Reasoning about The Past with Two-Way Automata

Moshe Y. Vardi*
Rice University, Department of Computer Science, Houston, TX 77005-1892, USA

Abstract

The μ-calculus can be viewed as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics, process logics, and temporal logics. It is known that the satisfiability problem for the μ-calculus is EXPTIMEcomplete. This upper bound, however, is known for a version of the logic that has only forward modalities, which express weakest preconditions, but not backward modalities, which express strongest postconditions. Our main result in this paper is an exponential time upper bound for the satisfiability problem of the μ-calculus with both forward and backward modalities. To get this result we develop a theory of two-way alternating automata on infinite trees.

1 Introduction

The propositional μ-calculus is a propositional modal logic augmented with least and greatest fixpoint operators. It was introduced in [16], following earlier studies of fixpoint calculi in the theory of program correctness [3,23,27]. Over the past 15 years, the μ-calculus has been established as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics such as PDL, process logics such as YAPL, and temporal logics such as CTL* [7]. The μ-calculus has gained further prominence with the discovery that its formulas can be evaluated symbolically in a natural way [2], leading to industrial acceptance of computer-aided verification. More recently, the μ-calculus has found a new application domain in the theory of description logics in Artificial Intelligence [9]. As a result of this prominence, the μ-calculus has been the subject of extensive research; in particular, researchers focused on the truth problem and the satisfiability problem.

In the truth problem, we are asked to verify whether a given formula holds in a given state of a given Kripke structure (which is the essence of model checking). In spite of extensive research, the precise complexity of this problem is still open; it is known to be in NP $\cap c o-N P$ and PTIME-hard [1,6]. In contrast, the complexity of the satisfiability problem, where we are asked to decide if a given formula holds in some state of some Kripke structure, has been precisely

[^0]identified. An exponential time lower time bound follows from the lower bound for PDL in [8], and an exponential time upper time bound was shown in [4].

The exponential time upper bound for the μ-calculus was shown, however, only for a version of the logic that has only forward modalities. The formula $\langle a\rangle \varphi$ holds in a state s of a Kripke structure M when φ holds in some a-successor of s; in contrast, the "backward" formula $\left\langle a^{-}\right\rangle \varphi$ holds in s if φ holds in some a-predecessor of s. Here \boldsymbol{a}^{-}describes the converse of the atomic program \boldsymbol{a}. Essentially, forward modalities express weakest preconditions, while backward modalities express strongest postconditions. Backward modalities correspond to reasoning about the past. There is now a significant body of evidence of the usefulness of reasoning about the past in the context of program correctness [20]. For example, it is shown in [25] that past temporal connective can conveniently replace history variables in compositional verification. Backward modalities also have a counterpart in description logics, where they correspond to inverse roles [9].

The importance of backword modalities motivated the study of procedures for the satisfiability problem for logics that include them [11, 18, $24,30,34,35,38]$. (Backward modalities do not, in general, pose any difficulty to truth-checking procedures.) The challenge in developing such decision procedures is that the interaction of backward modalities with other constructs of the logic can be quite subtle. For example, backward modalities interact with the Repeat construct of Repeat-PDL, posing a great difficulty to the development of decision procedures. The first elementary decision procedure for Repeat-Converse-PDL was octuply exponential [32]. This was improved later to a quadruply exponential procedure [30]. Finally, combining the techniques in [4] with the techniques in [34] lead to a singly exponential procedure.

Because of the subtlety of dealing with backward modalities, the satisfiability problem for the full μ-calculus, which has both forward and backward modalities, is still open. Our main result in this paper is an exponential time upper bound for the problem. The approach we take is the automata-theoretic approach advocated in $[4,30,38]$. We first show that even though the full μ-calculus does not have the finite-model property, it does have the tree-model property. (As argued in [37], the tree-model property, which asserts that if a formula is satisfiable then it is satisfiable by a bounded-degree infinite tree structure, offers an explanation for the robust decidability of many propositional program logics.) We then show how a formula φ can be translated to an automaton A_{φ} on infinite trees that accepts precisely the tree models of φ. To check whether φ is satisfiable it suffices then to solve the emptiness problem for A_{φ}.

Earlier papers that employed the automata-theoretic approach used nondeterministic tree automata $[4,30,38]$. The translation from formulas to nondeterministic automata is nontrivial; for example, the translation in [38] is exponential and consists of a sequence of successive translations. As demonstrated in $[1,36]$, it is easier to translate formulas to alternating automata. Alternating tree automata generalize nondeterministic tree automata by allowing multiple successor states to go down along the same branch of the tree. It is known that
while the translation from branching temporal logic formulas to nondeterministic tree automata is exponential, the translation to alternating tree automata is linear $[1,21]$. Similarly, there is a simple translation from μ-calculus formulas to alternating tree automata $[1,5]$. Alternating tree automata as defined in [22], however, cannot easily handle backwards modalities, since they are one-way automata. To deal with backward modalities we introduce two-way alternating automata on infinite trees, based on an analogous notion of two-way automata on finite trees in [29].

It remains then to solve the emptiness problem for two-way alternating tree automata. Alternating tree automata can be viewed as infinite games [22]; this holds for both one-way and two-ways automata. It is shown in [14] that under certains conditions, which hold here, the winning player has a memoryless strategy in these games. We use this to show that two-way alternating tree automata can be translated to equivalent one-way nondeterministic tree automata with an exponential blowup. The emptiness problem can then be solved by using known algorithms for emptiness of nondeterministic tree automata $[4,19,26]$. This yields an exponential time upper bound for the emptiness problem for alternating tree automata, resulting in a bound of the same complexity for satisfiability of the full μ-calculus.

2 Preliminaries

2.1 The μ-Calculus

The propositional μ-calculus is a propositional modal logic augmented with least and greatest fixpoint operators [16]. A signature Ξ for the μ-calculus consists of a set AP of atomic propositions, a set Var of propositional variables and a set Prog of atomic programs. In the full μ-calculus, we associate with each atomic program a its converse a^{-}. A program is either an atomic program or its converse. We denote programs by α.

