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Abstract

Description Logics are knowledge representation formalisms which have been
used in a wide range of application domains. Owing to their appealing expressive-
ness, we consider in this paper extensions of the well-known concept language ALC
allowing for number restrictions on complex role expressions. These have been first
introduced by Baader and Sattler as ALCN (M) languages, with the adoption of
role constructors M ⊆ {◦,− ,t,u}. In particular, they showed in 1999 that, al-
though ALCN (◦) is decidable, the addition of other operators may easily lead to
undecidability: in fact, ALCN (◦,u) and ALCN (◦,− ,t) were proved undecidable.

In this work, we further investigate the computational properties of the ALCN
family, aiming at narrowing the decidability gap left open by Baader and Sattler’s
results. In particular, we will show that ALCN (◦) extended with inverse roles both
in number and in value restrictions becomes undecidable, whereas it can be safely
extended with qualified number restrictions without losing decidability.
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1 Introduction

Description Logics are a family of first-order formalisms that have been found useful
for domain knowledge representation in several application fields, from database design
—including conceptual, object-oriented, temporal, multimedia and semistructured data
modeling— to software engineering and ontology management (e.g. [1, 2, 8, 10, 11, 12,
15, 20, 3]). Different Description Logics provide for constructors which can be used to
combine atomic concepts (unary predicates) and roles (binary predicates) to build com-
plex concepts and roles. The available constructors characterize the description language
as to expressiveness and computational behaviour (decidability and complexity) of the
basic reasoning tasks like concept satisfiability and subsumption.

Well-known Description Logics are ALC [21], which allows for Boolean propositional
constructors on concepts and (universal and existential) value restrictions on atomic
roles, and its extension ALCN [13, 19] introducing (non-qualified) number restrictions
on atomic roles. Basic inference problems for both these Description Logics are PSpace-
complete [13, 19]. However, in order to better fulfil requirements of real-world application
domains, more expressive extensions of the basic concept languages have been investi-
gated. One direction along which useful extensions have been sought is the introduction
of complex roles under number restrictions. In fact, considering role composition (◦),
inversion (−), union (t) and intersection (u), expressive extensions of ALCN can be
defined as ALCN (M) with the adoption of role constructors M ⊆ {◦,− ,t,u} [4]. By
allowing (different kinds of) complex roles also in value restrictions, different families
of Logics can also be defined: for example ALC+N (or ALCregN ) allows the transi-
tive closure of atomic roles (or regular roles) under value restrictions [4, 9]. Also Logics
ALCN̄ (M), allowing for the same role constructors either in value and in number re-
strictions, can be considered [14]. Further extensions involve the introduction of qualified
number restrictions [18] on complex roles, giving rise to ALCQ(M) Logics. Since qual-
ified number restrictions also allow to express value restrictions, we have the inclusions
ALCN (M) ⊆ ALCN̄ (M) ⊆ ALCQ(M) as far as expressiveness (and compexity) are
concerned. Therefore, for instance, undecidability of ALCN (M) directly extends to
ALCN̄ (M) and ALCQ(M), whereas decidability of ALCQ(M) implies decidability of
ALCN (M) and ALCN̄ (M).

Our present investigation is aimed at improving the (un)decidability results presented
by Baader and Sattler in [4] for ALCN extensions including composition of roles (◦). In
particular, they proved that concept satisfiability in ALCN (◦,u) and ALCN (◦,− ,t)
is undecidable via reduction of a domino problem, and provided a sound and complete
Tableau algorithm for deciding satisfiability of ALCN (◦)-concepts. They also observed
that ALCN (−,t,u) is decidable since ALCN (−,t,u)-concepts can easily be translated
into a formula in C2 [7], that is the two-variable FOL fragment with counting quantifiers,
which has proved to be decidable [17]. In fact, satisfiability of C2 formulae can be decided
in NExpTime [22] if unary coding of numbers is used (which is a common assumption in
the field of Description Logics; if binary coding is adopted we have a 2-NExpTime upper
bound). We can further observe that a similar translation is still possible when qualified
number restrictions are considered and, thus, also ALCQ(−,t,u) and ALCN̄ (−,t,u)
are decidable.

In this paper, we consider extensions of ALCN (◦) with role inversion (I) or qualified
number restrictions (Q), whose decidability status, to the best of our knowledge, is still
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C, D→ A | AI ⊆ ∆I atomic concept
> | >I = ∆I

⊥ | ⊥I = ∅
¬C | (¬C)I = ∆I \ CI

C uD | (C uD)I = CI ∩DI

C tD | (C tD)I = CI ∪DI

∀R.C | (∀R.C)I = {i ∈ ∆I | ∀j. RI(i, j)⇒ CI(j)}
∃R.C | (∃R.C)I = {i ∈ ∆I | ∃j. RI(i, j) ∧ CI(j)}
∃≥nR | (∃≥nR)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j)} ≥ n}
∃≤nR | (∃≤nR)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j)} ≤ n}

∗ ∃≥nR.C | (∃≥nR.C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≥ n}
∗ ∃≤nR.C | (∃≤nR.C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≤ n}

R, S→ P | P I ⊆ ∆I ×∆I atomic role
∗ R− | (R−)I = {(i, j) ∈ ∆I ×∆I | RI(j, i)}
∗ R ◦ S | (R ◦ S)I = {(i, j) ∈ ∆I ×∆I | ∃k. RI(i, k) ∧ SI(k, j)}

Figure 1: Syntax and model-theoretic semantics of ALCN and its extensions (marked
with ∗) considered in this paper.

unknown. In particular, we will show in Sec. 2 (via reduction of a domino problem)
undecidability of ALCN (◦) extended with inverse roles both in value and in number
restrictions (which we can call ALCN (◦)I, but we also show in Sec. 2 that it is a
syntactic variant of ALCN̄ (◦,− )) is undecidable. This result implies undecidability of
ALCQ(◦,− ), whereas decidability of “pure” ALCN (◦,− ) remains an open question. On
the other hand, we will show how the decidability results of [4] lift up to ALCQ(◦). In
particular, we will show in Sec. 3 that ALCQ(◦)-concept satisfiability is decidable and
provide an effective decision procedure in the form of a tableau-based algorithm, which
extends the ALCN (◦) Tableau proposed by Baader and Sattler [4]. In a similar way as
done in [4], we will also show that the decision algorithm can be extended to cope with
qualified number restrictions on union and/or intersections of role chains of the same
length.

Preliminaries on Description Logics

Description Logics expressiveness is based on the definition of complex concepts and
roles, which can be built with the help of available constructors, starting from a set af
(atomic) concept names NC and a set of (atomic) role names NR. A DL system, enabling
concept descriptions to be interrelated, allows the derivation of implicit knowledge from
explicitly represented knowledge by means of inference services. For a full account of
Description Logics, the reader is referred, for example, to [3].

In the DL ALC [21], concept descriptions are formed using the constructors negation,
conjunction and disjunction, value (and existential) restrictions. The DL ALCN [13, 19]
additionally allows for unqualified (at-least and at-most) number restrictions on atomic
roles. The syntax rules at the left hand side of Fig. 1 inductively define valid concept
and role expressions for ALCN and its extensions considered in this paper. As far as
semantics is concerned, concepts are interpreted as sets of individuals and roles as sets
of pairs of individuals. Formally, an interpretation is a pair I = (∆I , ·I), where ∆I is a
non-empty set of individuals (the domain of I) and I is a function (the interpretation
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function) which maps each concept to a subset of ∆I and each role to a subset of ∆I ×
∆I , such that the equation at the right hand side of Fig. 1 are satisfied. One of the
most important inference services of DL systems used in knowledge-representation and
conceptual modeling applications is computing the subsumption hierarchy of a given
finite set of concept descriptions.

Definition 1 The concept description C is satisfiable iff there exist an interpretation I
such that CI 6= ∅; in this case, we say that I is a model for C. The concept description D
subsumes the concept description C (written C v D) iff II ⊆ DI for all interpretations
I; concept descriptions C and D are equivalent iff C v D and D v C.

