A Road-map on Complexity for Hybrid Logics
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Abstract. Hybrid languages are extended modal languages which can
refer to (or even quantify over) states. Such languages are better behaved
proof theoretically than ordinary modal languages for they internalize
the apparatus of labeled deduction. Moreover, they arise naturally in a
variety of applications, including description logic and temporal reason-
ing. Thus it would be useful to have a map of their complexity-theoretic
properties, and this paper provides one.

Our work falls into two parts. We first examine the basic hybrid lan-
guage and its multi-modal and tense logical cousins. We show that the
basic hybrid language (and indeed, multi-modal hybrid languages) are no
more complex than ordinary uni-modal logic: all have PSPACE-complete
K-satisfiability problems. We then show that adding even one nominal to
tense logic raises complexity from PSPACE to EXPTIME. In the second part
we turn to stronger hybrid languages in which it is possible to bind nom-
inals. We prove a general expressivity result showing that even the weak
form of binding offered by the | operator easily leads to undecidability.

Keywords. Computational Complexity, Modal and Temporal Logic, Description
Logic, Labeled Deduction.

1 Introduction

Hybrid languages are modal languages which use atomic formulas called nomi-
nals to name states. Nominals are true at exactly one state in any model; they
“name” this state by being true there and nowhere else. Although a wide range
of hybrid languages have been studied, including hybrid languages in which it is
possible to bind nominals in various ways, little is known about their computa-
tional complexity. This paper is an attempt to fill the gap.

Before going further, let’s be precise about the syntax and semantics of the
basic hybrid language H(@), the weakest language we shall consider in the paper.

Definition 1 (Syntax). Let PROP = {p, q,r,...} be a countable set of propo-
sitional variables and NOM = {i, 5, k,...} a countable set of nominals, disjoint



from PROP. We call ATOM = PROP U NOM the set of atoms. The well-formed
formulas of the hybrid language (over ATOM) are

pr=al-¢ Ay [Op| Qp

where a € ATOM, and ¢ € NOM. As usual, Gy is defined to be =O-¢p. A formula
which contains no symbols from PROP is called pure.

Thus, syntactically speaking, the basic hybrid language is a two-sorted uni-modal
language which contains a NOM indexed collection of operators @;. Now for the
semantics.

Definition 2 (Semantics). A (hybrid) model 9 is a triple M = (M, R, V)
such that M is a non-empty set, R is a binary relation on M, and V : ATOM
— Pow(M) is such that for all i € NOM, V(i) is a singleton subset of M. We
usually call the elements of M states, R is the transition relation, and V is the
valuation. A frame is a pair § = (M, R), that is, a model without a valuation.

Let 9t = (M, R,V) be a model and m € M. Then the satisfaction relation
is defined by:

M,m k- a iff m € V(a), a € ATOM

Mmlk—p M mIf e
M,mlEpAYiIEIM mIF p and M, m I+ Y

M,m - O iff Ym!'(Rmm' = M, m' Ik )

M,m Ik Qe iff M, m' Ik ¢, where V(i) = {m'}, i € NOM.

A formula ¢ is satisfiable if there is a model M, and a state m € M such that
M, m = . We write M Ik ¢ iff for all m € M, M, m Ik . If § is a frame, and
for all valuations V' on § we have (F,V) IF ¢, we say ¢ is valid on § and write
Sk .

Because valuations assign singletons to nominals, it is clear that each nominal
is satisfied at exactly one state in any model. And the clause for formulas of the
form @;p simply says: to evaluate @Q;p, jump to the unique state named by
and evaluate ¢ there.

There are at least two reasons for being interested in hybrid languages. First,
they can be seen as modal languages which internalize the ideas underlying
labeled deduction systems. Second, hybrid languages arise naturally in many
applications.

Hybrid languages and labeled deduction Labeled deduction (see [Gab96]) is built
around the notation /: . Here the meta linguistic symbol : associates the meta
linguistic label [ with the formula . This has a natural modal interpretation:
regard labels as names for states and read [: ¢ as asserting that ¢ is satisfied at
[. Labeled deduction proceeds by manipulating such labels to guide proof search;
the approach has become an important way of handling modal proof theory.
The basic hybrid language places the apparatus of labeled deduction in the
object language: nominals are essentially object-level labels, and the formula



@;¢ asserts in the object language what i:¢p asserts in the metalanguage. And
indeed, hybrid languages turn out to be proof-theoretically well behaved. For a
start, basic hybrid language enables us to directly “internalize” labeled deduction
(see [Bla98]), and to define sequent calculi and natural deduction systems (see
[Sel97]). In fact, even if @ is dropped from the language, elegant Fitting-style
systems which exploit the presence of nominals can be defined (see [Tza98]).