A formula of the full μ-calculus over the signature Ξ is either:

- true, false, p or $\neg p$ for all $p \in \mathrm{AP}$;
$-y$ for all $y \in \operatorname{Var} ;$
- $\varphi_{1} \wedge \varphi_{2}$ or $\varphi_{1} \vee \varphi_{2}$, where φ_{1} and φ_{2} are μ-calculus formulas;
$-\langle\alpha\rangle \varphi$ or $[\alpha] \varphi$, where φ is a μ-calculus formula and α is a program;
- $\mu y . \varphi(y)$ or $\nu y . \varphi(y)$, where $y \in \operatorname{Var}$ and $\varphi(y)$ is a formula.

The only difference between the full μ-calculus and the standard μ-calculus is that in the full μ-calculus both atomic programs and their converse are allowed in the modalities $\langle\alpha\rangle \varphi$ and $[\alpha] \varphi$, while only atomic programs are allowed in such modalities in the standard μ-calculus. A sentence is a formula that contains no free propositional variables. We call μ and ν fixpoint operators. We say that a formula is a μ-formula (ν-formula), if it is of the form $\mu y . \varphi(y)(\nu y . \varphi(y)$). We use λ to denote a fixpoint operator μ or ν. For a λ-formula $\lambda y . \varphi(y)$, the formula
$\varphi(\lambda y . \varphi(y))$ is obtained from $\varphi(y)$ by replacing each free occurrence of y with $\lambda y . \varphi(y)$. We call a formula of the form $\langle\alpha\rangle \varphi$ an existential formula.

The semantics of the full μ-calculus is defined with respect to a Kripke structure $K=\langle W, R, L\rangle$ over the signature Ξ, where W is a set of points, R : Prog $\rightarrow 2^{W \times W}$ assigns to each atomic program a transition relation over W, and $L: \mathrm{AP} \rightarrow 2^{W}$ assigns to each atomic proposition a set of points. We now extend R to the converse of atomic programs. For each atomic program a, we define $R\left(a^{-}\right)$to be the relational inverse of $R(a)$, i.e., $R\left(a^{-}\right)=\{(v, u):(u, v) \in R(a)\}$.

Given a Kripke structure $K=\langle W, R, L\rangle$ and a set $\left\{y_{1}, \ldots, y_{n}\right\}$ of variables in Var, a valuation $\mathcal{V}:\left\{y_{1}, \ldots, y_{n}\right\} \rightarrow 2^{W}$ is an assignment of subsets of W to the variables y_{1}, \ldots, y_{n}. For a valuation \mathcal{V}, a variable y, and a set $W^{\prime} \subseteq W$, we denote by $\mathcal{V}\left[y \leftarrow W^{\prime}\right]$ the valuation obtained from \mathcal{V} by assigning W^{\prime} to y. A formula φ with free variables among y_{1}, \ldots, y_{n} is interpreted over the structure K as a mapping φ^{K} from valuations to 2^{W}. Thus, $\varphi^{K}(\mathcal{V})$ denotes the set of points that satisfy φ with the valuation \mathcal{V}. The mapping φ^{K} is defined inductively as follows:
$-\operatorname{true}^{K}(\mathcal{V})=W$ and false ${ }^{K}(\mathcal{V})=\emptyset$;

- For $p \in \mathrm{AP}$, we have $p^{K}(\mathcal{V})=L(p)$ and $(\neg p)^{K}(\mathcal{V})=W \backslash L(p)$;
- For $y_{i} \in \operatorname{Var}$, we have $y_{i}^{K}(\mathcal{V})=\mathcal{V}\left(y_{i}\right)$;
$-\left(\varphi_{1} \wedge \varphi_{2}\right)^{K}(\mathcal{V})=\varphi_{1}^{K}(\mathcal{V}) \cap \varphi_{2}^{K}(\mathcal{V}) ;$
$-\left(\varphi_{1} \vee \varphi_{2}\right)^{K}(\mathcal{V})=\varphi_{1}^{K}(\mathcal{V}) \cup \varphi_{2}^{K}(\mathcal{V})$;
$-([\alpha] \varphi)^{K}(\mathcal{V})=\left\{w \in W: \forall w^{\prime}\right.$ such that $\left(w, w^{\prime}\right) \in R(\alpha)$, we have $\left.w^{\prime} \in \varphi^{K}(\mathcal{V})\right\}$,
$-(\langle\alpha\rangle \varphi)^{K}(\mathcal{V})=\left\{w \in W: \exists w^{\prime}\right.$ such that $\left(w, w^{\prime}\right) \in R(\alpha)$ and $\left.w^{\prime} \in \varphi^{K}(\mathcal{V})\right\}$,
$-(\mu y . \varphi(y))^{K}(\mathcal{V})=\bigcap\left\{W^{\prime} \subseteq W: f^{K}\left(\mathcal{V}\left[y \leftarrow W^{\prime}\right]\right) \subseteq W^{\prime}\right\} ;$
$-(\nu y . \varphi(y))^{K}(\mathcal{V})=\bigcup\left\{W^{\prime} \subseteq W: W^{\prime} \subseteq f^{K}\left(\mathcal{V}\left[y \leftarrow W^{\prime}\right]\right)\right\}$.
Note that no valuation is required for a sentence. For a point $w \in W$ and a sentence φ, we say that φ holds at w in K, denoted $K, w \vDash \varphi$ iff $w \in \varphi^{K}$.

2.2 Alternating Tree Automata

For an introduction to the theory of automata on infinite trees see [33]. An infinite tree is a set $T \subseteq \mathbb{N}^{+}$, such that if $x \cdot c \in T$ where $x \in \mathbb{N}^{*}$ and $c \in \mathbb{N}$, then also $x \in T$, and, if the tree is full, then also $x \cdot c^{\prime} \in T$ for all $0<c^{\prime}<c$, (Here we use \mathbb{N} to denote the positive integers.) The elements of T are called nodes, and the empty word ε is the root of T. For every $x \in T$, the nodes $x \cdot c$ where $c \in \mathbb{N}$ are the successors of x. As a convention, we take $x \cdot 0=x$ and $(x \cdot i) \cdot-1=x(\varepsilon \cdot-1$ is undefined). The branching degree $d(x)$ denotes the number of different successors x has. If $d(x)=k$ for all nodes x, then we say that the tree is k-ary. An infinite path P of T is a prefix-closed set $P \subseteq T$ such that for every $i \geq 0$, there exists a unique $x \in P$ with $|x|=i$. A labeled tree over an alphabet Σ is a pair (T, V) where T is a tree and $V: T \rightarrow \Sigma$.

