Andrea Schaerf

Reasoning with Individuals
in Concept Languages

Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”,

via Salaria 113, [-00198 Roma, Italy.

Reasoning with Individuals
in Concept Languages

Sommario

Una delle principali caratteristiche dei sistemi per la rappresentazione della cono-
scenza basati sulla descrizione dei concetti e la netta distinzione tra conoscenza
terminologica e conoscenza asserzionale. Sebbene questa caratteristica sia causa
notevoli vantaggi sia computazionali che di rappresentazione, essa generalmente
limita il potere espressivo del sistema. Per questa ragione sono stati fatti alcuni
tentativi nella direzione di permettere qualche forma di fusione tra le due compo-
nenti ed una interazione pit complessa tra esse. In particolare, uno di tali tentativi
& basato sul permettere che gli individui vengano referenziati nelle espressioni dei
concetti. Cio* e* generalmente fatto ammettendo un costruttore che formi un con-
cetto da un insieme di individui enumerati.

In questo lavoro si indagano le conseguenze di introdurre costruttori di questo
tipo nel linguaggo per la descrizione dei concetti. Viene anche fornita una proce-
dura di ragionamento completa che permetta di gestire questi costruttori e vengono
ottenuti alcuni risultati di complessita sul ragionamento con tali costrutti.

Abstract

One of the main characteristics of knowledge representation systems based on the
description of concepts is the clear distinction between terminological and asser-
tional knowledge. Although this characteristic leads to several computational and
representational advantages, it usually limits the expressive power of the system.
For this reason, some attempts have been done, allowing for a limited form of amal-
gamation between the two components and a more complex interaction between
them. In particular, one of these attempts is based on letting the individuals to be
referenced in the concept expressions. This is generally performed by admitting a
constructor for building a concept from a set of enumerated individuals.

In this paper we investigate on the consequences of introducing constructors
of this type in the concept description language. We also provide a complete
reasoning procedure to deal with these constructors and we obtain some complexity
results on it.

1 Introduction

The idea of developing knowledge representation systems based on a struc-
tured representation of knowledge was first pursued with semantic networks
and frames. Later, concept description logics (also called terminological lan-
guages or concept languages) have been introduced with the aim of providing
a simple and well-established first order semantics to capture the meaning
of the most popular features of the structured representations of knowledge
(see for example [LB87, Neb90a]).

In concept languages, concepts are used to represent classes as sets of
individuals, and roles are binary relations used to specify their properties or
attributes. Typically concepts are structured into hierarchies determined by
the properties associated with them. The hierarchical structure is defined
in such a way that more specific concepts inherit the properties of the more
general ones.

One of the main characteristics of concept-description-based knowledge
bases is the clear distinction between terminological and assertional knowl-
edge (see [BPGL85, Neb90a, Mac91, NvL88]). The former deals with con-
cepts and roles and their relationship, the latter with individuals and their
membership to concepts and roles. The two kinds of knowledge are stored
in two different components of the knowledge base and each component has
its specialized reasoner. Moreover, the inferences of each component can be
combined in order to obtain more complex inferences, called hybrid infer-
ences. The advantage of this architecture is that the specialized reasoners
are usually able to process their specific knowledge more efficiently than a
general purpose reasoner.

On the other hand, the strict separation of the two components limits
the expressive power of the overall system. In order to recover some of the
expressive power, some attempts have been done, which allow for a limited
mixing of the two components and/or a more complex interaction between
them.

One of these attempts is to admit the presence of the individuals, which
are generally only present in the assertional component, also in the termi-
nological one. This is usually done by introducing new constructors in the
languages for defining the concepts. The reason why this fact results in a
mixing of the two components will clarified in the sequel.

In particular, one of these constructors is obtained by building a concept

from a set of enumerated individuals. This constructor, called ONE-OF in
[BBMARS9] and simply O in this paper, allows one to express many natural
concepts. For example, the concept Permanent_onu member can be defined
as {china, france, russia, uk, usa}, where china, ..., usa are indi-
viduals.

Another constructor of the same kind, called FILLS in [BBMARS&9] and B
here, is the one for denoting the set of objects having a particular individual
as a filler of a specified role. For example the concept representing the set of
USA citizens can be expressed as CITIZENSHIP:usa, where CITIZENSHIP is
a role and usa is an individual.

The demand for the constructors @ and B in concept-based systems is
due to the significant increase of the expressiveness of the language they
provide, as shown in Section 3. It is also confirmed by the fact that they are
both included in the recent proposal for a standard concept-based system in
[PS93] (O was also included in the previous proposal [BBHT91]).

Moreover, in Section 3, we show that the use of O is also related to
the introduction of an epistemic operator K in the concept-based system,
as proposed in [DLN*92]. The epistemic operator K turned out to be very
useful both for providing a highly expressive query language and for a for-
mal characterization of some procedural mechanisms usually considered in
concept-based systems. However a complete understanding of the possible
uses of the K operator is still missing and the analysis of O can be helpful
for this purpose.

In this paper we investigate on the consequences of introducing O and
B in the concept language, and in general of admitting the individuals in
it. In particular in the following sections, we introduce concept languages
and their reasoning services, together with their syntax and their semantics
(Section 2). We give a survey of the various issues associated with the use of
O and B (Section 3). We briefly describe some of the strategies chosen by the
implementors of the actual systems in order to deal with O and B (Section
4). We extend the reasoning procedure proposed in [SSS91, DLNN91, BH91,
DLNS92] in order to develop a complete technique for reasoning with O and
B (Section 5). We present several complexity results (Section 6). We propose
a limited use of O and B (Section 7) and, finally, in Section 8 we draw some
conclusions.

2 Preliminaries

In this section we present the basic notions regarding concept languages,
knowledge bases built up using concept languages, and reasoning services
that must be provided for inferring information from such knowledge bases.

2.1 Concept Languages

We consider a family of concept languages, called AL-languages, which in-
cludes most of the concept languages considered in the literature. The sim-
plest language of this family, called AL, is an extension of the basic language
FL™ introduced in [BL84] including a constructor for denoting the comple-
ment of primitive concepts and the two special concepts T and L. Given
an alphabet of primitive concept symbols C and an alphabet of role symbols
R, AL-concepts (denoted by the letters C' and D) are built by means of the
following syntax rule

C,.D — Al (primitive concept)
T (top)
1 (bottom)
-A | (primitive complement)
CnD | (intersection)
VR.C | (universal quantification)
IR (unqualified existential quantification)

where R denotes a role, that in AL is always primitive (more general lan-
guages provide constructors for roles).

In the following, we use parentheses whenever we need to disambiguate
concept expressions. For example, we shall write (VR.D) M E to mean that
the concept E is not in the scope of JR.

Both FL™ and AL provide a restricted form of existential quantification,
called unqualified: the construct 3R denotes the set of objects d; such that
there exists an object d, related to d; by means of the role R. The existential
quantification is unqualified in the sense that no condition is stated to ds
other than its existence.

An interpretation T = (AZ,-T) consists of a nonempty set AZ (the domain
of 7) and a function T (the interpretation function of I) that maps every

concept to a subset of AT and every role to a subset of AT x AT such that
the following equations are satisfied:

T = AT

17 =
(A = AT\ AT
(C D) ctnD?

)
(VR.C)YF = {dy € AT|Vdy: (di,dy) € R — dy € CT}
(AR = {d, € AT|3dy: (di,ds) € R*}

An interpretation 7 is a model for a concept C if CT is nonempty. A
concept is satisfiable if it has a model and wunsatisfiable otherwise. We say

that C is subsumed by D if CT C D? for every interpretation Z, and C' is
equivalent to D, written C = D, if CT = DT for every interpretation 7.

Example 2.1 Consider the following two AL-concepts
PersonlMdCHILD, Personl1dCHILDIM(VYCHILD.Graduate)

The first one denotes the individuals having at least one child. The second
one denotes the individuals having at least one child and having only graduate
children. It is easy to see that they are both satisfiable and that the first one
subsumes the second.

On the contrary, the following concept is not satisfiable and it is therefore
trivially subsumed by both the others.

(4CHILD)M(VCHILD.Female) 1 (VYCHILD.—Female)
O

More general languages are obtained by adding to AL the following con-
structors:

o qualified existential quantification (indicated by the letter £), written as
JR.C, and defined by (IR.C)T = {d, € AT | 3d; : (dy,d2) € RT A d; €
CT;

e union of concepts (indicated by the letter U), written as C' L D, and
defined by (C'U D)T = CTuU D7,

e complement of general concepts (indicated by the letter C), written as

—(C, and defined by (=C)T = AT\ O7;

e conjunction of roles (indicated by the letter R), written as R @, and
defined by (Q M R)! = QT n RZ;

e number restrictions (indicated by the letter N'), written as (> n R) and
(< n R), where n range over the nonnegative integers, and defined by

(=nR) ={di € AT| |{dz|(dr,d2) € R} | >n},
(SnR)f ={di € AT| |{dz|(dr,d2) € R} | <n},

Using these constructors, alone or in combination, it is possible to con-
struct more expressive AL-languages. Unfortunately, besides of the gained
expressive power, such constructors usually increase the complexity of reason-
ing in concept languages. An extensive study of the complexity of computing
subsumption in these languages is performed in [DLNNO91].