Furthermore, such calculi automatically handle the logics of a wide range of
frame classes, including many that are awkward for ordinary modal logic. To
give a simple example, no ordinary modal formula defines irreflexivity (that is,
no ordinary modal formula is valid on precisely the irreflexive frames). But the
(pure) formula @;—=<i does so, as the reader can easily check. Moreover, when
used as an additional axiom, this formula (and indeed, any pure formula) is
complete with respect to the class of frames it defines. For a full discussion of
these issues, see [Bla98,BT99.

Hybrid languages and applied logic Modal logicians like to claim that notational
variants of modal logics are often reinvented by workers in artificial intelligence,
computational linguistics, and other fields — in this case, it would be more
accurate to say that it is hybrid languages which are reinvented in this way.
For example, it is well known that the description language ALC (see [SSS91])
is a notational variant of multi-modal logic (see [Sch91]). But this relation is
established at the level of what is called the TBox reasoning. TBox reasoning
is complemented with ABox assertions, which corresponds to the addition of
nominals (see [AdR99,BS98]). Moreover, many authors have pointed out how
natural hybrid languages are for temporal reasoning (see [Bul70,Gor96,BT99]).
Among other things, hybrid languages make it possible to introduce specific
times (days, dates, etc.), and to define many temporally relevant frame properties
(such as irreflexivity, asymmetry, trichotomy, and directedness) that ordinary
modal languages cannot handle. Furthermore, if one starts with a modal interval
language and adds nominals and @, one obtains variants of the Holds(t, ¢)-driven
interval logics discussed in [All84] (with @ playing the role of Holds).

The emergence of hybrid languages in applied logic is not particularly sur-
prising. Modal languages offer a simple notation for modeling many problems
— but the ability to reason about what happens at a particular state is often
important and this is precisely what orthodox modal languages lack. This seems
to have encouraged a drift (often implicit) towards hybrid languages.

Our work falls into two parts. We first examine the basic hybrid language and
its multi-modal and tense logical variants. We show that the basic and even the
multi-modal hybrid languages are no more complex than ordinary uni-modal
logic: all have PSPACE-complete K-satisfiability problems. We also show that
adding even one nominal to tense logic raises complexity from PSPACE to EXP-
TIME. In the second part of the paper we turn to stronger hybrid languages in
which it is possible to bind nominals. We shall show, via a general expressiv-
ity result called the Spypoint Theorem, that even the restricted form of binding
offered by the | operator easily leads to undecidability.



2 Complexity of the basic hybrid language

We begin with a positive result. We know from [Lad77] that ordinary propo-
sitional uni-modal logic has a PSPACE-complete K-satisfaction problem (the K
meaning that no restrictions are placed on the transition relation R). What
happens when we add nominals and @ to form the basic hybrid language? The
answer (up to a polynomial) is: nothing.

Theorem 1. The K-satisfaction problem for the basic hybrid language is PSPACE-
complete.

Proof. The lower bound follows from [Lad77]. We show the upper bound by
defining the notion of a {-game between two players. We will show that the exis-
tential player has a winning strategy for the £-game if and only if £ is satisfiable.
Moreover every £-game stops after at most as many rounds as the modal depth
of ¢ and the information on the playing board is polynomial in the length of &.
Using the close correspondence between Alternating Turing Machines (ATM’s)
and two player games [Chl86], it is straightforward to implement the problem of
whether the existential player has a winning strategy in the {-game on a PTIME
ATM. Because any PTIME ATM algorithm can be turned into a PSPACE Turing
Machine program, we obtain our desired result. We present the proof only for
uni-modal H(@); it can be straightforwardly extended to the multi-modal case.

Fix a formula £. A ¢-Hintikka set is a maximal consistent set of subformulas
of £. We denote the set of subformulas of & by SF(£). The £-game is played as
follows. There are two players, Vbelard (male) and Jloise (female). She starts
the game by playing a collection {Xo, ... , X3} of Hintikka sets and specifying a
relation R on them.

Jloise loses immediately if one of the following conditions is false:

1. Xo contains &, and all others X; contain at least one nominal occurring in .
2. no nominal occurs in two different Hintikka sets.

3. for all X, for all @;p € SF(§), Q;p € X iff {i, ¢} C Xy, for some k.

4. for all Gp € SF(§), if RX; X} and Cp ¢ X, then ¢ ¢ Xj.

