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Abstract. In this paper we show that it is possible to eliminate the "converse" operator from the 
propositional dynamic logic CPDL (Converse PDL), without compromising the soundness and com- 
pleteness of inference for it. Specifically we present an encoding of CPDL formulae into PDL that 
eliminates the converse programs from a CPDL formula, but adds enough information so as not to 
destroy its original meaning with respect to satisfiability, validity, and logical implication. Notably, 
the resulting PDL formula is polynomially related to the original one. This fact allows one to build 
inference procedures for CPDL, by encoding CPDL formulae into PDL, and then nmning an inference 
procedure for PDL. 
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1. I n t r o d u c t i o n  

Propositional dynamic logics are modal logics originally developed for specifying 
and reasoning on program schemata. Over the years, they have proved to be a 
valuable theoretical tool in many areas of  Computer Science, Logic, Computational 
Linguistics, and Artificial Intelligence (e.g. (Kozen and Tiuryn, 1990; Stirlink 1992; 
Van Benthem et al., 1994; Van Benthem and Bergstra, 1995; Blackburn and Spaan, 
1993; Halpern and Moses, 1992; Friedman and Halpern, 1994; Schild, 1991)). In 
particular many inference procedures, decidability results, and complexity results 
in such areas rely on research done within propositional dynamic logics. 

In this paper we consider two well-known propositional dynamic logics, namely 
PDL and CPDL. P D L  is the original propositional dynamic logic defined in (Fisher 
and Ladner, 1979), whereas CPDL, also defined in (Fisher and Ladner, 1979), 
extends PDL by including a special construct to denote the "converse" of  a program. 
Such a construct allows for the expressing of  facts about states preceding the 
current one, i.e. facts about states that can be reached by executing a given program 
backward.* 

* There are uses of propositional dynamic logics where the ability of denoting converse programs 
is essential. For example, when propositional dynamic logics are applied in the context of knowledge 
representation formalisms based on classes and links, converse programs are necessary in order to 
navigate links in both directions (De Giacomo and Lenzerini, 1994; De Giacomo and Lenzerini, 1995; 
De Giacomo, 1995). 
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We show that is possible to eliminate the "converse" operator from CPDL, 
without compromising the soundness and completeness of inference for it. Specifi- 
cally we present an intuitive encoding of CPDL formulae into PDL that eliminates 
the converse programs from a CPDL formula, but adds enough information so 
as not to destroy its original meaning with respect to satisfiability, validity, and 
logical implication. Notably the resulting PDL formula is polynomially related to 
the original one. 

This encoding on the one hand helps to better understand the nature of the 
converse operator. On the other hand it puts the basis to build efficient- in practical 
cases - inference procedures for CPDL. In fact the encoding allows one to build 
inference procedures for CPDL, by translating CPDL formulae into PDL, and then 
running an inference procedure for PDL. We discuss this issue further, at the end 
of the paper. 

In fact the technique used for deriving the encoding is quite general. The author 
has used such a technique to prove decidability and to characterize the computa- 
tional complexity of several variants of  propositional dynamic logics (De Giacomo 
and Lenzerini, 1994; De Giacomo and Lenzerini, 1995; De Giacomo, 1995), which 
include constructs as "graded modalities" (Fattorosi-Bamaba and De Caro, 1985; 
Van der Hock and De Rijke, 1995) and "nominals" (Passy and Tinchev, 1991; 
Gargov and Goranko, 1993). Intuitively, the technique is based on two main points. 
Let the "Source Logic" be SL and the "Target Logic" be TL (in this paper these 
logics are CPDL and PDL respectively): 

1. Identify a finite set of axiom schemata in the language of TL capturing those 
characteristics that distinguish SL from TL (in the present case such axiom 
schemata are of the form r ~ [p](pc)r  r __+ [pc](p}r and force the binary 
relation interpreting pc to be the converse of that interpreting P).  

2. Devise a function that, given an SL formula r  returns a finite "closed"* set of 
SL formulae, whose truth-values univocally determine that of r  and that will 
be used to instantiate the axiom schemata in (1) (in the present case such a set 
is simply the Fisher-Ladner closure). 

Indeed, by instantiating the axiom schemata in (1) to the formulae in (2), and by 
making use of the capability (see Theorem 1) of propositional dynamic logics of 
internalizing axioms - not axiom schemata - we can derive a TL formula (in the 
present case, the so called PDL-counterpart of a CPDL formula, see below) which 
corresponds to the original SL formula, in the sense that it preserves satisfiability, 
validity, and logical implication. If both the cardinality of the sets in (1) and (2) 
and the size of their elements are polynomially bounded by the original formula, 
then so is the formula we get. As we shall see, this is the case for the encoding 
presented here. 

* That is, the truth-value of each formula in the set depends only on the truth-value of formulae 
already in the set. 
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The encoding in this paper is probably the best illustration of this technique, 
since every step is highly intuitive, and proofs go through without major difficulties, 
exhibiting the details of the technique in a very tidy way. 

2. Preliminaries 

In this section we introduce the relevant background on propositional dynamic 
logics.* We mainly focus on CPDL, but all the notions and results we introduce for 
CPDL can be immediately reformulated for other propositional dynamic logics, 
including PDL. 