Apart from the above ones, two further particular constructors have been
considered in concept languages. These constructors have the peculiarity to
involve the elements of a new alphabet A, called individuals:

e collection of individuals (indicated by the letter O), written as {a1,...,a,},
where each a; belongs to A.

e role filler (indicated by the letter B), written as R : a, where R is a
role and a belongs to A

In order to assign a meaning to such constructors, the interpretation

function -7 is extended to individuals in such a way that o € AT for each
individual @ € A and a # 7 if a # b (Unique Name Assumption). The
semantics of {ay,...,a,} is then defined by

{ay,... 0.} = {d?,... d’},

and the semantics of R : a is defined by
(R:a)f ={de AT |(d,d") € R}.

7

It is important to observe that the above constructor are not all inde-
pendent of each other. In particular, the combination of union and qualified
existential quantification gives the possibility to express complements of con-
cepts, and conversely, union and qualified existential quantification can be
expressed using complements. Moreover due to the following equivalence

R:a=3R.{a}

B can be expressed in terms of O and £. Hence, without loss of generality
we will assume that &/ and £ are available in languages that contain €', and
vice versa; and that B is available in the languages including O and £ (or O

and C).

From this point on, we will identify a language with a string of the form
ALENUCIRINVIO][B]

indicating which constructors are allowed in the language!. Due to the men-
tioned equivalences, different strings can identify the same language. For
example, ALEU is the same language as ALC (and ALEUC), ALED is the
same as ALEOB and so on.

We do not claim the list of the considered constructors to be exhaustive.
The description of some other useful constructors can be found in [BBH*91]
and in [PS93].

From this point on, we call the languages without O and B pure languages
and those including at least one of them mixed languages. The reason for
these names will be clearer in Section 3.

2.2 Knowledge Bases

The construction of knowledge bases using concept languages is realized by
permitting concept and role expressions to be used in assertions on individu-
als. Given a concept language £, an L-assertion is a statement of one of the
forms:

C(a), R(a,b)

where (' is a concept of £, R is a role of £, and a, b are individuals in A.
The semantics of the above assertions is straightforward: if 7 = (AZ,.T) is

"'We will also speak about languages without primitive complements. Such languages

will be identified with a string of the form FL[E][U][R]N][O][B]~.

an interpretation, C'(a) is satisfied by Z if aZ € O, and R(a,b) is satisfied
by T if (a,b?) € RT.

A set ¥ of L-assertions is called an L-knowledge base. An interpretation
7 is said to be a model of ¥ if every assertion of ¥ is satisfied by Z. ¥ is
said to be satisfiable if it admits a model. We say that ¥ logically implies a,
where « is either an assertion or a subsumption relation, if « is satisfied by
every model of ¥ (written ¥ | «).

In the so-called terminological systems, the knowledge base also includes
an intensional part, called terminology, expressed in terms of concept defini-
tions. However, almost all implemented systems assume that such definitions
are acyclic, i.e. in the definition of concept C' no reference, direct or indirect,
to C itself may occur (see [Neb91] for a discussion on terminological cycles).
It is well known that any reasoning process over knowledge bases comprising
an acyclic terminology can be reduced to a reasoning process over a knowl-
edge base with an empty terminology, in particular by substituting in the as-
sertions every concept name with the corresponding definition (see [Neb90b]
for a discussion of this technique and its computational properties). For the
above reason, in our analysis we do not take into account terminologies and,
therefore, we conceive a knowledge base as just a set of L-assertions.

Example 2.2 Let ¥; be the following ALEO-knowledge base:

Yy = {JFRIEND.{susan,peter}(john),
VFRIEND.Married(john),
—Married(peter) }

It is easy to see that X, is satisfiable. Moreover, some non-trivial conclusion
can be drawn from ¥;. For example, we can prove that ¥; EMarried(susan)
and ¥; EFRIEND(john,susan). In fact, due to the last two assertions, Peter
cannot be a friend of John. Therefore, according to the first assertion, the
friend of John must be Susan and, consequently, she must be married, i.e.
both FRIEND (john,susan) and Married(susan) are logically implied by ¥;.
O

2.3 Reasoning Services

There are several reasoning services to be provided by knowledge bases ex-
pressed by means of concept languages. Some of them are concerned with

reasoning about concept expressions and they fall under the name of TBox-
reasoning. Some others require to reason on a set of assertions, they are
called ABox-reasoning. In this paper, we are mainly interested in the follow-
ing basic reasoning tasks (see [BBH*91] for a list of more complex reasoning
services).

Definition 2.3 Let £ be any concept language. Then, given an L-knowledge
base Y., two L-concepts C and D, and an indwidual a, we call:

e concept satisfiability, written as C' # L, the problem of checking whether
C' s satisfiable;

e terminological subsumption (or simply subsumption) the problem of
checking whether C' is subsumed by D;

e knowledge base satisfiability, written ¥ [, the problem of checking
whether Y is satisfiable;

e instance checking the problem of checking whether ¥ |= C(a);

e hybrid subsumption is the problem of checking whether ¥ = C C D;

Concept satisfiability and terminological subsumption are TBox-reasoning
problems, whilst all the others are ABox-reasoning problems. The impor-
tance of TBox-reasoning has been stressed by several authors (see for exam-
ple [Neb90a]). Knowledge base satisfiability is used for verifying whether the
information contained in a knowledge base is coherent. Hybrid subsumption
is the problem of checking whether a subsumption relation holds with respect
to the set of models of a knowledge base?. Finally, instance checking is used
to check whether an individual is an instance of a concept; it can be con-
sidered the central reasoning task for retrieving information on individuals
in the knowledge-base. In fact, instance checking is a basic tool for more
complex reasoning problems. For example, the problem of retrieving all the
individuals which are instances of a concept can be easily reduced to instance
checking.

2In Section 3 we provide a discussion of the relation between the two types of subsump-
tion. Notice that it is possible to consider the hybrid version of concept satisfiability too;
i.e. the satisfiability w.r.t. the set of models of a knowledge base.

10

The five reasoning problems mentioned above are not independent of each
other. In particular, consider a knowledge base 3., two concepts C, D, and
an individual @ not appearing in X, C, D, the following relations hold:

C#l <= (CEZL1 (1)
C# 1 < {Cla)} (2)
CED = {C(a)} D(a) (3)
CCD < 0ECLCD (4)
SHE = TKETCL (5)
S o= U L(a) (6)

It follows that concept satisfiability can be reduced to both the complement
of subsumption (1) and knowledge base satisfiability (2). Subsumption can
be reduced to instance checking (3) and hybrid subsumption (4). Finally,
knowledge base satisfiability can be reduced to the complement of hybrid
subsumption (5) and to the complement of instance checking (6).

These relations are shown in Figure 1, where the simple arrows mean a
reduction from a problem to the other and the marked arrows mean a reduc-
tion from a problem to the complement of the other problem (the meaning
of the dashed arrows is explained below).

Relations (1-6) are stated for pure languages. In fact, they do not nec-
essarily hold when O is used. For example, the following counterexample
shows that relation (2) doesn’t hold for mixed languages. Consider the con-
cept {b, c,d}; it is trivially satisfiable. The knowledge base {{b,¢,d}(a)} in-
stead is not satisfiable (due to the Unique Name Assumption) contradicting
relation (2). In Section 6 we discuss the relationship between the reasoning
tasks in mixed languages.

For languages with the constructor for expressing the complement of con-
cepts the following other relations hold too:

CCD < (Cn-D)=1 (7)
SECWH) e SU{-C)} ()
YECCD < Yu{Cn-D(a)}E (9)

Therefore, subsumption can be reduced to the complement of concept satis-
fiability (7). Instance checking and hybrid subsumption can be reduced to

11

concept (- - '/' """"" terminological

satisfiability / subsumption

TBox reasoning

ABox reasoning

Y Y A 4

knowledge base [*--~"""- /' """"" instance hybrid
satisfiability / checking subsumption
/ >
T T :
1 / :
1

Figure 1: Reductions between reasoning tasks

the complement of knowledge base satisfiability (8,9). These relations are
shown by the dashed arrows in Figure 1

3 Reasoning with Mixed Languages

In this section we investigate the effects of the use of mixed languages in the
reasoning process. In particular, in Sections 3.1-3.7 we give an overview of
the most relevant issues related to O and we give an intuition of how these
issues can make the reasoning process more complex than in the correspond-
ing pure language (without O), called the underlying language. In Section
3.8, we consider the issues related to B. We refer to Section 5 for a general
technique for reasoning with O and B, and to Section 6 for an extensive study
of its complexity in relation with the complexity of the underlying language.

12

3.1 Implicit Assertions

One of the characteristics of concept languages is the ability of describing
incomplete knowledge. In particular, by means of existential quantification, it
is possible to express information about objects that exist but whose identity
is not known by the knowledge base. With regards to these unknown objects,
it 1s also possible to state their membership to some concept. In particular,
when O is used, it is possible to state the membership of an unknown object
to a set of individuals. A consequence of this, is that the unknown object is
bound to be one of the individuals of the set.
For example, consider the following ALEO-assertion:

IR.(AM {a})(d).

It explicitly states the membership of d in IR.(AT{a}), but it also implicitly
states that @ must be in the extension of A. In fact, it says that there exists
an object in A M {a}, therefore this object must be a and it must be in the
extension of A, that is equivalent to stating the assertion A(a).