Now Vbelard may choose an X; and a “defect-formula” &p € X;. Jloise must
respond with a Hintikka set Y such that

1. ¢ € Y and for all Oy € SF(€), Oy € X implies that ¢ € Y.

2. for all Q;p € SF(€), Q;p € Y iff {i, 9} C Xy, for some k.

3. if 4 € Y for some nominal 7, then Y is one of the Hintikka sets she played at
the start. In this case the game stops and Jloise wins.

If Jloise cannot find a suitable Y, the game stops and Vbelard wins. If Jloise
does find a suitable Y (one that is not covered by the halting clause in item 3
above) then Y is added to the list of played sets, and play continues.

Vbelard must now choose a defect g from the last played Hintikka set with
the following restriction: in round k he can only choose defects ¢y such that



the modal depth of <o is less than or equal to the modal depth of £ minus k.
Jloise must respond as before. She wins if she can survive all his challenges (in
other words, he loses if he reaches a situation where he can’t choose any more
defects).

It is clear that the &-game stops after at most modal depth of £ many rounds.
The size of the information on the board is at any stage of the game polynomial
in the length of £, as Hintikka sets are polynomial in the length of £ and £ can
only contain polynomially many nominals. We claim that Jloise has a winning
strategy iff £ is satisfiable.

Now the right-to-left direction is clear: Jloise has a winning strategy if &
is satisfiable, for she need simply play by reading the required Hintikka sets
off the model. The other direction requires more work. Suppose Jloise has a
winning strategy for the {-game. We shall create a model 90t for £ as follows.
The domain M is build in steps by following her winning strategy. M consists
of her initial move {Xo, ... , X, }. Suppose M; is defined. Then M, consists of
a copy of those Hintikka sets she plays when using her winning strategy for each
of Vbelard’s possible moves played in the Hintikka sets from M (except when
she plays a Hintikka set from her initial move, then of course we do not make
a copy). Let M be the disjoint union of all M; for j smaller than the modal
depth of &. Set Rmm/' iff for all Gy € SF(E), Op & m = ¢ ¢ m' holds, and
set V(p) = {m € M | p € m}. Note that the rules of the game guarantee that
nominals are interpreted as singletons.

We claim that the following truth-lemma holds. For all m € M which she
plays in round j (i.e., m € M;), for all ¢ of modal depth less than or equal to
the modal depth of £ minus j, 9, m I ¢ if and only if ¢ € m.

ProoF oF CrAIM. By induction on the structure of formulas. For atoms, the
booleans and @ the proof is easy. For <, if Gp € m, then Vbelard challenged
this defect, so Jloise could respond with an m' containing ¢. Since for all Gy €
SE(&), Op & m = ¢ &€ m’ holds, we have Rmm' and by induction hypothesis
M, m Ik Op. If O € m but Rmm' holds, then by our definition of R, ¢ & m/,
so again M, m I} Op.

Since she plays a Hintikka set containing £ in the first round, 91 satisfies &.

This result generalizes to the multi-modal case. Recall that in a multi-modal
language we have an indexed collection of modalities [a], each interpreted by
some relation R,. From [HM92] we know that the K-satisfaction problem for
multi-modal languages is PSPACE-complete (here the K means that no restrictions
are placed on the individual R,, or on the way they are inter-related). If we add
nominals and @ to such a language, the previous proof straightforwardly extends
to show that we are still PSPACE-complete.

We have already mentioned that the description language ALC with asser-
tional axioms is a restriction of multi-modal logic enriched with nominals an @:
nominals cannot be freely used in formulas and can only act as subindices of
the @ operator. The logic ALCO moves closer to H(@) by allowing the forma-
tion of concepts by means of sets of nominals. Eliminating the restrictions on @



from such a language in effect would give us an equational calculus for reasoning
about individuals, and make it possible to specify additional frame properties.
Most strikingly, such an addition would not move us out of PSPACE [AdR99].

3 Hybrid Tense Logic

The language of tense logic is a bimodal language; its O-modalities are written G
and H and the respective ¢-modalities F and P. But these modalities are inter-
related: while G and F look forward along the transition relation R, the H and P
modalities look backwards along this relation (that is, H and P are interpreted
using the converse of R). Now, we know from [Spa93b] that the K-satisfaction
problem for tense logic is PSPACE-complete. However because G and H are inter-
related the results of the previous section are not applicable. And in fact, adding
even one nominal to tense logic causes a jump in complexity from PSPACE to
EXPTIME, and we don’t need to add @ to obtain this result. Our proof uses the
spy-point technique from [BS95]; we will be exploring this technique in great
detail in the following section when we discuss undecidable systems.