Propositional dynamic logics represent a computational process in terms of 
formulae denoting properties of states, and programs denoting state transition 
relations. Starting from atomic formulae and atomic programs, which are formulae 
and programs described simply by a name, complex formulae and programs can be 
built by means of suitable constructs. The formation rules of CPDL are specified 
by the following abstract syntax: 

r ::~ T I _h I A I q~l A q~2 I q~l v ~2 ] ~1 ~ q~2 I .m~ I @)~ ] [~]~ 
r : : -  -P I u, '21 I t -  Ir 

where T denotes true, _L denotes false, A denotes a propositional letter, r (possibly 
with a subscript) denotes a formula, P denotes an atomic program, and r (possibly 
with a subscript) denotes a program. PDL is obtained from CPDL by dropping 
converse programs r -  

The semantics of propositional dynamic logics is based on Kripke structures,** 
which are defined as a triple M = (S, {7~,o }, 17), where ,5 denotes a non-empty set 
of states, { ~ p  } is a family of binary relations over S such that each atomic program 
P is given a meaning through ~ p ,  and II is a mapping from S to propositional 
letters such that II(s) determines the letters that are true in the state s. 

The basic semantical relation "r holds at state s of structure M",  written 
M, s ~ r is defined by induction on the formation of r as follows: 

M, s ~ A iff A E II(s) 
M, s ~ T always 
M, s ~ A_ never 
M, s  ~ r AC2if fM,  s ~ r and M , s  ~ r 

M,s  ~ r VCz i f fM,  s ~ r o rM,  s ~ r 
M, s ~ r ~ r iff M, s ~ r implies M, s ~ r 
M,s  ~ ~ r  s ~= r 

M,s  ~ (r)dp iff 3s'.(s,s') E ~r  and M, s' ~ r 
M, s ~ [r]r iff Vs'. (s, s') E ~ r  implies M, s' ~ r 

* For surveys on propositional dynamic logics, see (Harel, 1984; Kozen and Tiuryn, 1990) and 
also (Stirlink 1992). 

** Also called "transition systems". 



196 GIUSEPPE DE GIACOMO 

where, for every program r, the relation 7"r is defined by induction on the formation 
of r as follows: 

7~pCSxS 
7"r = Tgrl U Tgr~ 

7"r = 7"r o TCr2 (seq. comp. of T"~rx and ~r2) 
TCr* = (7-r (refl. trans, closure o f ~ r )  

7-r = e S • S I (s2,s ) �9 7r 
n o ,  = { (s ,  8) �9 s x S l M , .  05}. 

A structure M = (S, {TOp }, II) is called a model of a formula 05 if there exists a 
state 8 �9 ,5 such that M, s ~ 05. A formula 05 is satisfiable if there exists a model of 
05, unsatisfiable otherwise. A formula 05 is valid in a structure M,  written M ~ 05, 
if for all s �9 S,  M, 8 ~ 05. 

We call axioms, formulae that are assumed to be valid. Formally, a structure M 
is a model of an axiom 05, if M ~ 05. A structure M is a model of a finite set of 
axioms P, written M ~ F, if for all 05 �9 1' we have M ~ 05. We say that a finite 
set l" of axioms logically implies a formula 05, written F ~ 05, if for all M such that 
M ~ F we have M ~ 05. 

Observe that satisfiability of a formula 05 can be reformulated in terms of 
logical implication simply as ~) V= -`05. In turn a logical implication F ~ 05 can 
be reformulated in terms of satisfiability, by making use of the following result 
(Kozen and Tiuryn, 1990). 

THEOREM 1. Let I" be a finite set o f  CPDL axioms, and 05 a CPDL formula. Then 
P ~ 05 i f  and only i f  the CPDLformula 

[(P1 U . . .  U Pm U P 1  U . . .  U Pff)*]r' A -,05 

is unsatisfiable, where P1 , . . .  , Pm are all atomic programs occurring in F U {05} 
and F I is the conjunction o f  all axioms in F. 

A similar result holds for most propositional dynamic logics, including PDL. In 
particular, in PDL, the formula to check for unsatisfiability is [ (P1U. . .  U Pm)*]r '  A 
905. Observe that such a result exploits the power of program constructs (union, 
reflexive transitive closure) and the "connected model property"* of propositional 
dynamic logics in order to represent axioms (valid formulae). 

In the sequel we assume V, [.] to be expressed by means of --1, A, (.). We also 
assume, without loss of generality, that the converse operator is applied to atomic 
programs only. Indeed it is easy to check that any CPDL formula can be transformed 
in linear time in the size of the formula so that such an assumption is fulfilled, by 
making use of following equations: ( r l ; r 2 ) -  = r 2 ; r  1 , (rl U r2)-  = r~- U 

(05?)-= 05?. 
* That  is, if  a formula has a model ,  it has a model  which  is connected  (see below). 
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The Fisher-Ladner closure (Fisher and Ladner, 1979) of a CPDL formula r 
denoted CL(r is the least set F such that �9 E F and such that: 

r 1 6 2  =~ r 1 6 2  

r E F =~ 9 r  E F (if r is not of the form ~r 

( r ) r  => C E F  

( r l ; r2 ) r  E F =~ ( r l ) ( r2)r  E F 

(rl U r2)r  �9 F =v (r])r  (r2)r E F 

(r*)r E F :=~ ( r ) ( r*) r  E F 

(r162 e F r F. 

