
Reasoning about The Past
with Two-Way Automata

Moshe Y. Vardi*

Rice University, Department of Computer Science, Houston, TX 77005-1892, USA

Abs t r ac t . The p-calculus can be viewed as essentially the "ultimate"
program logic, as it expressively subsumes all propositional program log-
ics, including dynamic logics, process logics, and temporal logics. It is
known that the satisfiability problem for the p-calculus is EXPTIME-
complete. This upper bound, however, is known for a version of the logic
that has only forward modalities, which express weakest preconditions,
but not backward modalities, which express strongest postconditions.
Our main result in this paper is an exponential time upper bound for the
satisfiability problem of the p-calculus with both forward and backward
modalities. To get this result we develop a theory of two-way alternating
automata on infinite trees.

1 I n t r o d u c t i o n

The propositional p-calculus is a propositional modal logic augmented with least
and greatest fixpoint operators. It was introduced in [16], following earlier stud-
ies of fixpoint calculi in the theory of program correctness [3,23,27]. Over the
past 15 years, the p-calculus has been established as essentially the "ult imate"
program logic, as it expressively subsumes all propositional program logics, in-
cluding dynamic logics such as PDL, process logics such as YAPL, and temporal
logics such as CTL* [7]. The p-calculus has gained further prominence with the
discovery that its formulas can be evaluated symbolically in a natural way [2],
leading to industrial acceptance of computer-aided verification. More recently,
the p-calculus has found a new application domain in the theory of description
logics in Artificial Intelligence [9]. As a result of this prominence, the p-calculus
has been the subject of extensive research; in particular, researchers focused on
the t ruth problem and the satisfiability problem.

In the t ruth problem, we are asked to verify whether a given formula holds
in a given state of a given Kripke structure (which is the essence of model
checking). In spite of extensive research, the precise complexity of this problem
is still open; it is known to be in NPNco-NP and PTIME-ha rd [1,6]. In contrast,
the complexity of the satisfiability problem, where we are asked to decide if a
given formula holds in some state of some Kripke structure, has been precisely

* Supported in part by NSF grants CCR-9628400 and CCR-9700061, and by a grant
from the Intel Corporation. URL: h t t p ://www. cs. r i c e . edu/~vardi .

629

identified. An exponential time lower time bound follows from the lower bound
for PDL in [8], and an exponential t ime upper time bound was shown in [4].

The exponential time upper bound for the /t-calculus was shown, however,
only for a version of the logic that has only forward modalities. The formula (a)~a
holds in a state s of a Kripke structure M when ~ holds in some a-successor
of s; in contrast, the "backward' formula (a-)~a holds in s if ~a holds in some
a-predecessor of s. Here a - describes the converse of the atomic program a.
Essentially, forward modalities express weakest preconditions, while backward
modalities express strongest postconditions. Backward modMities correspond to
reasoning about the past. There is now a significant body of evidence of the
usefulness of reasoning about the past in the context of program correctness [20].
For example, it is shown in [25] that past temporal connective can conveniently
replace history variables in compositional verification. Backward modalities also
have a counterpart in description logics, where they correspond to inverse roles
[9].

The importance of backword modalities motivated the study of procedures
for the satisfiability problem for logics that include them [11,18,24,30,34,35,38].
(Backward modalities do not, in general, pose any difficulty to truth-checking
procedures.) The challenge in developing such decision procedures is that the
interaction of backward modalities with other constructs of the logic can be quite
subtle. For example, backward modalities interact with the Repeat construct of
Repeat-PDL, posing a great difficulty to the development of decision procedures.
The first elementary decision procedure for Repeat-Converse-PDL was octuply
exponential [32]. This was improved later to a quadruply exponential procedure
[30]. Finally, combining the techniques in [4] with the techniques in [34] lead to
a singly exponential procedure.

Because of the subtlety of dealing with backward modalities, the satisfiability
problem for the full/t-calculus, which has both forward and backward modal-
ities, is still open. Our main result in this paper is an exponential t ime upper
bound for the problem. The approach we take is the automata-theoret ic ap-
proach advocated in [4,30,38]. We first show that even though the full/t-calculus
does not have the finite-model property, it does have the tree-model property.
(As argued in [37], the tree-model property, which asserts that if a formula is
satisfiable then it is satisfiable by a bounded-degree infinite tree structure, offers
an explanation for the robust decidability of many propositional program log-
ics.) We then show how a formula ~ can be translated to an automaton A~ on
infinite trees that accepts precisely the tree models of ~. To check whether ~ is
satisfiable it suffices then to solve the emptiness problem for A~.

Earlier papers that employed the automata-theoret ic approach used nonde-
terministic tree automata [4,30,38]. The translation from formulas to nondeter-
ministic au tomata is nontrivial; for example, the translation in [38] is exponen-
tial and consists of a sequence of successive translations. As demonstrated in
[1,36], it is easier to translate formulas to alternating automata. Alternating
tree au tomata generalize nondeterministic tree au tomata by allowing multiple
successor states to go down along the same branch of the tree. It is known that

630

while the translation from branching temporal logic formulas to nondetermin-
istic tree au toma ta is exponential, the translation to al ternating tree au toma ta
is linear [1,21]. Similarly, there is a simple translation f rom p-calculus formu-
las to al ternating tree au t om a t a [1,5]. Alternating tree au toma ta as defined in
[22], however, cannot easily handle backwards modalities, since they are one-way
automata . To deal with backward modalit ies we introduce two-way alternating
au toma ta on infinite trees, based on an analogous notion of two-way au toma ta
on finite trees in [29].

