a role symbol, and P and Q are lists of
roles.

Subsumption and Consistency are defined with respect to this semantics:

- A concept expression C subsumes a concept expression D, iff for all inter-
pretations I, we have I(C) ⊇ I(D).

- A concept C is consistent, iff there exists an interpretation I, such that
I(C) 6= ∅, otherwise C is called inconsistent.

- Two concepts C and D are equivalent, iff C subsumes D and D subsumes
C.

Since we have negation in ALRC, and since the empty concept can be defined,
subsumption problems in ALRC are equivalent to inconsistency problems.

2.1 Lemma. Let C,D be concept expressions with respect to ALRC. Then
the following three statements are equivalent:

i) D subsumes C,
ii) ¬D u C is an inconsistent concept.
iii) ¬D u C is subsumed by ¬D uD (the empty concept).

Proof. The concept D subsumes C, iff I(D) ⊇ I(C). This in turn is equivalent
to (M \ I(D))∩ I(C) = ∅. Thus i) is equivalent to ii). Obviously, I(¬DuD) = ∅
for all interpretations I, hence ii) is equivalent to iii). 2

Subsumption is not equivalent to consistency of concepts in the language
ALR, since in ALR all concepts are consistent. Even if ∃R : C and the role-
defining operator (restrict R C) from NIKL are permitted, then all concepts
remain consistent, which follows by considering a one-element interpretation

6

I = (M, I) with M = {m}, where all concept symbols are interpreted as M
and all roles as {(m,m)}. In this interpretation, the restriction of a role has no
effect, and all defined concepts have M as extension. Thus all concepts remain
consistent.

Let us compare the expressiveness of ALR and ALRC with that of other
knowledge representation languages:

Obviously, ALR is a sublanguage of KL-ONE. ALR has less expres-
sivity than the sublanguage of NIKL used by P.F.Patel-Schneider [Patel-
Schneider, 1989] to show undecidability of subsumption in NIKL. The ALR-
concept ∀R : C is equivalent to (all R (restrict R C)) in NIKL and
to (all R C) in FL [Levesque and Brachman, 1985]. A concept descrip-
tion using role value maps ((R1, . . . , Rn) = (S1, . . . , Sm)) is equivalent to
the NIKL-expression (and (all (compose R1 . . . , Rn) (compose S1, . . . , Sm)
(all (compose S1, . . . , Sm) (compose R1, . . . , Rn))). I conjecture that the ex-
pressivity of ALR is strictly smaller, since it is not possible to define functional
roles in ALR.

There is a close relationship between ALR and feature terms. ALR can
be seen as feature terms (without negation and union) with the semantics of
features changed from (partial) functional to arbitrary binary relations. The
same relationship holds between ALRC and feature terms with complements
and union. Of course, the descriptive power is not really comparable, since for
example the rules for computing with feature terms and concept expressions
in ALRC are different [Smolka, 1988, Schmidt-Schauß and Smolka, 1988]. For
example the rule ∀R : (C tD) → (∀R : C) t (∀R : D) is valid for feature terms,
whereas this is false in ALRC.

3 Subsumption in ALR is Undecidable

In this section we will show that subsumption in ALR is undecidable by reducing
the word-problem in groups to it. Since the semantics of ALRC and ALR are
compatible, it is sufficient to show that subsumption of ALR-expressible concept
expressions is undecidable in ALRC. Hence we will use the language ALRC in
the following, but we will encode the subsumption problem using operators from
ALR.

Similar as in [Schmidt-Schauß and Smolka, 1988, Smolka, 1988], we transform
subsumption problems of ALR-concepts into a system C of constraints, where
every single constraint is of one of the forms s ⊆ C, x ∈ C, x ∈ s, s = t. We write
x, y, z for element variables, s, t for expressions of the form xR1 . . . Rn, and C,D
for concept expressions. The reason for using constraints is that the proofs are far
more readable than in linear syntax manipulating concept expressions and that
subsumption algorithms can be described in an elegant way (cf. [Schmidt-Schauß
and Smolka, 1988]).