In the above example we have considered a collection formed by a single
individual. If we consider collection formed by more the one element then the
resulting implicit assertion can be disjunctive. For example, if we state the
existence of an object in the concept A M {a,b}, then the resulting implicit
assertion is A(a) vV A(b).

The following example shows how the implicit assertions play a role in
the semantics of a concept.

Example 3.1 Consider the following ALEO-concept formed by a conjunc-
tion of three existential quantifications

IR.(AM {a,b}) N 3R.(=AM {a}) N IR.(-AN {b}).

Suppose that we want to check its satisfiability. The standard approach
(e.g. [SSS91, BHI1]) to this problem is to separately check for the satisfiabil-
ity of the three concepts involved in the existential quantifications, namely
A {a, b}, AT {a}, and ~ATT1{b}. It is easy to see that this technique fails
to recognize that the whole concept is unsatisfiable. In fact, although each
of the conjuncts is separately satisfiable, the conjunction of their implicit

assertion (i.e. A(a) VvV A(b), mA(a), and —A(b)) is unsatisfiable.

13

3.2 Mixing terminological and assertional knowledge

Another important characteristic of concept languages is that the reasoning
process in the terminological component is in general not influenced by the
assertional knowledge. More precisely, the following theorem holds for a
large class of languages (in [Neb90a], here simplified slightly from the original
version):

Theorem 3.2 ([Neb90a]) Given a satisfiable knowledge base ¥ then for
every pair of concepts C, D:

YECLCD <— CCD.

The above theorem states that hybrid subsumption can be trivially re-
duced to terminological subsumption (plus knowledge base satisfiability). In
other words, it says that the knowledge base, if satisfiable, plays no role in
the reasoning about concepts. The above property is crucial for the efficiency
of reasoning in concept-description-based knowledge representation systems.
In fact, it allows for the maintenance of a static hierarchy of concepts; which
is not influenced by the evolution of the knowledge base.

Unfortunately, such nice property does not hold when the language in-
cludes O, as shown in the following example.

Example 3.3 Let ¥y = {A(a), A(b)}. It is easy to see that

YR.{a,b} L VR.A.

In fact, given an interpretation Z such that R = {(d,a?)} and AT = §,
then d € (VR.{a,b})T and d € (VR.A)f. On the other hand

S, E (VR.{a,b} T VR.A).

That is because, in every model of ¥, all the objects related only with a
and b by means of R are obviously related only to object in A

For the above reason, when O is used, it is necessary to make the distinc-
tion between the two notions of subsumption. This is also the reason why
we call mixed the languages with O and pure the languages satisfying the
property stated in Theorem 3.2.

14

3.3 Abstraction

Abstraction is a well known mechanism in reasoning about individuals in
concept-based systems. It consists in retrieving all the assertions relevant to
a given individual a and collecting them into a single concept. Such concept
has the property of been the most specific concept expressible in the language
such that the individual @ is an instance of. For this reason it is generally
indicated by M SC(a).

Abstraction, together with subsumption, allows to perform instance check-
ing. In fact, given the problem of checking whether ¥ | C(a), with the
abstraction process, we compute M.SC(a) and, after that, instance checking
can be performed by checking whether C' subsumes M SC(a). This technique,
called Abstraction/Subsumption, has been broadly exploited in actual sys-
tems (see [Kin90, QK90, Neb90b]).

However, the problem of exploiting this technique is that, in general, it is
not possible to completely fit the information relevant to an individual into
a single concept of the language. For example, given the following ALE-
knowledge base ¥ = {R(a,a), B(a)}, the abstraction for ¢ in ALE returns
MSC(a)= BN3R.B.

In MSC(a), the information that the individual related to a is exactly
a itself is lost. In general, any time an individual is referred twice in the
knowledge base, the connection between the two occurrences may be lost.

For this reason, the algorithms for instance checking based on abstrac-
tion are, in general, incomplete. For instance, in the above example, the
Abstraction/Subsumption technique fails to draw the conclusion that ¥ |=
dR.dR.B(a).

As pointed out in [MB92] there are even other drawbacks about using the
Abstraction/Subsumption technique. However they are out of the scope of
this paper.

Nevertheless, if the language includes O it is possible to make a lostless
abstraction. In the previous example, if the language is ALEQO, the abstrac-
tion for a gives MSC(a) = {a} M BTN 3R.{a}, and it is easy to see that the
inference ¥ = JR.3R.B(a) is captured since {a} M BM3IR.{a} C JR.IR.B
holds.

It follows that the use of O gives the possibility to complete reasoning
using the Abstraction/Subsumption technique (see [DE92] for a detailed dis-
cussion on this topic).

15

3.4 Epistemic Operator

In [DLN'92], the addition of an epistemic operator K to concept languages is
investigated. Among other things, it is considered the possibility of enhancing
the language used to query a knowledge by means of that operator. In
particular, the constructor KC' is inserted in such query language, called
ALCK. Ruoghly speaking®, the concept KC denotes the set of individuals
such that the knowledge base knows that are in the extension of C'.

It that paper it is argued that a concept of the form K(C' is equivalent
to the concept {ai,...,a,}, where a4, ..., a, are exactly the individuals for
which ¥ | C(a;) holds. For this reason, as shown in [DLN93], reasoning
with O turned out to be a basic tool for reasoning with K.

3.5 Number Restrictions and Complements

The ability offered by the constructor O to express concepts of a fixed ex-
tension gives also the possibility to express implicit number restrictions on
the roles. If, for example, we assert the membership of an individual d to
the concept VR.{a,b,c} it implies that d is also in the extension of (< 3 R).
For this reason, an inconsistency can be generated by the conjunction of two
concept of the form VR.{a1,...,a,} and (> m R), in the case m > n.

As pointed out in [BMPS*91], using O it is possible to express the com-
plement of a concept with respect to another concept. Let clarify this point
by means of the following example (which is a slight modification of the
example in [BMPST91, page 44]).

Example 3.4 Consider the following three concepts

C = VR{a, b} (>1R)N(Z1R),
D, = VRA{a}N(>1R),
Dy = YRAb}N(>1R).
The concept C describes the individuals which have a single filler for the
role R and such filler is @ or b; Dy and D, describe the individuals which
have a single filler for the role R and such fillers are respectively a and b.

Therefore, we have that D; 1 Dy = L and Dy U Dy = C, i.e. Dy and D, are
complementary with respect to C'. a

3We refer to the cited paper for a precise definition of the semantics of K.

16

3.6 Logical Connectives

Example 3.1 shows that, exploiting the implicit assertion, it is possible to
express logical connectives between assertions. The explicit use of such con-
nectives is usually not allowed in concept based systems. In fact assertions
like R(a,b) Vv C(b) are not allowed and only atomic assertions of the form
C(a) and R(a,b) are generally considered®.

On the other hand, if the concept language includes O and C, all the
connectives can be simulated by atomic assertions. In order to show this
point, we consider the language ALCO and we call complex ALCO-knowledge
base a knowledge base obtained combining atomic assertions with the usual
propositional connectives V, A, and ~. We assume that complex ALCO-
knowledge bases are provided with the standard semantics for connectives.

We now prove that every complex ALCO-knowledge base II can be trans-
formed in a simple (i.e. as defined in Section 2) knowledge base ¥ = ®(II)
such that II is satisfiable if and only if ¥ is satisfiable.

Consider a generic assertion « in II. For the sake of simplicity, we suppose
that « is in conjunctive normal form (CNF); however it is possible to show
that our results hold for general formulae as well. Therefore, o has the form
¢y A+ Aep,, where each ¢; has the form [V- -V, and each [; has the form
p or ~ p (where p has either the form C(a) or R(a,b)).

As a notation, if @ has the form C(a), we call C, the concept C involved
in « and a, the individual a. Furthermore, we assign to each clause in each
assertion an individual z; that does not appear in II; where k is an integer
that takes a different value for each clause. The transformation @ is then
defined by the following rules (where () is a role not appearing in II):

®(R(a,b)) = 3FR.{b}(a) (10)
3(C(a) = Cla) (11)
o(~p) = ~9(p) (12)

O(ly v Vi,) = 3Q.(Copy N{aguy})U---U
HQ.(CCI)(ZH) M {(L(I)(ln)})(ik) (13)
Py A New) = {®(e)|i=1,...,m} (14)
o) = J ¥(a) (15)

a€ll

4except for KRIPTON [BPGL85], which allows all the propositional connectives.

17

Example 3.5 Consider the following complex ALCO-knowledge base I1;:
I, = {3R.D(a) V R(b,¢), ~ R(a,b)}
Applying the reduction ®, we obtain:
o(Il) = {3Q.(3R.D{a})U3Q-((FRA{c})M{b}) (i1), IQ-((-3FR-{b}){a}) (i)}

Lemma 3.6 A complex ALCO-knowledge base 11 is satisfiable iff the ALCO-
knowledge base ®(I1) is satisfiable.

Proof. We prove the claim by showing that all the rules 10-15 are satisfiability
preserving. In particular, it is easy to see that for each rule, but rule (13),
O(IT) is trivially equivalent to II. Therefore in order to prove the claim it is

sufficient to show that ITU{l; V---V,} is satisfiable iff TU{®(l; V---VI,)}

is satisfiable.