Intuitively the notion of Fisher-Ladner closure of  a formula is closely related to 
the notion of  set of  subformulae in other modal logics: given a formula ~, CL(~) 
includes all the formulae that play some role in establishing the truth-value of ft. 
Both the number and the size of the formulae in CL(~) are linearly bounded by 
the size of r (Fisher and Ladner, 1979). Note that, by definition, if r E CL(~), 
then CL(r  C CL(r 

Let us denote the empty sequence of programs by the program e, and define 
(e)r  - r and [e]r --" r We call Post(r) the set of programs defined by induction 
on the formation of r as follows (a = P [ P - ) :  

Post(a) = {E,a} 

Post(r1; r2) = (rl;  r2 1 rl e Post(r1)} U Post(r2) 
Post(rl O r2) = Post(r1) U Post(r2) 
Post(r;) = (rl;r; Ir~ ePost(rl)} 
Post(C?) = (c, r 

Intuitively, the set Post(r) is formed by the programs that are (not necessarily 
proper) "postfix" of the program r. The following proposition holds. 

PROPOSITION 2. Let ( r ) r  be a formula. For all r' E Post(r), (r')r E CL( (r>r 
Proof. By induction on the formation of  r. 

- r = a or r = r Then Post(r) = (e, r}. By definition, both r E CL((r)r 
and ( r ) r  E CL((r)r 

- -  r = r i ; r  2. ThenPost(rl;r2) = { r l ; r  2 I rl e Post(ri)} UPost(r2). 
Since rl  is a subprogram of r l ;  r2, by induction hypothesis, for all r~ E 
Post(rl ): 

(r~)((r:)r E CL((rl)(r2)r C__ CL((r]; r2)r 

On the other hand, since r2 is a subprogram of  r l ;  r2, by induction hypothesis, 
for all r~ E Post(r2): 

:(. 
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(rl)4 C CL((r2>4) C_ CL((rl;  r2>4). 

- r = r l  Ur2. Then Post(r1 Ur2) = Post(r1 ) UPost(r2). By induction hypothesis,  
' Post(ri): for  i = 1,2,  for all r i E 

(r~} 4 C CL((ri)4) C_ CL((rl  U r2)4) .  

- r = r t. Then  Post(rt) = {r l ;r  ~ I rl E Post(rl)}. By induction hypothesis,  
for  all r[ E Post(rl): 

(r~)(<r~*>@) C CL((ri><r~>r C_ CL((r~)r 

Finally, we introduce the notion of path. Intuitively a path describes the sequence 
o f  states a given run o f  a program goes through.* Formally, a path in a structure M 
is a sequence (s0, �9 . . ,  Sq) of  states of  M (q > 0), such that for  each i = 1 , . . . ,  q, 
(8i-1,8i) E 7"~a for  some a = P I P - .  The length o f  ( s o , . . . ,  Sq) is q. We 
inductively define the set o f  paths PathsM(r) of  a program r in a structure M ,  as 
follows (the notation r i stands for i repetitions o f t  -i.e., r 1 = r ,  and r i = r; ri- l:  

PathsM(a) = 7"r (a = P I P - )  
PathsM(rl U r2) = Pathsu(rl  ) U Pathsu(r2) 
PathsM(rl; r2) = { ( 8 0 , . . .  , 8 u , . . .  , Sq) I ( 8 0 , . . . ,  8u) E PathsM(rl) 

and ( su , . . . ,  Sq) E PathsM(r2)} 

PathsM(r*) = {(s) I s  E S}  U (Ui>oPathsM(ri)) 
PathsM(4'?) = { ( s ) I  M,  s ~ r 

The  next  two propositions describe the basic properties of  paths. Proposit ion 3 
concerns paths whose length is 0: it says that if  a formula ( r ) r  is satisfied in a state 
s by means o f  a path whose  length is 0, then there is a formula (4~?;.  �9 �9 ; 49?)4,  
where the tests 4 I  . 9 , . . .  , 4g"9 OCCUr in r ,  that is satisfied in s and implies ( r )4 .  

P R O P O S I T I O N 3 .  Let M be a structure and (r)r a formula, such that: 
M,  s ~ (r)r (s) E PathsM(r), and M, s ~ 4. Then there exists a formula 
(41"9; " ' "  ; 49.9)4, with g >- O, such that: 

- all tests 4i? occur in r; 
--  M ,  8 ~ ( 4 1 . 9 ; . . . ; 4 0 9 . ) 4 ;  

- -  (41"9; . . .  ; 49"9)4  --+ ( r ) 4  is valid. 

* The notion of path used here has the same role as the one of trajectory used in (Ben-Ari et 
al., 1982), and that of execution sequence in (Streett, 1982). However, the technical details of the 
various notions differ. In order to make the paper complete and self-contained, we are going to give 
full-fledged proofs of the basic properties of paths. 
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Proof. By induct ion on the formation of  r.  
(1) r --- qS'?. 

The  thesis holds trivially. 
(2) r = r l ;  r2.  