Let I = (M, I) be an interpretation. Let α be an assignment of elements
in M to element variables of C. We assume that α extends the interpretation

7

function I, i.e., αC = I(C), α(xP) := (αx)I(P) for a concept C and a list of
roles P .

Then we say α satisfies C, if the following holds:
for (x ∈ A) ∈ C, we have αx ∈ αA
for (A ⊆ B) ∈ C , we have αA ⊆ αB
for (A = B) ∈ C, we have αA = αB.
A constraint system C is consistent, iff there exists an interpretation I

and an assignment α with respect to this interpretation such that α satisfies C.
Otherwise C is called inconsistent.

3.1 Lemma. Let C be a concept expression. Then C is consistent, iff the
constraint system {x ∈ C} is consistent. 2

There are several rules for replacing concepts and constraints which make life
easier, and which preserve consistency and inconsistency of constraint systems
(cf. [Schmidt-Schauß and Smolka, 1988, Smolka, 1988]):

¬(∀R : C) ↔ ∃R : ¬C
¬(∃R : C) ↔ ∀R : ¬C
x ∈ A uB ↔ x ∈ A, x ∈ B
x ∈ ∀R : C ↔ xR ⊆ C
x ∈ ∃R : C ↔ y ∈ xR, y ∈ C

where y is a new variable
x ∈ (P = Q) ↔ xP = xQ

In order to show undecidability of subsumption, we use the undecidability of
the word problem in groups [Boone, 1959, Novikov, 1955, Stillwell, 1982]. Such
a problem looks as follows: Let R1, . . . , Rn′ be the symbols of a group and let
P1 = Q1, . . . , Pm′ = Qm′ be the generating relations of some group. Then the
word problem is to test given strings P and Q, whether P = Q is derivable from
these relations and the axioms for a group. Our aim is to show that there is a
subsumption problem that is equivalent to this word problem.

In order to avoid clumsy notation for the used groups, we assume that only
associativity is built-in and that the semi-group-defining relations imply that
the semigroup defined by the relations is a group. If we have given generating
relations under the assumption that all axioms for a group are built-in, the
following procedure gives relations for semigroups ensuring that the generated
semigroup is an isomorphic group: Add a new symbol Re standing for the unit,
and add for every symbol Ri a new symbol R−

i for the inverse. Then add the
relations: Re ◦ R = R and R ◦ Re = R for every symbol R ∈ {Re, Ri, R

−
i , i =

1, . . . , n′} and add the relations R−
i ◦Ri = Re and Ri ◦R−

i = Re for all symbols
Ri. The defining relations for the group are translated as follows: We assume
that the words occurring in the relations are composed of symbols or inverses
of symbols. The unit is translated into Re, symbols are translated identically
and inverses of symbols are translated by (Ri)−1 → R−

i . Now the new relations
together with the translated generated relations defining the group provide a
semigroup, which is isomorphic to the original group and has an equivalent
word problem.

8

These considerations permit us to assume in the following that the symbols
are R1, . . . , Rn and that the relations are P1 = Q1, . . . , Pm = Qm, where the
group defining relations are among these relations. By G we denote the free
semigroup (which is in fact a group) generated by the symbols R1, . . . , Rn and
the relations P1 = Q1, . . . , Pm = Qm. This is the semigroup consisting of all
congruence-classes of words from {R1, . . . , Rn}∗, where two words are congruent,
if the least congruence on {R1, . . . , Rn}∗ that contains the relations makes them
congruent. For convenience we denote elements of G by [P], where P is a string
of symbols and [P] denotes the congruence class with respect to the defining
relations.