It remains then to solve the emptiness problem for two-way al ternating tree
au tomata . Alternating tree au toma ta can be viewed as infinite games [22]; this
holds for both one-way and two-ways au tomata . It is shown in [14] that under
certains conditions, which hold here, the winning player has a memoryless strat-
egy in these games. We use this to show that two-way al ternating tree au toma ta
can be translated to equivalent one-way nondeterministic tree a u t o m a t a with an
exponential blowup. The emptiness problem can then be solved by using known
algorithms for emptiness of nondeterministic tree au toma ta [4,19,26]. This yields
an exponential t ime upper bound for the emptiness problem for al ternating tree
au tomata , resulting in a bound of the same complexity for satisfiability of the
full p-calculus.

2 P r e l i m i n a r i e s

2.1 T h e p - C a l c u l u s

The propositional p-calculus is a propositional modal logic augmented with least
and greatest fixpoint operators [16]. A signature ~ for the p-calculus consists of
a set AP of atomic propositions, a set Vat of proposit ional variables and a set
Prog of a tomic programs. In the full p-calculus, we associate with each atomic
program a its converse a - . A program is either an atomic program or its converse.
We denote programs by (~.

A formula of the full p-calculus over the signature ~ is either:

- t r u e , false, p or ~p for all p E AP;
- y for all y E Var;
- 91 A 92 or 91 V 92, where 91 and 92 are p-calculus formulas;
- (a) 9 or [a]9, where 9 is a p-calculus formula and a is a program;
- PY.9(Y) or uy.9(y), where y E Var and 9(Y) is a formula.

The only difference between the full p-calculus and the standard p-calculus is
that in the full p-calculus both atomic programs and their converse are allowed
in the modalit ies (a) 9 and [a]9, while only atomic programs are allowed in such
modalities in the s tandard p-calculus. A sentence is a formula that contains no
free propositional variables. We call p and u fizpoint operators. We say tha t a
formula is a p-formula (u-formula), if it is of the form PY.9(Y) (uY.9(Y)). We
use A to denote a fixpoint operator p or u. For a A-formula Ay.9(y), the formula

631

9(Ay.~(Y)) is ob t a ined f rom 9(Y) by rep lac ing each free occurrence of y wi th
Ay.~(y) . We call a f o r m u l a of the fo rm (or}9 an existential fo rmula .

T h e seman t i c s of the full p -ca lcu lus is defined with respect to a Kripke
structure K = (W,R ,L} over the s igna tu re 2 , where W is a set of poin ts ,
R : Prog --4 2 W• assigns to each a t o m i c p r o g r a m a t r ans i t i on re l a t ion over W,
and L : AP --9 2 W assigns to each a t o m i c p ropos i t i on a set of poin ts . We now ex-
t end R to the converse of a tomic p rog rams . For each a t o m i c p r o g r a m a, we define
R(a-) to be the r e l a t iona l inverse of R(a), i.e., R(a-) = {(v, u) : (u, v) E R(a)} .

Given a Kr ipke s t ruc tu re K = (W, R, L) and a set { Y t , . . . , Y,~} of var iab les in
Vat, a valuation/2 : {Yl, �9 �9 Yn} --+ 2 W is an a s s ignment of subse ts of W to the

var iables Yt, . - . , Yn. For a vMuat ion 12, a var iab le y, and a set W ~ C W, we denote
by 12[y t-- W r the va lua t ion o b t a i n e d f rom 12 by ass igning W r to y. A f o r m u l a
9 wi th free var iables a m o n g Y l , - . . , Yn is i n t e rp re t ed over the s t ruc tu re K as
a m a p p i n g 9 K f rom va lua t ions to 2 W. Thus, 9K(12) denotes the set of po in t s
t h a t sa t i s fy ~ wi th the va lua t ion 12. T h e m a p p i n g 9 K is defined induc t ive ly as

follows:

- t rueK(12) : W and falseK(12) = ~;
- For p E AP, we have pK.~12) = L(p) and (~p)K(12) = W \ L(p);

For Yi E Var, we have Yi (12) = 12(Yi);
A = 9 (v) n

(9, v = 9 (v) u
- ([a]9)K(12) = {w E W :Vw' such tha t (w,w') E R(a), we have w' E ~aK(12)},

((a)9)K(12) = {w E W : 3w' such t ha t (w,w') E R(a) and w' E 9K(12)},
- (py.9(y))~"(12) = A { W ' c_ w:J '~C(12[ye-- w']) c w'};
_ (~,y.~(y))K(12) = U{ W, c W : W' c_ f (12[y +- W'])} .

Note t ha t no va lua t ion is requi red for a sentence. For a po in t w E W and a
sentence T, we say t h a t 9 holds at w in K , deno ted K, w ~ 9 iff w E 9 K.