Since ALC is propositionally complete, subsumption can be reduced to concept satis-
fiability and vice versa: C v D iff C u ¬D is unsatisfiable and C is satisfiable iff not
C v A u ¬A, where A is an arbitrary concept name.

In ALCN , number restrictions can be used to restrict the cardinality of the set of
fillers of roles (role successors). For instance, the concept description:

∃≤3child u ∀child.Female

defines individuals who have at most three daughters and no sons. ALCN (◦) [4] allows
counting successors of role chains, which can be used to express interesting cardinality
constraints on the interrelationships some individuals hold with other objects of the
domain. Moreover, ALCN (◦) [4] allows counting successors of role chains in concept
descriptions, which can be used to express interesting cardinality constraints on the
interrelationships some individuals hold with other objects of the domain. For example,
the ALCN (◦)-concept:

Man u ∃≥50(friend ◦ tel number)

allows us to define men for which the count of different telephone numbers of their
friends amounts at least to fifty. Notice that such description does not impose further
constraints (disregarding obvious ones) either on the number of friends one may have,
or on the number of telephone numbers each friend may have (e.g. some friends might
have no telephone at all), or even on the fact that some numbers may be shared by more
than one friends (e.g. if husband and wife). It only gives, for example, a constraint on
the minimum size of a phonebook such men need.

The additional role constructs we consider in this paper further improve the expres-
siveness of the resulting DLs and, thus, make them very appealing from an application
viewpoint. For instance, we may use the ALCN̄ (◦,− )-concept:

Person u ∃child− u ∃≤1(child− ◦ child)

to define persons who are a only child, or the ALCQ(◦) concept:

Woman u ∃≥3(husband ◦ brother). Lawyer

to describe women having at least three lawyers as brother-in-law.
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Figure 2: The grid structure used in the ALCN̄ (◦,− ) undecidability proof.

2 Undecidability of ALCN̄ (◦,− )

We consider in this Section the extension of ALCN (◦) by inverse roles (I). Notice that
allowing the use of role inversion both in number and in value restrictions, we obtain
a Logic which is a syntactic variant of ALCN̄ (◦,− ). Obviously, ALCN (◦)I concept
descriptions are also ALCN̄ (◦,− ) concept descriptions. Conversely, by recursively ap-
plying rules (R ◦ S)− = S− ◦ R− (pushing inverses inwards and eliminating parenthe-
ses) and (R−)− = R, we can put any ALCN̄ (◦,− ) complex role expression in the form
R̄1 ◦ R̄2 ◦ · · · ◦ R̄n, where each R̄i is either an atomic role or the inverse of an atomic role
(R̄i ∈ {Ri, R

−
i }). Then we can get rid of role composition in value restrictions thanks to

the following equivalences:

∃(R̄1 ◦ R̄2 ◦ · · · ◦ R̄n).C ≡ ∃R̄1.∃R̄2. · · · ∃R̄n.C

∀(R̄1 ◦ R̄2 ◦ · · · ◦ R̄n).C ≡ ∀R̄1.∀R̄2. · · · ∀R̄n.C

This procedure gives a translation of concept descriptions from ALCN̄ (◦,− ) to ALCN (◦)
I.

To show undecidability of ALCN̄ (◦,− ), borrowing the proof procedure from [4], we
use a reduction of the well-known undecidable domino problem [6]:

Definition 2 A tiling system D = (D,H, V ) is given by a non-empty set D = {D1, . . . , Dm}
of domino types, and by horizontal and vertical matching pairs H ⊆ D×D, V ⊆ D×D.
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The (unrestricted) domino problem asks for a compatible tiling of the plane, i.e. a map-
ping t : Z× Z → D such that, for all m,n ∈ Z,

〈 t(m,n), t(m+ 1, n) 〉 ∈ H and 〈 t(m,n), t(m,n+ 1) 〉 ∈ V

We will show reducibility of the domino problem to concept satisfiability inALCN̄ (◦,− ).
In particular, we show how a given tiling system D can be translated into a concept ED
which is satisfiable iff D allows for a compatible tiling. Following the same lines of un-
decidability proofs in [4], such translation can be split into three subtasks which can be
described as follows:

Grid specification It must be possible to represent a “square” of Z×Z, which consists
of points (m,n), (m+1, n), (m,n+1) and (m+1, n+1), in order to yield a complete
covering of the plane via a repeating regular grid structure. The idea is to introduce
concepts to represent the grid points and roles to represent the x- and y-successor
relations.

Local compatibility It must be possible to express that a tiling is locally compatible,
that is that the x-successor and the y-successor of a point have an admissible domino
type. The idea is to associate each domino type Di with an atomic concept Di, and
to express the horizontal and vertical matching conditions via value restrictions.

Total reachability It must be possible to impose the above local conditions on all points
in Z × Z. This can be achieved by constructing a “universal” role and a “start”
individual such that every grid point can be reached from the start individual. The
local compatibility conditions can then be globally imposed via value restrictions.

The grid structure that we will use to tile the plane is shown in Fig.2. In particular,
in addition to grid points, we also consider “centers” of grid squares, which are connected
to grid square vertices by means of a role named R. All grid cell centers are instances
of the C concept, whereas grid points are instances of the A concept. We introduce nine
different (disjoint) types of grid centers via the concepts Cij (0 ≤ i, j ≤ 2) and nine
different types of (disjoint) grid points via the concepts Aij (0 ≤ i, j ≤ 2), as follows:

C := t
0≤i,j≤2

(

Cij u ( u
0≤k,`≤2

(i,j)6=(k,`)

¬Ck`)

)

A := t
0≤i,j≤2

(

Aij u ( u
0≤k,`≤2

(i,j)6=(k,`)

¬Ak`)

)

u ¬C

Grid specification can then be accomplished by means of the C¢ and A¢ concepts
which follow:

C¢ := C u ∃≤4R u ∀R.A¢ u ∃
≤9R ◦R− u

u
0≤i,j≤2

(

Cij ⇒ (∃R.Aij u ∃R.Ai⊕1,j u ∃R.Ai,j⊕1 u ∃R.Ai⊕1,j⊕1)
)

A¢ := A u u
0≤i,j≤2

(

Aij ⇒ (∃R−.Cij u ∃R
−.Ci⊕2,j u ∃R

−.Ci,j⊕2 u ∃R
−.Ci⊕2,j⊕2)

)

where a⊕ b = (a+ b) mod 3.
Some relevant constraints that are imposed by these concept descriptions on their

models are studied in the Lemmata and Corollaries which follow.
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R-successors (R ◦R−)-successors Cij-types

Aij Cij ➊

Ci⊕2,j ➋

Ci,j⊕2 ➌

Ci⊕2,j⊕2 ➍

Ai⊕1,j Ci⊕1,j ➎

Ci⊕1⊕2,j = Cij ➀

Ci⊕1,j⊕2 ➏

Ci⊕1⊕2,j⊕2 = Ci,j⊕2 ➂

Ai,j⊕1 Ci,j⊕1 ➐

Ci⊕2,j⊕1 ➑

Ci,j⊕1⊕2 = Cij ➀

Ci⊕2,j⊕1⊕2 = Ci⊕2,j ➁

Ai⊕1,j⊕1 Ci⊕1,j⊕1 ➒

Ci⊕1⊕2,j⊕1 = Ci,j⊕1 ➆

Ci⊕1,j⊕1⊕2 = Ci⊕1,j ➄

Ci⊕1⊕2,j⊕1⊕2 = Cij ➀

Table 1: Types of the R- and (R ◦ R−)-successors of a Cij-type grid center. In the last
column, numbers on black ground mark different Cij-types the first time they are met
from the top of the table, whereas numbers on white ground refer to Cij-types that have
been met before.

Lemma 1 Let c be an instance of C¢. Then it has at most one R-successor in each of
the nine Ak` concept extensions.