We say an equation P = Q is derivable from the relations, denoted as
` P = Q, if it can be generated from the relations using the following rules:

1) ` Pi = Qi for all generating relations.
2) ` P = P for all words P from {R1, . . . , Rn}∗.
3) ` P = Q if ` Q = P
4) ` P = Q if ` P = P ′ and ` P ′ = Q
5) ` PP ′ = QQ′ if ` P = Q and ` P ′ = Q′.
We have [P] = [Q] iff the equation P = Q can be derived from the relations

using rules 1) - 5) [Burris and Sankappanavar, 1981, Grätzer, 1979]. Note that
this means that for two given words P and Q it is semidecidable, whether they are
congruent by using the calculus above for enumeration of all derivable equations.
As an example consider the integers, which form a group with respect to addition.
We use the usual notation of 0, 1,−1 and + instead of Re, R1, R

−
1 and “◦”. If

all axioms of a group are built-in, then “1” is sufficient as symbol and there are
no relations. Considered as semi-group, the group of integers is generated by the
three symbols 0, 1,−1 and the relations 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1 + 1,
0 + (−1) = −1, (−1) + 0 = −1, (−1) + (−1) = (−1) + (−1), 1 + (−1) = 0,
(−1) + 1 = 0. A derivable equation is for example 1 + (−1) = (−1) + 1.

In the following we sometimes use the symbols Ri, i = 1, . . . , n from above
also as role symbols. We need an additional role symbol R that is not among
these role symbols. Furthermore we use Pi, Qi, P , and Q also for the lists of roles.
Thus it depends on the context whether P or Q is meant as a word in the group
or as a list of role symbols.

Now we define several concepts that are needed for the subsumption problem
encoding the word problem. For convenience we use u as associative operator
and write lists of roles as composition.

C1 := (R ◦R1 = R) u . . . u (R ◦Rn = R)
C2 := ∀R : (P1 = Q1) u . . . u ∀R : (Pm = Qm)

Now let C := C1 u C2 and let DP,Q := ∀R : (P = Q).
The subsumption problem, which we are interested in is whether DP,Q subsumes
C.

The idea of the construction is to view the relations in the role value maps
as relations that define a semigroup and then to make deductions using the
deduction rules 1) - 5) above. The concept C2 encodes the relations that are

9

used to define a particular group, whereas C1 is only technical; it encodes some
fixed point properties that will guarantee the correctness of deducing new role
value maps from the given ones similar to deducing new equations from given
equations. Let CG be the following constraint (coming from C):

CG := {xR ◦R1 = xR, . . . , xR ◦Rn = xR,
xR ⊆ (P1 = Q1), . . . , xR ⊆ (Pm = Qm)},

and let CG(P,Q) be the following constraint system (coming from ¬DP,Q u C):
CG(P,Q) := {y ∈ xR, y ∈ ¬(P = Q)} ∪ CG .
Now we can prove the main result as a sequence of lemmas.

3.2 Lemma. DP,Q subsumes C, iff the constraint system CG(P,Q) is incon-
sistent:
Proof. Lemma 2.1 yields that DP,Q subsumes C iff (¬DP,Q)uC is an inconsis-
tent concept, and Lemma 3.1 yields that this is equivalent to the inconsistency
of the constraint system {x ∈ (¬DP,Q) u C}. Due to the rules above, we can
transform this constraint system in several steps as follows:

{x ∈ ¬(∀R : (P = Q)), x ∈ C1 u C2}
⇔ {x ∈ ∃R : ¬(P = Q), x ∈ C1, x ∈ C2}
⇔ {y ∈ xR, y¬(P = Q), x ∈ C1, x ∈ C2}

If we develop the concepts C1 and C2, then we obtain the constraint system:

{ y ∈ xR, y ∈ ¬(P = Q), xR ◦R1 = xR, . . . ,
xR ◦Rn = xR, xR ⊆ (P1 = Q1), . . . ,
xR ⊆ (Pm = Qm)},

which is exactly the above defined system CG(P,Q). Since all used transforma-
tions preserve consistency and inconsistency, the lemma holds. 2

Now we can prove the crucial fact that the deduction rules above can be
simulated in the constraint system CG . The basic idea is the use of the additional
constraints xR ◦Ri = xR, which permit to view lists of roles in the constraints
as words in groups. Without this “technical” addition, this is impossible.

3.3 Lemma. If P ′ = Q′ is derivable from the relations defining G, then for
every constraint system C0 with CG ⊆ C0, there exists a constraint system C ′

G
with the following properties:

i) C0 ⊆ C ′
G

ii) {xR ⊆ (P ′ = Q′)} ⊆ C ′
G

iii) C0 is consistent iff C ′
G is consistent.