2 . 2 A l t e r n a t i n g T r e e A u t o m a t a

For an i n t roduc t i on to the theory of a u t o m a t a oil infini te t rees see [33]. An
infinite tree is a set T C IN+, such t ha t if x �9 c E T where x E IN* and c E IN,
then also x E T, and, if the tree is full, then also x �9 d E T for all 0 < c I < c,
(Here we use IN to denote the positive integers.) The e lements of T are cal led
nodes, and the e m p t y word c is the root of T. For every x E T, the nodes x �9 c
where c E IN are the successors of x. As a convent ion, we take x - 0 = x and
(x . i) - - 1 = x (e . - 1 is undef ined) . The branching degree d(x) denotes the
n u m b e r of different successors x has. I f d(x) = k for all nodes x, then we say
t ha t the tree is k-ary. A n infinite path P of T is a pref ix-closed set P C T such
t ha t for every i >_ 0, there exists a unique x E P wi th Ix] = i. A labeled tree over
an a l p h a b e t Z is a pa i r (T, V) where T is a tree and V : T -9 Z .

Alternating automata on inf ini te t rees general ize n o n d e t e r m i n i s t i c t ree au-
t o m a t a and were first i n t roduced in [22]. Here we descr ibe two-way a l t e r n a t i n g
tree a u t o m a t a Let B+(X) be the set of pos i t ive Boolean fo rmulas over X (i.e.,

632

boolean fo rmulas buil t f rom elements in X us ing/~ and V), where we also allow
the fo rmulas t r u e and fa l se , and, as usual , /~ has precedence over V. For a set
Y C X and a f o rmu la 0 E B + (X) , we say t ha t Y satisfies 0 iff assigning t r u e to
e lements in Y and assigning f a l s e to e lements in X \ Y makes O true. on k-ary
trees. Let [k] = { - 1 , 0 , 1 , . . . , k}. A two-way alternating automaton over infinite
k -a ry trees is a tuple A = (~ , Q, (f, q0, F) , where Z is the input a lphabe t , Q is a
finite set of s tates , ~ : Q • Z -+ B + ([k] • Q) is the t rans i t ion funct ion, q0 E Q is
an initial s ta te , and F specifies the acceptance condit ion.

A run of an a l te rna t ing a u t o m a t o n A over a labeled tree (T, V) is a labeled
tree (Tr, r} in which every node is labeled by an e lement of T • Q. A node in
Tr, labeled by (x, q), describes a copy of the a u t o m a t o n tha t is in the s ta te q
and reads the node x of T. Note tha t m a n y nodes of Tr can correspond to the
same node of T; there is no one- to-one correspondence between the nodes of the
run and the nodes of the tree. T h e labels of a node and its successors have to
sat isfy the t ransi t ion funct ion. Formally, a run (T~, r) is a Z~- labeled tree, where
X'r = T • Q and (Tr, r) satisfies the following:

1. r E Tr and r(c) = (~, q0).
2. Let y E T~ with v(y) = (x, q) and ~(q, V(x)) = 0. Then there is a (possibly

emp ty) set ~S' -= {(c,,qO,(ct,ql),...,(c**,q,~)} C { - 1 , 0 , . . . , k } • Q, such
tha t the following hold:

- ,5' satisfies ~, and
- for all 1 < i < n, we have y.i E T~, z.c~ is defined, and r (y . i) = (x.c~, q~).

Note tha t the a u t o m a t o n cannot go backwards f rom the root of the input tree,
as we require t ha t x - ci be defined, but r �9 - 1 is undefined.

A run (T~, r) is accepting if all its infinite pa ths sat isfy the acceptance condi-
t ion. We consider here parity acceptance condit ions [5]. A par i ty condi t ion over
a s ta te set Q is a finite sequence F = (G1,G2,.. . ,Gm) of subsets of Q, where
G1 C G2 C ... C Gm = Q. Given a run (T~, r) and an infinite pa th P C Tr,
let inf(P) C_ Q be such tha t q E inf(P) if and only if there are infinitely m a n y
y E P for which r(y) E T • {q}. T h a t is, inf(P) conta ins exact ly all the s ta tes
tha t appea r infinitely often in P . A pa th P satisfies the condit ion F if there is
an even i for which inf(P) N G~ # 0 and inf(P) N G~_, = 9. (For co-parity
acceptance condi t ion we require i to be odd.) An a u t o m a t o n accepts a labeled
tree if and only if there exists a run tha t accepts it. We denote by s the set
of all ~ - l abe l ed trees tha t A accepts.

3 T h e T r e e - M o d e l P r o p e r t y

To de te rmine the t ru th value of a Boolean fo rmula it suffices to consider its
subformulas . For moda l formulas , one has to consider a bigger collection of for-
mulas , the so called Fischer-Ladner closure [8]. T h e closure, el(w), of a sentence

is the smal les t set of sentences tha t satisfies the following:

6 3 3

- e

- If pl A 9~2 E cl(p) or Pl V P2 E c/(p), then Pl E cl(p) and p~ E cl(p).
- If (a)r E cl(9~) or [a le E cl(p), then r E el(p).
- If AB.P(y) E cl(p), then p(Ay.p(y)) E cl(9~).

As proved in [16], for every sentence p, the number of elements in cl(~) is linear
in the length II~ll of ~.