M, s ~ (rl ;  r2)~b and (s) E PathsM(r) implies that M, s ~ (rl)(r2)cb and (s) E 
PathsM (rl) and (s) E PathSM (r2). By induct ion hypothesis ,  we can assume that: 

- there is a formula  (~b1,17;. �9 ; ~bl,gl ?) (r2)~b such that all tests ~bl,j? occur  in r l ,  
M ,  s ~ ( r  ; r162 and ( r  ; r162 --~ ( r l ) ( r 2 ) r  
valid; 

- there is a formula (~b2,1?;... ; ~b2,g2?)~ such that all tests ~b2,j? occur  in r2, 
M,  s ~ ( ~ , 1 ? ; . . .  ; ~,gl?)~b, and ( r  ; ~2,92?/ff --+ (r2)~ is valid. 

Hence,  (~b1,17;... ; ~bl,gl?; ~2,17; . . .  ; ~b'2,g2?)~b is such that: (1) all tests ~b~,j? occur  
in r l  or r2 and therefore in r;  (2) M,  s ~ (q~1,1?;... ; ~bl,g~?; ~ 2 j ? ; . . .  ; ~2,g2?)~; 
(3) (ff~,~?;.. .  ; ~b1,~1?; 42 ,1? ; . . .  ; ~b2,~?)r --+ (r l ;  r2)~b is valid. 

(3) r : r l  Ur2 .  
M ,  s ~ (rl U r:)~b implies that, either for i = 1 or for i = 2, M,  s ~ (ri)~b 
and (s) ~ PathsM(ri). By induct ion hypothesis  we can assume there is a formula 
(~bi, l?; �9 �9 ; ~bi,a~?)~b such that all tests ~i,3? occur  in ri, M,  s ~ (~bi, l ? ; . . .  ; ffi,a~?)~, 
and (~bi,~?;... ;~bi,a,?)~b --+ (ri)q5 is valid. Therefore,  considering that (ri)~b 
(rl  U rz)tk, we get the thesis. 

(4) r = r~. 
Since (s) ~ PathsM(r~), (r~)qb is equivalent q5 V (rl)(r~)~b, and M , s  ~ q~, the 
thesis holds trivially (with g = 0). �9 

Proposi t ion 4 concerns paths whose  length is greater than 0: it says that if a 
formula  (r) ~b is satisfied in a state s by means  of  a path whose  length greater than 0, 
then there is a formula  ((~1?;.. .  ; (])g?; a) (rl)(~, where the tests (~1 .9 , . . . ,  (~g? Occur 
in r ,  a is the first transition on the path, and r '  E Post(r), which is satisfied in s 
and implies (r)~b. 

PRO PO SI TION 4. Let M be a structure, and (r)q5 a formula such that: M, s 
(r)~,  (s = s o , . . . ,  Sq) E PathsM(r) with q > O, and M, Sq ~ q~. Then there exists 
a formula ( ~ l ? ; . . .  ; ~g?; a)(r')c~, with g >_ O, such that: 

- all tests qbi? occur in r; 
- r' E Post(r) (andhence (r')q5 E CL((r)qb)); 
- (so ,  s l )  Yea; 
- M, Sl ~ (r')qS; 
- ( S l , . . . ,  Sq) E PathsM(r'); 
- (q~l?; . . .  ; ~ba?; a)(r')c~ ---> (r)q~ is valid. 

Proof. By induct ion on the formation of  r.  
(1) r = a. 

The  thesis holds trivially. 



200 GIUSEPPE DE GIACOMO 

(2) r = r l ;  r 2 .  

Let ( s o , . . . ,  si) be the segment  of  ( s o , . . . ,  Sq) such that ( s o , . . . ,  si) E PathsM(rl) 
and ( s i , . . . ,  sq) E PathsM(r2). We consider  two cases: 

- i > 0. Consider  that: (1) M, so ~ (rl)~b' for q7 = (r2)~b; (2) ( s o , . . .  ,si) E 
PathsM(rl) with i > 0; (3) M, si ~ (r2)qS. By induct ion hypothesis ,  there is 
a formula (4)1?;. . .  ; ~bg?; a)(r~)(r2)q5 such that: 
�9 all tests qSi? occur  in ra, and hence  in r;  
�9 r~ E Post(r1), and hence r~; r2 E Post(r1; r2); 
�9 ( s0 ,  s l )  E 7 ~ ;  

�9 M, 81 ~ (r~)(r2)~b, and hence M,  81 ~ (1"~; ?'2)(/); 
�9 ( S l , . . .  ,si) E PathsM(r~) with i _< q, and hence  ( S l , . . .  ,Sq) E PathsM 

((rl; 
�9 (~b1.9; �9 �9 �9 ; ~9 .9; a) (r~) (r2) ~ -+ ( r l )  (r2) ~b is valid, and hence also the formula 