Theorem 2. The K-satisfaction problem for a language of tense logic containing
at least one nominal is EXPTIME-hard.

Proof. We shall reduce the EXPTIME-complete global K-satisfaction problem for
uni-modal languages to the (local) K-satisfaction problem for a basic tense lan-
guage that contains at least one nominal. The global K-satisfaction problem for
uni-modal languages is this: given a formula ¢ in the uni-modal language, does
there exist a Kripke model 9 such that 9 |= ¢ (in other words, where ¢ is true
in all states)? The EXPTIME-completeness of this problem is an easy consequence
of (the proof of) the EXPTIME-completeness of modal logic K expanded with the
universal modality in [Spa93a).

Define the following translation function (-) from ordinary uni-modal for-
mulas to formulas in a tense language that contains at least one nominal i: pt
=p, (-p)f = =¢', (p AY)t = ! AYE, (Op)t = F(Pi A ¢'). Note that i is a
fired nominal in this translation. Clearly (-)! is a linear reduction. We claim
that for any formula ¢, ¢ is globally K-satisfiable if and only if i A G(Pi — )
is K-satisfiable.

For the left to right direction, let M |= ¢, where 9 = (M, R, V) is a ordinary
Kripke model. Define 9* as follows: M* = MU{i}, R* = RU{(i,m) | m € M},
V*=VU{(n,{i}) | for all nominals n}.9* is a hybrid model where all nominals
(including i) are interpreted by the singleton set {i}, our spy-point. We claim
that for all m € M, for all ¢, we have 9, m I ¢ if and only if 9*, m I ¢¢. This
follows by a simple induction. The only interesting step is for <:

M, m Ik S

(3m' € M) : Rmm/' & M, m' I+

(3m' € M*) : R*mm/ & IM*,m' |- ¢ & R*im' (by IH and def. of R*)
M, m |- F(Pi A )

Mm

<~
<~
<
= M m - (OP).



It follows that 9%, 4 IF i A G(Pi — ), as desired.

For the other direction, let 9, w IF i A G(Pi — ¢!), where 9 = (M, R, V)
is a hybrid model. Define M* as follows: M* = {m € M | Rwm}, R* = Ry,
V* = Viu+. We claim that for all m € M*, for all ¢, 9, m I+ 4" if and only if
M*, m Ik . Again we only present the inductive step for <:

M, m I F(Pi A1)
<~ (Am' € M) : Rmm’' & Rwm' & M, m’ I+
<~ (Am' € M*) : Rmm' & Rwm' & M, m' |- ¢t
<~ (Im' € M*): R*mm' & IM*, m' I ¢ (by ITH and definition of M*)
= MmO

For all m € M*, Rwm holds, whence for all m € M*, 9, m Ik Pi. So, since
Mw - G(Pi — b)), for all m € M*, MM, m I+ ¢'. Hence by our last claim
M* |= ¢, which is what we needed to show.

A matching upper bound can be obtained by interpreting the fragment in
the guarded fragment with two variables [Gra97].

4 Binding nominals

Once we are used to treating labels as formulas, it is easy to obtain further
expressivity. For example, instead of viewing nominals as names, we could think
of them as wariables over states and bind them with quantifiers. That is, we
could form expressions like

Az.O(z AVY.O(y A Oy A p)).

This sentence is satisfied at a state w if and only if there is some state x ac-
cessible from w such that all states y accessible from z are reflexive and satisfy
p. Historically, hybrid languages offering quantification over states were the first
to be explored ([Bul70,PT85]). In their multi-modal version, they are essentially
description languages which offer full first-order expressivity (see [BS98]). If the
underlying modal language is taken to be the modal interval logic described in
[Ben&3al, the resulting system is essentially the full version of Allen’s Holds(t, ¢)-
based interval logic in which quantification over ¢ is permitted (see [All84]). But
because they offer full first-order expressivity over states, such hybrid languages
are obviously undecidable.

More recently, there has been interest in hybrid languages which use a weaker
binder called | (see [Gor96,BS95]). Unlike 3 and V, this is not a quantifier: it
is simply a device which binds a nominal to the state where evaluation is being
performed (that is, the current state). For example, the interplay between | and
@ allows us to define the Until operator:

Until(p,1) = 12.C 1y.Q(O(y Ap) ADO(Cy — 9)).

This works as follows: we name the current state z, use < to move to an accessible
state, which we name y, and then use @ to jump us back to z. We then use &



to insist that ¢ holds at the state named y, while ¥ holds at all successors of
the current state that precede this y-labeled state.