Proof More precisely, c has exactly one R-successor in the extension of each of the four
Ak` concepts it is connected to by R (e.g. if w.l.o.g. c ∈ (Cij)

I then c has exactly one
R-successor in the extension of Aij, Ai⊕1,j , Ai,j⊕1, Ai⊕1,j⊕1 and no R-successor in any of
the remaining five partitions of the extension of A). This follows from the fact that the
nine Ak` concepts are disjoint and c has a total number of at most four R-successors. ¤

Lemma 2 Let c be an instance of C¢. Then it has exactly one (R ◦ R−)-successor in
each of the nine Ck` concept extensions.

Proof Since c is an instance of C, it belongs to the extension of exactly one of the
nine Ck` concepts. W.l.o.g. let us assume c ∈ (Cij)

I . Hence, owing to the C¢ and A¢
definitions and Lemma 1, c has surely R- and (R ◦ R−)-successors as shown in Tab. 1.
In particular, c has (R ◦R−)-successors in each of the nine Ck` concept extensions. Since
all the Ck` extensions are disjoint and c has a total of at most nine (R ◦R−)-successors,
this means that c has exactly one (R ◦ R−)-successor in each of the nine Ck` concept
extensions (being c itself its unique (R ◦R−)-successor in Cij). ¤

Corollary 1 Let a be an instance of A¢. Then (1) all its (R−)-successors are instances
of C¢ and (2) it has at most one (R−)-successor in each of the nine Ck` concept exten-
sions.
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Proof It is an immediate consequence of Lemma 2. W.l.o.g. assume a ∈ (Aij)
I . (1) If a

had an (R−)-successor o 6∈ (C¢)
I , then any of the four (R−)-successors of a in C¢ would

have at least ten (R ◦R−)-successors (it has nine (R ◦R−)-successors in C¢ by Lemma 2
plus o) and, thus, would violate the C¢ definition. (2) If a had, for instance, two distinct
(R−)-successors in Ck` (i.e. ∃c, c

′ ∈ (Ck`)
I , c 6= c′, with (c, a) ∈ RI , (c′, a) ∈ RI), then c

would have two distinct (R ◦R−)-successors in Ck`, c
′ and itself, contradicting Lemma 2.

More precisely, a has exactly one (R−)-successor in the extension of each of the four
Ck` concepts it is connected to by R−. ¤

Corollary 2 Let a be an instance of A¢. Then it has exactly one (R− ◦R)-successor in
each of the nine Ak` concept extensions.

Proof W.l.o.g. assume a ∈ (Aij)
I . We show that if the thesis is false we come up

with a contradiction. To this end, we must distinguish three cases. First of all, we
can exclude a has another (R− ◦ R)-successor, say a′, in Aij: if this happened, each of
the four (R−)-successors of a (e.g. c ∈ (Cij)

I) would have two distinct R-successors (a
and a′) in Aij, thus violating Lemma 1. Second, we can also exclude a has two distinct
(R− ◦R)-successors in Ak`, say a

′ and a′′, which can be reached through a common (R−)-
successor c (e.g. c ∈ (Cij)

I): if this happened, c would have two distinct R-successors
(a and a′) in Ak`, against Lemma 1 again. In the third and last case, we must consider
a having two distinct (R− ◦ R)-successors in Ak`, say a′ and a′′, which can be reached
through distinct (R−)-successors of a. W.l.o.g. we may assume such (R−)-successors of
a in Cij and Ci,j⊕2, and a′, a′′ ∈ (Ai⊕1,j)

I . Hence we must have that ∃c0 ∈ (Cij)
I with

{(c0, a), (c0, a
′)} ⊆ RI and ∃c ∈ (Ci,j⊕2)

I with {(c, a), (c, a′′)} ⊆ RI . We then consider
the application of Lemma 2 from c0 ∈ (Cij)

I . By construction, c0 has c as (R ◦ R−)-
successor through the path passing from a ∈ (Aij)

I . Owing to Lemma 2, also the (R◦R−)
path passing from a′ ∈ (Ai⊕1,j)

I (the path exists, as a′ has an (R−)-successor in (Ci,j⊕2)
I)

must lead to c and, thus, (c, a′) ∈ RI . But this contradicts Lemma 1, as c would have
two distinct R-successors (a′ and a′′) in (Ai⊕1,j)

I . ¤

Hence, we will interpret instances of C¢ as grid centers and instances of A¢ as grid
points. In particular, nine different types of grid cells can be defined according to the
type of their center: an (i, j)-type grid cell has a Cij-type center, while its lower left, lower
right, upper left and upper right vertices can be defined, respectively, as the instances
of the Aij, Ai⊕1,j , Ai,j⊕1 and Ai⊕1,j⊕1 concepts which are connected to the center via R
(according to the C¢ definition). Therefore, the x- and y-successor relations on the grid
can be defined by means of the (R− ◦ R)-paths connecting an Aij-type grid point with
an Ai⊕1,j-type and an Ai,j⊕1-type grid points, respectively. Such successors always exist
and are uniquely defined, owing to Corollary 2.

In a similar way, Corollary 2 also allows us to uniquely define the x- and y-predecessors
relations on the grid, by means of the (R− ◦R)-paths connecting an Aij-type grid point
with an Ai⊕2,j-type and an Ai,j⊕2-type grid points, respectively (cf. (a − 1) mod 3 =
(a+ 2) mod 3).

Lemma 3 (Grid Closure) For each grid point, the (x ◦ y)- and (y ◦ x)-successors are
uniquely defined and coincide.

Proof We can assume the grid point to represent the point (m,n) ∈ Z × Z and call it
p(m,n). W.l.o.g. we can further assume p(m,n) to be the bottom left vertex of an (i, j)-type
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grid cell. Therefore, p(m,n) is an instance of Aij and is an R-successor of the grid cell
center, say c(m,n), which is an instance of Cij. The x-successor of p(m,n), say p(m+1,n), is
the R-successor of c(m,n) in Ai⊕1,j (by construction, it is an (R− ◦ R)-successor of p(m,n)

and is unique by Corollary 2). Analogously, the y-successor of p(m,n), say p(m,n+1), is the
R-successor of c(m,n) in Ai,j⊕1. According to the C¢ definition, c(m,n) has also a fourth
R-successor, say p̄, in Ai⊕1,j⊕1. We consider now the (x ◦ y)-successor of p(m,n), that is
the y-successor of p(m+1,n), and call it p′(m+1,n+1). Owing to the y-successor definition,

p′(m+1,n+1) must be an instance of Ai⊕1,j⊕1 connected to p(m+1,n) via (R− ◦ R). However,

both p̄ and p′(m+1,n+1) are, by construction, (R− ◦ R)-successors of p(m+1,n) in Ai⊕1,j⊕1

and, thus, they must coincide thanks to Corollary 2. Analogously, the (y ◦x)-successor of
p(m,n), that is the x-successor of p(m,n+1), say p′′(m+1,n+1), must be an instance of Ai⊕1,j⊕1

connected to p(m,n+1) via (R− ◦ R). Thence, Corollary 2 ensures that p̄ and p′′(m+1,n+1)

coincide, as they are both (R− ◦ R)-successors of p(m,n+1) in Ai⊕1,j⊕1. Hence, p̄ is the
common (x ◦ y)- and (y ◦ x)-successor of p(m,n) on the grid, that can be called p(m+1,n+1)

to represent the point (m+ 1, n+ 1) of the plane. ¤

Local compatibility is easily achieved by enforcing grid centers to be instances of a CD
concept defined as follows:

CD := ∀R.