(~bl.9;... ; ~bg?; a)(r~ ; r2)~ -+ (rl; r2)~b is valid. 
- i = 0. By Proposi t ion 3, there exists a formula (~b1,1.9;... ; ~l,a1.9)(r2)~ such 

that 
�9 all tests qbl,j? occur  in r t ;  
�9 M, so ~ (gbl,l.9;..-;(~1,gl.9)(/'2)(~; 
�9 (~bl,l?; . . .  ; ~bi,gl?)(r2)~b --+ (rl)(r2)~b is valid. 
On the other hand, observe that (r2)~b is such that: (1) M,  s ~ (r2)gb; (2) 
(s = s O , . . . ,  Sq) E PathsM(r2) with q > 0; (3) M ,  Sq ~ (b. Therefore,  by 
induct ion hypothesis ,  there is a formula (~b2,1 ? ; . . .  ; ~,g2?; a)(r~)~b such that 
�9 all tests (k2,j? occur  in r2; 
�9 r~ E Post(r2) (C eost(rl; r2)); 
�9 (80,81) E ~'~a; 

/.! �9 �9 M ,  81 ~ ( 2)(~, 
�9 (81, . . . ,8q)  E PathsM(r~); 
�9 (4)2,1?;... ; 4)2,g2?; a)(r~)ck ~ (r2)~b is valid. 
Hence  the formula (q51,1?;... ; gbl,al?; ~b2,1?;... ; (kz,a2?; a)(r~)ck is such that 
�9 all tests (fii,j.9 Occur in either in rl  or in r2; 
�9 r~ E Post(rl; r2); 
�9 (so, s1) 7 a; 
�9 M ,  Sl ~ (~'~)(~, 
�9 ( S l , . . . ,  sq) E PathsM(r~); 
�9 (~bl,l?;.. .;~bl,gl?)((~2,1?;.. .;ck2,az?;a)(r~)ck --+ (rl)(r2)~b is valid, and 

hence  also (~bl,l?;.. .;~bl,al?;ff2,1?;.. .;~b2,a2?;a)(r~)~b --+ (rl;r2)~b is 
valid. 

(3) r = r l  t3 r 2. 

M ,  s ~ (rl  [..I r2)~b with (s = s o , . . . ,  Sq) E PathsM(rl U r2) implies that either 
for i = 1 or i = 2: (1) M ,s  ~ (ri)qb; (2) (s = so,. . . ,Sq) E PathsM(ri) 
with q > 0; (3) M ,  Sq ~ 4. Thus,  by induction hypothesis ,  there is a formula  
(qbi,l?;. . .  ; ffi,al?; ai)(r~)ck such that: 

- all tests (ki,j? occur  in ri, and hence in rl  t3 r2; 
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- rI e Post(rd c_ Post(r1 u r2); 
- (so,  s1)  e 7"r 

- ( s l , . . . ,  Sq) e PathsM(r~); 
- ( r  ; r162 ~ (r i )r  is valid, and therefore, considering that, 

(r i)r  --+ (rt U r2)r is valid, we get that (r  ; r ail(r~lr --> (rl U 
r2)~b is valid. 

(4) r = 
Since q > 0, we have that M , s  ~ (r~)r implies M , s  ~ (rl)(r~)r and 
furthermore there is a segment (so,. .. ,si) of (so, . . . ,Sq) with 0 < i _< q, 
such that ( so , . . . , s i )  E PathsM(rl) and (s i , . . . ,Sq)  ~ PathsM(r~). Thus we 
have: (1) M, so ~ (rl)qY with Ct = (r~)r (2) (so , . . . , s i )  E PathsM(rl) 
with i > 0; (3) M, si ~ (r~)r By induction hypothesis there exists a formu- 
la (r ? ; - . .  ; Cg?; a)(r~ ) (r~)r such that 

- all tests r occur in r l ,  and hence in r~'; 
- r~ e Post(rt), and hence r~; r~ e Post(r~); 
- (so,  s l )  E ~ ;  
- M, Sl ~ (r~)(r;)qb, and hence M, sl ~ (r~; r~)r 
- ( S l , . . . ,  si) E PathsM(r~), and hence ( s l , . . . ,  sq) E PathSM(r~; r[);  
-- {r -~ (rl)(r~)d? is valid, hence also the formula 

(r ? ; . . .  ; Cg?; a) (r[; r~)r  --4 (rl; r~)r  is valid. Therefore, considering that 
(rl; r~)r  --+ (r~)r we get that ( r  ;r a){r~; r~)qb --> (r~)r is valid. 

[] 

3. The Encoding 

We now show the encoding of CPDL formulae into PDL. More precisely, we 
exhibit a mapping ~f from CPDL formulae to PDL formulae such that, for any 
CPDL formula ~, ~ is satisfiable if and only if 7(if) is satisfiable. The formula 
~,(~), whose size is polynomial with respect to the size of ~, is said to be the 
PDL-counterpart ofc}. We assume without loss of generality that in ff the converse 
operator is applied to atomic programs only. 

DEFINITION. Let ~b be a CPDL formula with the converse operator applied to 
atomic programs only. We define the PDL-counterpart 7 ((~) of ~ as the conjunction 
of two formulae, 7(~)) = 3'2 (~) A 3'2(~), where: 

- 71 (~) is obtained from the original formula ~ by replacing each occurrence 
of P -  with a new atomic program pc,  for all atomic programs P occurring in 
O. 

-- 72(~') = [(P1 U . . .  UPm UP1 c U . . .  U Pr~)*]@ A . . .  ATe, where PI , . . .  ,Pro 
are all atomic programs appearing in r  and with a conjunct 71 of the form 
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(4 -'+ [P](PC)q 5) A (q5 ---+ [PC](P>qb) 

for every ~b E CL("}tl ((I))) and P E {P1, . . . ,  Pro}. 