“=” Suppose HU{®(l;V---VI,)} satisfiable. Let Z be a model of ITU{®(l;V
-V 1,)}. Since T satisfies ®({; V ---V [,) there must be j € {1,...,n}
such that 7 |= 3Q.Cou,)M{asq,) }(ir). Hence, in AT there must exist an
element d such that (%, d) € QI and d € (Cq> M{agq,)})” Therefore
d = ag(;) and consequently ag(;) € Cq>(1y It follows that 7 is a model

of [;, therefore it is a models of {1 V -+ V [, too.

“<” Suppose HU{l1V---Vl,} satisfiable. Let Z be a model of TTU{{;V-- -V, }.
There must exist one j € {1,...,n} such that 7 = [;. Let I’ be the
interpretation equal to Z except that (ix” ,aq>(1 II) € QY. Since i
does not appear in [T U {l; V---V [,}, it follows that 7' is a model of
II. Since aé(l) € CI(IRV follows that a(b(1) € (oF3 (), and therefore
aé(€ (Coyy M {aqw)}) Moreover (i,” , Aa(1))) € QT holds (by
constructlon of Z"). In conclusion, Z' is a model of TU{®({;V---VI,)}
and therefore ITU {®(l; V --- V [,,)} is satisfiable.

|

Theorem 3.7 Knowledge base satisfiability in ALCO and knowledge base
satisfiability of complex ALCO-knowledge bases are problems polynomially
reducible to each other.

18

Proof. Knowledge base satisfiability is trivially reducible to complex knowl-
edge base satisfiability, being a particular case of it. The other direction is
proved by Lemma 3.6 and the observation that ® is polynomial. a

3.7 Discussion on Reasoning with O

The above (not exhaustive) list of issues helps in understanding why reason-
ing with O is generally hard. This hardness has a twofold explanation: on
one side, it is related to the implicit disjunction carried by the use of sets
with more then one object. On the other side, it is due to the identification
of unknown objects with individuals.

It is well known, that concept-based assertions can be translated into
first-order formulae. The above explanation can be clarified looking at the
translation in first-order formulae of assertions with O. For example, an
assertion of the form

dRAay,...,a,}(b)

is translated into the formula
Rbz)N(z =a1 V- -V a=a,).

This formula explicitly contains both disjunction and equality; they can be
easily recognized as the causes of the hardness of reasoning with O.

It is important to note how, in some cases, the standard semantics gives
results which are hard to be intuitively understood. In particular, the implicit
assertion are difficult to be recognized and their role in the semantics can be
mistaken or overlooked.

These two facts together, i.e. hardness and lack of intuition, explain why
O is usually treated in a non-standard way in the actual systems, as shown
in Section 4.

3.8 Reasoning with B

As shown in Section 2, a concept of the form R : a is equivalent to the concept
dR.{a}. Hence B can be viewed as a limited form of the combination of £
and O.

Reasoning with £ has been proved to be generally hard (see [DHL192,
DLNS92]). However, the hardness of £ is related to the possibility of nesting

19

arbitrary numbers of existential quantification. Since B does not offer the
possibility of nesting, the issues related to £ do not regard B.

Regarding the relation with O, the main difference between O and B is
that B involves always a single individual. Therefore, all the issues related
to the use of sets with more then one individual are not concerned to B.

The other difference between O and B is that the set of individuals in-
volved in B is always in the scope of an existential quantification. Even
though this is a obvious limitation of the use of single-element sets, we now
show that the issues related to the use of single-element sets are pertinent to
B too.

For instance, using B, it is possible to express implicit assertions. As an
example, it is easy to see that the assertion

(VR.C)TT (R : b)(a)

carries the implicit assertion C'(b).

As said before, since B involves only single-element sets, disjunctive as-
sertions cannot be expressed with B. However, as shown in Section 3.6, dis-
junctive implicit assertions can be obtained anyway by using single-element
sets together with U/. For example the following assertion

(VR.A)M (R : a))U (YR.B) N (R : b))(c)

carries the implicit assertion A(a) Vv B(b).

Moreover, Theorem 3.2, that ensures the independence of reasoning about
concepts from the knowledge base, does not hold also in presence of B, as
shown by the following counterexample.

Example 3.8 Let ¥ = {A(a)}. Then

(R:a)Z3R.A.

Conversely, we have that

Y E(R:a)C JR.A).

20

In conclusion, reasoning with B has all the characteristic of reasoning
with O related to the presence of individual. On the other hand, the issues
related to the implicit disjunction of O are obviously not pertinent to B.
However, when the language is supported with explicit disjunction (), the
use of B becomes complex like the use of O.

4 How actual systems deal with mixed lan-
guages

In this section we briefly describe the methods chosen by the implementors
of the actual systems for dealing with O and B, and with individuals in the
concept descriptions in general. For this purpose we have chosen to describe
two systems, namely CLASSIC and BACK. A more detailed description of
them can be found in [BMPS*91, BPS92] and [QK90] respectively.

In CLASSIC, individuals are treated with a non-standard semantics.
The reason why the CLASSIC designers have left the standard semantics
is mostly related to the drawbacks described in Section 3 (in particular in
Sections 3.1 and 3.2), and to the computational intractability of subsumption
(see Section 6), which, in their opinion (see [BPS92]), is not relegated only
to few non-practical worst cases.

Roughly speaking, the individuals appearing in concept descriptions are
interpreted as primitive disjoint concepts, i.e. as subsets of the domain, in-
stead of as single elements of it. This semantics eliminates the effects of im-
plicit assertions. In fact the existence of an object in the concept CM{a} does
not tell that a? is in C% but only that a? and C7 intersect each other. The
fact that a” and C7 intersect each other does not guarantee that {a’} C C7*
and does not exclude the possibility that even a? and —C7 intersect each
other.

Moreover, in C'LASSIC, the assertions on the individuals are not taken
into account while reasoning with concepts. In other words, even when a
knowledge base is involved the type of subsumption considered is always the
terminological one. This semantics is weaker than the standard one, in fact it
fails to draw several conclusions that are entailed in the standard semantics.

The following example is taken from [BPS92, page 13]. The names are
modified w.r.t. the original version.

21

Example 4.1 Let ¥3 be the following C'LASSTC-knowledge base:
Y3 = {VFRIEND.{susan}(john), Married(susan)}

The proposed semantics fails to draw the correct conclusion that
Y3 EVFRIEND.Married (john).

In BACK, O and B are not allowed. However, in BACK it is possible to
express collections of elements, but these elements, called attributes, belong
to an alphabet disjoint from the alphabet of the individuals. Moreover,
the domain of interpretation of the concepts is disjoint form the domain of
interpretation of the attributes. A collection of attributes is not considered
a concept and it is not allowed to be in conjunction with any concept, but it
can appear only in the range of the quantification of a role.

This treatment avoids the reasoning complications of Section 3. It is
simple and efficient; in fact reasoning with collections of attributes in BACK
is just a matter of computing intersection, union, and difference between
sets. The possible usefulness of sets of non-individual elements is argued also
in [Bra92], where they are called Host Individuals. However, they miss the
expressive power of the full use of O.

5 A technique for complete reasoning

The technique we present here is a refinement of the tableaux calculus for
first order logic [BMT77], and is employed in [DHL*92, DLNN91, DLNS92,
HNSS90, SSS91, Hol90] both for the design of algorithms for the various rea-
soning tasks, and for studying their computational properties. The calculus
in this paper is a straightforward extension, to deal with O and B, of the
calculus in the cited papers.

For the sake of simplicity, we restrict our attention to the language ALCO
(ALCOB) and its sublanguages. The calculus can be easily extended to other
languages (following the line of [DLNN91]).

The calculus operates on constraints consisting of individuals, variables,
concepts and roles. Concepts are assumed to be simple, i.e. they contain
complements only of one of the forms —{ay,...,a,} or =A, where A is a
primitive concept. Arbitrary concepts can be rewritten into equivalent simple
concepts in linear time®.

Sthe concept —=(R : a), being equivalent to =3R.{a}, is rewritten as VR.—={a}.

22

Consider an alphabet of variable symbols V. The elements of V are de-
noted by the lower case letters x,y, z. From this point on, we use the term
object as an abstraction for individual and variable (i.e. an object is an el-
ement of AU V). Objects are denoted by the symbols s,¢ and, as in the
previous sections, individuals are denoted by a, b.

A constraint is a syntactic entity of one of the forms

s:C, sRt

?

where (' is a concept and R is a role. Given an interpretation Z, we define
an Z-assignment « as a function that maps every variable in V to an element
of AT (not necessarily injectively), and every individual to its interpretation
(i.e. a(a) = af for a € A).

A constraint of the form s: C is satisfied by the pair (Z,«) if a(s) € C7.
A constraint of the form sRt is satisfied by (Z,) if (a(s), a(t)) € RT.

A constraint system is a finite nonempty set of constraints. A constraint
system S is satisfiable if there is an interpretation 7 and an Z-assignment «
such that (Z, «) satisfies every constraint in S.

A knowledge base ¥ can be translated into a constraint system Sy by
replacing every membership assertion C'(a) (resp. R(a, b)) with the constraint
a:C (resp. aRb).