(

t
1≤k≤m

(

Dk u ( u
1≤`≤m
k 6=`

¬D`)
)

)

u u
0≤i,j≤2

(

Cij ⇒ u
1≤k≤m

∃R.(Aij uDk)

⇒
(

∃R.(Ai⊕1,j u ( t
(Dk,D`)∈H

D`)) u ∃R.(Ai,j⊕1 u ( t
(Dk,D`)∈V

D`))
)

)

Each domino type Dk is associated to an atomic concept with the same name. The
value restriction in the first conjunct of CD forces grid points to have a domino type.
The second conjunct uses the definition of the x- and y-successors for the bottom left
vertex of an (i, j)-type cell to enforce horizontal and vertical matching conditions via
value restrictions.
Total Reachability will be achieved by constructing a “start” individual (s) and two
“universal” roles: the former (U) which connects s to every grid center and the latter
(U ◦R) which connects s to every grid point (see Fig. 2). The Lemmata and Corollaries
which follow will justify the correctness of our construction.

Lemma 4 Let s be an instance of

D := ∃U ◦R u ∃≤1(U ◦R) ◦ (U ◦R)− u ¬∃R− u ¬∃U− u ∀U.¬∃R−

in a given interpretation I. Then any (U ◦R)-successor x of s in I (D ensures that there
is at least one) has s as its unique (U ◦R)-predecessor.

Proof Assume s ∈ DI and x is a (U ◦ R)-successor of s, that is ∃o ∈ ∆I such that
(s, o) ∈ UI , (o, x) ∈ RI , with o 6= s (as s 6∈ (∃U−)I), x 6= o (as s ∈ (∀U.¬∃R−)I and,
thus, o 6∈ (∃R−)I) and s 6= x (as s 6∈ (∃R−)I). If there were s′ ∈ ∆I , s′ 6= s, such that
s′ is a (U ◦ R)-predecessor of x (i.e. ∃o′ ∈ ∆I such that (s′, o′) ∈ UI , (o′, x) ∈ RI),
then s and s′ would be both (R− ◦ U−) = (U ◦ R)−-successors of x in I and, thus, both
(U ◦ R) ◦ (U ◦ R)−-successors of s in I. Hence we should have s 6∈ DI , against the
hypothesis. ¤
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Corollary 3 Under the hypothesis of Lemma 4, any U-successor of s in I has s as its
unique U-predecessor.

Corollary 4 Under the hypothesis of Lemma 4, let s be an instance of

D′ := D u ∀U.∀R.∀R−.∃U− u ¬∃R

in a given interpretation I. Then any (U ◦R ◦R−)-successor y of s in I (D ensures that
there is at least one) is a U-successor of s in I and has s as its unique U-predecessor.

Proof Let y ∈ ∆I be a generic (U ◦ R ◦ R−)-successor of s in I, that is ∃o, x ∈ ∆I

such that (s, o) ∈ UI , (o, x) ∈ RI , (y, x) ∈ RI (we may assume y 6= o, as the Corollary
is trivially true for o), with s 6= y (as s 6∈ (∃R)I). Since s ∈ (∀U.∀R.∀R−.∃U−)I ,
y ∈ (∃U−)I , that is ∃s′ ∈ ∆I such that (s′, y) ∈ UI . Notice that both s and s′ have,
by construction, x as (U ◦ R)-successor. Since s ∈ DI , thanks to Lemma 4, s and s′

must coincide. Hence y is a U -successor of s, which is also its unique U -predecessor by
Corollary 3. ¤

Lemma 5 (Plane Covering and Compatible Tiling) Let s be an instance of

ED := ∃U ◦R u ∃≤1(U ◦R) ◦ (U ◦R)− u ¬∃R u ¬∃R− u ¬∃U− u

∀U.∀R.∀R−.∃U− u ∀U.(C¢ u CD u ¬∃R
−)

in a given interpretation I. Then, for the grid that tiles the plane Z×Z, any grid center
can be reached from s via U , any grid point can be reached from s via U ◦ R and local
tiling conditions are imposed on all grid points (yielding a compatible tiling of the plane).

Proof Let us consider a grid center connected to s ∈ (ED)
I via U (ED v ∃U ◦Ru∀U.C¢

ensures that there is at least one). W.l.o.g. we can assume it to be the center of an
(i, j)-type cell and call it c(0,0) (c(0,0) ∈ (Cij)

I). We can also call p(0,0) the bottom left
vertex of this grid cell (p(0,0) ∈ (Aij)

I) and let it represent the origin (0, 0) of Z×Z. We
can now consider the x- and y-successors of p(0,0), say p(1,0) and p(0,1), respectively. By
construction, we have p(1,0) ∈ (Ai⊕1,j)

I , p(0,1) ∈ (Ai,j⊕1)
I ; moreover, either p(0,0), p(1,0)

and p(0,1) are R-successors of c(0,0) and, thus, (U ◦ R)-successors of s. In the (i, j)-type
grid cell centered on c(0,0), p(1,0) and p(0,1) are the bottom right and top left vertices, but
they are also the bottom left vertices of the two grid cells adjacent to the right and to the
top, respectively. In particular, p(1,0) and p(0,1) are the bottom left vertices of an (i⊕1, j)-
and an (i, j ⊕ 1)-type grid cells, whose centers we can call c(1,0) and c(0,1), respectively
(the existence and uniqueness of these cells and their centers is ensured by Lemma 2).
Obviously, c(1,0) and c(0,1) are ((R ◦R−)-successors of c(0,0) and) (R

−)-successors of p(1,0)

and p(0,1), respectively. Therefore, they are (U ◦R◦R−)-successors of the start individual
s and, thanks to Corollary 4 (as ED v D′), they are also U -successors of s.

Using the x- and y-predecessor definitions, we can easily see that the same holds for
c(−1,0) and c(0,−1) grid centers. In any case, we can repeat the argument at will, starting
with c(1,0), c(0,1), c(−1,0) and c(0,−1) in place of c(0,0), and show that the center of any grid
cell on the plane can be reached from s via U . Hence, all grid points can be reached from
s via U ◦ R and local tiling conditions are imposed on all of them by value restrictions
(as ED v ∀U.CD). ¤

Thanks to Lemma 5, it is easy to see that a tiling system D has a compatible tiling
iff concept ED is satisfiable (i.e. there is an interpretation I such that (ED)

I 6= ∅).

Theorem 1 Satisfiability (and, thus, subsumption) of concepts is undecidable for ALCN̄ (◦,− )
(and ALCQ(◦,− )).
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3 Decidability of ALCQ(◦)

We will show in this Section how an effective decision procedure for ALCQ(◦)-concept
satisfiability can be provided as a tableau-based algorithm. To this end, we consider
ALCQ(◦)-concept descriptions in Negation Normal Form (NNF [21]), where the nega-
tion sign is allowed to appear before atomic concepts only. In fact, ALCQ(◦)-concept
descriptions can be transformed into NNF in linear time via application of the same rules
which can be used for ALCQ (pushing negations inwards):

¬∃≤nR.C = ∃≥n+1R.C ¬∃≥nR.C = ∃≤n−1R.C (⊥ if n = 0)
¬∃R.C = ∀R.¬C ¬∀R.C = ∃R.¬C

in addition to the absorption rule for double negations and De Morgan’s laws for u and
t. Obviously, unqualified number restrictions are treated as particular cases of qualified
restrictions (with C = >). We can further make use of the rules:

∃R.C = ∃≥1R.C ∀R.C = ∃≤0R.¬C

to get rid of (existential and) value restrictions. We define the concept descriptions ob-
tained in this way as in NNFon and denote the NNFon of the ALCQ(◦)-concept description
¬C as ∼ C. We will use the symbol on in number restrictions ∃onnR.C as a placeholder
for either ≥ or ≤.

The Tableau algorithm we are going to introduce manipulates, as basic data struc-
tures, ABox assertions involving domain individuals. In fact, our algorithm is a simple
extension of the tableau-based algorithm to decide ALCN (◦)-concept satisfiability pre-
sented by Baader and Sattler in [4]. The extension is based on the modification of the
transformation rules for number restrictions (≥- and ≤-rules) to take into account the
“qualifying” conditions and on the introduction of a so-called choose rule (called -rule
here), which makes sure that all “relevant” concepts that are implicitly satisfied by an
individual are made explicit in the ABox. Basically, the proposed extension is similar
to the one which extends the tableau-based ALCN sasfiability algorithm [13, 19] to an
ALCQ satisfiability algorithm [18, 5].