An atom A of ~ is a set of formulas in cl(p) that satisfies the following
properties:

- i f p E AP, then, exclusively, either p E A or -~p E A,
- i f ~ l A p2Ecl(~), then pl Ap2EA i f f ~ l E A and p~EA,
- if pl V p2Eel(p), then pl Vp~EA iff ~ I E A or 9~2EA,
- if)~X.r then AX. r iff r 162

Intuitively, an atom is a consistent subset of el(p). The set of atoms of p is
denoted at(9~). Clearly, the size of at(p) is at most exponential in the length of
p.

A pre-model (K, ~r) for p is a pair consisting of a Kripke structure K =
(W, R, L} and a labeling function ~r : W --+ at(p) that satisfies the following
properties:

- pE~r(u), for some u E W,

- i f p E ~r(u), then u E L(p), and if-~p E ~r(u), then u ~ L(p), for p E AP and
u E W ,

- if (@r for u E W, then r for some v E W such that (u, v) E

- if [a]OETr(u), for u E W, then CETr(v), for all v E W such that (u, v) E R(a).

A pre-model of 7~ is almost a model of p except for fixpoint formulas that do not
necessarily get the right semantics (that is, fixpoints are arbitrary rather than
minimal or maximal as needed).

A choice function [31] p for a pre-model (K, 7r) of p, where K = (W, R, L), is
a partial function from W x cl(p) to WUcl(9~) such that for each u E W: (a) for
each disjunction pl Vp2 E ~r(u), we have that p(u, T1 Vp2) is either pl or P2, and
p(u, ~1 V P2) E 7~(u), and (b) for each existential formula (@ r E ~-(u), we have
that p(u, (a)r is some v E W such that (u, v) E R(a) and ~/~ E ~r(v). Intuitively,
a choice function identifies how a disjunctive formula or an existential formula
is satisfied. An adorned pre-model (K, 7r, p) for p consists of a pre-model (K, ~r)
for p and a choice function p.

We can now define formally the notion of derivation between occurrences of
sentences in adorned pre-models. Let (K, ~r, p) be an adorned pre-model of ~,
The derivation relation, denoted ~-, is defined as follows:

- i f v t h e n V p , V p 2) , .),
- if r A p2E~r(u), then (~1 A ~2, u)~-(pl, u) and (Pl A p2, u)~-(~2, u),

- if (a)r then ((@r u)h(r p(u, (a)r
- if A x . C (x) ~ (u) , then () ,X.r u)F(r u).

634

A least-fixpoint sentence # X . r is said to be regenerated from point u
to point v (u might be equal to v) in an adorned premodel (K, ~r, p) if there
is a sequence (0 1 , u l) , . . . , (0 k , u k) , with k > 1, such that 01 = ~k = # X . r
ul = u, Uk -= v, (Of, ut)F(0t+l, uz+l), for 0 < l < k, and p X . r is a subsentence
of each of the t~i's. We say that (K, re, p) is well-founded if there is no fixpoint
sentence p X . r) and an infinite sequence u0, U l , . . . such that p X . r
is regenerated from uj to Uj+l for all j > 0.

The following theorem was shown for the s tandard p-calculus, but the proof
is insensitive to the direction of the modalities.

T h e o r e m 1. [31] A sentence 9 of the full p-calculus has a model K if and only
if it has a well-founded adorned pre-model (K, ~r, p).

We can now establish the tree-model property for the full p-calculus. Note
that it follows from [30] that the finite-model property does not hold for the
full p-calculus; in contrast, it does hold for the s tandard /t-calculus [17]. The
tree-model property asserts that if a sentence is satisfiable then it is satisfiable
by a bounded-degree infinite tree structure. A tree structure is a Kripe structure
(W, R, L) where W is a tree and for each program a if (u, v) E R(a) , then either
v is a successor of u or u is a successor of v.

The standard way of proving the tree-model property is to take a model
and straightforwardly "unravel" it; see [37]. Special care, however, is needed to
ensure that the number of successors at each node is bounded.

T h e o r e m 2. I f a formula 9 in the full p-calculus is satisfiable, then it is sat-
isfiable at the root of a tree structure whose branching degrees are bounded by
11911.

Note that the tree model constructed in the above proof is not a full tree; it
is possible for xi to be a node in the tree without x(i - l) being a node in the
tree. It is technically more convenient to deal with full trees. To that end we add
a new atomic proposition PT. The intuition is that PT is true only at nodes that
belong to the tree (so nodes where PT is false are d u m m y nodes). We now replace
each modal subformula (a) r by (a)(PT A r and each modal subformula [a le by
[a](Pw --4 r This t ransformation causes only a linear blow-up, I t is easy to see
that the if the original formula is satisfiable at the root of a tree structure whose
branching degrees are bounded by]191t, then the new formula 9 ' is satisfiable at
the root of a 119'll-ary tree (where PT is true at the root). We call such formulas
uniform formulas, and we can thus restrict attention to full trees. Since we need
to represent the information about the transition function R, we introduce new
atomic propositions to represent this information. For each atomic program a we
introduce two atomic propositions: Pa holds at a node x j when (x, x j) E R(a)
and p~- holds in x j when (x j, x) e R(a). We call tree structures that obey these
constraints well-behaved tree structures,

We are now ready to describe the translation from formulas to two-way al-
ternating t ree-automata .