It is easy to see that all the reasoning tasks considered in this paper can
be reduced to the satisfiability of a constraint system. In fact, a concept C'is
satisfiable if and only if {z: C'} is satisfiable, C' is subsumed by D if and only
if {z: CT1=D} is satisfiable, and ¥ is satisfiable if and only if Sy, is satisfiable.
Furthermore, ¥ |= C(a) if and only if the constraint system Sy U {a: =C'} is
unsatisfiable and ¥ |= C C D if and only if Sy U{x: CT1=D} is unsatisfiable.

In order to check a constraint system S for satisfiability, our technique
adds constraints to S until either a contradiction is generated or an interpre-
tation satisfying it can be obtained from the resulting system. Constraints
are added on the basis of a suitable set of so-called propagation rules.

If @ is an individual, then we denote by S[z/a] the constraint system
obtained from S by substituting every occurrence of the variable with the
individual a.

The propagation rules are:

1. 8 —n {s:Cy, s:Co}US
if s:CiMCyis1in S, and s: (' and s: Cy are not both in S

23

2.8 -, {s:D}US

if s:CyUCy1s1in S, neither s: 'y nor s:Cyis in S,
and D=C,or D=0,

3. S =3 {sRzx, :C}US
if s:dR.C is in S, there is no ¢t such that both sRt and ¢: C
are in S and z is a new variable.
4.8 =y {t:CYuUS
if s:VR.Cisin S, sRtisin S, and ¢:C is not in S
5.8 —>[/] S[:Z?/(ZZ]
if z:{ay,...,a,}isin Sand ¢ € {1,...,n}
6. S —. {sRa}US
if s:(R:a)isin S and sRa is not in S
We call the rules — and —;; nondeterministic rules, because they can
be applied in more than one way. All the other rules are called deterministic
rules. A constraint system is said to be complete if no propagation rule applies
to it. Any complete constraint system obtained from a constraint system S
by applying the above rules is called a completion of S. Notice that, due to
the presence of the nondeterministic rules, more than one completion can be

obtained starting from a constraint system.
The following theorem ensures the correctness of the rules.

Theorem 5.1 (Correctness) Let S be a constraint system. Then:

1. If S" is obtained from S by the application of a deterministic rule, then
S s satisfiable if and only if S’ is satisfiable.

2. If S" is obtained from S by the application of the nondeterministic rule,
then S is satisfiable if S’ is satisfiable. Furthermore, if the nondeter-
ministic rule applies to S, then it can be applied in a way that it yields
a constraint system S' such that S’ is satisfiable if S is satisfiable.

Proof. The correctness of rules 1-4 is stated in [Hol90], the extension to
rules 5 and 6 is straightforward. a

A clash is a set of constraints of one of the following forms

24

1. {s: L},
2. {s: A, s: A},
3. {a:{a1,...,a,}} with a # a; for alli =1,... n,

4. {a:—{ay,...,a,}} with a = q; for some ¢ =1,... n.

The following theorem ensures the termination of the calculus. Tt is a
straightforward extension of the corresponding theorem in [Hol90].

Theorem 5.2 Let S be a constraint system. Then:
1. If S is complete then it is satisfiable if and only if it contains no clash.

2. S has a finite number of completions and every completion of S has
finite size

Due to the above results, the calculus can be turned in an correct and
terminating procedure, thus providing an effective method for carrying out
the various reasoning services.

6 Complexity of reasoning with mixed lan-
guages

We start this section analyzing the relationship between the complexity of
the various reasoning tasks in mixed languages. Referring to Figure 1, we
show that some other arcs can be drawn for such languages.

In the following sections, we investigate on the complexity of the above
problems in the specific languages. To this aim, we consider various lan-
guages that do not use O and B and the corresponding languages obtained
by adding them. In particular we focus on the pure languages ALC, ALE,
and AL, which are a good representative of the various degrees of expres-
siveness (and complexity), and we achieve some complexity results on the
corresponding languages with O and B. In those sections, we concentrate
on the terminological subsumption problem. Results for the other reasoning
tasks easily follow.

25

6.1 Relationship between Reasoning Tasks in Mixed
Languages

Before starting, we need one round of definitions. Given a concept C, we
call subconcept of C any substring of C' (including C itself) that is a concept,
according to the syntax rules. Notice that, if |C| denotes the size of C, then
the number of subconcepts of C is bounded by |C|. Moreover, we call Aq
the set of individuals appearing in C.

In a similar way, we call subconcept of a knowledge base ¥ any subconcept
of some concept in ¥ and we call Ay the set of all the individuals appearing
in ¥ (either within the concepts or as the individual the assertion states the
membership of). The number of subconcepts of ¥ is bounded by |X]|, the
size of X.

We first discuss the validity for mixed languages of relations (1-6) stated
in Section 2. It is easy to see that relations (1,4-6) hold for mixed languages
as well. Conversely, relations (2,3) do not hold as they are, as shown by the
example at hte end of Section 2 for relation (2). The intuitive reason is that
relations (2,3) involve assertions of the form C(a), and, if C involves some
individuals, there might be an interaction between C' and a.

Nevertheless, a variant of relations (2,3) hold for mixed languages, as
stated by the following lemma.

Lemma 6.1 Let L be a mized language, C' and D two L-concepts, and b an
individual not appearing in C' and D:

C#1l < FJae(AcU{b})|{C(a)} £ (16)
CCD < VYac(AcUApU{b})|{C(a)} = D(a) (17)

Proof.

“<” Suppose C satisfiable and Ya € (Ac U {b}) | {C(a)} is unsatisfi-
able. Since (' is satisfiable, there exists an interpretation Z such
that d € AT and d € CT. The element d can be either the inter-
pretation of an individual in Agc U {b} or not. We show that in
both cases we reach a contradiction.

26

e Jda € Ac : d = a’. Contradicts the hypothesis that {C'(a)} is
unsatisfiable.

o Va € Ac : d # a®. Let T' be the interpretation equal to
T except that 67 = d. Since b does not appear in C, it
follows that the interpretation of b as no influence on the
interpretation of €', and therefore ¥’ € CT'. This contradicts
the hypothesis that {C(b)} is unsatisfiable.

“=” Suppose da € (Ac U {b}) | {C(a)} is satisfiable. It easily follows
that C' is satisfiable.

“<” Assume C C D and da € (Ac U Ap U {b}) : {C(a)} &= D(a).
From {C(a)} £ D(a) it follows that there exists an interpretation
T such that o € CT, a* ¢ D*. This contradicts the hypothesis
that C C D.

“="7 Assume Ya € (UAc U Ap U {b}) : {C(a)} = D(a) and C Z D.
From C [Z D, it follows that there exists an interpretation Z and
an element d of AT such that d € C%, and d ¢ D. The element d
can be either the interpretation of an individual in Ac U Ap U {b}
or not. We show that in both cases we reach a contradiction.

o Suppose that d = a? for some a € AcUApU{b}; then a? € C7T
and @ ¢ DT contradicting the hypothesis that {C(a)} =
D(a).

e Suppose that d # o for all a € Ac U Ap U {b} then let 7’ be
the interpretation equal to T except that ¥ = d. Since b does
not appear in C and D, it follows that 47 € CT', b7 ¢ DT’
This contradicts the hypothesis that {C(b)} E D(b).

|

Next lemma shows a bidirectional reduction between hybrid subsumption
and instance checking in any language including O and states its correctness.

Lemma 6.2 Let L be a concept language including O, ¥ an L-knowledge
base, C, D two L-concepts, a an individual, and b an individual not in Asg U

27

Ac U Ap, then:

Sk D) — Sk{aCD (15)
by |=CED <~ VaE(AxUAcUADU{b}):
Y U{C(a)} E D(a) (19)

Proof.

(18) If ¥ is unsatisfiable, then both ¥ = D(a) and ¥ | {a} C D trivially
hold. Therefore, we can suppose ¥ satisfiable. If ¥ is satisfiable then
it has at least one model. Let Z be a generic model, obviously a? € D
if and only if {a’} C D?. The claim follows.

“<” Assume ¥ E C C D and Jda € (As U Ac U Ap U {b}) : T U
{C(a)} = D(a). From ¥ U {C(a)} = D(a) it follows that there
exists an interpretation 7 such that 7 is a model of ¥, and o € C7,
a’ ¢ DT, This contradicts the hypothesis that ¥ = C C D.

“=" Assume Ya € Ay U Ac U Ap U {b} : ¥ U {C(a)} E D(a) and
Y CCD. From X £ C C D, it follows that there exists an
interpretation Z and an element d of AT such that 7 is a model
of ¥, d € CT, and d ¢ DT. The element d can be either the
interpretation of an individual in Ay U Ac U Ap U {b} or not. We
show that in both cases we reach a contradiction.

e Suppose that d = a for some a € Ax U Ac U Ap U {b};
then af € CT and o ¢ DT contradicting the hypothesis that
SU{C(a)} E D(a).

e Suppose that d # af for all @ € Ax U Ac U Ap U {b} then
let T’ be the interpretation equal to Z except that 47 = d.
Since b does not appear in X, C, and D, it follows that Z' is
a model of 3, and b € CT', b & DT'. This contradicts the
hypothesis that ¥ U {C(b)} = D(b).

|

Lemma 6.2 states that in order to solve hybrid subsumption, we make a
linear number of instance checking tests, one for each individual appearing

28

in the concepts and in the knowledge base plus one new. It is interesting to
observe that, when O is not used, it is sufficient to make a single instance
checking test, by considering only the new individual b. The following exam-
ple shows that, on the contrary when O is used, this is not true. Let ¥ = (),
it is easy to see that ¥ £ (C'U{a} C C). However, due to the Unique Name
Assumption, {C'U{a}(b)} = C(b) holds. In fact, the latter relation holds for
every individual except a, therefore it is necessary to include a in the set of
individuals we consider.