Definition 3 Let NI be a set of individual names. An ABox A is a finite set of assertions
of the form C(a) –concept assertion– or R(a, b) –role assertion– where C is a concept
description, R a role name, and a, b are individual names. An interpretation I, which
additionally assigns elements aI ∈ ∆I to individual names a, is a model of an ABox A
iff aI ∈ CI (resp. (aI , bI) ∈ RI) for all assertions C(a) (resp. R(a, b)) in A. The ABox
A is consistent iff it has a model. The individual a is an instance of the description C
w.r.t. A iff aI ∈ CI holds for all models I of A. We also consider in a ABox inequality
assertions of the form a 6= b, with the obvious semantics that an interpretation I satisfies
a 6= b, iff aI 6= bI . Inequality assertions are assumed to be symmetric, that is saying that
a 6= b ∈ A is the same as saying b 6= a ∈ A.

Sometimes in the DL field, a unique name assumption is made in works concerning
reasoning with individuals, that is the mapping π : NI → ∆I from individual names to
domain elements is required to be injective. We dispense from this requirement as it has
no effect for the ALC extensions studied here and the explicitly introduced inequality
assertions can be used to enforce the uniqueness of names anyway.
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Definition 4 The individual y is a (R1◦R2◦· · ·◦Rm)-successor of x in A iff ∃y2y3 . . . ym
variables in A such that {Rk(yk, yk+1) | 2 ≤ k ≤ m− 1} ∪ {R1(x, y2), Rm(ym, y)} ⊆ A.

Definition 5 An ABox A contains a clash iff, for an individual name x ∈ NI, one of the
two situations below occurs:

• {A(x),¬A(x)} ⊆ A, for a concept name A ∈ NC;

• (∃≤nR1 ◦ · · · ◦Rm.C)(x) ∈ A and x has p (R1 ◦ · · · ◦Rm)-successors y1, . . . , yp with
p > n such that {C(yi) | 1 ≤ i ≤ p}∪{yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A, for role names
{R1, . . . , Rm} ⊆ NR, a concept description C and an integer n ≥ 0.

To test the satisfiability of an ALCQ(◦) concept C in NNFon, the proposed ALCQ(◦)-
algorithm works as follows. Starting from the initial ABox {C0(x0)}, it applies the
completion rules in Fig. 3, which modify the ABox. It stops when no rule is applicable
(when a clash is generated, the algorithm does not immediately stops but it always
generate a complete ABox). An ABox A is called complete iff none of the completion
rules is any longer applicable. The algorithm answers “C is satisfiable” iff a complete and
clash-free ABox has been generated. The ALCQ(◦)-algorithm is non-deterministic, due
to the t-, ≤- and -rules (for instance, the t-rule non-deterministically chooses which
disjunct to add for a disjunctive concept).

Lemma 6 Let C0 be an ALCQ(◦)-concept in NNFon, and let A be an ABox obtained by
applying the completion rules to {C0(x0)}. Then

1. For each completion rule R that can be applied to A and for each interpretation I,
the following equivalence holds: I is a model of A iff I is a model of the ABox A′

obtained by applying R.

2. If A is a complete and clash-free ABox, then A has a model.

3. If A is complete but contains a clash, then A does not have a model.

4. The completion algorithm terminates when applied to {C0(x0)}.

As a matter of fact, termination (4) yields that after finitely many steps we obtain a
complete ABox. If C0 is satisfiable, then {C0(x0)} is also satisfiable and, thus, at least
one of the complete ABoxes that the algorithm can generate is satisfiable by (1). Hence,
such an ABox must be clash-free by (3). Conversely, if the application of the algorithm
produces a complete and clash-free ABox A, then it is satisfiable by (2) and, owing to
(1), this implies that {C0(x0)} is satisfiable. Consequently, the algorithm is a decision
procedure for satisfiability of ALCQ(◦)-concepts.

Corollary 5 Concept satifiability (and subsumption) for ALCQ(◦) is decidable, and the
Tableau algorithm based on the completion rules in Fig. 3 is an effective decision proce-
dure.

Proof of Part 1 of Lemma 6 We consider only the rules concerned with number
restrictions and the -rule, as the proof for the first two rules is the same as for ALC.
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u-rule: if 1. (C1 u C2)(x) ∈ A and

2. {C1(x), C2(x)} 6⊆ A

then A′ := A ∪ {C1(x), C2(x)}

t-rule: if 1. (C1 t C2)(x) ∈ A and

2. {C1(x), C2(x)} ∩ A = ∅

then A′ := A ∪ {D(x)} for some D ∈ {C1, C2}

≥ -rule: if 1. (∃≥nR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. x has exactly p (R1 ◦ · · · ◦Rm)-successors y1, . . . , yp with p < n

such that {C(yi) | 1 ≤ i ≤ p} ∪ {yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A

then A′ := A ∪ {R1(x, zi2), R2(zi2, zi3), . . . , Rm(zim, zi), C(zi) | 1 ≤ i ≤ n− p}

∪{zi 6= zj | 1 ≤ i < j ≤ n− p} ∪ {yi 6= zj | 1 ≤ i ≤ p, 1 ≤ j ≤ n− p}

where zik, zi (for 1 ≤ i ≤ n− p, 2 ≤ k ≤ m) are m(n− p) fresh variables

≤ -rule: if 1. (∃≤nR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. x has more than n (R1 ◦ · · · ◦Rm)-successors y1, . . . , yp such that

{C(yi) | 1 ≤ i ≤ p} ⊆ A and {yi 6= yj} ∩ A = ∅ for some i, j (1 ≤ i < j ≤ p),

then for some pair yi, yj (1 ≤ i < j ≤ p) such that {yi 6= yj} ∩ A = ∅

A′ := [yi/yj]A (i.e. A′ is obtained by replacing each occurrence of yi by yj)

-rule: if 1. (∃onnR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. y is an (R1 ◦ · · · ◦Rm)-successor of x such that {C(y),∼ C(y)} ∩ A = ∅

then A′ := A ∪ {D(y)} for some D ∈ {C,∼ C}

Figure 3: The Completion Rules for ALCQ(◦)
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3. ≥-rule. Assume that the rule is applied to the constraint (∃≥nR1 ◦ · · · ◦ Rm.C)(x)
and that its application yields:

A′ = A ∪ {R1(x, zi2), R2(zi2, zi3), . . . , Rm(zim, zi), C(zi) | 1 ≤ i ≤ n− p}

∪{zi 6= zj | 1 ≤ i < j ≤ n− p} ∪ {yi 6= zj | 1 ≤ i ≤ p, 1 ≤ j ≤ n− p}

Since A is a subset of A′, any model of A′ is also a model of A. Conversely, assume
that I is a model of A. On the one hand, since I satisfies (∃≥nR1 ◦ · · · ◦Rm.C)(x),
xI has at least n (R1 ◦ · · · ◦ Rm)-successors in I which are instances of C. On
the other hand, since the ≥-rule is applicable to (∃≥nR1 ◦ · · · ◦ Rm.C)(x), x has
exactly p (R1 ◦ · · · ◦ Rm)-successors y1, . . . , yp, with p < n, which are instances of
C in A. Thus, there exists n − p (R1 ◦ · · · ◦ Rm)-successors b1, . . . , bn−p of xI in
I such that bi ∈ CI and bi 6= yj for all i, j (1 ≤ i ≤ n − p, 1 ≤ j ≤ p). For all i
(1 ≤ i ≤ n − p), let {bi2, . . . , bim} ⊆ ∆I be such (xI , bi2) ∈ RI1 , (bi2, bi3) ∈ RI2 , . . . ,
(bim, bi) ∈ RIm. We define the interpretation of the new variables added by the
≥-rule as zIi2 = bi2, . . . , z

I
im = bim, and zIi = bi (1 ≤ i ≤ n − p). Obviously, I

satisfies A′.