Alternating automata on infinite trees generalize nondeterministic tree automata and were first introduced in [22]. Here we describe two-way alternating tree automata Let $\mathcal{B}^{+}(X)$ be the set of positive Boolean formulas over X (i.e.,
boolean formulas built from elements in X using \wedge and \vee), where we also allow the formulas true and false, and, as usual, \wedge has precedence over \vee. For a set $Y \subseteq X$ and a formula $\theta \in \mathcal{B}^{+}(X)$, we say that Y satisfies θ iff assigning true to elements in Y and assigning false to elements in $X \backslash Y$ makes θ true. on k-ary trees. Let $[k]=\{-1,0,1, \ldots, k\}$. A two-way alternating automaton over infinite k-ary trees is a tuple $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle$, where Σ is the input alphabet, Q is a finite set of states, $\delta: Q \times \Sigma \rightarrow \mathcal{B}^{+}([k] \times Q)$ is the transition function, $q_{0} \in Q$ is an initial state, and F specifies the acceptance condition.

A run of an alternating automaton A over a labeled tree $\langle T, V\rangle$ is a labeled tree $\left\langle T_{r}, r\right\rangle$ in which every node is labeled by an element of $T \times Q$. A node in T_{r}, labeled by (x, q), describes a copy of the automaton that is in the state q and reads the node x of T. Note that many nodes of T_{r} can correspond to the same node of T; there is no one-to-one correspondence between the nodes of the run and the nodes of the tree. The labels of a node and its successors have to satisfy the transition function. Formally, a run $\left\langle T_{r}, r\right\rangle$ is a Σ_{r}-labeled tree, where $\Sigma_{r}=T \times Q$ and $\left\langle T_{r}, r\right\rangle$ satisfies the following:

1. $\varepsilon \in T_{r}$ and $r(\varepsilon)=\left(\varepsilon, q_{0}\right)$.
2. Let $y \in T_{r}$ with $r(y)=(x, q)$ and $\delta(q, V(x))=\theta$. Then there is a (possibly empty) set $S=\left\{\left(c_{1}, q_{1}\right),\left(c_{1}, q_{1}\right), \ldots,\left(c_{n}, q_{n}\right)\right\} \subseteq\{-1,0, \ldots, k\} \times Q$, such that the following hold:

- S satisfies θ, and
- for all $1 \leq i \leq n$, we have $y \cdot i \in T_{r}, x \cdot c_{i}$ is defined, and $r(y \cdot i)=\left(x \cdot c_{i}, q_{i}\right)$.

Note that the automaton cannot go backwards from the root of the input tree, as we require that $x \cdot c_{i}$ be defined, but $\varepsilon \cdot-1$ is undefined.

A run $\left\langle T_{r}, r\right\rangle$ is accepting if all its infinite paths satisfy the acceptance condition. We consider here parity acceptance conditions [5]. A parity condition over a state set Q is a finite sequence $F=\left(G_{1}, G_{2}, \ldots, G_{m}\right)$ of subsets of Q, where $G_{1} \subseteq G_{2} \subseteq \ldots \subseteq G_{m}=Q$. Given a run $\left\langle T_{r}, r\right\rangle$ and an infinite path $P \subseteq T_{r}$, let $\operatorname{in} f(P) \subseteq Q$ be such that $q \in \inf (P)$ if and only if there are infinitely many $y \in P$ for which $r(y) \in T \times\{q\}$. That is, $\inf f(P)$ contains exactly all the states that appear infinitely often in P. A path P satisfies the condition F if there is an even i for which $\inf (P) \cap G_{i} \neq \emptyset$ and $\inf (P) \cap G_{i-1}=\emptyset$. (For co-parity acceptance condition we require i to be odd.) An automaton accepts a labeled tree if and only if there exists a run that accepts it. We denote by $\mathcal{L}(A)$ the set of all Σ-labeled trees that A accepts.

3 The Tree-Model Property

To determine the truth value of a Boolean formula it suffices to consider its subformulas. For modal formulas, one has to consider a bigger collection of formulas, the so called Fischer-Ladner closure [8]. The closure, $c l(\varphi)$, of a sentence φ is the smallest set of sentences that satisfies the following:
$-\varphi \in c l(\varphi)$.

- If $\varphi_{1} \wedge \varphi_{2} \in \operatorname{cl}(\varphi)$ or $\varphi_{1} \vee \varphi_{2} \in \operatorname{cl}(\varphi)$, then $\varphi_{1} \in \operatorname{cl}(\varphi)$ and $\varphi_{2} \in \operatorname{cl}(\varphi)$.
- If $\langle\alpha\rangle \psi \in \operatorname{cl}(\varphi)$ or $[\alpha] \psi \in \operatorname{cl}(\varphi)$, then $\psi \in \operatorname{cl}(\varphi)$.
- If $\lambda y \cdot \varphi(y) \in c l(\varphi)$, then $\varphi(\lambda y \cdot \varphi(y)) \in c l(\varphi)$.

As proved in [16], for every sentence φ, the number of elements in $\operatorname{cl}(\varphi)$ is linear in the length $\|\varphi\|$ of φ.

An atom \mathbf{A} of φ is a set of formulas in $\operatorname{cl}(\varphi)$ that satisfies the following properties:

- if $p \in \mathrm{AP}$, then, exclusively, either $p \in \mathbf{A}$ or $\neg p \in \mathbf{A}$,
- if $\varphi_{1} \wedge \varphi_{2} \in c l(\varphi)$, then $\varphi_{1} \wedge \varphi_{2} \in \mathbf{A}$ iff $\varphi_{1} \in \mathbf{A}$ and $\varphi_{2} \in \mathbf{A}$,
- if $\varphi_{1} \vee \varphi_{2} \in c l(\varphi)$, then $\varphi_{1} \vee \varphi_{2} \in \mathbf{A}$ iff $\varphi_{1} \in \mathbf{A}$ or $\varphi_{2} \in \mathbf{A}$,
- if $\lambda X . \psi(X) \in c l(\varphi)$, then $\lambda X . \psi(X) \in \mathbf{A}$ iff $\psi(\lambda X . \psi(X)) \in \mathbf{A}$.

Intuitively, an atom is a consistent subset of $\operatorname{cl}(\varphi)$. The set of atoms of φ is denoted at (φ). Clearly, the size of $a t(\varphi)$ is at most exponential in the length of φ.