Theorem 6.3 Hybrid subsumption and instance checking are polynomially
reducible to each other in any language including O.

Proof. Follows from Lemma 6.2 and from the fact that the size of As U AcU
Ap U {b} is linear with respect to the size of ¥. O

Next we show that in the languages with O and B, knowledge base sat-
isfiability can be reduced to concept satisfiability. In order to achieve this
result, we present the transformation ¢ from a knowledge base to a concept
defined as follows: Let £ be a concept language including O and B, ¥ an
L-knowledge base, C, D two L-concepts, and a, b two individuals, then:

¢(Cla)) = 3Q:NVQ:.({a} N C)
¢(R(a,b)) = 3Q:iNVQ.({a} MR :b)
o(%) Miaex)P(a)

where 7 has a different value for each assertion and (); does not appear in
Y for each 1°. Intuitively, ¢ “encodes” the knowledge base ¥ in the implicit
assertions of the concept ¢(X). Such encoding is done in a way that the only
possible cause of unsatisfiability of ¢(X) comes from the implicit assertions.
It follows that ¢(X) is satisfiable if and only if ¥ is satisfiable, as stated by
the following lemma.

Lemma 6.4 Given a language £ and an L-knowledge base X, then ¥ is
satisfiable iff (X)) is satisfiable

6If £ includes & then the concept 3Q; MVQ;.(...) can be simplified in 3Q;.(...) and the
condition on 7 can be dropped. In fact this condition is needed to avoid the interaction
between the universal and existential quantifications coming up from different assertions.

29

Proof.

[44 9
=

Suppose ¢(¥) satisfiable and let Z be one of its models. There exists
an element d in AT such that d € ¢(X)?. By definition of ¢, for
each assertion in ¥ of the form C(a) (resp. R(a,b)) we have that
(d,a?) € QI, for some k, and a? € C7 (resp. (a’,b?) € RT). Hence
is a model of ¥.

Suppose Y satisfiable and let Z be one of its models. Since for each
2, (); does not appear in ¥, we can assume, without lost of generality,
that QZI = () x 0 for each i. Let Z' be the interpretation such that
AT = AT U {d} and -T' = T except that for each conjunct of ¢(¥) we
have (d,a™) € QF'. Tt is easy to see that d € (¢(X))Y and therefore
#(X) is satisfiable.

|

Exploiting the same idea of Lemma 6.4, next lemma shows that in the

languages with O and B, instance checking can be reduced to terminological

subsumption.

Lemma 6.5 Give a language L, an L-knowledge base ¥, an individual a,

and an L-concept C7 then ¥ = C(a) iff ¢(X)M{a} CC

Proof.

[44 9
=

Assume ¥ = C(a) and ¢(X) M {a} Z C. Since ¢(X) N {a} Z C,
there exists an interpretation Z and an element d € AT such that
de (p(X)n{a})f and d ¢ CT. From d € (¢(X) M {a})?, it follows that
a’ = d and therefore a” € (¢(X))? and a? ¢ CT. Since a € (4(%))?
holds, Z is a model of ¢(X) and therefore (see proof of Lemma 6.4) it is
a model of ¥ too. Since a? € CT and 7 is a model of ¥, the assumption
Y = C(a) is contradicted.

Assume ¢(X)M{a} C C and ¥ = C(a). From ¥ [C(a) it follows that
there exists an interpretation Z such that 7 satisfies ¥ and o ¢ C7.
Since 7 satisfies Y, there exists Z' that satisfies ¢(X) (see proof of

"We assume that Q; (for each i) does not appear in C. Otherwise it is possible to

modify ® in a way such that this condition is fulfilled.

30

Lemma 6.4). Suppose d € gb(E)II. Since for each i, (); does not appear
in C' and the only necessary property of d concern);, it is possible
to assume that d € CT'. Let I be the interpretation obtained from
T' assigning " = d. Then o’ & CT" and a*" € ¢(X)*". Therefore
a" € (¢(X) M {a})™" contradicting the assumption ¢(¥) M {a} C C.

|

Theorem 6.6 In any language including O and B, knowledge base satisfia-
bility is polynomially reducible to concept satisfiability and instance checking
s polynomially reducible to hybrid subsumption.

Proof. Follows from Lemmata 6.4 and 6.5 and the observation that ¢ is
polynomial. a

Summarizing the results obtained since now, for concept languages with
O and B instance checking and hybrid subsumption are reducible to each
other, knowledge base satisfiability is reducible to concept satisfiability and
instance checking is reducible to subsumption®.

The relations stated in this section are shown in Figure 2. Combining the
result of Theorem 6.6 with the properties of the languages with C we obtain
that for languages including O and C all the five problems are reducible to
each other (or to their complement).

The results of Theorem 6.6 are important because they relate ABox prob-
lems with TBox ones. To this regard, in [DLNS92] it was already proved that
for a large class of languages concept satisfiability and knowledge base satis-
fiability are in the same complexity class, and therefore the latter is reducible
to the former. However, that result is achieved considering each language sep-
arately. The result obtained here is stronger, in the sense that it is proved
independently of the single language (provided that O and B are included).
This result is important, since it relates the complexity of an ABox-problem
to the complexity of a TBox-problem. Such a relationship is crucial for the
design of efficient reasoning algorithms and it is still not completely clear.

In [Sch93] and [DLNS92] it was also shown that there are languages such
that instance checking and subsumption are in different complexity classes.

8Since no primitive complement are considered, the results are valid even for the less
expressive language than the ones considered here (i.e. FLOB™).

31

concept (- - '/' """"" terminological

satisfiability / subsumption [*

A A

TBox reasoning

ABox reasoning

Y Y A 4

knowledge base [*--~"""- /‘ """"" instance hybrid
satisfiability / checking B > subsumption
/ >
T T :
1 / :
1

Figure 2: Reductions between reasoning tasks in languages with O and B

In particular, in [DLNS92] it is shown that in ALE instance checking is
PSPACE-complete while subsumption is NP-complete. Therefore (assuming
NP#PSPACE), such result proves that, in ALE, instance checking is strictly
harder than subsumption. On the other hand, the result in Theorem 6.6
ensures that, as far as O and B are included in the language, no result of
that kind are possible since the two problems are reducible to each other.

6.2 Reasoning in ALCO

Using a technique based on constraint systems, in [SSS91] both concept satis-
fiability and subsumption in ALC are proved to be PSPACE-complete prob-
lems. That paper also presents a linear space algorithm for these problems.
The basic idea of the algorithm is that, although the whole constraint system
involved in the computation might have exponential size, it is possible to keep
track of only a polynomial part of it at a time. These parts, called traces,
are obtained considering, for each variable, one existential quantification at

32

the time. Traces are mutually independent, and can be checked for a clash
separately.

However, when the language is ALCO, the above method is no longer
valid. In fact, because of the presence of implicit assertions, the traces are
not independent. On the contrary, the satisfiability of one trace can depend
on the constraints in the other traces, as shown by Example 3.1. In the
calculus shown in Section 5, this possibility is taken into account by the
—/-tule which allows for the substitution of variable in different traces with
the same individual.

Nevertheless reasoning in ALCO can be done in PSPACE. In fact, in
[DLN*93], following the idea in [DLN192], a polynomial space algorithm for
instance checking ¥ = D(a), where ¥ is an ALC-knowledge base and D is
an ALCK-concept. It is also shown that such problem is at least as hard as
the same problem where C' is an ALCO-concept. The latter problem, in its
turn, is at least as hard as checking the satisfiability of the ALCO-concept
—D. Tt follows that concept satisfiability in ALCO, being at least as easy as
a PSPACE problem, is in PSPACE too. In conclusion, we have the following
theorem, whose proof derives from the results in [DLN*93] and the above
observation.

Theorem 6.7 Terminological subsumption in ALCO is a PSPACFE-complete
problem.

The intuition of the fact that reasoning in ALCO is still in PSPACE
is that, although the constraint system has in general exponential size, the
informations regarding the individuals are polynomial. In fact, since the
number of concepts to be considered is linear and the number of individuals
is linear too, the membership relation of the individuals to the subconcepts
can be stored in a table of polynomial size.

6.3 Reasoning in ALEO

In [DLNS92] it is proven that instance checking in ALE is PSPACE-complete.
It follows that instance checking in ALEQO is PSPACE-hard, and therefore
(Proposition 6.5) subsumption in ALEQO is PSPACE-hard too. Since sub-
sumption in ALCQO is PSPACE-complete, it is in PSPACE for ALEO too
(remind that ALCO is a superlanguage of ALEO).

33

Theorem 6.8 Terminological subsumption in ALEQO is a PSPACE-complete
problem.