4. ≤-rule. Assume that the rule is applied to the constraint (∃≤nR1◦· · ·◦Rm.C)(x) ∈ A
and let I be a model of A. On the one hand, since the rule is applicable, x has
more than n (R1 ◦ · · · ◦ Rm)-successors which are instances of C in A. On the
other hand, I satisfies (∃≤nR1 ◦ · · · ◦ Rm.C)(x) and, thus, there are two different
(R1 ◦ · · · ◦ Rm)-successors yi, yj of x and instances of C in A such that yIi = yIj .
Obviously, this implies that yi 6= yj 6∈ A and, thus, A′ = A[yi/yj] is the ABox
obtained by applying the ≤-rule to (∃≤nR1 ◦ · · · ◦ Rm.C)(x). In addition, since
yIi = yIj , I satisfies A′. Conversely, assume that A′ = A[yi/yj] is obtained from A
by applying the ≤-rule, and let I be a model of A′. If we consider an interpretation
I so that yIj = yIi for the additional variable yj that is present in A then obviously
I satisfies A.

5. -rule. Assume that the rule is applied to the constraint (∃onnR1 ◦ · · · ◦ Rm.C)(x)
and that its application yields:

A′ = A ∪ {D(y)}

where D(y) 6∈ A. Since A is a subset of A′, any model of A′ is also a model of
A. Conversely, assume that I is a model of A. As far as y is concerned, either
yI ∈ CI or yI ∈ ∆I \ CI = (∼ C)I . If yI ∈ CI , for the ABox A′ built with the
choice D = C we have that I satisfies A′. Else, if yI ∈ (∼ C)I , I satisfies A′ for
the choice D =∼ C. In any case, I is a model of the ABox A′ obtained by applying
the -rule to A.

¤

Proof of Part 2 of Lemma 6 Let A be a complete and clash-free ABox that is obtained
by applying the completion rules to {C0(x0)}. We define the canonical interpretation IA
of A as follows:

1. The domain ∆IA of IA consists of all the individual names x ∈ NI occurring in A.

2. For all concept names C ∈ NC we define CIA := {x | C(x) ∈ A}.
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3. For all role names R ∈ NR we define RIA := {(x, y) | R(x, y) ∈ A}.

4. For all individual names xIA := x (i.e. the variable assignment π is the identity on
NI).

We show that IA satisfies every constraint in A.
By definition, IA satisfies all the role assertions of the form R(x, y), iff R(x, y) ∈ A.

More generally, y is an (R1 ◦ · · · ◦ Rm)-successor of x in A iff y is an (R1 ◦ · · · ◦ Rm)-
successor of x in IA. Furthermore, y 6= z implies yIA 6= zIA by construction of IA. By
induction on the structure of concept descriptions, it can be easily shown that IA satisfies
the concept assertions as well, provided that A is complete and clash-free. Again, we
restrict our attention to number restrictions and the -rule, since the induction base and
the treatment of other constructors is the same as for ALC.

• First, consider any assertion (∃onnR1 ◦ · · · ◦ Rm.C)(x) ∈ A and all y’s which are
(R1 ◦ · · · ◦ Rm)-successors of x in A. Then, for each of them, either C(y) ∈ A or
∼ C(y) ∈ A, otherwise the -rule could be applied. Moreover, it can be easily
proved (by induction on the structure of C) that {C(y),∼ C(y)} ⊆ A would lead
to a clash.

• Consider (∃≥nR1 ◦ · · · ◦ Rm.C)(x) ∈ A. Since A is complete, the ≥-rule cannot
be applied to (∃≥nR1 ◦ · · · ◦ Rm.C)(x) and, thus, x has at least n (R1 ◦ · · · ◦ Rm)-
successors which are instances of C in A, which are also (R1 ◦ · · · ◦Rm)-successors
of x and instances of C in IA (by induction, y ∈ CIA for each y with C(y) ∈ A).
Hence, x ∈ (∃≥nR1 ◦ · · · ◦Rm.C)IA

• Constraints with the form (∃≤nR1◦· · ·◦Rm.C)(x) ∈ A are satisfied since A is clash-
free and complete. In fact, assume that x has more than n (R1◦· · ·◦Rm)-successors
which are instances of C in IA. Then x has more than n (R1 ◦ · · · ◦Rm)-successors
which are instances of C also in A. If A contained inequality constraints yi 6= yj
for all these successors, then we would have a clash. Otherwise, the ≤-rule could
be applied.

¤

Proof of Part 3 of Lemma 6 Assume that A contains a clash. If {A(x), (¬A)(x)} ⊆ A,
then clearly no interpretation can satisfy both constraints. Thus assume that (∃≤nR1 ◦
· · · ◦ Rm.C)(x) ∈ A and x has p > n (R1 ◦ · · · ◦ Rm)-successors y1, . . . , yp with {C(yi) |
1 ≤ i ≤ p} ∪ {yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A. Obviously, this implies that, in any model I
of A, xI has p > n (R1 ◦ · · · ◦Rm)-successors which are instances of C in I, which shows
that I cannot satisfy (∃≤nR1 ◦ · · · ◦Rm.C)(x). ¤

Proof of Part 4 of Lemma 6 We must show that the Tableau algorithm that tests
satisfiability of ALCN (◦)-concepts always terminates. In the following, we consider only
ABoxes A that are obtained by applying the completion rules to {C0(x0)}. For a concept
C, we define its and/or-size |C|u,t as the number of u and t constructors in C. The
maximal role depth depth(C) of C is defined as follows:

depth(A) = depth(¬A) := 0 for A ∈ NC

depth(C1 u C2) = depth(C1 t C2) := max{depth(C1), depth(C2)}

depth(∃onnR1 ◦ · · · ◦Rm.C) = m+ depth(C)
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Let C0 be an ALCN (◦)-concept in NNFon, and let A an ABox obtained by applying the
completion rules to {C0(x0)}. As an easy consequence of the definition of the completion
rules, we can observe the following facts:

1. Every variable x 6= x0 that occurrs in A is an (R1 ◦ · · · ◦ Rm)-successor of x0 for
some role chain of length m ≥ 1. In addition, every other role chain that connects
x0 with x has the same length.

2. If x can be reached inA by a role chain of lengthm from x0, then for each constraint
C(x) ∈ A, the maximal role depth of C is bounded by the maximal role depth of
C0 minus m (i.e. depth(C) ≤ depth(C0)−m). Consequently, m ≤ depth(C0).

Let m0 be the maximal role depth of C0. Because of the first fact, every individual x in
a ABox A (reached from {C0(x0)} by applying completion rules) has a unique role level
level(x), which is its distance from the root node x0, i.e. the unique length of the role
chains that connect x0 with x. Owing to the second fact, the level of each individual is
an integer between 0 and m0.

In the following, we define a mapping K of ABoxes A to a 3(m0 + 1)-tuple of non-
negative integers such that A → A′ implies K(A) Â K(A′), where Â denotes the lexico-
graphic ordering on tuples. Since the lexicographic ordering is well-founded, this implies
termination of the algorithm. In fact, if the algorithm did not terminate, then there would
exist an infinite sequence A0 → A1 → · · · , and this would yield an infinite descending
Â-chain of tuples.

Hence, let A be an ABox that can be reached from {C0(x0)} by applying completion
rules. We define:

K(A) := (κ0, κ1, . . . , κm0−1, κm0
),

where (sub)tuple κ` = (κ1
` , κ

2
` , κ

3
`) and the components κi` are obtained as follows:

• κ1
` is the number of individual variables x in A with level(x) = `.

• κ2
` is the sum of the and/or sizes |C|u,t of all constraints C(x) ∈ A such that

level(x) = ` and the u- or t-rule is applicable to C(x) .