A pre-model (K, π) for φ is a pair consisting of a Kripke structure $K=$ $\langle W, R, L\rangle$ and a labeling function $\pi: W \rightarrow a t(\varphi)$ that satisfies the following properties:

- $\varphi \in \pi(u)$, for some $u \in W$,
- if $p \in \pi(u)$, then $u \in L(p)$, and if $\neg p \in \pi(u)$, then $u \notin L(p)$, for $p \in \mathrm{AP}$ and $u \in W$,
- if $\langle\alpha\rangle \psi \in \pi(u)$, for $u \in W$, then $\psi \in \pi(v)$, for some $v \in W$ such that $(u, v) \in$ $R(\alpha)$.
- if [$\alpha] \psi \in \pi(u)$, for $u \in W$, then $\psi \in \pi(v)$, for all $v \in W$ such that $(u, v) \in R(\alpha)$.

A pre-model of φ is almost a model of φ except for fixpoint formulas that do not necessarily get the right semantics (that is, fixpoints are arbitrary rather than minimal or maximal as needed).

A choice function [31] ρ for a pre-model (K, π) of φ, where $K=\langle W, R, L\rangle$, is a partial function from $W \times \operatorname{cl}(\varphi)$ to $W \cup \operatorname{cl}(\varphi)$ such that for each $u \in W$: (a) for each disjunction $\varphi_{1} \vee \varphi_{2} \in \pi(u)$, we have that $\rho\left(u, \varphi_{1} \vee \varphi_{2}\right)$ is either φ_{1} or φ_{2}, and $\rho\left(u, \varphi_{1} \vee \varphi_{2}\right) \in \pi(u)$, and (b) for each existential formula $\langle\alpha\rangle \psi \in \pi(u)$, we have that $\rho(u,\langle\alpha\rangle \psi)$ is some $v \in W$ such that $(u, v) \in R(\alpha)$ and $\psi \in \pi(v)$. Intuitively, a choice function identifies how a disjunctive formula or an existential formula is satisfied. An adorned pre-model (K, π, ρ) for φ consists of a pre-model (K, π) for φ and a choice function ρ.

We can now define formally the notion of derivation between occurrences of sentences in adorned pre-models. Let (K, π, ρ) be an adorned pre-model of φ, The derivation relation, denoted \vdash, is defined as follows:

- if $\varphi_{1} \vee \varphi_{2} \in \pi(u)$ then $\left(\varphi_{1} \vee \varphi_{2}, u\right) \vdash\left(\rho\left(u, \varphi_{1} \vee \varphi_{2}\right), u\right)$,
- if $\varphi_{1} \wedge \varphi_{2} \in \pi(u)$, then $\left(\varphi_{1} \wedge \varphi_{2}, u\right) \vdash\left(\varphi_{1}, u\right)$ and $\left(\varphi_{1} \wedge \varphi_{2}, u\right) \vdash\left(\varphi_{2}, u\right)$,
- if $\langle\alpha\rangle \psi \in \pi(u)$, then $(\langle\alpha\rangle \psi, u) \vdash(\psi, \rho(u,\langle\alpha\rangle \psi))$,
- if $\lambda X \cdot \psi(X) \in \pi(u)$, then $(\lambda X \cdot \psi(X), u) \vdash(\psi(\lambda X \cdot \psi(X)), u)$.

A least-fixpoint sentence $\mu X . \psi(X)$ is said to be regenerated from point u to point v (u might be equal to v) in an adorned premodel (K, π, ρ) if there is a sequence $\left(\theta_{1}, u_{1}\right), \ldots,\left(\theta_{k}, u_{k}\right)$, with $k>1$, such that $\theta_{1}=\theta_{k}=\mu X . \psi(X)$, $u_{1}=u, u_{k}=v,\left(\theta_{l}, u_{l}\right) \vdash\left(\theta_{l+1}, u_{l+1}\right)$, for $0<l<k$, and $\mu X . \psi(X)$ is a subsentence of each of the θ_{i} 's. We say that (K, π, ρ) is well-founded if there is no fixpoint sentence $\mu X . \psi(X) \in c l(\varphi)$ and an infinite sequence u_{0}, u_{1}, \ldots such that $\mu X . \psi(X)$ is regenerated from u_{j} to u_{j+1} for all $j \geq 0$.

The following theorem was shown for the standard μ-calculus, but the proof is insensitive to the direction of the modalities.

Theorem 1. [31] A sentence φ of the full μ-calculus has a model K if and only if it has a well-founded adorned pre-model (K, π, ρ).

We can now establish the tree-model property for the full μ-calculus. Note that it follows from [30] that the finite-model property does not hold for the full μ-calculus; in contrast, it does hold for the standard μ-calculus [17]. The tree-model property asserts that if a sentence is satisfiable then it is satisfiable by a bounded-degree infinite tree structure. A tree structure is a Kripe structure $\langle W, R, L\rangle$ where W is a tree and for each program α if $(u, v) \in R(\alpha)$, then either v is a successor of u or u is a successor of v.

The standard way of proving the tree-model property is to take a model and straightforwardly "unravel" it; see [37]. Special care, however, is needed to ensure that the number of successors at each node is bounded.

Theorem 2. If a formula φ in the full μ-calculus is satisfiable, then it is satisfiable at the root of a tree structure whose branching degrees are bounded by $\|\varphi\|$.

Note that the tree model constructed in the above proof is not a full tree; it is possible for $x i$ to be a node in the tree without $x(i-1)$ being a node in the tree. It is technically more convenient to deal with full trees. To that end we add a new atomic proposition p_{T}. The intuition is that p_{T} is true only at nodes that belong to the tree (so nodes where p_{T} is false are dummy nodes). We now replace each modal subformula $\langle\alpha\rangle \psi$ by $\langle\alpha\rangle\left(p_{T} \wedge \psi\right)$ and each modal subformula $[\alpha] \psi$ by $[\alpha]\left(p_{T} \rightarrow \psi\right)$. This transformation causes only a linear blow-up, It is easy to see that the if the original formula is satisfiable at the root of a tree structure whose branching degrees are bounded by $\|\varphi\|$, then the new formula φ^{\prime} is satisfiable at the root of a $\left\|\varphi^{\prime}\right\|$-ary tree (where p_{T} is true at the root). We call such formulas uniform formulas, and we can thus restrict attention to full trees. Since we need to represent the information about the transition function R, we introduce new atomic propositions to represent this information. For each atomic program a we introduce two atomic propositions: p_{a} holds at a node $x j$ when $(x, x j) \in R(a)$ and p_{a}^{-}holds in $x j$ when $(x j, x) \in R(a)$. We call tree structures that obey these constraints well-behaved tree structures,

We are now ready to describe the translation from formulas to two-way alternating tree-automata.

