
Journal of Logic, Language, and Information 5: 193-208, 1996. 193
(~) 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Eliminating "Converse" from Converse PDL

GIUSEPPE DE GIACOMO
Dipartimento di Informatica e Sistemistica, Universitd di Roma "La Sapienza", Via Salaria 113,
00198 Roma, Italy
Email: degiacomo@dis.uniromal.it

Abstract. In this paper we show that it is possible to eliminate the "converse" operator from the
propositional dynamic logic CPDL (Converse PDL), without compromising the soundness and com-
pleteness of inference for it. Specifically we present an encoding of CPDL formulae into PDL that
eliminates the converse programs from a CPDL formula, but adds enough information so as not to
destroy its original meaning with respect to satisfiability, validity, and logical implication. Notably,
the resulting PDL formula is polynomially related to the original one. This fact allows one to build
inference procedures for CPDL, by encoding CPDL formulae into PDL, and then nmning an inference
procedure for PDL.

Key words: Propositional dynamic logics, logics of programs, modal logics, decision procedures.

1. I n t r o d u c t i o n

Propositional dynamic logics are modal logics originally developed for specifying
and reasoning on program schemata. Over the years, they have proved to be a
valuable theoretical tool in many areas of Computer Science, Logic, Computational
Linguistics, and Artificial Intelligence (e.g. (Kozen and Tiuryn, 1990; Stirlink 1992;
Van Benthem et al., 1994; Van Benthem and Bergstra, 1995; Blackburn and Spaan,
1993; Halpern and Moses, 1992; Friedman and Halpern, 1994; Schild, 1991)). In
particular many inference procedures, decidability results, and complexity results
in such areas rely on research done within propositional dynamic logics.

In this paper we consider two well-known propositional dynamic logics, namely
PDL and CPDL. P D L is the original propositional dynamic logic defined in (Fisher
and Ladner, 1979), whereas CPDL, also defined in (Fisher and Ladner, 1979),
extends PDL by including a special construct to denote the "converse" of a program.
Such a construct allows for the expressing of facts about states preceding the
current one, i.e. facts about states that can be reached by executing a given program
backward.*

* There are uses of propositional dynamic logics where the ability of denoting converse programs
is essential. For example, when propositional dynamic logics are applied in the context of knowledge
representation formalisms based on classes and links, converse programs are necessary in order to
navigate links in both directions (De Giacomo and Lenzerini, 1994; De Giacomo and Lenzerini, 1995;
De Giacomo, 1995).

194 GIUSEPPE DE GIACOMO

We show that is possible to eliminate the "converse" operator from CPDL,
without compromising the soundness and completeness of inference for it. Specifi-
cally we present an intuitive encoding of CPDL formulae into PDL that eliminates
the converse programs from a CPDL formula, but adds enough information so
as not to destroy its original meaning with respect to satisfiability, validity, and
logical implication. Notably the resulting PDL formula is polynomially related to
the original one.

This encoding on the one hand helps to better understand the nature of the
converse operator. On the other hand it puts the basis to build efficient- in practical
cases - inference procedures for CPDL. In fact the encoding allows one to build
inference procedures for CPDL, by translating CPDL formulae into PDL, and then
running an inference procedure for PDL. We discuss this issue further, at the end
of the paper.

In fact the technique used for deriving the encoding is quite general. The author
has used such a technique to prove decidability and to characterize the computa-
tional complexity of several variants of propositional dynamic logics (De Giacomo
and Lenzerini, 1994; De Giacomo and Lenzerini, 1995; De Giacomo, 1995), which
include constructs as "graded modalities" (Fattorosi-Bamaba and De Caro, 1985;
Van der Hock and De Rijke, 1995) and "nominals" (Passy and Tinchev, 1991;
Gargov and Goranko, 1993). Intuitively, the technique is based on two main points.
Let the "Source Logic" be SL and the "Target Logic" be TL (in this paper these
logics are CPDL and PDL respectively):

1. Identify a finite set of axiom schemata in the language of TL capturing those
characteristics that distinguish SL from TL (in the present case such axiom
schemata are of the form r ~ [p](pc)r r __+ [pc](p}r and force the binary
relation interpreting pc to be the converse of that interpreting P).