H(], @), the extension of H (@) with the | binder, is proof theoretically well
behaved, and completeness results for a wide class of frames can be obtained
automatically (see [BT99,Bla98,Tza98]). But | turns out to be extremely pow-
erful: not only is H(},@) undecidable, the sublanguage #H(|) containing only
the | binder is too. However the only published undecidability result for H(J)
is the one in [BS95], and this makes use of | over a modal language with four
modalities. In unpublished work, Valentin Goranko, and Blackburn and Selig-
man have proved undecidability in the uni-modal case, but these proofs make use
of propositional variables to carry out the encoding. We are now going to prove
the sharpest undecidability result yet for #(]) through a general expressivity
result called the Spypoint Theorem. Roughly speaking, the Spypoint Theorem
shows that | is powerful enough to encode modal satisfaction over a wide range
of Kripke models, and that it doesn’t need the help of propositional variables or
multiple modalities to do this.

4.1 The language H({,@)
Let’s first make the syntax and semantics of H(|, @) precise.

Definition 3 (Syntax). As in Definition 1, PROP = {p, ¢,r, ...} is a countable
set of propositional variables, and NOM = {i,7,k,...} is a countable set of
nominals. To this we add SVAR = {z1, x2,...} a countable set of state variables.
We assume that PROP, NOM and SVAR are pairwise disjoint. We call SSYM =
NOM U SVAR the set of state symbols, and ATOM = PROP u NOM U SVAR
the set of atoms. The well-formed formulas of H({, @) (over ATOM) are

pi=al-p Ay |Op|Qsp| lvg
where a € ATOM, v € SVAR and s € SSYM.

The difference between nominals and state variables is simply this: nominals
cannot be bound by | whereas state variables can. The notions of free and
bound state variable are defined as in first-order logic, with | the only binding
operator. A sentence is a formula containing no free state variables. A formula
is pure if it contains no propositional variables, and nominal-free if it contains
no nominals. In what follows we assume that some choice of PROP, NOM, and
SVAR has been fixed.

Definition 4 (Semantics). Hybrid models 9t are defined as in Definition 2.
An assignment g for 9 is a mapping g : SVAR — M. Given an assignment g,
we define the assignment g%, by g% (v') = g(v') for v’ # v and g%, (v) = m. We
say that g° is a v-variant of g.

Let MM = (M, R, V) be a model, m € M, and g an assignment. For any atom
a, let [V, g](a) = {g(a)} if a is a state variable, and V' (a) otherwise. Then:



M,g,mlka iff m € [V, g](a), a € ATOM

M,g,mlk—p fFMgmlfe

M, gmlFpApif M, g, mlFp and M, g, m Y

M, g,m Ik Op iff Ym'(Rmm' = M, g,m’ Ik @)

M, g.mlIFlve MM gl ,mlke

M, g,mlIF Qg M, g,m' Ik, where [V, g](s) = {m'}, s € SSYM.

We write 9, g Ik ¢ iff for all m € M, 9, g,m Ik ¢, and M | ¢ iff for all g,
M, gl .

Thus, as promised, | enables us to bind a state variables to the current state.
Note that, just as in first-order logic, if ¢ is a sentence it is irrelevant which
assignment ¢ is used to perform evaluation. Hence for sentences the relativiza-
tion to assignments of the satisfaction relation can be dropped. A formula ¢ is
satisfiable if there is a model M, an assignment g on M, and a state m € M
such that 9, g, m | ¢.

We can now get down to business. First, we shall present a fragment of first-
order logic (the bounded fragment) which is precisely as expressive as H({, @)
and provide explicit translations between these two languages. Secondly, we shall
give an easy proof that (uni-modal) #({,@) is undecidable. Third, we shall
show how the dependency in this proof on @ and propositional variables can
be systematically eliminated (in particular, we will show how to encode the
valuation V' so that the use of propositional variables can be simulated) and
how we can encode any frame-condition expressible inside the pure fragment of
H({). This leads directly to the Spypoint Theorem and our undecidability result.

4.2 H(|,@) and the bounded fragment

We first relate H({,@) to a certain bounded fragment of first-order logic. We
shall work with a first-order language which contains a binary relation symbol
R, a unary relation symbol P; for each p; € PROP, and whose constants are the
elements of NOM. Obviously any hybrid model 9t = (M, R, V) can be regarded
as a first-order model for this language: the domain of the model is M, the acces-
sibility relation R is used to interpret the binary predicate R, unary predicates
are interpreted by the subsets that V' assigns to propositional variables, and con-
stants are interpreted by the states that nominals name. Conversely, any model
for our first-order language can be regarded as a hybrid model. So we shall let
context determine whether we are referring to first-order or hybrid models, and
continue to use the notation 9 = (M, R, V') for models.