Proof. For a constraint system C let EQ(C) denote the set
{P = Q|(xR ⊆ (P = Q)) ⊆ C}.
We prove by induction on the length of derivations using the rules 1) - 5) above
that given a constraint system C with C0 ⊆ C and an equation P ′ = Q′ derivable

10

from EQ(C), the constraint system {xR ⊆ (P ′ = Q′)} ∪C is consistent, iff C is
consistent. That the consistency of {xR ⊆ (P ′ = Q′)}∪C implies the consistency
of C, is obvious and hence not mentioned in the following. Let C be a consistent
constraint system containing C0.

1) If P ′ = Q′ is derivable from EQ(C) with rule 1), then xR ⊆ (P ′ = Q′) is a
constraint in C0, since C0 contains CG .

2) For every word P from {R1, . . . , Rn}∗, the constraint system C ∪ {xR ⊆
(P = P)} is consistent, since every assignment α satisfies xR ⊆ (P = P).

3) For an equation P = Q in EQ(C), it is obvious that C ∪ {xR ⊆ (Q = P)}
is consistent, since for every assignment α, we have α(P = Q) = α(Q = P).

4) Let P = P ′ and P ′ = Q be in EQ(C) and let α be an assignment that
satisfies C. This means α(xR) ⊆ α(P = P ′) and α(xR) ⊆ α(P ′ = Q). By
the semantics we have that for every element a ∈ α(xR) : a(αP) = a(αP ′)
and a(αP ′) = a(αQ). Hence we have also a(αP) = a(αQ), hence α(xR) ⊆
α(P = Q) holds. Thus α satisfies the constraint system C∪{xR ⊆ (Q = P)},
hence it is consistent.

5) Let P = Q and P ′ = Q′ be in EQ(C) and let α be an assignment that
satisfies C. This means α(xR) ⊆ α(P = Q) and α(xR) ⊆ α(P ′ = Q′).
Now the constraints from C1 have to be used! Since α(xR ◦ Ri) = α(xR)
for all i = 1, . . . , n, we have also α(xR ◦ P) = α(xR) = α(xR ◦ Q) by
repeated application. For every a ∈ α(xR) the equation a(αP) = a(αQ)
holds. Furthermore a(αP) ⊆ α(xR). Hence for every element b ∈ a(αP), we
have b(αP ′) = b(αQ′). If we take the union of all sets b(αP ′) and b(αQ′),
where b ranges over the whole set a(αP), we obtain that a(α(P ◦ P ′)) =
a(α(Q ◦Q′)) for every a ∈ α(xR). Hence α(xR) ⊆ α(P ◦P ′ = Q ◦Q′) holds.
Thus α is an assignment that satisfies the constraint system C ∪ {xR ⊆
(P ◦ P ′ = Q ◦Q′)}, hence this constraint system is consistent. 2

3.4 Lemma. Let P and Q be words over {R1, . . . , Rn}∗. Then [P] = [Q] iff
CG(P,Q) is inconsistent.
Proof.
“⇒”: Assume by contradiction that CG(P,Q) is consistent. If [P] = [Q] holds
in G, then the rules 1) - 5) are sufficient to derive P = Q from the relations.
Lemma 3.3 shows that there exists a consistent constraint system C ′

G containing
CG(P,Q) ∪ {xR ⊆ (P = Q)}. The system CG(P,Q) contains the constraints
y ∈ xR, y ∈ ¬(P = Q), which contradicts the constraint {xR ⊆ (P = Q)}.
Hence CG is inconsistent.
“⇐”: We show that if [P] 6= [Q], then CG(P,Q) is consistent. Therefore we
assume that [P] 6= [Q]. An interpretation I = (I,M) that satisfies CG(P,Q) can
be constructed as follows: Let the domain M be M := {a} ∪ G, where a 6∈ G, let
I(R) := {(a, g)|g ∈ G}, and let I(Ri) := {(g, g◦ [Ri])|g ∈ G} for i = 1, . . . , n. The
assignment α is defined such that αx := a. This means that α(xR) = G. Since
multiplication from right in a group is a bijection, the constraints xR ◦ R1 =
xR, . . . , xR ◦Rn = xR are satisfied. The constraints xR ⊆ (P1 = Q1), . . . , xR ⊆
(Pm = Qm) are also satisfied, since the equations [Pi] = [Qi], i = 1, . . . ,m hold