6.4 Reasoning in ALO

In this section we state that subsumption in ALQO is coNP-complete, besides
the fact that in AL both subsumption and instance checking are in P, as
proved in [DLNNO91] and [L.S91a] respectively. Since ALO does not have &,
ALQO is not equivalent to ALOB and therefore (unlike previous sections) the
results obtained for the language with O, are not directly extended to the
language with O and B. Anyway, the results we obtain here for ALO are
valid for ALOB, as can be easily proved.

In order to prove the coNP-hardness of subsumption, we now prove
the NP-hardness of concept satisfiability which obviously implies the coNP-
hardness of subsumption (remind relation (1) in Section 2).

This proof is based on a reduction from SAT, the satisfiability problem
for a propositional conjunctive normal form (CNF) formula, to the concept
satisfiability problem in ALO. This reduction has been sketched in [1.S91a],
here it is proposed in the full version and its correctness is proven.

We define a pos-neg CNF-formula, a CNF-formula I such that every
clause of T” is either positive (i.e. it is constituted by positive literals) or
negative (i.e. it is constituted by negative literals).

Notice, first of all, that any CNF formula I' can be transformed in poly-
nomial time into a pos-neg CNF formula I such that I' is satisfiable if and
only if I'" is so. This is done by replacing every clause of I' by two clauses,
as follows:

mV..VvVp,V~qV...V~¢q, =

(p1V...Vp,Vr), (~¢ V...V ~g,V~r)

where r is a new propositional variable.

Let U be the transformation from a pos-neg CNF formula I' = af A--- A
af Aay A---Aa; to the ALO-concept ¥(T') = Cfn---ncrncyn---ncC-,
specified by the following equations:

CF = 3R VR .(obj(af) M A),
C7 = 3R; NVYRE.(obj(ap) M —A)

34

where af (resp. «;) denotes a positive (resp. negative) clause, A is
a primitive concept, Rf and Ry (for h = 1,...,n and k = 1,...,m) are
roles, and obj(«) denotes the concept {pi,...,pr}, where py,...,pp are all
the propositional letters in the clause a. In other words, we associate with
every propositional letter of I" an individual with the same name, and with
every clause a of I' the collection of individuals 0bj(«).

For example, if I' = (p V ¢) A (~ pV ~ r), then the corresponding ALO-

concept is:
U(T) = 3Rf VR .({p,q} M A)N IR, NVR;.({p,r} 11 =A).

Lemma 6.9 A pos-neg CNF formula U is satisfiable if and only if the cor-
responding ALO-concept V(') is satisfiable.

Proof.

“<” Suppose ¥(T') satisfiable. Then there exists an interpretation Z and an
object d such that d € (¥(T))?. Looking at the structure of ¥(T'), one
can verify that there are n 4+ m objects df,...,df, dy,...,d; in AT
such that

(d.df) e (RF)",....(d,d}) € (R})T,
(d,dy) e (R7),....(d,d) € (R,),

and for each i € {1,...,n}, df € (obj(a]))? and df € AZ, and for
each i € {1,...,m}, d; € (obj(a;))? and d; € (=A)T. Now construct
a truth assignment J for I' as follows: for every letter p, if p? € AL,
then J(p) = true, else J(p) = false. Due to the above properties, for
every clause of (resp.), J assigns true (resp. false) to at least one

+

literal in ;" (resp. a;), and therefore J satisfies every clause of T'.

“=" Suppose I" satisfiable. There exists one truth assignment J that satisfies
I'. Let Z be the interpretation such that:

o AT={p|J(p)=true}

o for each : € {1,...,n}, (R = {(d,¢?)}, where q is a literal in
¢; such that J(q) = true

35

e for each i € {1,...,m}, (R)T = {(d,q¢)}, where ~ ¢ is a literal
in ¢; such that J(¢) = false

It is easy to see that Z is a model for W(T"). O

Lemma 6.10 Concept satisfiability in ALO is coNP-hard.

Proof. Follows from Lemma 6.9 and the fact that the reduction W is clearly
polynomial with respect to the size of T'.

We now show that satisfiability of an ALO-concept C is in NP. This
result is achieved showing that the algorithm obtained by the application of
the propagation rule runs in nondeterministic polynomial time.

The first step is to show that, for any ALO-concept C', each completion
of the constraint system {z:C'} has polynomial size. In [SSS91] it is shown
that for every AL-concept C, the constraint system {z:C} has the unique
completion (up to variable renaming), which has linear size w.r.t. |C|. How-
ever, in ALQO, the size of the completion can be bigger, as shown by the
following example:

¢ ={a} N3RNVYR.{a} NVRVR.---YR.A

The only completion of the constraint system {z: ('} has quadratic size
w.r.t. the length n of the chain of universal quantifications
VRVYR.---VR.A. In fact, such a completion contains the constraints
a:VRVYR.---VR.A,...,a:VR.A, a: A for any size of the chain from 1 to N.

The example shows that the introduction of constraints on the individuals
can increase the size of the single completion. Nevertheless, we show that its
size is still polynomial. In particular, given the constraint system {z: C'}, we
associate with it a constraint system called Sz and we show the two following
properties: (i) the completion of S¢ is polynomial with respect to |C'] and (%)
the completion of S¢ is bigger that the completion of the constraint system

{z: C}.

Definition 6.11 Given a constraint system {z: C'}, we call S¢ the constraint
system obtained adding to {x: C} all the constraints a : E, for every individ-
ual a in C and every subconcept E of C (including C itself). If C does not
contain any individual then S¢ = {z: C}.

36

Since both the number of subconcept of ' and the number of individual in
C are linear w.r.t. |C] it follows that S¢ has a quadratic number of constraints
w.r.t. |C|. Therefore the size of S¢ is almost cubic w.r.t. |C|. Since S¢
contains all the constraints of the form a: F/, the application of the —,-rule
to a constraint system S obtained from S¢ do not add any new constraint
to S. Therefore S has a single completion S’. Now, it is easy to see that
each completion of {z: ('} is smaller than S'; in fact S¢ contains at least the
constraint z: C'.

We now show that S’ is polynomial w.r.t. S¢ (and therefore w.r.t. C').
To this aim, in [LS91a], it is shown that for every AL-knowledge base X, the
unique completion of the constraint system Sy, has polynomial size w.r.t.
|¥|. Since the —p-rule does not add any constraint to Sc, it follows that
the completion of S¢ is equal to the completion obtained for an AL constraint
system. Therefore from the above results concerning AL, it follows that the
completion of S¢ has polynomial size. Hence every completion of {z: C'} has
polynomial size too.

The fact that each completion has polynomial size ensures that it can be
computed in polynomial time. In fact, the application of each rule either in-
crease the size of the constraint system or increase the number of constraints
on the individuals (the —;-rule). Since the number of constraints on the
individuals is obviously bound by the size of the constraint system it follows
that only a polynomial number of applications of the rules can be done. Since
each completion is obtained doing a polynomial guess in the application of
the —/-rule, it follows that the whole algorithm works in nondeterministic
polynomial time. Therefore we have proved the following lemma:

Lemma 6.12 Concept satisfiability in ALO is an NP problem.
Theorem 6.13 Terminological subsumption in ALO is coNP-complete.

Proof. The NP-hardness follows from Lemma 6.10. Regarding the upper
bound, using the technique in [DLNN91, Sec. 5], Lemma 6.12 can be easily
extended to state that subsumption in ALQO is in NP too. a

In [L.S91a], it is observed that it is not necessary to have a constructor for
primitive negation for intractability, but it suffices to have the possibility to
express disjointness between concepts. Therefore the intractability is directly
extended to several other languages. For example, it applies to CLASSIC,

37

without @ with O

subsumption | instance subsumption
checking & inst. ch.
AL P P ALO coNP
[SSS91] [LS91a]
ALE NP PSPACE || ALEO PSPACE

[DHL*92] | [DLNS92]
ACLC || PSPACE | PSPACE || ACCO || PSPACE
[55591] [BHO1]

Table 1: Complexity of reasoning

which extend FL™ in several ways including @ and A In fact using N, it is
possible to express the following two concepts which are obviously disjoint:
(<2R) and (> 3 R).

On the other hand, if the underlying language does not include any form
of disjointness, reasoning with O is in general polynomial. For example,
in [FMV90], it is shown that in the language OOL, which extends FLO™,
subsumption can be checked in polynomial time.

The Table 1 summarize the results obtained in this section together with
previous known results on the underlying languages. In the table, each entry
means that the problem is complete for the given class, except for P that has
the simple meaning that the problem is in the class P.

7 On the use of O in the query language

In the previous section we have shown that the use of O generally increases
the complexity of reasoning. Opposite to this negative result, there exists one
possibility of exploiting O in a useful way without increasing the complexity
of reasoning: Admitting it only in the query language, i.e. allowing O in the
expression of the query concept but not in the assertion of the knowledge
base.

The usefulness of O in the query language is discussed in [LS91b]. In
particular, using O it is possible to express various forms of selection that

38

can be usually admitted in database query languages but are missing in
standard concept languages. For example it is possible to ask for the books
whose author is Newton and whose subject it mathematics:

BooklMJAUTHOR.{newton }[13SUBJECT.{math. }

In [LS91b], it is shown that it is possible to query an AL-knowledge base
using ALO concepts in polynomial time, opposite to the fact that reasoning
in ALO is in general coNP-complete. Our conjecture is that this result
is quite general, in the sense that for many languages L, it is possible to
query an L-knowledge base using concepts in LO with the same computing
resources of reasoning in L.