THEOREM 5. Let ~ be a CPDL formula, and 7(~)  its PDL-counterpart. Then 
7( ~ ) is a PDL formula, and its size is polynomially related to the size of r 

Proof. 7( r  is obviously a PDL formula. Furthermore, since both the number 
and the size of the formulae in CL(71(~))  are bounded by the size 171(~)[ of 
71(ff), and 171 ('I')l = I'I'l, it follows that 17( ')1 = O(m. I 1" I'I'l), w h e r e  m is 
the number of atomic programs occurring in ~. �9 

Note that, although the size ofT(ff  ) is O(m. [ff[. [ff[), the special form of 7((b ) 
guarantees that ICL(7( ))I = O(m.  ICL(~)I),  i.e. the size of the Fisher-Ladner 
closure of 7(if) is essentially the same as that of e; multiplied by the number of 
atomic programs in ft. This observation is of  significant practical interest since the 
efficiency of several inference procedures for PDL depends, in fact, on the size of 
the Fisher-Lander closure of the formula, and only indirectly on the size of the 
formula. 

The purpose of,),1 (r  is to eliminate the converse of atomic programs (the only 
converse programs) from ~I, and replace them with new atomic programs. Each 
new atomic program pc  is intended to represent P -  (the converse of the atomic 
program P)  in ')'1 (q~). 

The purpose of 72(0) is to constrain the models M of 7(if) so that, for all 
q5 E CL(71 (if)), for all states s of  M,  if ~ holds in s then all the P-successors of s 
have a PC-successor where ~b holds, and similarly all the PC-successors of s have 
a P-successor where ~b holds. We shall show that, as far as satisfiability (but also 
validity and logical implication) is concerned, this allows us to faithfully represent 
the converse of P by means of pc. 

First of  all, observe that if instead of 72(~) we imposed, for each P ,  the two 
axiom schemata (~b any formula): 

~b -+ [p](pc>~ 
d? -+ [Pc]<P}q5 

then the models of 71 (@) would be isomorphic to the models of ~. In fact, the above 
axiom schemata are identical to the ones used in the axiomafizafion of CPDL to 
force the program P -  to be the converse of P.  However the resulting logic would 
not be PDL but trivially CPDL. 

Instead, ,)'2 (@) can be thought as a finite instantiation of the above two axiom 
schemata: one instance for each formula in CL(~).* Although imposing the valid- 
ity of such a finite instantiafion does not suffice to guarantee the isomorphism of 

* Actually,,),2(ff) already takes into account the reduction from logical implication to satisfiability 
of Theorem 1. 
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the models of 71 ( ~ )  and (I,, we show that it suffices to guarantee that 71 ((b) has a 
model if and only if ff has a model. 

It is a standard result that if a CPDL formula cI, has a model, then it has a 
connected model, where a model M -- (,9, {Rp} ,  I-I) of ff is a connected model, 
if for some ss E ,9: 

- M ,  s s  ~ ~; 
- ,9 = { t l ( s s ,  t) e ( U p ' T ' ~ . p U " ~ p - ) * } .  

Let (I, be either a CPDL formula or a PDL formula. We call a structure M = 
(,9, { ~ p } ,  II) a structure o f  ~,  if every atomic program P and every atomic 
proposition A occurring in ff is interpreted in M,  i.e. 7 tp  appears in M,  and A 
appears in the co-domain of II. 

In the following we use 7r as an abstraction for both P and pc. Moreover, 7r c 
denotes pc ,  if 7r = P ,  and it denotes P ,  if 7r = pc. 

Let M = (,9, { ~ r  }, II) be a connected model of  T(ep). We call the c-closure of 
M,  the structure M ~ = (S', {7~},  II') of T(~) ,  defined as follows: 

_ , 9 ,  = , 9 ;  

- 7 ~  = 7t~ U {(t, s) I (s, t) E ~ . c } ,  for each atomic program 7r in 7(~) ;  
- IY = II. 

Note that in the c-closure M ~ of a model M,  each 7~o of M ~ is obtained from Rio 
of M by including, for each pair (s, t) in 7~ioc, the pair (t, s) in 7~,,  and similarly 
each 7t~,~ is obtained from/~p~ by including, for each pair (s, t) in Rio, the pair 
(t, s) in ~ , ~ .  As a result in the c-closure of a model each atomic program pc  is 
interpreted as the converse of P .  

The next lemma is the core of  the results in this paper. Intuitively it says that 
the c-closure of a connected model is equivalent to the original model with respect 
to the formulae in CL(71 (q~)). 

LEMMA 6. Let M = (S, {7~p}, II) be a connected model of  T(~  ), and M '  = 
(,9', {7~,}, II ') its c-closure. Then, for  every s E ,9 (= ,9'), and every (b E 
CL('71(@)): 

M,s r iff M' ,s#4.  

Proof. We prove the lemma by induction on the formation of  ~b (called formula 
induction in the following). 

- q~ = A. M,  s ~ A iff A E II(s) iff, by construction of M ' ,  A E II '(s) iff 
MI, s ~ A .  