635

T h e o r e m 3. Given a uniform formula 9 of the full It-calculus, we can construct
a two-way alternating parity automaton A~, whose number of states is O(11911),
such that s is exactly the set of well-behaved)lgll-ary tree structures satis-
fying 9 at the root.

P r o o f S k e t c h : The au tomaton is obtained by taking the intersection of two
a u t o m a t a (intersection is trivial for al ternating au toma ta [22]). The first au toma-
ton checks that the input tree is well-behaved. Constructing this au tomaton is
an easy exercise. The second au tomaton checks that 9 is satisfied at the root of
the input tree. Take A~ = (2 AP, cl(9), 5, 9, F}. We need to define the transition
function 5 and the acceptance condition F. Let n = 11911. For all ~ E 2 AP and
a C Prog we define:

- 5(p, cr) = t r u e if p E ~. * 5(p, cr) = fa l se if p ~ cr.
- 5(-~p, cr) = t r u e if p ~ g. * 5(-,p, o) = f a l se if p E r
-- 5 (91 A 92,0") = (0 , 9 1) A (0 , 9 2) .
-- 5(91 V 92, tr) -"- (0, 91) V (0, 92) .
- 5(Au.9(y) , = (o,
- 5((a)r c~) = ((-1 , r A (0,p2)) vVc~_-, ((c, r A (c, pa)).
- 5 ((a -) r cr) = ((- 1 , r (O,pa)) VVcn=l ((C,~)/~ (C, pa)).
- 5([a]r = ((- 1 , r V (0 , - 'PZ)) A hc\ ((c, r v (e,
- 5 ([a -] r cr) _--_ ((- - 1 , r V (0, "Pa)) A Acn__l ((c , r v (e , - ~ P a)) "

T h e translation here is by a straighfoward induction on the structure of 9. It
simplifies the translation given in [1] (for the s tandard it-cMculus), since we allow
the usage of ~-transitions (i.e., transitions to the direction 0).

It remains to define the pari ty acceptance condition F. This is done analo-
gously to the construction in [6], which drew a tight relationship between model
checking for the s tandard it-calculus and one-way nondeterministic par i ty tree
au tomata . []

C o r o l l a r y 4. A uniform formula 9 of the full it-calculus is satisfiable iff s
is not empty.

4 E m p t i n e s s o f T w o - W a y A l t e r n a t i n g T r e e A u t o m a t a

We solve the emptiness problem for two-way al ternating tree au tomata , by re-
ducing them to one-way nondeterministic tree au tomata . A run of a nonde-
terministic tree au tomaton is a tree with the same structure as the input tree
but a different label set; the run tree is labeled by states. In contrast, a run of
an alternating au tomaton is a tree whose structure can be quite different than
that of the input tree. Thus, to reduce alternating au toma ta to nondeterministic
au tomata , we have to overcome this difficulty.

Let A = (Z, Q, 5, q0, F) be a two-way al ternating au tomaton on k-ary trees.
A strategy tree for A is a mapping ~" : { 1 , . . . , k}* --4 2 qx[klxq. Thus, each label
in a strategy is an edge-[k]-labeled directed graph on Q. Intuitively, each label is

636

a set of transitions. For each label (, we define state(() = {u : (u, i, v) E (}, i.e.,
state(~) is the set of sources in the graph (. The strategy tree v is on a k-ary input
tree ({ 1 , . . . , k } * , V) i f q o E state(v(s)), and for each node x E { 1 , . . . , k } * and
each state q E state(r(x)), the set {(c, q~) : (q, c, q~) E r (x)} satisfies 5(q, V(x)).
Thus, each label can be viewed as a s trategy of satisfying the transition function.

A path ~ in a strategy tree r is a sequence (ua, qi), (u2, q2),. . , of pairs
from { 1 , . . . , k}* • Q such that, for all i > 0, there is some ci E [k] such that
(qi, ci, qi+a) E v(ui) and ui+] = ui .ci. Thus, /3 is obtained by following tran-
sitions in the s trategy tree. We define inf(~) to be the set of states in Q that
occur infinitely often in/3. We say tha t an infinite pa th /3 satisfies a pari ty con-
dition F = (G I , G 2 , . . .) if there is an even i for which in f (~) N Gi ~ ~ and
inf(~) M G i - 1 -~ ~. We say that v is accepting if all infinite paths in v satisfy F.

P r o p o s i t i o n 5. A two-way alternating parity automaton accepts an input tree
iff it has an accepting strategy tree over the input tree.

P r o o f S k e t c h : The "if" direction is immediate . For the "only if" direction,
let A = (Z,Q,~f, q0, F) , F = (G1 ,G2 , . . .) , and let ({1 , . . . , k}* , V) be the input
tree. Consider the following game between two players: the Protagonist and the
Antagonist. Intuitively, the Protoganist is trying to show that A accepts the
input tree, and the Antagonist is trying to challenge that. A configuration of the
game is a pair in { 1 , . . . , k}* x Q. The initial configuration is (e, q0). Consider a
configuration (x, q). The Protagonist now chooses a set {(cl, q l) , . . . , (era, qm)}
that satisfies ~f(q, V(x)); the Antagonist responds by choosing an element (ci, qi)
of the set. The new configuration is then (x . ei , ql) . If x �9 ci is undefined or
if ci(q, V(x)) = false , then the Antagonist wins immediately. Consider now an
infinite play 7. Let in f(7) be the set of states in Q that repeat infinitely in the
sequence of configurations in 3'. The Protagonist wins if there is an even i for
which in f(7) N G~ ~ 0 and in f(7) (1G~-a = 0. It is not difficult to see that the
Protagonists wins the game, i.e., has a winning strategy against the Antagonist ,
iff A accepts the input tree.