11

in G. It remains to be shown that y ∈ ¬(P = Q) and y ∈ xR can be satisfied.
The assignment of the unit 1G in G to y, i.e., αy := 1G gives an element that is
contained in the sets α(xR) and α(¬(P = Q), since [P] 6= [Q] in G. Hence the
thus defined assignment α satisfies the constraint CG(P,Q). 2

3.5 Theorem. Subsumption in ALR, and hence in KL-ONE, is undecidable.
Proof. Obviously the subsumption problem in Lemma 3.2 can be formulated
in ALR. Lemmas 3.2, 3.3, 3.4, show that the concept DP,Q subsumes C, iff
[P] = [Q] with respect to the group defined by the relations. Now the well-known
result that the word problem in groups is undecidable [Boone, 1959, Novikov,
1955, Stillwell 1982] implies that subsumption is undecidable. 2

Note that the reason for using the undecidability of the word problem in
groups rather than in semigroups or monoids is that in the proof of Lemma
3.4, the constraints xR ◦ Ri = xR have to be satisfied, which requires that
multiplication from right must be surjective.

The result in [Boone, 1959, Novikov, 1955, Stillwell, 1982] shows that there
exists a group, such that the word problem in this group is undecidable. In our
context this means, that there exists a fixed concept C such that it is undecidable
whether a given concept DP,Q subsumes C.

3.6 Corollary. In ALR there exists a fixed concept C, such that it is unde-
cidable, whether a given concept D subsumes C.

As a further corollary of Theorem 3.5 we obtain also that some problems
cannot be recursively enumerable, such as non-subsumption in ALR and con-
sistency of concepts in the language ALRC.

3.7 Corollary. Consistency of concepts in ALRC is not recursively enumer-
able.
Proof. Assume for contradiction that the consistent concepts of ALRC can be
recursively enumerated. Since the calculus consisting of the 5 rules for the equa-
tions in groups is complete, it follows from Lemma 3.4 that the inconsistent
constraints CG(P,Q) can be recursively enumerated. Using Lemma 3.1 the as-
sumption that consistent concepts of ALRC are recursively enumerable implies
that the consistent constraint systems CG(P,Q) can be recursively enumerated,
since CG(P,Q) is equivalent to {x ∈ ¬DP,Q u C}. This means inconsistency of
CG(P,Q) is decidable, which contradicts Lemma 3.4 and Theorem 3.5. 2

Of course, this does not hold for ALR alone, since all ALR-concepts are
consistent.

Corollary 3.7 has as a curious consequence that we can give a nonconstructive
proof that there must be a consistent concept that denotes the empty set in all
finite models:

3.8 Corollary. There exists a consistent ALRC-concept C, such that C
denotes a nonempty set only in infinite interpretations.
Proof. Assume, that the corollary is false. Then for every consistent ALRC-
concept C, there exists a finite interpretation, such that C is interpreted as a

12

nonempty set. This implies that consistency of concepts would be recursively
enumerable, which contradicts Corollary 3.7. 2

In the following we describe some consequences for languages that extend
the feature term languages in some way. Note that our proof of undecidability of
subsumption in ALR does not work for the simple feature term language, since
R must be interpreted as a proper role, which is not possible in the feature term
language.

Let us define the language ALR∗ as an extension of the feature term lan-
guage. The language ALR∗ has (disjoint) sets of role and feature symbols. The
interpretation of roles is as usual, whereas the interpretation of a feature F
should be a partial function, i.e.,
(a, b) ∈ I(F) ∧ (a, c) ∈ I(F) ⇒ b = c.
Concept expressions in ALR∗ are:

i) concept symbols
ii) C uD, if C and D are concept expressions.
iii) ∀R : C, if R is a role symbol and C is a concept expression.
iv) F : C, if F is a feature symbol and C is a concept expression.
v) P = Q if P and Q are lists of roles or features, where the first

element may be a role, whereas all other elements in the
list are features.