- ~b = -~b r. M, s ~ ~ b  r i f f  M,  s ~: ~Y iff, by the formula induction hypothesis, 
M', s iff M',  s 

- q5 = ~bl A q52. M,  s ~ ~bl A 4~ iff M, s ~ q51 and M,  s ~ ~ iff, by the formula 
induction hypothesis, M r, s ~ ~bl and M r, s ~ ~bz iff M ~, s ~ ~bl A ~b2. 
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- 4 = (r)4' .  =~. M, s ~ (r)4'  iff there is a path (s = s 0 , . . . ,  Sq) ~ PathsM(r) 

such that M, Sq ~ 4 ~. We show that M ~, 8 ~ (r)4 ~, by induction on the length 
of the path (called path induction in the following). 

q = 0. In this case (s = so) E PathsM(r) and M, s ~ 4'. Then, by Proposi- 
tion 3, there exists a formula ( r  ; 4g?)4 ~ such that: 
�9 all tests 4i? occur in r, and hence all 4i are subformulae of (r)4~; 
�9 M , s  ~ (r162 
�9 (41 .9 ; . . .  ; 4 g 9 . ) 4  ! -'ze (r)4 '  is valid. 
By the formula induction hypothesis, for every 4z E {41 , . . . ,  4g, 4~}, we 
have that M, s ~ 4x iff M t, s ~ 4x. Hence, since a formula of the form 
(41 ? ; . . .  ; 4g?)4 t is equivalent to 41 A . . .  A 49 A 4 ~, we conclude that M ~, s 
(r)4'. 
q > 0. In this case, by Proposition 4, there exists a formula (41?; . . - ;  
49?; 7r)(r')r ~ such that: 
�9 all tests 4i? occur in r, and hence all 4i are subformulae of (r)4'; 
�9 r 'E Post(r), and hence (r ' )4 '  ~ CL((r)4') C_ CL(71(~));  
�9 (80,81)  E T~Tr; 
�9 M, sl ~ (r')4'; 
�9 ( S l , . . . ,  Sq) E Pathsm(r'); 
�9 (41 .9 , . . .  ; 4g.9; 7 r ) ( r ' ) 4  ! ~ ( r ) 4  ! is valid. 
By the formula induction hypothesis, for every 4z E {41 , . . . ,  4g), we have 
M, so ~ 4x iff M' ,  so ~ 4z- 
By construction o f M  ~, (so, sl) E R~r implies (so, 81) E ~ .  
Considering that ( / ) 4 '  E CL((r)4') C CL(71(~)),  by the path induction 
hypothesis, M, 81 ~ ( / ) 4 '  and (81,..., Sq) E PathsM(r') implies M', 81 
(r')4'. 
Hence M' ,  so ~ (r)4' .  

r M' ,  8 ~ (r)4 '  iff there is a path (s = s o , . . . ,  Sq) E PathSM,(r) such that 
M ~, Sq ~ 4 ~. We prove that M, s ~ (r)4 ~, by induction on the length of the 
path (called path induction in the following). 

q = 0. In this case (s = so) E PathsM,(r) and M ~,s ~ 4 ~. Then, by 
Proposition 3, there exists a formula (41 ? ; . . .  ; 4g?)4 ~ such that: 
�9 all tests r occur in r, and hence all r are subformulae of (r)r 
�9 M' ,  s ~ (41.9;... ; 4g.9)4'; 
�9 (41?; . . .  ; r  --+ (r)4'  is valid. 
By the formula induction hypothesis, for every 4z E {41 , . . . ,  4g, 4'}, we 
have that M t, s ~ 4x iff M, s ~ 4x. Hence M, s ~ (r)4 ~. 

q > 0. In this case, by Proposition 4, there exists a formula 
(417;. . .  ;4g?; r)(r ' )41 such that: 
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�9 all tests r occur in r, and hence all r are subformulae of (r)r 
�9 r E Post(r), and hence (r ')r t E CL((r)r C CL(71 (if)); 
�9 (80,81) e n ~ ;  
�9 M ' ,  81 ~ <rt)r 
�9 (Sl , . . . ,  Sq) E PathsM,(rt); 
�9 (r ;r r ) ( r ' ) r  --+ (r)r is valid. 
By the formula induction hypothesis, for every r E {r  Ca}, we have 
M', so ~ Cx iff M, so ~ Cx. 
Considering that (r ')r t E CL((r)r  ~) C CL(71 ((I))), by the path induction 
hypothesis, M', 81 ~ (r')qY and (81 , . . .  , 8q) E PathsM, (r') implies M, sl 
<r')r 
Since (so, Sl ) E ~ ,  by construction of M', we have that either (so, 81 ) E "]~r, 
or (so, sl) ~ 7~ and (sl, so) E 7~c. 
�9 If (so, Sl) E ~ ,  then we can immediately conclude that M, so ~ (r)r 
�9 If (so, Sl) ~ ~ and (sl, so) E ~ r  then considering that (r ')r is equiva- 

lent to a formula r E CL('71 (~)), by 72 (~I,) we have that 

M, 81 ~ (rt)r [TrC](Tr)(r')r '. 

Thus there exists a state s t E S (different from sl) such that (so, s]) E 7B~r 
and M, s t ~ (r')r Hence, also in this case, we can conclude that M, so 
(r)r 

The previous lemma has the following consequence. 