Theorem 3. Given a uniform formula φ of the full μ-calculus, we can construct a two-way alternating parity automaton A_{φ} whose number of states is $O(\|\varphi\|)$, such that $\mathcal{L}\left(A_{\varphi}\right)$ is exactly the set of well-behaved $\|\varphi\|$-ary tree structures satisfying φ at the root.

Proof Sketch: The automaton is obtained by taking the intersection of two automata (intersection is trivial for alternating automata [22]). The first automaton checks that the input tree is well-behaved. Constructing this automaton is an easy exercise. The second automaton checks that φ is satisfied at the root of the input tree. Take $A_{\varphi}=\left\langle 2^{\mathrm{AP}}, \operatorname{cl}(\varphi), \delta, \varphi, F\right\rangle$. We need to define the transition function δ and the acceptance condition F. Let $n=\|\varphi\|$. For all $\sigma \in 2^{\mathrm{AP}}$ and $a \in$ Prog we define:
$-\delta(p, \sigma)=$ true if $p \in \sigma . \quad \bullet \delta(p, \sigma)=$ false if $p \notin \sigma$.
$-\delta(\neg p, \sigma)=$ true if $p \notin \sigma$. $\quad \bullet \delta(\neg p, \sigma)=$ false if $p \in \sigma$.
$-\delta\left(\varphi_{1} \wedge \varphi_{2}, \sigma\right)=\left(0, \varphi_{1}\right) \wedge(0, \varphi 2)$.
$-\delta\left(\varphi_{1} \vee \varphi_{2}, \sigma\right)=\left(0, \varphi_{1}\right) \vee(0, \varphi 2)$.
$-\delta(\lambda y \cdot \varphi(y), \sigma)=(0, \varphi(\lambda y \cdot \varphi(y)))$.
$-\delta(\langle a\rangle \psi, \sigma)=\left((-1, \psi) \wedge\left(0, p_{a}^{-}\right)\right) \vee \bigvee_{c \bar{n}^{1}}^{n}\left((c, \psi) \wedge\left(c, p_{a}\right)\right)$.
$-\delta\left(\left\langle a^{-}\right\rangle \psi, \sigma\right)=\left((-1, \psi) \wedge\left(0, p_{a}\right)\right) \vee \bigvee_{c=1}^{n}\left((c, \psi) \wedge\left(c, p_{a}^{-}\right)\right)$.
$-\delta([a] \psi, \sigma)=\left((-1, \psi) \vee\left(0, \neg p_{a}^{-}\right)\right) \wedge \bigwedge_{c=1}^{n}\left((c, \psi) \vee\left(c, \neg p_{a}\right)\right)$.
$-\delta\left(\left[a^{-}\right] \psi, \sigma\right)=\left((-1, \psi) \vee\left(0, \neg p_{a}\right)\right) \wedge \bigwedge_{c=1}^{c-\bar{n}}\left((c, \psi) \vee\left(c, \neg p_{a}^{-}\right)\right)$.
The translation here is by a straighfoward induction on the structure of φ. It simplifies the translation given in [1] (for the standard μ-calculus), since we allow the usage of ε-transitions (i.e., transitions to the direction 0).

It remains to define the parity acceptance condition F. This is done analogously to the construction in [6], which drew a tight relationship between model checking for the standard μ-calculus and one-way nondeterministic parity tree automata.

Corollary 4. A uniform formula φ of the full μ-calculus is satisfiable iff $\mathcal{L}\left(A_{\varphi}\right)$ is not empty.

4 Emptiness of Two-Way Alternating Tree Automata

We solve the emptiness problem for two-way alternating tree automata, by reducing them to one-way nondeterministic tree automata. A run of a nondeterministic tree automaton is a tree with the same structure as the input tree but a different label set; the run tree is labeled by states. In contrast, a run of an alternating automaton is a tree whose structure can be quite different than that of the input tree. Thus, to reduce alternating automata to nondeterministic automata, we have to overcome this difficulty.

Let $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle$ be a two-way alternating automaton on k-ary trees. A strategy tree for A is a mapping $\tau:\{1, \ldots, k\}^{*} \rightarrow 2^{Q \times[k] \times Q}$. Thus, each label in a strategy is an edge- $[k]$-labeled directed graph on Q. Intuitively, each label is
a set of transitions. For each label ζ, we define state $(\zeta)=\{u:(u, i, v) \in \zeta\}$, i.e., state (ζ) is the set of sources in the graph ζ. The strategy tree τ is on a k-ary input tree $\left(\{1, \ldots, k\}^{*}, V\right)$ if $q_{0} \in \operatorname{state}(\tau(\varepsilon))$, and for each node $x \in\{1, \ldots, k\}^{*}$ and each state $q \in \operatorname{state}(\tau(x))$, the set $\left\{\left(c, q^{\prime}\right):\left(q, c, q^{\prime}\right) \in \tau(x)\right\}$ satisfies $\delta(q, V(x))$. Thus, each label can be viewed as a strategy of satisfying the transition function.

A path β in a strategy tree τ is a sequence $\left(u_{1}, q_{1}\right),\left(u_{2}, q_{2}\right), \ldots$ of pairs from $\{1, \ldots, k\}^{*} \times Q$ such that, for all $i>0$, there is some $c_{i} \in[k]$ such that $\left(q_{i}, c_{i}, q_{i+1}\right) \in \tau\left(u_{i}\right)$ and $u_{i+1}=u_{i} \cdot c_{i}$. Thus, β is obtained by following transitions in the strategy tree. We define $\inf (\beta)$ to be the set of states in Q that occur infinitely often in β. We say that an infinite path β satisfies a parity condition $F=\left(G_{1}, G_{2}, \ldots\right)$ if there is an even i for which $\operatorname{in} f(\beta) \cap G_{i} \neq \emptyset$ and in $f(\beta) \cap G_{i-1}=\emptyset$. We say that τ is accepting if all infinite paths in τ satisfy F.

Proposition 5. A two-way alternating parity automaton accepts an input tree iff it has an accepting strategy tree over the input tree.