The semantics of concept expressions is slightly changed, the conjunction is
(as usual) interpreted as intersection, but the constructs F : C and P = Q
include definedness of roles and features. Let I = (M, I) be an interpretation,
then

I(F : C) := {a ∈ M | ∃b ∈ I(C) : (a, b) ∈ I(F)}
I(P = Q) := {a ∈ M | (∃b : b ∈ I(C) : (a, b) ∈ I(P)) ∧ aI(P) = aI(Q)}

The language ALR∗ is a slight extension of the (simple) feature term lan-
guage. Nevertheless, subsumption is undecidable:

3.9 Theorem. Subsumption in ALR∗ is undecidable.
Proof. The proofs of the lemmas 3.1 and 3.2 remain valid. In the proof of Lemma
3.3 one has to take into account that the semantics has slightly changed. For
1) - 4) there are no problems. In the proof of 5) there are some additions: One
has to prove that the assignment α has the additional property that α(P ◦P ′ =
Q◦Q′) 6= ∅, which holds, since the α(xR) is not empty. The proof of Lemma 3.4
holds also for the modified semantics without changes, since the interpretations
for the roles Ri are partial functions in the model construction part. Finally
Theorem 3.5 with the modified Lemmas 3.1 – 3.4) can be applied and yields
that subsumption in ALR∗ is undecidable. 2

An extension of the feature term language which should be investigated is
the simple feature term language, where roles are added, but not permitted in
role value maps1, i.e., i) - iv) are as above, but v) is slightly changed:

v’) P = Q if P and Q are lists of features.
I conjecture that subsumption in this language remains decidable.
1 added during lexical correction

13

4 Conclusion

We have shown that subsumption of concepts in ALR, a considerable small
sublanguage of KL-ONE, is undecidable, if the usual standard semantics is used.
The reason for this undecidability result seems to be the expressive power of role
value maps. They are rather intuitive at first glance, for example they allow the
definition of grand-father in terms of the roles father and mother, but provide
the full power of a programming language if used excessively.

As mentioned above, subsumption of feature terms is quasi-linear or co-NP-
complete, depending on the expressiveness [Aı̈t-Kaci, 1984, Aı̈t-Kaci and Nasr,
1986, Smolka, 1988, Smolka and Aı̈t-Kaci, 1987]. It is remarkable that role value
maps in the feature term language do not have such a dramatic effect as in ALR.
The main difference between ALR and the feature term language is that roles
in the latter always are functional.

There are several methods to either overcome the problem of undecidability
or deal with undecidability.

A first ad-hoc possibility to re-establish decidability is to restrict the ex-
pressive power of ALR or ALRC by discarding role value maps. A language
called ALC, that allows complements in addition but no role value maps has
been investigated in [Schmidt-Schauß and Smolka, 1988], where it is shown that
subsumption becomes PSPACE-complete in this case. A further possibility is to
syntactically restrict role value maps. For example in BACK [von Luck et. al,
1987], the lists of roles in role value maps are restricted to be lists of one element.
Another possibility is to permit only role value maps in a role-defining style, i.e.,
only the form (R) = (R1, . . . , Rn) is admissible, and there are no double defi-
nitions and no cycles. I suspect that subsumption in ALR becomes decidable
under these restrictions.

Another direction of research is to use another semantics for the used con-
structs. This is a change of the meaning of the language and hence care should
be taken. Nevertheless it may very well be the case that for small concepts the
standard semantics fits our intuition, whereas for complex concepts, there may
be a choic. Of course, the undecidability result depends on the imposed seman-
tics of complex concepts, i.e., on the asymptotic behaviour of the semantics for
large concepts.