First the easy part: we extend the well-known standard translation ST of
modal correspondence theory (see [Ben83b]) to H({,@). We assume that the
first-order variables are SVARU{x,y} (where  and y are distinct new variables)
and define the required translation by mutual recursion between two functions
ST, and ST,. Here ¢[z/y] means “replace all free instances of z by y”.



STz(p]) = Pj(.’L‘), p; € PROP. STy(p]) = Pj(y), p; € PROP.
(Z]) =.CL':ij,ij € NOM. ST ( ) =y=ij,ij € NOM.
T.(z;) =x=uz;, x; € SVAR. (xj) =y =ux;, x; € SVAR.
Ty(mp) =85T(p). Ty(~p) =-85Ty(y).

To(p Ap) = STo(p) A STo(1). Ty(pAY) =ST ( ) A STy(1).
T:(Cp) =3Ty.(Rxy ASTy(p)). Ty(Cp) =3z (Rya: A STz(p)).

ST ({zj.0) = (STo(p))[x; /=] Ty(lzj-p) = (STy(e))[x;/y]-

T2(Qsp) = (STa(p))[z/s]: Ty(Qsp) = (STy(9))ly/s]-

Proposition 1. Let ¢ be a hybrid formula, then for all hybrid models MM, m €
M and assignments g, MM, g, m I+ ¢ iff M = ST(0)[9%].

Proof. Induction on the structure of .

Now for the interesting question: what is the range of ST? In fact it belongs
to a bounded fragment of our first-order language. This fragment consists of the
formulas generated as follows:

p:=Rtt' | Pit|t=t"|-¢|oA¢"|Tz;.(Rtz; A ) (for z; #t).
where x; is a variable and t, ¢ are either variables or constants.

Clearly ST generates formulas in the bounded fragment. Crucially, however, we
can also translate any formula in the bounded fragment into H(J, @) as follows:

HT(Rtt) =@, 01",

HT(Pjt) = Qp;.

HT(t=1") = @;t'.

HT (=) =-HT(p).

HT (¢ A)) =HT(p) NHT(¢).
HT(Fv.(Rtv A ¢)) = QO Lv.HT ().

By construction, HT'(¢) is a hybrid formula, but furthermore it is a boolean
combination of @-formulas (formulas whose main operator is @). We can now
prove the following strong truth preservation result.

Proposition 2. Let ¢ be a bounded formula. Then for every first-order model
M and for every assignment g, M = plg] iff M, g Ik HT ().

Proof. Induction on the structure of ¢.

To summarize, there are effective translations between H(J, @) and the bounded
fragment.

4.3 Undecidability of H({, @)

We are now ready to discuss undecidability. The result we want to prove is this:

The fragment of H(|) consisting of pure nominal-free sentences has an
undecidable satisfaction problem.



However we begin by quickly sketching an easy undecidability proof for the
full language H(J, @). The proof uses the spypoint technique from the previous
section together with results from [Spa93a]. By generalizing the methods used in
this simple proof, we will be lead to the Spypoint Theorem and the undecidability
result just stated.

Hemaspaandra shows in [Spa93a] that the global satisfaction problem of the
uni-modal logic of the class Koz of frames is undecidable. Ky consists of all
modal frames (W, R) in which every state has at most 2 R-successors and at
most 3 two-step R-successors. We will show that we can reduce the satisfiability
problem of this logic to H({, Q).

Let Grid be the conjunction of the following formulas:

G1 @Sﬂ<>s

Gy, @, 0T

G3 @,(00 | 2.@;Ox)

G4 @S(D J,y.D \L.Z'l.@ylj iwg.@yD \L.Cb'g.(@ml.’L'Q \Y% @z1$3 V @mzxg))

G5 Q,(0 1y.00 | 2,.@Q,00 |2,.@,00 | 23.@,00 | 24.(V; <z 5<4 Qu, 7))

What does Grid express? Suppose it is satisfied in a model 9% on a frame (W, R).
Then there exists a state which is named by s (the spypoint). By Gy, s is not
related to itself. By Gs, s is related to some state, and by G3, every state which
can be reached from s in two steps can also be reached from s in one step.
This means that in 9 —the submodel of 9 generated by s— every state is
reachable from s in one step. Now G4 and G5 express precisely the two conditions
characterizing the class Ky3 on successors of s. Instead of spelling out this proof
we show that the similar formula @,0 |y.00 | ,.Q,0 | x5.@Q;, x5 expresses that
every successor of s in 9t has at most one R-successor. As G4 and G5 follow the
same pattern, it is easy to extend the argument below to verify their meaning.