Proof Sketch: The "if" direction is immediate. For the "only if" direction, let $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle, F=\left(G_{1}, G_{2}, \ldots\right)$, and let $\left(\{1, \ldots, k\}^{*}, V\right)$ be the input tree. Consider the following game between two players: the Protagonist and the Antagonist. Intuitively, the Protoganist is trying to show that A accepts the input tree, and the Antagonist is trying to challenge that. A configuration of the game is a pair in $\{1, \ldots, k\}^{*} \times Q$. The initial configuration is $\left(\varepsilon, q_{0}\right)$. Consider a configuration (x, q). The Protagonist now chooses a set $\left\{\left(c_{1}, q_{1}\right), \ldots,\left(c_{m}, q_{m}\right)\right\}$ that satisfies $\delta(q, V(x))$; the Antagonist responds by choosing an element (c_{i}, q_{i}) of the set. The new configuration is then $\left(x \cdot c_{i}, q_{i}\right)$. If $x \cdot c_{i}$ is undefined or if $\delta(q, V(x))=$ false, then the Antagonist wins immediately. Consider now an infinite play γ. Let $\inf (\gamma)$ be the set of states in Q that repeat infinitely in the sequence of configurations in γ. The Protagonist wins if there is an even i for which $\inf (\gamma) \cap G_{i} \neq \emptyset$ and $\inf (\gamma) \cap G_{i-1}=\emptyset$. It is not difficult to see that the Protagonists wins the game, i.e., has a winning strategy against the Antagonist, iff A accepts the input tree.

The game as we described it meets the conditions in [14]. It follows that if the Protagonist wins then it as a memoryless strategy, i.e., a strategy whose moves do not depend on the history of the game, but only on the current configuration. Thus, A accepts the input tree iff it has a strategy tree over the input tree.

We have thus succeeded in defining a notion of run for alternating automata that will have the same tree structure as the input tree. We are still facing the problem that paths in a strategy tree can go both up and down. We need to find a way to restrict attention to uni-directional paths.

Let $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle, F=\left(G_{1}, G_{2}, \ldots, G_{m}\right)$, be a two-way alternating automaton on k-ary trees, and let $\tau:\{1, \ldots, k\}^{*} \rightarrow 2^{Q \times[k] \times Q}$ be a strategy tree for A. An annotation for A is a mapping $\eta:\{1, \ldots, k\}^{*} \rightarrow 2^{Q \times 2^{\{1, \ldots, m)} \times Q}$. Thus, each label in an annotation is an edge-2 $2^{\{1, \ldots, m\}}$-labeled directed graph on Q. For each state $q \in Q$, let $\operatorname{index}(q)$ be the minimal i such that $q \in G_{i}$. We
say that η is an annotation of τ if some closure conditions hold for each node $x \in\{1, \ldots, k\}^{*}$. Intuitively, these conditions say that η contains all relevant information about finite paths in τ. The conditions are: (a) if ($\left.q, H_{1}, q^{\prime}\right) \in \eta(x)$ and $\left(q^{\prime}, H_{2}, q^{\prime \prime}\right) \in \eta(x)$, then $\left(q, H_{1} \cup H_{2}, q^{\prime \prime}\right) \in \eta(x)$, (b) if $\left(q, 0, q^{\prime}\right) \in \tau(x)$ then $\left(q\right.$, index $\left.\left(q^{\prime}\right), q^{\prime}\right) \in \eta(x)$, (c) if $x=y i,\left(q,-1, q^{\prime}\right) \in \tau(x),\left(q^{\prime}, H, q^{\prime \prime}\right) \in$ $\eta(y)$, and $\left(q^{\prime \prime}, i, q^{\prime \prime \prime}\right) \in \tau(x)$, then $\left(q, H \cup\left\{\operatorname{index}\left(q^{\prime}\right)\right.\right.$, index $\left.\left.\left(q^{\prime \prime \prime}\right)\right\}, q^{\prime \prime \prime}\right) \in \eta(x)$, (d) if $y=x i,\left(q, i, q^{\prime}\right) \in \tau(x),\left(q^{\prime}, H, q^{\prime \prime}\right) \in \eta(y)$, and $\left(q^{\prime \prime},-1, q^{\prime \prime \prime}\right) \in \tau(y)$, then $\left(q, H \cup\left\{\operatorname{index}\left(q^{\prime}\right)\right.\right.$, index $\left.\left.\left(q^{\prime \prime \prime}\right)\right\}, q^{\prime \prime \prime}\right) \in \eta(x)$.

A downward path κ in η is a sequence $\left(u_{1}, q_{1}, t_{1}\right),\left(u_{2}, q_{2}, t_{2}\right), \ldots$ of triples, where each u_{i} is in $\{1, \ldots, k\}^{*}$, each q_{i} is in Q, and each t_{i} is either an element of $\tau\left(u_{i}\right)$ or $\eta\left(u_{i}\right)$, such that: (a) either t_{i} is $\left(q_{i}, c, q_{i+1}\right)$ for some $c \in\{1, \ldots, k\}$, and $u_{i+1}=u_{i} \cdot c$; in this case we define $\operatorname{index}\left(t_{i}\right)$ to be index $\left(q_{i+1}\right)$, or (b) t_{i} is $\left(q_{i}, H, q_{i+1}\right)$, for $H \subseteq\{1, \ldots, m\}$, and $u_{i+1}=u_{i}$; in this case we define $\operatorname{index}\left(t_{i}\right)$ to be $\min (H)$. We consider two kinds of downward paths: (a) infinite paths $\kappa=$ $\left(u_{1}, q_{1}, t_{1}\right),\left(u_{2}, q_{2}, t_{2}\right), \ldots$, whose index, index (κ) is defined as the minimal j such that index $\left(t_{i}\right)=j$ infinitely often, or finite paths $\kappa=\left(u_{1}, q_{1}, t_{1}\right), \ldots,\left(u_{s}, q_{s}, t_{s}\right)$, where $t_{s}=\left(q_{s}, H_{s}, q_{s}\right)$ (i.e., the path ends in a loop), whose index, index (κ) is defined as index $\left(t_{s}\right)$. In either case we say that κ violates F if $\operatorname{index}(\kappa)$ is odd. We say that η is accepting if no downward path in η violates F.