Decidability of subsumption of feature terms can be interpreted as a change in
the semantics of ALR or ALRC, respectively. The approach to change the usual
first-order logic to a four-valued as in [Patel-Schneider, 1987a, Patel-Schneider,
1987b] may help in re-establishing decidability to the price that the meaning
of subsumption has changed. Corollary 3.7 suggests to prevent the formation of
concepts that are consistent only in infinite models or to change the semantics
such that only finite models are to be considered instead of all including infinite
models. This idea is a remedy to Corollary 3.6 since consistency of concepts
becomes recursively enumerable with respect to this semantics, but now the
status of inconsistency of concepts or constraints system is unclear and can be
even worse than before.

14

A practical useful method is to put subsumption-problems in constraints and
use constraint-propagation. The view taken here is that a user is not really inter-
ested in the subsumption relation of some complex concepts or in the consistency
of concept, which he(she) has typed in, rather in the answer to high-level queries
that have as subproblems such subsumption or consistency tests. The idea is that
the system computes as much as possible or as much as the user wants and then
gives as answer a system C of constraints. These answer can be interpreted as
follows: All solutions to C are solution to the query, or if only a yes/no answer
is expected: If C has a solution, then the answer is yes, otherwise the answer
is no. Such an approach is proposed in [Höhfeld and Smolka, 1988, Bläsius and
Hedtstück, 1988, Jaffar and Lassez, 1986].

Acknowledgement
I would like to thank Jochen Doerre and Gert Smolka for discussion that con-
tributed to the paper.

References
[Aı̈t-Kaci, 1984] Hassan Aı̈t-Kaci, A lattice theoretic approach to computation
based on a calculus of partially ordered type structures, PhD Dissertation,
Univ. of Pennsylvania, 1984
[Aı̈t-Kaci and Nasr, 1986] Hassan Aı̈t-Kaci, Roger Nasr, LOGIN: A Logic
Programming Language with built-in inheritance. J. Logic Programming 3:
185-215, (1986)
[Bläsius and Hedtstück, 1988] Karl-Hans Bläsius, Ulrich Hedtstück, Resolution
with feature unification, Lecture Notes in Computer Science 329: 17-26, (1988)
[Boone, 1959], W.W. Boone, The word problem, Ann. Math. (2), 70, 207-265,
(1959)
[Brachman and Levesque, 1984] Ronald J. Brachman, Hector J. Levesque, The
tractability of subsumption in frame-based description languages, Proceedings
AAAI-84, pages 34-37, Austin, TX, 1984
[Brachman and Schmolze, 1985] Ronald J. Brachman, James G. Schmolze, An
overview of the KL-ONE knowledge representation system. Cognitive Science
9(2): 171-216, 1985
[Brachman et. al., 1983] Ronald J. Brachman, Richard E. Fikes, Hector
J. Levesque, Krypton: Integrating Terminology and Assertion, Proceedings
AAAI-83, pages 31-35, Washington DC, 1983
[Brachman et. al., 1985] Ronald J.Brachman, Victoria P. Gilbert, Hector
J. Levesque, An essential hybrid reasoning system: Knowledge and symbol
level accounts of KRYPTON, Proceedings of the Ninth International Joint
Conference on Artificial Intelligence 1985, pages 532-539, Los Angeles, 1985
[Burris and Sankappanavar, 1981] Stanley Burris, H.P. Sankappanavar, A course
in universal algebra, Springer-Verlag, 1981
[Grätzer, 1979] George Grätzer, Universal Algebra, Springer-Verlag, 1979
[Höhfeld and Smolka, 1988], Markus Höhfeld, Gert Smolka, Definite relations
over constraint languages, LILOG report 53, IBM Deutschland, West Germany,
1988
[Jaffar and Lassez, 1986], J. Jaffar, J.-L. Lassez, Constraint Logic Programming,