M, g,slF0OLy.012.@Q0 | 22.Qp, 29
— (Vw:sRw) : M, g%, w k0 12:.Qy0 | 25.Qp, x5
< (Vu:wRu): M, (g¥)2,ulF Q0 |z5.Q,, xy
A ma (gg))fblvw IFD ~Lx2-@:v1$2
< (Mv:wRv): M, ((¢¥)% )52, v Ik .Q,, 29
< (Vw:sRw)(Vu : wRu)(Yv : wRv) : u = v.

Now we are ready to complete the proof. We claim that for every formula ¢,
o is globally satisfiable on a Kas-frame iff Grid A @;O¢ is satisfiable.

The proof of the claim is a simple copy of the two constructions given in the
proof of Theorem 2.

4.4 Undecidability of pure nominal-free sentences of H({)

We are ready to prove our main result. We do so by analysing the previous proofs
and generalizing the underlying ideas. The models used in the proof of Theorem 2
and the undecidability proof just given both had a certain characteristic form.
Let’s pin this down:



Definition 5. A model 9t = (W, R, V) is called a spypoint model if there is an
element s € W (the spypoint) such that

i. 7sRs;

ii. For all w € W, if w # s, then sRw and wRs.

Notice that by ii above, any spypoint model is generated by its spy point. We will
now show that with | we can easily create spypoint models. On these models we
can create for every variable z introduced by |z, a formula which has precisely
the meaning of @,.

Proposition 3. Let M = (M, R,V) and s € M be such that M, s -] s.(=Os A
00 Lz.O(s A Ox) AOCs). Then,

1. M, the submodel of M generated by s, is a spypoint model with s the
spypoint.

ii. Qg is definable on My by (s A ) VO(s A ).

1i. Let g be any assignment. Then for all u € M, My, g,u IF Qup iff
M, g,ulk Qs(pV Oz A p)).

Proof. i is immediate. 7 and 74 follow from the properties of a spypoint model.

Now, spypoint models are very powerful: we can encode lots of information
about Kripke models (for finitely many propositional variables) inside a spypoint
model. More precisely, for each Kripke model 90, we define the notion of a
spypoint model of M.

Definition 6. Let 9t = (M, R, V) be a Kripke model in which the domain of
V is a finite set {p1,...,pn} of propositional variables. The spypoint model of
M (notation Spy[9N)]) is the structure {(M', R, V') in which

i M'=MU{s}U{wp,,... ,wp,}, for s,wp,,... ,wp, ¢ M

ii. R = RU{(s,z),(z,s) |z € M'\{s}}U{(z,wp,) |z € M and z € V(p;)}

iii. V! = 0.
Let {s,2p,,-.. ,%p, } be a set of state variables. A spypoint assignment for this
set is an assignment g which sends s to the spypoint s and x,, to wp,. We use m
as an abbreviation for =s A ~z,, A ... A 7z, . Note that when evaluated under
the spypoint assignment, the denotation of m in Spy[90] is precisely M.

Spy[I] encodes the valuation on 91 and we can take advantage of this fact.
Define the following translation from uni-modal formulas to hybrid formulas:

IT(p;) = O(xp,)
IT(~p) =-IT(p)

IT(p A1) =IT(p) NIT(¥)
IT(Gp) = o(m A IT(p)).

Proposition 4. Let 9 be a Kripke model and ¢ a uni-modal formula. Then for
any spypoint assignment g,

M = ¢ if and only if Spy[M], g,s IF O(m — IT(p)).



Proof. Immediate by the fact that the spypoint is R-related to all states in the
domain of <M, and the interpretation of m under any spypoint assignment g.

We modify the hybrid translation HT to its relativized version HT™ which also
defines away occurrences of @. Define HT™ (Jv.(Rtv A ¢)) as @< | v.(m A
HT™y) and replace all @ symbols by their definition as indicated in Propos-
tion 3.é and 3.4

The crucial step is now the fact that | is strong enough to encode many
frame-conditions.

Proposition 5. Let M = (M, R, V) be a Kripke model. Let C(y) be a formula
in the bounded fragment in the signature {R,=}. Then for any assignment g,

(M, R) = Vy.C(y) i and only if Spy[], g,s IF O Ly.(m — HT™(C(y))).