The game as we described it meets the conditions in [14]. It follows that if the
Protagonist wins then it as a memoryless strategy, i.e., a s t rategy whose moves
do not depend on the history of the game, but only on the current configuration.
Thus, A accepts the input tree iff it has a strategy tree over the input tree. []

We have thus succeeded in defining a notion of run for al ternating a u t o m a t a
that will have the same tree structure as the input tree. We are still facing the
problem tha t paths in a strategy tree can go both up and down. We need to find
a way to restrict at tention to uni-directional paths.

Let A = (~ , Q, (f, q0, F) , F = (G1, G2, . . . , Grn), be a two-way al ternating
au tomaton on k-ary trees, and let v : { 1 , . . . , k } * -+ 2 q• be a s trategy

tree for A. An annotation for A is a mapping ~1 : { 1 , . . . , k } * --+ 2 qx2{ }xq
Thus, each label in an annotat ion is an edge-2 {1 m}-labeled directed graph on
Q. For each s tate q E Q, let index(q) be the minimal i such that q E Gi. We

637

say tha t ~/is an anno ta t ion of r if some closure condit ions hold for each node
x E { 1 , . . . , k } * . Intuitively, these condit ions say tha t 7j contains all relevant
in format ion about finite pa ths in T. T h e condit ions are: (a) if (q, H1, q') E ~(x)
and (q ' ,H2,q") E ~l(x), then (q, H1 U H2, q") E ~(x), (b) i f (q,O,q ~) E v(x)
then (q, index(q~),q ~) E 71(x), (c) i f x = yi, (q , - 1 , q ~) E v(x), (q~,H,q') E
~(y), and (q", i, q'") E v(x), then (q, g U {index(q') , index(q'")}, q'") E 71(x),
(d) i f y = xi, (q,i ,q') E v(x), (q ' ,H,q") E 7I(y), and (q", - 1 , q'") E v(y), then
(q, H U {index(q'), index(q'")}, q'") E ~?(x).

A downward path tr in ~ is a sequence (ua, q~, t~), (u2, q2, t 2) , . . , of triples,
where each ui is in { 1 , . . . , k}*, each qi is in Q, and each ti is ei ther an element
of "r(ui) or ~(ui), such that : (a) ei ther ti is (qi, e, qi+l) for some c E { 1 , . . . , k},
and Ui+l = ul .c; in this case we define index(ti) to be index(q~+~), or (b) t~ is
(qi, H, qi+l), for H C_ { 1 , . . . , m}, and Ui+l = ui; in this case we define index(t i)
to be ra in(H) . We consider two kinds of downward paths: (a) infinite paths tr =
(u~, ql, t l) , (u2, q2, t 2) , . . . , whose index, index(x) is defined as the minimal j such
tha t index(ti) = j infinitely often, or finite paths x = (Ul, q~, t~) , . . . , (u~, q~, G),
where t~ = (q~, H~, q~) (i.e., the pa th ends in a loop), whose index, index(g) is
defined as index(G). In either case we say tha t tr violates F if index(x) is odd.
We say tha t 71 is accepting if no downward pa th in ~1 violates F.

P r o p o s i t i o n 6. A two-way alternating parity automaton accepts an input tree
iff it has a strategy tree over the input tree and an accepting annotation of the
strategy tree.

P r o o f Sketch: Let A = (E', Q, d, q0, F), F = (G,, (;2 Gin), and let ({ 1 , . . . , k}*, V)
be the input tree. Suppose first tha t A accepts the input tree. By Proposi t ion 5,
there is an accepting s t ra tegy tree r over ({ 1 , . . . , k } * , V). Consider two an-
nota t ions 711 and 712 of r . Thei r intersection 711 (3 712, defined by 7/1 r ~2(x) =
711(x) n 712 (x) for each x E { 1 , . . . , k}*, is also an annota t ion of r . Thus, there ex-
ists a minimal annota t ion 71 of r . (Tha t is, if 71' is also an annota t ion of r , then 71
must be contained in 71' , i.e., for each x E { 1 , . . . , k}* we have tha t z/(x) C__ ~'(x).)
It can be shown tha t since all pa ths in r satisfies F, no downward pa th in 71 vio-
lates F. Conversely, suppose that 7- is a s t ra tegy tree over ({ 1 , . . . , k}*, V) and q
is an anno ta t ion of r such tha t no downward pa th in 71 violates F . Let 71' be the
minimal annota t ion of r ; 7/' must be contained in 71. It follows tha t no downward
pa th in 71' violates F . From this we can show tha t all pa ths in r satisfy F . By
Proposi t ion 5, A accepts ({ 1 , . . . , k}*, V). []

Consider now annotated trees ({ 1 , . . . , k}*, V, r, 71) , where r is a s t ra tegy tree
for A o,, ({ , , k } ' , V) , . , , , ,p i~ . , , , . , , , , , t a t i , , , , , ,r T. w ~ ,~y th , , t ({J k } ' , V, ~, ,j)
is accepting if ~/is accepting.