• For a constraint α(x) = (∃≥nR1 ◦ · · · ◦ Rm.C)(x) ∈ A, let s be the cardinality
of maximal sets {y1, . . . , ys}, such that yi is an (R1 ◦ · · · ◦ Rm)-successor of x,
C(yi) ∈ A (1 ≤ i ≤ s) and yi 6= yj ∈ A (1 ≤ i < j ≤ s). Then we associate with
the constraint the number r(α(x)) = max{n − s, 0}, representing the number of
individuals that (possibly) still have to be added to A to make the constraint α(x)
satisfied, and define κ3

` as follows:

κ3
` =

∑

α(x)∈A,level(x)=`

r(α(x))

In the following, we show that A → A′ implies K(A) Â K(A′) for each of the completion
rules in Fig. 3.

1. u-rule. Assume the rule is applied to the constraint (C1uC2)(x), let A
′ be the ABox

obtained by its application and let ` = level(x). First we compare κ` and κ′`, i.e.
the tuples associated with level ` in A and A′, respectively. The first components
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κ1
` and κ1′

` agree since the number of individuals and their levels have not been
changed. For the second component, we have a decrease (i.e. κ2′

` < κ2
`), since

|C1 u C2|u,t is removed from the sum, and replaced by a number that is no larger
than |C1|u,t + |C2|u,t (depending on whether the top constructor of C1 and C2

is t or u, or another constructor). Since tuples are compared with lexicographic
ordering, a decrease in the second component makes sure that what happens in the
third component is irrelevant. For the same reason, we need not consider tuples
κq for q > `. Tuples at levels q < ` are either unchanged or have their third
component decreased by the application of the rule, since the addition of the new
constraints may add x to one of the maximal sets involved in the κ3

q definition (e.g.
if (∃≥1R.C1)(x

′) with R(x′, x) ∈ A but C1(x) 6∈ A, we might have a decrement in
κ3
`−1 when C1(x) is added to A′).

2. t-rule. This rule can be treated like the u-rule.

3. ≥-rule. Assume the rule is applied to the constraint (∃≥nR1◦· · ·◦Rm.C)(x), let A′ be
the ABox obtained by its application and let ` = level(x). The first two components
of κ` remains unchanged. The third component decreases (i.e. κ3′

` < κ3
`), since the

new individuals z1, . . . , zn−q can now be added to the maximal sets of explicitly
distinct individuals which are instances of C and (R1 ◦ · · · ◦ Rm)-successors of x
used in the computation of s. For this reason, the increase in the first component
of tuples of levels larger than ` is irrelevant (zi2’s are added at level `+1, . . . , zim’s
at level `+m− 1, and zi’s are added at level `+m). Tuples at levels smaller than
` are either unchanged or have their third component decreased by the application
of the rule.

4. ≤-rule. Assume the rule is applied to the constraint (∃≤nR1 ◦ · · · ◦Rm.C)(x), let A′

be the ABox obtained by its application and let ` = level(x). On level ` +m, the
first component κ1

` decreases, since variable yi is removed. Thus, possible increases
in other components of κ` are irrelevant. Tuples associated with smaller levels q < `
remain unchanged or decrease. In fact, the third component of tuples of smaller
level cannot increase since for the individuals yi and yj that have been identified
there was no inequality yi 6= yj ∈ A. Moreover, since no constraints are removed
and, in particular, yj in A′ has all its old constraints plus the constraints of yi in
A, yi may contribute to one of the maximal sets involved in the κ3

q definition (e.g.
if {(∃≥1R.C)(x′), R(x′, yi), C(yj)} ⊆ A we might have a decrement in κ3

`−1).

5. -rule. Assume the rule is applied to the constraint (∃onnR1 ◦ · · · ◦Rm.C)(x), let A′

be the ABox obtained by its application and let ` = level(x). Obviously, the first
two components remain unchanged at every level. Tuples at levels q smaller than
` + m have their third component unchanged or decreased, since the addition of
the constraint D(y) (with level(y) = `+m) may add some new individual to some
of the maximal sets involved in the κ3

q definition.

¤

Complexity issues

The tableau-based satifiability algorithm proposed above for ALCQ(◦) may require ex-
ponential time and space. The optimization strategies profitably employed for ALCN
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and ALCQ [24, 5] do not seem to be applicable to ALCN (◦) and ALCQ(◦). As a matter
of fact, such strategies rely on the fact that the underying Logics have the tree model
property, and, for the sake of satisfiability testing, the individuality of different role-
successors of a given domain object is not relevant. Only the number of such successors
counts (for ≥- and ≤-rule applicabilty and clash testing) and, thus, a single successor at a
time can be used as “representative” also for its siblings, when continuing the algorithm
for its further role-successors. In such a way, only one branch of the tree model at a time
can be generated and investigated by the algorithm, giving rise to a non-deterministic
procedure consuming only polynomial space and, thus, to PSpace complexity (since
NPSpace =PSpace, owing to Savitch’s Theorem [23]). In our case, such an optimiza-
tion does not seem to be possible, since ALCN (◦) and ALCQ(◦) do not have the tree
model property, as number restrictions ∃≥pR1 ◦ · · · ◦ Rm−1 u ∃

≤qR1 ◦ · · · ◦ Rm−1 ◦ Rm

(with p > q) make some separate (R1 ◦ · · · ◦ Rm−1) role chains merge into confluent
(R1 ◦ · · · ◦ Rm−1 ◦ Rm) chains to respect both kinds of number restrictions. In fact, the
identifications of successors effected by the ≤-rule (say at level `) may involve individ-
uals generated by previous executions of the ≥-rule for different ∃≥nR1 ◦ · · · ◦ Rm.C(x)
constraints, with possibly different values of level(x) and role chain lenghts (with the
proviso that level(x) + 1 ≤ ` ≤ level(x) + m). The enforcement of mutual constraints
between possibly “intersecting” role chains strictly relies on the individuation of single
successors, and cannot be surrogated, in general, via representatives. As a result, the
algorithm in Fig. 3 is a non-deterministic procedure possibly producing complete ABoxes
of exponential size in the length of the input concept description (even if binary coding
of numbers is assumed).

Lemma 7 Given a complete ABox A generated by the algorithm in Fig. 3, the size of A
is exponential in the input size s, thanks to the following facts:

1. The number a of individuals in A is O(2p(s)), where p is a polynomial funtion.

2. The number of constraints in A is a polynomial function of a.

Let us define the size c0 of the concept description C0 as the total number of symbols
(operators, concept and role names) it contains, and let N := max{n|∃≥nR1 ◦ · · · ◦
Rm.C is a subconcept of C0}. Moreover, the number of subconcepts of C0 is obviously
bounded by c0.
Proof of Fact 1 According to Fig. 3, new individuals (apart from x0) are added to A by
the application of the ≥-rule only. The algorithm execution generates a connected struc-
ture with the shape of a tree, rooted on x0, where some node coincide (owing to ≤-rule
applications). Each path in this tree-structure has a maximal length which is bounded by
the maximal role depth m0 of C0. The out-degree is bounded by the maximal number of
new successors that can be generated from an individual x. This number cannot exceed
c0Nm0, since the number of of times the ≥-rule can be applied to a constraint on x is
limited by the total number of ∃≥n constructors in C0 and, thus, by c0 and, for each appli-
cation of the ≥-rule, no more than Nm0 new individuals can be added. Hence, the total
size of the tree-structure is bounded by (c0Nm0)

m0 = 2m0(log c0+logN+logm0) ≤ 22c20+c0 logN ,
since m0 ≤ c0. Obviously, the exponent is a polynomial function of the input size, even
if binary coding of numbers is adopted. ¤

Proof of Fact 2 For each individual x, A may at most contain a pair of constraints
{C(x),∼ C(x)} for each subconcept C of C0. Hence, the total number of constraints
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with the form D(x) in A is bounded by 2c0. Moreover, for each pair of individuals x
and y, the number of constraints with the form R(x, y) (or x 6= y) in A is limited by
the number of role names in C0, which is strictly less than c0, plus one (for inequality
constraints). Hence, the size of A is surely bounded by 2c0a + c0a

2 (we can derive a
tighter bound if we take into account the role levels of individuals). ¤

As it can be easily seen, the two facts together give a space consumption bounded by
26s2+s.