Proof. Immediate by the properties of HT', Proposition 3, and the fact that the
spypoint is R-related to all states in the domain of 9.

Theorem 3 (Spypoint theorem). Let ¢ be a uni-modal formula in {p1,... ,pn}
and ¥y.C(y) a first-order frame condition in {R,=} with C(y) in the bounded
fragment. The following are equivalent.

i. There exists a Kripke model MM = (M, R, V) such that (M, R) E Vy.C(y)
and M = .

1. The pure hybrid sentence F in the language H(]) is satisfiable. F' is

1s.(SPY AN lxp, . Q0 L2, @ ... O Lz, @ (DIS A VAL A FR)),

where
SPY = =0s A 00 [3.O(s A Ox) AOCOs

DIS = O0(Ajcicn(@p; = N{2p; |1 < #i<n}))
VAL = O(m = IT(p))
FR =0ly.(m — HT™(C(y)).

Proof. The way we have written it, F' contains occurrences of @,; but this does
not matter, by Proposition 3 all these occurrences can be term-defined. So let’s
check that F' works as claimed.

For the implication from i to 7, let 9 be a Kripke model as in 7. We claim
that Spy[9], s Ik F. The first conjunct of F is true in Spy[9N] at s by Proposi-
tion 3. The diamond part of the second disjunct can be satisfied using any spy-
point assignment g. In the spypoint model all w,,, are pairwise disjoint, whence
Spy[In], g, s It DIS. By Propositions 4 and 5, also Spy[9],g,s | VAL A FR.

For the other direction, let 9, s IF F'. By Proposition 3, the submodel 90t =
(M, R, V) generated by s is a spypoint model. Let g be the assignment such
that 9M,g,s IF DIS A VAL A FR. By DIS, g(x,,) # g(zp,) for all i # j, and
(since =sRs) also g(xp;) # s, for all i. Define the following Kripke model ' =
(M',R', V'), where

M =M\ {g(s),9(xp,),---,9(xp,)}
R =Rlw
Vi(pi) = {w | wRg(xp,) }.



Note that Spy[9'] is precisely 9,, and g is a spypoint assignment. But then by
Propositions 4 and 5 and the fact that My, g, s IF VAL A FR, we obtain I’ |= ¢
and (M', R") E Vy.C(y).

The proof of the claimed undecidability result is now straightforward.

Corollary 1. The fragment of H(|) consisting of all pure nominal-free sen-
tences has an undecidable satisfaction problem.

Proof. We will reduce the undecidable global satisfaction problem in the uni-
modal language over the class Kas, just as we did in our easy undecidability
result for H(J,@). The first-order frame conditions defining Koz are of the form
Vy.C(y) with C(y) in the bounded fragment. (This is easy to check. For instance,
y has at most two successors can be written as Vxy.(yRz1 — Vaa.(— Vzz. —
(£1 = z2Vx1 = 23Va2 = 23))).) Now apply the Spypoint Theorem. The formula
F (after all occurrences of @; have been term-defined) is a pure nominal-free
sentence of H(J), and the result follows.

Because of the generality of the Spypoint Theorem, it seems unlikely that even
restricted forms of label binding will lead to decidable systems. For this reason,
much of our ongoing research is focusing on binder free systems, such as Un-
til-based languages enriched with nominals and @, and modal languages with
counting modalities (these are widely used in description logic) enriched in the
same way.

5 Concluding remarks

In this paper we have examined the complexity of a number of hybrid languages.
Our results have been both positive and negative and we sum them up here:

1. Adding nominals and @ to the uni-modal language, or even the multi-modal
language, does not lead to an increase in complexity: K-satisfiability remains
PSPACE-complete.

2. On the other hand, adding even one nominal to the language of tense logic
takes the complexity from PSPACE-complete to EXPTIME-complete.

3. We provide a simple proof of the known fact that H(|, @) is undecidable.
Furthermore, we prove that very restricted use of | leads already to unde-
cidability. In fact, undecidability strikes even in the sentential fragment of
the uni-modal language without @ or propositional variables.

Furthermore, a simple extension of the undecidability proof provided in this
paper shows that this last fragment is even a conservative reduction class in the
sense of [BGG97].

Needless to say, the results we presented conform just a preliminary sketch of
the complexity-theoretic territory occupied by hybrid languages. The spectrum
of plausible directions for further work is huge. As an example, we have only
considered logics with full Boolean expressive power. In the description logic
community fragments which restrict negation or dissallow disjuctions (aiming to
obtain good computational behavior) are standard. Again, the generality of the
Spypoint Theorem will be of much help in mapping this new variations.
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