T h e o r e m 7. Let A be a two-way alternating parity tree automaton. Then there
is a nondeterministic parity tree automaton A n such that E(A) = E(An). The
number of states in A n is exponential m the number of states of A, but the size
of the acceptance condition of A '~ is linear in the size of the acceptance condition
of A.

638

P r o o f Ske t ch : Let A = (Z:, Q, (i, q0, F) , F = (G i , . . . , Gin). The nondetermin-
istic automaton A '~ is the intersection of two automata. Given an annotated
tree ({1 , . . . , k}*, V, r ,q) , the first automaton, A•, checks that r is a strategy
tree on ({1 , . . . , k}*, V) and that 7/is an annotation of r. Constructing A? is a
not-too-difficult exercise. The second automaton, A~, checks that v is accepting.
We construct A~ in several steps.

Consider a downward path ~r = (Ul, ql, tl), (u2, q2, t2) , We define its pro-
jection to be the sequence proj(n) = (ql, tl), (q2, t2),.. . , which is is a sequence
over the finite alphabet Q x ((Q x [k] x Q) u (Q x 2 {1 m} X Q)). We can con-
struct a co-parity word automaton B that accepts projections of downward paths
that violates F. The state set of B is Q • { 1 , . . . , m } . All that B does is check
that (a) either ti is (qi, c, qi+l) for some c E { 1 , . . . , k } , (b) tl is (qi, H, qi+i)
for some H C { 1 , . . . , m } . In either case B also remembers index(ti). B ac-
cepts if there is some tl : (qi, Hi, qi) with an odd index(ti) or if the minimal
index that repeats infinitely often is odd. The size of the acceptance condition
of B is linear in the size of the acceptance condition of A. From B we construct
another co-parity word automaton B'. This automaton reads a sequence of la-
bels of 7 or 71 and checks whether it contains a projection of a downward path
that violates F. The state set of B' is still Q • { 1 , . . . , m } , though its alpha-

bet is 2 qx[k]xq U 2 Qx2{1 }xq. The size of the acceptance condition of B' is
still linear in the size of the acceptance condition of A. We now co-determinize
B', i.e., determinize it and complement it in a singly-exponential construction
[28,33] to obtain a deterministic parity word automaton B" that rejects violating
downward paths. The deterministic tree automaton B'" is obtained by simply
running B" in parallel over all branches of ({ 1 , . . . , k}*, V, v, 7]). Thus, its size is
exponential in the size of A. The size of the acceptance condition of B"' is still
linear in the size of the acceptance condition of A. Finally, A~ is obtained from
B"' by projecting out the r and 71 component of the inputs tree, so the input
tree is of the form ({1 , . . . , k}*, Y). O

We can now combine Theorem 3, Corollary 4, Theorem 7, and the tree au-
tomata emptiness algorithms in [4,19,26] (which are polynomial in the number
of states, but exponential in the size of the acceptance condition) to obtain:

T h e o r e m 8. The satisfiability problem for the full p-calculus is decidable in
exponential time.

Remark 9. One can extend the framework of the p-calculus by allowing deter-
ministic atomic programs. Such programs correspond to functional roles in de-
scription logics [10]. The mapping R in a Kripke structure I i : (W, R, L) assigns
to each deterministic atomic program a partial function over W. The results in
this paper can be extended also to prove an exponential time upper bound for the
full tt-calctdus with deterministic programs. (See h t tp ://www. cs. r i c e . edu/~vardi .)

5 C o n c l u d i n g R e m a r k s

Over the last few years there has been a significant interest in logics with bounded
number of variables (see [15]). One surprising result in this line of research is that

639

while F O 3, 3-variable first-order logic, is already undecidable, the satisfiability
problem for F O 2, 2-variable first-order logic, is NEXPTIME-complete [12]. This
lead researchers to consider extensions of F O 2. Unfortunately, fairly modest ex-
tensions of F O 2 by fixpoint constructs quickly lead to undecidability [13]. On the
other hand, the full p-calculus can be viewed as a fragment of 2-variable fixpoint
logic [37]. Our main decidability result here for the full p-calculus pushes the
"decidability envelope" further. The key difference between the full p-calculus
and the fixpoint extensions of F O 2 seems to be the tree-model property, which
was offered in [37] as an explanation for the robust decidability of propositional
program logics.

References

1. O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In D. L. Dill, editor, Computer Aided Verification,
Proc. 6th Int. Conference, volume 818 of Lecture Notes in Computer Science, pages
142-155, Stanford, June 1994. Springer-Verlag, Berlin.

2. J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142-
170, June 1992.

3. E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In Proc. 7th Int'l Colloq. on Automata, Languages and
Programming, pages 169-181, 1980.

4. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In Proc. 29th IEEE Symposium on Foundations of Computer Science, pages
368-377, White Plains, October 1988.

5. E.A. Emerson and C. Jutla. Tree automata~ Mu-catculus and determinacy. In Proc.
32nd IEEE Symposium on Foundations of Computer Science, pages 368-377, San
Juan, October 1991.