8 Discussion and Conclusions

We have shown an extended analysis of the various issues related to the use
of concept constructors involving individuals. This analysis gives an insight
of the problem of reasoning with individuals and allows to understand the
intuitive aspects which makes reasoning difficult.

In addition, we have presented a complete procedure for reasoning with
0. This procedure is developed within the well established framework of
constraint systems. The benefit of that is the possibility to extend this
procedure to other languages.

Another result of the paper are a set of complexity results which formally
confirm that reasoning with individuals is generally hard. In fact, in some
languages, they increases the complexity of reasoning (AL, ALE). Whereas,
in those cases in which reasoning is in the same complexity class as the
underlying language (ALC), the algorithms are generally more complex and
less efficient (in term of both time and space) than in the underlying language
(see [DLN*93]).

We have also identified an intuitive explanation of this intractability: On
one side, it is related to the implicit disjunction carried by the use of sets with
more then one object. On the other side, it is due to the implicit equality
associated with individuals in concept expressions.

In our opinion, the solutions proposed in actual systems to overcome
the computational intractability are not completely satisfying. Therefore a

39

deeper insight of the problem can also be useful for the development of better
incomplete reasoners.

Acknowledgements

I am in debt to Francesco Donini, Daniele Nardi, Werner Nutt and, particu-
larly, to Maurizio Lenzerini, for their support and collaboration. 1 would like
to thank Enrico Franconi and Marco Schaerf for useful comments on earlier
drafts of the paper. I also acknowledges Yoav Shoham for his hospitality at
the Computer Science Department of Stanford University, where part of this
research as been done.

This work has been supported by the ESPRIT Basic Research Action
N.6810 (COMPULOG 2) and by the Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo of the CNR (Italian Research Council).

References

[BBH*91] Franz Baader, Hans-Jirgen Biirkert, Jochen Heinson, Bernhard
Hollunder, Jurgen Miiller, Bernard Nebel, Werner Nutt, and
Hans-Jurge Profitlich. Terminological knowledge representa-
tion: A proposal for a terminological logic. Technical Report
TM-90-04, Deutsches Forschungszentrum fiir Kiinstliche Intel-
ligenz, Postfach 2080, D-6750 Kaiserslautern, Germany, 1991.

[BBMARRS9] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuin-
ness, and Lori Alperin Resnick. CLASSIC: A structural data
model for objects. In ACM SIGMOD, 1989.

[BHI1] Franz Baader and Bernhard Hollunder. A terminological knowl-
edge representation system with complete inference algorithm.
In Proc. of the Workshop on Processing Declarative Knowl-
edge, PDK-91, Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1991.

[BL84] Ronald J. Brachman and Hector J. Levesque. The tractability
of subsumption in frame-based description languages. In Proc.

40

[BM77]

[BMPS+91]

[BPGLS5]

[BPS92]

[Bra92]

[DE92]

[DHL*+92]

[DLN+92]

of the 4th Nat. Conf. on Artificial Intelligence AAAI-84, pages
34-37, 1984.

John L. Bell and Moshe Machover. 4 Course in Mathematical
Logic. North-Holland, 1977.

Ronald J. Brachman, Deborah I.. McGuinness, Peter F. Patel-
Schneider, Lori Alperin Resnick, and Alex Borgida. Living with
CLASSIC: when and how to use a KL-ONE-like language. In
John F. Sowa, editor, Principles of Semantic Networks, pages
401-456. Morgan Kaufmann, 1991.

Ronald J. Brachman, Victoria Pigman Gilbert, and Hector J.
Levesque. An essential hybrid reasoning system: Knowledge
and symbol level accounts in KRYPTON. In Proc. of the Int.
Joint Conf. on Artificial Intelligence, pages 532-539, Los An-
geles, Cal., 1985.

Alexander Borgida and Peter F. Patel-Schneider. A seman-
tics and complete algorithm for subsumption in the CLASSIC
description logic. Submitted for publication, 1992.

Ronald J. Brachman. “reducing” CLASSIC to practise: Knowl-
edge representation meets reality. In Proc. of the 3nd Int. Conf.
on Principles of Knowledge Representation and Reasoning KR-
92, pages 247-258, 1992.

Francesco M. Donini and Angelo Era. Most specific concepts for
knowledge bases with incomplete information. In Y. Yesha, edi-
tor, Information and Knowledge Management, CIKM-92, pages
545-551, 1992.

Francesco M. Donini, Bernhard Hollunder, Maurizio Lenzerini,
Alberto Marchetti Spaccamela, Daniele Nardi, and Werner
Nutt. The complexity of existential quantification in concept
languages. Artificial Intelligence, 2-3:309-327, 1992.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi,
Werner Nutt, and Andrea Schaerf. Adding epistemic opera-
tors to concept languages. In Proc. of the 3nd Int. Conf. on

41

[DLN*93]

[DLNN91]

[DLNS92]

[FMV90]

[HNSS90]

[Hol90]

[Kin90]

Principles of Knowledge Representation and Reasoning KR-92,
pages 342-353, 1992.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi,
Werner Nutt, and Andrea Schaerf. Adding epistemic opera-
tors to concept languages. Technical report, Dipartimento di
Informatica e Sistemistica, Universita di Roma “La Sapienza”,

1993. Forthcoming.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Werner Nutt. The complexity of concept languages. In James
Allen, Richard Fikes, and Erik Sandewall, editors, Proc. of the
2nd Int. Conf. on Principles of Knowledge Representation and
Reasoning KR-91, pages 151-162. Morgan Kaufmann, 1991.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and
Andrea Schaerf. From subsumption to instance checking. Tech-
nical Report 15.92, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, 1992.

Anna Formica, Michele Missikoff, and S. Vazzana. An object-
oriented data model for artificial intelligence applications. In
J. W. Schmidt and A. A. Stogny, editors, next generation infor-
mation systems technology: first int. east/west database work-

shop, number 504 in Lecture Notes in Computer Science, pages
2641, Kiev, USSR, October 1990. Springer-Verlag.

Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-
Schaufl. Subsumption algorithms for concept description lan-
guages. In Proc. of 9th the European Conf. on Artificial Intel-
ligence ECAI-90, London, 1990. Pitman.

Bernhard Hollunder. Hybrid inferences in KL-ONE-based
knowledge representation systems. In Proc. of the German
Workshop on Artificial Intelligence. Springer-Verlag, 1990.

Carsten Kindermann. Class instances in a terminological
framework—an experience report. In Proc. of the German Work-
shop on Artificial Intelligence, pages 48-57. Springer-Verlag,
1990.

42

[LBS7]

[LS91a]

[LS91b]

[Mac91]

[MB92]

[Neb90al

[Neb90b]

[Neb91]

[NVLSS]

[PS93]

Hector J. Levesque and Ron J. Brachman. Expressiveness and
tractability in knowledge representation and reasoning. Com-
putational Intelligence, 3:78-93, 1987.

Maurizio Lenzerini and Andrea Schaerf. Concept languages as
query languages. In Proc. of the 9th Nat. Conf. on Artificial
Intelligence AAAI-91, 1991.

Maurizio Lenzerini and Andrea Schaerf. Querying concept-
based knowledge bases. In Proc. of the Workshop on Processing
Declarative Knowledge, PDK-91, Lecture Notes in Artificial In-
telligence. Springer-Verlag, 1991.

Robert MacGregor. The evolving technology of classification-
based knowledge representation systems. In John F. Sowa, ed-
itor, Principles of Semantic Networks, pages 385—400. Morgan
Kaufmann, 1991.

Robert MacGregor and David Brill. Recognition algorithms for
the loom classifier. In Proc. of the 10th Nat. Conf. on Artificial
Intelligence AAAI-92, pages T74-779, 1992.

Bernhard Nebel. Reasoning and Revision in Hybrid Representa-
tion Systems. Lecture Notes in Artificial Intelligence. Springer-

Verlag, 1990.

Bernhard Nebel. Terminological reasoning is inherently in-

tractable. Artificial Intelligence, 43:235-249, 1990.

Bernhard Nebel. Terminological cycles: Semantics and com-
putational properties. In John F. Sowa, editor, Principles of
Semantic Networks, pages 331-361. Morgan Kaufmann, 1991.

Bernhard Nebel and Kai von Luck. Hybrid reasoning in BACK.
In Proc. of the 3rd Int. Symp. on Methodologies for Intelligent
Systems [SMIS-88, pages 260-269. North-Holland, 1988.

P.F. Patel-Schneider and Bill Swartout. Working version
(draft): Description logic specification from the krss effort. Jan-
uary 1993. Unpublished Manuscript.

43

[QK90)

[Sch93]

[SSS91]

Joachim Quantz and Carsten Kindermann. Implementation of
the BACK system version 4. Technical Report KIT-Report 78,
FB Informatik, Technische Universitat Berlin, Berlin, Germany,

1990.

Andrea Schaerf. On the complexity of the instance checking
problem in concept languages with existential quantification.
In Proc. of the 7th Int. Symp. on Methodologies for Intelligent
Systems ISMIS-93, pages 508-517, 1993. An extended version

will appear in Journal of Intelligent Information Systems.

Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept
descriptions with complements. Artificial Intelligence, 48(1):1-
26, 1991.

44