Proposition 6. A two-way alternating parity automaton accepts an input tree iff it has a strategy tree over the input tree and an accepting annotation of the strategy tree.

Proof Sketch: Let $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle, F=\left(G_{1}, G_{2}^{\prime}, \ldots, G_{m}\right)$, and let $\left(\{1, \ldots, k\}^{*}, V\right)$ be the input tree. Suppose first that A accepts the input tree. By Proposition 5, there is an accepting strategy tree τ over $\left(\{1, \ldots, k\}^{*}, V\right)$. Consider two annotations η_{1} and η_{2} of τ. Their intersection $\eta_{1} \cap \eta_{2}$, defined by $\eta_{1} \cap \eta_{2}(x)=$ $\eta_{1}(x) \cap \eta_{2}(x)$ for each $x \in\{1, \ldots, k\}^{*}$, is also an annotation of τ. Thus, there exists a minimal annotation η of τ. (That is, if η^{\prime} is also an annotation of τ, then η must be contained in η^{\prime}, i.e., for each $x \in\{1, \ldots, k\}^{*}$ we have that $\eta(x) \subseteq \eta^{\prime}(x)$.) It can be shown that since all paths in τ satisfies F, no downward path in η violates F. Conversely, suppose that τ is a strategy tree over $\left(\{1, \ldots, k\}^{*}, V\right)$ and η is an annotation of τ such that no downward path in η violates F. Let η^{\prime} be the minimal annotation of $\tau ; \eta^{\prime}$ must be contained in η. It follows that no downward path in η^{\prime} violates F. From this we can show that all paths in τ satisfy F. By Proposition 5, A accepts $\left(\{1, \ldots, k\}^{*}, V\right)$.

Consider now annotated trees $\left(\{1, \ldots, k\}^{*}, V, \tau, \eta\right)$, where τ is a strategy tree for A on $\left(\{1, \ldots, k\}^{*}, V\right)$ and η is an amotation of τ. We say that $\left(\{1, \ldots, k\}^{*}, V, \tau, \eta\right)$ is accepting if η is accepting.

Theorem 7. Let A be a two-way alternating parity tree automaton. Then there is a nondeterministic parity tree automaton A^{n} such that $\mathcal{L}(A)=\mathcal{L}\left(A^{n}\right)$. The number of states in A^{n} is exponential in the number of states of A, but the size of the acceptance condition of A^{n} is linear in the size of the acceptance condition of A.

Proof Sketch: Let $A=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle, F=\left(G_{1}, \ldots, G_{m}\right)$. The nondeterministic automaton A^{n} is the intersection of two automata. Given an annotated tree $\left(\{1, \ldots, k\}^{*}, V, \tau, \eta\right)$, the first automaton, A_{1}^{n}, checks that τ is a strategy tree on $\left(\{1, \ldots, k\}^{*}, V\right)$ and that η is an annotation of τ. Constructing A_{1}^{n} is a not-too-difficult exercise. The second automaton, A_{2}^{n}, checks that τ is accepting. We construct A_{2}^{n} in several steps.

Consider a downward path $\kappa=\left(u_{1}, q_{1}, t_{1}\right),\left(u_{2}, q_{2}, t_{2}\right), \ldots$. We define its projection to be the sequence $\operatorname{proj}(\kappa)=\left(q_{1}, t_{1}\right),\left(q_{2}, t_{2}\right), \ldots$, which is is a sequence over the finite alphabet $Q \times\left((Q \times[k] \times Q) \cup\left(Q \times 2^{\{1, \ldots, m\}} \times Q\right)\right)$. We can construct a co-parity word automaton B that accepts projections of downward paths that violates F. The state set of B is $Q \times\{1, \ldots, m\}$. All that B does is check that (a) either t_{i} is $\left(q_{i}, c, q_{i+1}\right)$ for some $c \in\{1, \ldots, k\}$, (b) t_{i} is $\left(q_{i}, H, q_{i+1}\right)$ for some $H \subseteq\{1, \ldots, m\}$. In either case B also remembers index $\left(t_{i}\right)$. B accepts if there is some $t_{i}=\left(q_{i}, H_{i}, q_{i}\right)$ with an odd index $\left(t_{i}\right)$ or if the minimal index that repeats infinitely often is odd. The size of the acceptance condition of B is linear in the size of the acceptance condition of A. From B we construct another co-parity word automaton B^{\prime}. This automaton reads a sequence of labels of τ or η and checks whether it contains a projection of a downward path that violates F. The state set of B^{\prime} is still $Q \times\{1, \ldots, m\}$, though its alphabet is $2^{Q \times[k] \times Q} \cup 2^{Q \times 2^{\{1, \ldots, m)} \times Q}$. The size of the acceptance condition of B^{\prime} is still linear in the size of the acceptance condition of A. We now co-determinize B^{\prime}, i.e., determinize it and complement it in a singly-exponential construction $[28,33]$ to obtain a deterministic parity word automaton $B^{\prime \prime}$ that rejects violating downward paths. The deterministic tree automaton $B^{\prime \prime \prime}$ is obtained by simply running $B^{\prime \prime}$ in parallel over all branches of $\left(\{1, \ldots, k\}^{*}, V, \tau, \eta\right)$. Thus, its size is exponential in the size of A. The size of the acceptance condition of $B^{\prime \prime \prime}$ is still linear in the size of the acceptance condition of A. Finally, A_{2}^{n} is obtained from $B^{\prime \prime \prime}$ by projecting out the τ and η component of the inputs tree, so the input tree is of the form $\left(\{1, \ldots, k\}^{*}, V\right)$.

We can now combine Theorem 3, Corollary 4, Theorem 7, and the tree automata emptiness algorithms in $[4,19,26]$ (which are polynomial in the number of states, but exponential in the size of the acceptance condition) to obtain:

Theorem 8. The satisfiability problem for the full μ-calculus is decidable in exponential time.

Remark 9. One can extend the framework of the μ-calculus by allowing deterministic atomic programs. Such programs correspond to functional roles in description logics [10]. The mapping R in a Kripke structure $K=\langle W, R, L\rangle$ assigns to each deterministic atomic program a partial function over W. The results in this paper can be extended also to prove an exponential time upper bound for the full μ-calculus with deterministic programs. (Seehttp://www.cs.rice.edu/ \sim vardi.)