LEMMA 7. Let M be a connected model of7(~  ) and M r its c-closure. Then M' 
is a model ofT( ~ ) as well. 

Proof Let M = (S, (TEar}, H) and M' = (S', {TB~}, II'). By Lemma 6, for all 
s E S = S' and all r E CL(71((I))): 

M,s  ~ r iff Mt, s ~ r 

Furthermore, by definition o fM' ,  (s, 8') E ~ implies (J,  s) E 7~c. Thus, for 
all s E S' and all r E CL(7I (~)) : 

M' ,8  ~ r -+ [p](pc)r 
M', s ~ r --+ [pc] (p) r 

Hence we can conclude that the thesis holds. �9 

Below we formulate the main result of the present work. 

THEOREM 8. A CPDL formula d) is satisfiable iff its PDL-counterpart ~/( q? ) is 
satisfiable. 
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Proof. =~. Let  M cPDL = (•CPDL {7~CpPDL}, I'ICPDL) be a model of  ~. We 
define a structure M PDL = (,~PDL, {T4PDL}, IIPDL) o f  ")'((I)) as  follows: 

_ s P D L  : sCPDL;  

- T~ PDL -- T~t~, PDL and v P D L  --  ,'..pc ~-- { ( t ,  8) I (8, t)  E ~r~CPDL}, for all atomic 
programs P occurring in (I); 

_ HPDL : II  CPDL. 

It is easy to verify that M P D L  is a model of  7((I)). 

r Let  M PDL = (S PDL, {7"~PDL}, 1"I PDL) be a connected model of 7((I )) and 
M PDL~ = ( S  PDL', {R~DL~), II PDL~) its c-closure. By Lemma 7, M ~ is a model 
of  7((I) ) as well. 

Observe that, by definition, M ~ is such that, for each atomic program 7r, R PDLt = 
(7~ PDff ) - . We define a structure M cPDL = ( S CPDL, {T~ CpPDL }, H cPDL) of 7((I)) 

as follows: 
_ s C P D L  = sPDLt;  

_ ,~C.pPDL : ,-~PDL I for all atomic programs P occurring in (I); 
__ II  CPDL = 1-[ PDLI. 

It is easy to verify that M CPDL is a model of  ft. �9 

4. Conclusion 

The logics PDL and CPDL share many characteristics, and many of the results for 
PDL extend to CPDL without difficulty. For instance the proofs of finite model 
property and decidability for PDL in (Fisher and Ladner, 1979) are easily extended 
to CPDL, as well as the proof of EXPTIME-completeness of satisfiability in (Pratt, 
1979). However, while efficient - in practical cases - inference procedures have 
been successfully developed for PDL, extending them to CPDL has proved to be a 
difficult task, and to the best of our knowledge had been unsuccessful till now. 

To be more precise, the inference procedures for P DL based on the enumeration 
of models such as those in (Fisher and Ladner, 1979; Pratt, 1979) can be easily 
modified to accommodate converse programs. But these procedures are better suited 
for proving theoretical results than for use in practice, since they are inherently 
exponential, not only in the worst-case. 

In contrast, inference procedures for PDL such as those in (Pratt, 1978; Pratt, 
1980), based on tableaux methods, which are much more efficient in practical 
cases, are difficult to modify to cope with converse programs. 

The difficulty can be intuitively grasped by observing how these procedures 
attempt to build a model of a PDL formula in order to check its satisfiability. 
They start by introducing an initial state, and try to make it satisfy the formula. At 
first, reasoning is carded out locally, i.e. considering subformulae that involve state 
transitions, simply as atomic propositions. Next, when no more local reasoning is 
possible, the successor states, introduced by atomic programs, are generated, and 
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the relevant formulae that these states ought to satisfy are propagated. For each 
successor state the two steps above are recursively repeated until certain termination 
conditions are met. The key point is that once the successors of a given state have 
been generated, there will be no more reasoning involving that state carried out. 
Thus, to check satisfiability of a PDL formula, a tableaux based procedure can be 
organized so as to work only "forward". This feature turns out to be essential in 
order to ensure efficient termination criteria. 

The presence of  converse programs does not allow us to extend the above 
approach in an obvious way. Indeed, reasoning on a state cannot be completely 
carried out without generating its successors, because, through converse programs, 
some successors may require further properties to be satisfied by the original state. 
Therefore, to check satisfiability of a CPDL formula, a procedure has to work both 
"forward" and "backward", thus losing efficiency, since at any point reasoning may 
involve all of the model built so far. 

Is there any way out of this problem? One possible solution is by trying to single 
out a (hopefully small) set of additional formulae to be checked in every state, that 
in some sense anticipates the properties successor states may require at a later stage 
of the computation. 

What the encoding of CPDL into PDL presented in this paper does is single 
out exactly a set of additional formulae as that mentioned above. Hence it can 
be the basis to develop better reasoning procedure for CPDL, on top of inference 
procedures forPDL.  In fact, the encoding allows us to build a satisfiability procedure 
for CPDL by simply translating a CPDL formula to a PD L  formula and then running 
a P D L  satisfiability procedure on it. Therefore, considering that the encoding is 
polynomial, by employing an efficient satisfiability procedure for PD L  we get an 
efficient satisfiability procedure for CPDL. 
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