15

4th IEEE Symposium on Logic Programming, San Francisco, 1986
[Kaczmarek et. al. 1986] Thomas S. Kaczmarek, Raymond Bates, Gabriel
Robins, Recent developments in NIKL, Proceedings AAAI-86, pages 978-985,
1986
[Kay, 1985], M. Kay, Parsing in functional unification grammar, In D. Dowty,
L. Kartunnen and A. Zwicky (Eds.), Natural language parsing, Cambridge
University Press, 1985
[Levesque and Brachman, 1985] Hector J. Levesque, Ronald J. Brachman, A
fundamental tradeoff in knowledge representation, In Readings in Knowledge
Representation, Morgan Kaufmann, 1985
[Levesque and Brachman, 1987] Hector J. Levesque, Ronald J. Brachman,
Expressiveness and tractability in knowledge representation and reasoning,
Comput. Intell. 3, 78-93, (1987)
[von Luck et. al., 1987] Kai von Luck, Bernhard Nebel, Christof Peltason
C., Albrecht Schmiedel, The anatomy of the BACK system. KIT-report 41,
Technische Universität Berlin, F.R. Germany, 1987
[Mac Gregor and Bates, 1987] Robert M. Mac Gregor, Raymond Bates, The
Loom knowledge representation language, Technical report ISI/RS-87-188,
Information Sciences Institute, Univ. of Southern California, 1987
[Mac Gregor, 1987] Robert M. Mac Gregor, A deductive pattern matcher,
Proceedings AAAI-88, (1988)
[Nebel, 1988], Bernhard Nebel, Computational complexity of terminological
reasoning in BACK, Artifical Intelligence 34, 371-383, (1988)
[Novikov, 1955] P.S.Novikov,On the algorithmic undecidability of the word
problem in group theory, Trudy Mat. Inst. Steklov. 14, Izdat. Nauk SSSR,
Moscow, 1955
[Patel-Schneider, 1984] Peter F. Patel-Schneider, Small can be beautiful in
knowledge representation, Proceedings IEEE workshop on principles of knowl-
edge based systems, pages 11-16, Denver, Colorado, 1984
[Patel-Schneider, 1989] Peter F. Patel-Schneider, Undecidability of subsumption
in NIKL, (to appear in Artificial Intelligence), 1989
[Patel-Schneider, 1987a] Peter F. Patel-Schneider, Decidable, logic-based knowl-
edge representation, PhD thesis, Dept. of Comp. Science, Univ. of Toronto,
1987
also: Technical report 56, Schlumberger Palo Alto Research, 1987,
also: Tech. report 201/87, Dept. of Comp. Science, Univ. of Toronto, 1987
[Patel-Schneider, 1987b] Peter F. Patel-Schneider, A decidable first-order logic
for knowledge representation, draft, submitted to JAR, 1987
[Schild, 1988] Klaus Schild, Undecidability of subsumption in U, draft, Institut
für Software und theoretische Informatik, Technische Universität Berlin, 1988
[Schmidt-Schauß and Smolka, 1988] Manfred Schmidt-Schauß, Gert Smolka,
Attributive concept descriptions with unions and complements, SEKI-report
SR-88-21, Universität Kaiserslautern, (1988)
[Schmolze and Israel, 1983], J.G. Schmolze, D.J. Israel, KL-ONE: Semantics
and Classification. in: C.L. Sidner, Research in knowledge representation and

16

natural language understanding, BBN Technical report 5421, Pages 27-39, Bolt,
Beranek and Newman, Cambridge, MA, 1983
[Shieber, 1986] Stuart M. Shieber, An introduction to unification-based ap-
proaches to grammar, CSLI Lecture Notes 4, Stanford University, 1986
[Smolka and Aı̈t-Kaci, 1987] Gert Smolka, Hassan Aı̈t-Kaci, Inheritance hierar-
chies: Semantics and Unification. MCC Report AI-057-87, MCC, Austin, Texas,
1987
[Smolka, 1988], Gert Smolka, A feature logic with subsorts, LILOG report 33,
IBM Deutschland, Stuttgart, West Germany, 1988
[Stillwell, 1982], J. Stillwell, The word problem and the isomorphism problem
for groups, Bulletin AMS 6(1):33-56, 1982
[Vilain, 1985], Marc Vilain, The restricted language architecture of a hybrid
representation system, Proceedings of the Ninth International Joint Conference
on Artificial Intelligence 1985, pages 547-551, Los Angeles, 1985

17