5 Concluding Remarks

Over the last few years there has been a significant interest in logics with bounded number of variables (see [15]). One surprising result in this line of research is that
while $F O^{3}$, 3 -variable first-order logic, is already undecidable, the satisfiability problem for $F O^{2}, 2$-variable first-order logic, is NEXPTIME-complete [12]. This lead researchers to consider extensions of $F O^{2}$. Unfortunately, fairly modest extensions of $F O^{2}$ by fixpoint constructs quickly lead to undecidability [13]. On the other hand, the full μ-calculus can be viewed as a fragment of 2 -variable fixpoint logic [37]. Our main decidability result here for the full μ-calculus pushes the "decidability envelope" further. The key difference between the full μ-calculus and the fixpoint extensions of $F O^{2}$ seems to be the tree-model property, which was offered in [37] as an explanation for the robust decidability of propositional program logics.

References

1. O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model checking. In D. L. Dill, editor, Computer Aided Verification, Proc. 6th Int. Conference, volume 818 of Lecture Notes in Computer Science, pages 142-155, Stanford, June 1994. Springer-Verlag, Berlin.
2. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking: 10^{20} states and beyond. Information and Computation, $98(2): 142-$ 170, June 1992.
3. E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel programs using fixpoints. In Proc. 7th Int'l Colloq. on Automata, Languages and Programming, pages 169-181, 1980.
4. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc. 29th IEEE Symposium on Foundations of Computer Science, pages 368-377, White Plains, October 1988.
5. E.A. Emerson and C. Jutla. Tree automata, Mu-calculus and determinacy. In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 368-377, San Juan, October 1991.
6. E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of μ calculus. In Computer Aided Verification, Proc. 5th Int. Conference, volume 697, pages 385-396, Elounda, Crete, June 1993. Lecture Notes in Computer Science, Springer-Verlag.
7. E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the proposoitional Mu-calculus. In Proc. 1st Symposium on Logic in Computer Science, pages 267-278, Cambridge, June 1986.
8. M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and Systems Sciences, 18:194-211, 1979.
9. G. De Giacomo and M. Lenzerini. Concept languages with number restrictions and fixpoints, and its relationship with μ-calculus. In Proc. 11th European Conference on Artificial Intelligence (ECAI-94), pages 411-415. John Wiley and Sons, 1994.
10. G. De Giacomo and M. Lenzerini. Description logics with inverse roles, functional restrictions, and n-ary relations. In Proc. 4 th European Workshop on Logics in Artificial Intelligence (JELIA-94), number 838 in Lecture Notes In Artificial Intelligence, pages 332-346. Springer-Verlag, 1994.
11. G. De Giacomo and F. Masacci. Tableaux and algorithms for propositional dynamic logic with converse. In M. A. McRobbie and J.K. Slaney, editors, Proc. 13th Int'l Conf. on Automated Deduction, volume 1104 of Lecture Notes in Artificial Intelligence, pages 613-627. Springer-Verlag, 1996.
12. E. Grädel, Ph. G. Kolaitis, and M. Y. Vardi. The decision problem for 2-variable first-order logic. Bulletin of Symbolic Logic, 3:53-69, 1997.
13. E. Grädel, M. Otto, and E. Rosen. Undecidability results for two-variable logics. Unpublished manuscript, 1996.
14. C.S. Jutla. Determinization and memoryless winning strategies. Information and Computation, 133(2):117-134, 1997.
15. Ph.G. Kolaitis and M.Y. Vardi. On the expressive power of variable-confined logics. In Proc. 11th IEEE Symp. on Logic in Computer Science, pages 348-359, 1996.
16. D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 27:333-354, 1983.
17. D. Kozen. A finite model theorem for the propositional μ-calculus. Studia Logica, 47(3):333-354, 1988.
18. O. Kupferman and A. Pnueli. Once and for all. In Proc. 10th IEEE Symposium on Logic in Computer Science, pages 25-35, San Diego, June 1995.
19. O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness. In Proc. 30th ACM Symposium on Theory of Computing, Dallas, 1998.
20. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages 196-218, Brooklyn, June 1985. Springer-Verlag.
21. D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science, pages 422-427, Edinburgh, July 1988.
22. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer Science, 54,:267-276, 1987.
23. D. Park. Finiteness is μ-ineffable. Theoretical Computer Science, 3:173-181, 1976.
24. S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered computations. In Proc. 3rd ACM Symposium on Principles of Distributed Computing, pages 28-37, Vancouver, August 1984.
25. A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pages 123-144. Springer-Verlag, 1985.
26. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symposium on Principles of Programming Languages, Austin, January 1989.
27. V.R. Pratt. A decidable μ-calculus: preliminary report. In Proc. 22nd IEEE Symposium on Foundation of Computer Science, pages 421-427, 1981.
28. S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symposium on Foundations of Computer Science, pages 319-327, White Plains, October 1988.
29. G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-318, 1985.
30. R.S. Streett. Propositional dynamic logic of looping and converse. Information and Control, 54:121-141, 1982.
31. R.S. Streett and E.A. Emerson. An automata theoretic decision procedure for the propositional mu-calculus. Information and Computation, 81(3):249-264, 1989.
32. S.S. Streett. A propositional dynamic logic for reasoning about program divergence. PhD thesis, M.Sc. Thesis, MIT, 1980.
33. W. Thomas. Languages, automata, and logic. Handbook of Formal Language Theory, III:389-455, 1997.
34. M.Y. Vardi. The taming of converse: Reasoning about two-way computations. In Logic of Programs Workshop, volume 193, pages 413-424, Brooklyn, June 1985. Lecture Notes in Computer Science, Springer-Verlag.
35. M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Symp. on Principles of Programming Languages, pages 250-259, San Diego, January 1988.
36. M.Y. Vardi. Alternating automata - unifying truth and validity checking for temporal logics. In W. McCune, editor, Proc. 14th International Conference on Au tomated Deduction, volume 1249 of Lecture Notes in Artificial Intelligence, pages 191-206. Springer-Verlag, Berlin, july 1997.
37. M.Y. Vardi. What makes modal logic so robustly decidable? In Descriptive Complexity and Finite Models, pages 149-183. American Mathematical Society, 1997.
38. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of Computer and System Science, 32(2):182-221, April 1986.

[^0]: * Supported in part by NSF grants CCR-9628400 and CCR-9700061, and by a grant from the Intel Corporation. URL: http://www.cs.rice.edu/ ${ }^{\sim}$ vardi.