6. E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of p-
calculus. In Computer Aided Verification, Proc. 5th Int. Conference, volume 697,
pages 385-396, Elounda, Crete, June 1993. Lecture Notes in Computer Science,
Springer-Verlag.

7. E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the pro-
posoitional Mu-calculus. In Proc. 1st Symposium on Logic in Computer Science,
pages 267-278, Cambridge, June 1986.

8. M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and Systems Sciences, 18:194-211, 1979.

9. G. De Giacomo and M. Lenzerini. Concept languages with number restrictions and
fixpoints, and its relationship with p-calculus. In Proc. 11th European Conference
on Artificial Intelligence (ECAI-9$), pages 411-415. John Wiley and Sons, 1994.

10. G. De Giacomo and M. Lenzerini. Description logics with inverse roles, functional
restrictions, and n-ary relations. In Proe. 4th European Workshop on Logics in
Artificial Intelligence (JELIA-94) , number 838 in Lecture Notes In Artificial In-
telligence, pages 332-346. Springer-Verlag, 1994.

11. G. De Giacomo and F. Masacci. Tableaux and algorithms for propositional dy-
namic logic with converse. In M. A. McRobbie and J.K. Slaney, editors, Proc. 13th
Int'l Conf. on Automated Deduction, volume 1104 of Lecture Notes in Artificial
Intelligence, pages 613-627. Springer-Verlag, 1996.

640

12. E. Grs Ph. G. Kolaitis, and M. Y. Vardi. The decision problem for 2-variable
first-order logic. Bulletin of Symbolic Logic, 3:53-69, 1997.

13. E. Grs M. Otto, and E. Rosen. Undecidability results for two-variable logics.
Unpublished manuscript, 1996.

14. C.S. Jutla. Determinization and memoryless winning strategies. Information and
Computation, 133(2):117-134, 1997.

15. Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of variable-confined logics.
In Proc. 11th IEEE Symp. on Logic in Computer Science, pages 348-359, 1996.

16. D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

17. D. Kozen. A finite model theorem for the propositional p-calculus. Studia Logica,
47(3):333-354, 1988.

18. O. Kupferman and A. Pnueli. Once and for all. In Proc. lOth IEEE Symposium
on Logic in Computer Science, pages 25-35, San Diego, June 1995.

19. O. Kupferman and M.Y. Vardi. Weak alternating automata and tree au tomata
emptiness. In Proc. 30th A CM Symposium on Theory of Computing, Dallas, 1998.

20. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Pro-
grams, volume 193 of Lecture Notes in Computer Science, pages 196-218, Brooklyn,
June 1985. Springer-Verlag.

21. D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating au tomata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science, pages
422-427, Edinburgh, July 1988.

22. D.E. Muller and P.E. Schupp. Alternating au tomata on infinite trees. Theoretical
Computer Science, 54,:267-276, 1987.

23. D. Park. Finiteness is p-ineffable. Theoretical Computer Science, 3:173-181, 1976.
24. S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered

computations. In Proc. 3rd A CM Symposium on Principles of Distributed Com-
puting, pages 28-37, Vancouver, August 1984.

25. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logics and Models of Concurrent Systems, volulne F-13
of NATO Advanced Summer Institutes, pages 123-144. Springer-Verlag, 1985.

26. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
A CM Symposium on Principles of Programming Languages, Austin, January 1989.

27. V.R. Pra t t . A decidable p-calculus: preliminary report. In Proc. 22nd IEEE
Symposium on Foundation of Computer Science, pages 421-427, 1981.

28. S. Safra. On the complexity of w-automata. In Proc. ~ IEEE Symposium on
Foundations of Computer Science, pages 319-327, White Plains, October 1988.

29. G. Slutzld. Alternating tree automata . Theoretical Computer Science, 41:305-318,
1985.

30. R.S. Streett . Propositional dynamic logic of looping and converse. Information
and Control, 54:121-141, 1982.

31. R.S. Streett and E.A. Emerson. An au tomata theoretic decision procedure for the
propositional mu-calculus. Information and Computation, 81(3):249-264, 1989.

32. S.S. Streett . A propositional dynamic logic for reasoning about program divergence.
PhD thesis, M.Sc. Thesis, MIT, 1980.

33. W. Thomas. Languages, automata, and logic. Handbook of Formal Language
Theory, III:389-455, 1997.

34. M.Y. Vardi. The taming of converse: Reasoning about two-way computations. In
Logic of Programs Workshop, volume 193, pages 413-424, Brooklyn, June 1985.
Lecture Notes in Computer Science, Springer-Verlag.

641

35. M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Syrup. on Principles
of Programming Languages, pages 250-259, San Diego, January 1988.

36. M.Y. Vardi. Alternating au tomata - unifying t ru th and validity checking for tem-
poral logics. In W. McCune, editor, Proc. 14th International Conference on Au-
tomated Deduction, volume 1249 of Lecture Notes in Artificial Intelligence, pages
191-206. Springer-Verlag, Berlin, july 1997.

37. M.Y. Vardi. What makes modal logic so robustly decidable? In Descriptive Com-
plexity and Finite Models, pages 149-183. American Mathematical Society, 1997.

38. M.Y. Vardi and P. Wolper. Automata-theoret ic techniques for modal logics of
programs. Journal of Computer and System Science, 32(2):182-221, April 1986.