Corollary 6 By the given algorithm, deciding satisfiability (subsumption) of ALCQ(◦)
concepts is in the NExpTime ( co-NExpTime) complexity class.

3.1 An extension of the decidability result

We provide in this Section an extension of the algorithm given in Fig. 3 for ALCQ(◦)-
concept satisfiability, such that it can also deal with union and/or intersection of role
chains of the same length. The extension follows the same directions of the similar
extension proposed for ALCN (◦) in [4]. Analogously, also the soundness, completeness
and termination proofs of our extended algorithm are very similar to the ones proposed
for the basic algorithm in the previous Section and, thus, they will only be sketched.

The general form of a role expression R we consider here is the following:

R =
M

t
i=1

Ni

u
j=1

(Rij
1 ◦R

ij
2 ◦ · · ·R

ij
m)

that is we assume, for the sake of simplicity, Boolean role chain combinations to be in
Disjunctive Normal Form1 (DNF). In the presence of role expressions of this kind, we
modify the definition of role successor for a complex role chain R as follows.

Definition 6 The individual y is a R-successor of x in A (where R is defined as above)
iff for some ı̂ (1 ≤ ı̂ ≤M), ∃y1

2y
1
3 . . . y

1
my

2
2y

2
3 . . . y

2
m yNı̂

2 yNı̂

3 . . . yNı̂
m variables in A such that

{Rı̂j
k (y

j
k, y

j
k+1) | 2 ≤ k ≤ m− 1, 1 ≤ j ≤ Nı̂} ∪ {R

ı̂j
1 (x, y

j
2), R

ı̂j
m(y

j
m, y) | 1 ≤ j ≤ Nı̂} ⊆ A.

Notice that, owing to this definition, role successors in A are also successors in every
model I of A: if I satisfies A, and y is an R-successor of x in A, then yI is an R-
successor of xI in I.

The Tableau algorithm is extended by replacing the completion rules dealing with
number restrictions and the -rule with the rules shown in Fig. 4, so that the new
complex role chains can be managed.

In order to prove that the new algorithm decides concept satisfiability for thisALCQ(◦)
extension, we must prove that all four parts of Lemma 6 still hold.

1. Local correctness of the ≥′-, ≤′- and ′-rules can be shown as in the proof of Part
1 of the Lemma 6.

2. The canonical model induced by a complete and clash-free ABox is defined as in
the proof of Part 2 of the Lemma 6. The proof that this canonical model satisfies
the ABox is also similar to the one provided for Lemma 6. Note that the definition
we used for R-successors coincides with the notion of R-successors in the canonical
model IA induced by A.

1General u/t combinations of role chains can be put in DNF (which may require an exponential
time) by rewriting concept C0 before the execution of the satisfiability algorithm.
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≥′ -rule: if 1. (∃≥nR.C)(x) ∈ A and

2. x has exactly p R-successors y1, . . . , yp with p < n

such that {C(yi) | 1 ≤ i ≤ p} ∪ {yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A

then A′ := A ∪ {Riij
1 (x, zji2), R

iij
2 (zji2, z

j
i3), . . . , R

iij
m (zjim, z

j
i ), C(zi)

| 1 ≤ i ≤ n− p, 1 ≤ j ≤ Nii}

∪{z`i 6= z`j | 1 ≤ i < j ≤ n− p, 1 ≤ ` ≤ Nii}

∪{yi 6= z`j | 1 ≤ i ≤ p, 1 ≤ j ≤ n− p, 1 ≤ ` ≤ Nii}

for some {i1, i2, . . . , in−p} ⊆ {1, . . . ,M},

where zjik, z
j
i (for 1 ≤ i ≤ n− p, 2 ≤ k ≤ m, 1 ≤ j ≤ Nii)

are m
∑n−p

i=1 Nii fresh variables

≤′ -rule: if 1. (∃≤nR.C)(x) ∈ A and

2. x has more than n R-successors y1, . . . , yp such that

{C(yi) | 1 ≤ i ≤ p} ⊆ A and {yi 6= yj} ∩ A = ∅ for some i, j (1 ≤ i < j ≤ p),

then for some pair yi, yj (1 ≤ i < j ≤ p) such that {yi 6= yj} ∩ A = ∅

A′ := [yi/yj]A

′-rule: if 1. (∃onnR.C)(x) ∈ A and

2. y is an R-successor of x such that {C(y),∼ C(y)} ∩ A = ∅

then A′ := A ∪ {D(y)} for some D ∈ {C,∼ C}

Figure 4: The Completion Rules for ALCQ(◦) extended with complex role chains
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3. The proof that an ABox containing a clash is unsatisfiable is the same as the one
given above. This follows from the fact that role successors in an ABox A are also
successors in every model I of A.

4. The proof of termination is also very similar to the one considered before. The
definition of the depth of a concept is extended in the obvious way to expressions
involving complex roles:

depth(∃onnR.C) = depth

(

∃onn( M
t
i=1

Ni

u
j=1

(Rij
1 ◦R

ij
2 ◦ · · ·R

ij
m)
)

.C

)

= m+ depth(C)

Since role chains in complex roles are all of the same length, the two facts stated
in the proof of Part 4 of Lemma 6 are still valid and, thus, we can define the
same metric K(A) as before also on all the ABoxes that are produced by the new
completion rules. It can be seen that the proof that A → A′ implies K(A) Â K(A′)
carries over to the new rules. Actually, the proof given in Part 4 of Lemma 6 only
relies on the fact that all role chains connecting any two individuals have the same
length, which is still satisfied in the extended logics.

An immediate consequence of these observations is the Theorem that follows:

Theorem 2 Concept satifiability (and subsumption) for the logic that extends ALCQ(◦)
with union/intersections of role chains of the same length is decidable, and the Tableau
algorithm based on the completion rules in Fig. 4 is an effective decision procedure.

As far as complexity of the algorithm is concerned, Lemma 7 holds also for the
algorithm in Fig. 4. The only modification required is to the proof of Fact 2, in the
tree-structure out-degree evaluation, since the application of each ≥′-rule may generate
at most Nm0N̂ successors, where N̂ is the maximal number of conjuncts occurring in a
role chain combination. Since N̂ ≤ c0, the number of individuals in A is now bounded
by 23c20+c0 logN .

Corollary 7 By the given algorithm, deciding concept satisfiability (subsumption) for the
logic that extends ALCQ(◦) with union/intersections of role chains of the same length is
in the NExpTime ( co-NExpTime) complexity class.

4 Conclusions

In this paper we studied expressive Description Logics allowing for number restrictions
on complex roles built with the composition operator (◦), extended with other role con-
structors in {−,t,u} and qualified number restrictions.

In this framework, we improved the (un)decidability results by Baader and Sattler
on logics of the ALCN family [4] by showing that ALCN̄ (◦,− ) is undecidable via re-
duction of a domino problem, whereas the introduction of qualified number restrictions
in ALCQ(◦) (and in its extension with u/t combinations of role chains with the same
length) does not hinder decidability of reasoning. For ALCQ(◦), a tableau-based satisfi-
ability algorithm with a NExpTime upper bound has been proposed.

As we observed in the Introduction that known decidability results also lift up to
ALCQ(−,t,u), we shed some new light on the whole decidability scenario ranging from
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ALCN to ALCQ(◦,− ,t,u). In this picture, a big unanswered question concerns decid-
ability of ALCN (◦,t), whereas a small gap left open concerns decidability of “pure”
ALCN (◦,− ) (around the narrow borders of this gap, we proved in this work that the
language with inverses in value restrictions and inverses and composition of roles un-
der unqualified number restrictions is undecidable, whereas the language with inverses
and role composition under value restrictions and inverses under qualified number restric-
tions is decidable, as it is a sublanguage of CIQ [16]). Another open question is the exact
characterization of ALCQ(◦) (and ALCN (◦)) complexity, as the NExpTime bound we
derived may be far from being tight. Future work will also consider such issues.
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