2. Devise a function that, given an SL formula r returns a finite "closed"* set of
SL formulae, whose truth-values univocally determine that of r and that will
be used to instantiate the axiom schemata in (1) (in the present case such a set
is simply the Fisher-Ladner closure).

Indeed, by instantiating the axiom schemata in (1) to the formulae in (2), and by
making use of the capability (see Theorem 1) of propositional dynamic logics of
internalizing axioms - not axiom schemata - we can derive a TL formula (in the
present case, the so called PDL-counterpart of a CPDL formula, see below) which
corresponds to the original SL formula, in the sense that it preserves satisfiability,
validity, and logical implication. If both the cardinality of the sets in (1) and (2)
and the size of their elements are polynomially bounded by the original formula,
then so is the formula we get. As we shall see, this is the case for the encoding
presented here.

* That is, the truth-value of each formula in the set depends only on the truth-value of formulae
already in the set.

ELIM/NAT/NG "CONVERSE" FROM CONVERSE PDL 195

The encoding in this paper is probably the best illustration of this technique,
since every step is highly intuitive, and proofs go through without major difficulties,
exhibiting the details of the technique in a very tidy way.

2. Preliminaries

In this section we introduce the relevant background on propositional dynamic
logics.* We mainly focus on CPDL, but all the notions and results we introduce for
CPDL can be immediately reformulated for other propositional dynamic logics,
including PDL.

Propositional dynamic logics represent a computational process in terms of
formulae denoting properties of states, and programs denoting state transition
relations. Starting from atomic formulae and atomic programs, which are formulae
and programs described simply by a name, complex formulae and programs can be
built by means of suitable constructs. The formation rules of CPDL are specified
by the following abstract syntax:

r ::~ T I _h I A I q~l A q~2 I q~l v ~2] ~1 ~ q~2 I .m~ I @)~] [~]~
r : : - -P I u, '21 I t - Ir

where T denotes true, _L denotes false, A denotes a propositional letter, r (possibly
with a subscript) denotes a formula, P denotes an atomic program, and r (possibly
with a subscript) denotes a program. PDL is obtained from CPDL by dropping
converse programs r -

The semantics of propositional dynamic logics is based on Kripke structures,**
which are defined as a triple M = (S, {7~,o }, 17), where ,5 denotes a non-empty set
of states, { ~ p } is a family of binary relations over S such that each atomic program
P is given a meaning through ~ p , and II is a mapping from S to propositional
letters such that II(s) determines the letters that are true in the state s.

The basic semantical relation "r holds at state s of structure M", written
M, s ~ r is defined by induction on the formation of r as follows:

M, s ~ A iff A E II(s)
M, s ~ T always
M, s ~ A_ never
M, s ~ r AC2if fM, s ~ r and M , s ~ r

M,s ~ r VCz i f fM, s ~ r o rM, s ~ r
M, s ~ r ~ r iff M, s ~ r implies M, s ~ r
M,s ~ ~ r s ~= r

M,s ~ (r)dp iff 3s'.(s,s') E ~r and M, s' ~ r
M, s ~ [r]r iff Vs'. (s, s') E ~ r implies M, s' ~ r

* For surveys on propositional dynamic logics, see (Harel, 1984; Kozen and Tiuryn, 1990) and
also (Stirlink 1992).

** Also called "transition systems".

196 GIUSEPPE DE GIACOMO

where, for every program r, the relation 7"r is defined by induction on the formation
of r as follows:

7~pCSxS
7"r = Tgrl U Tgr~

7"r = 7"r o TCr2 (seq. comp. of T"~rx and ~r2)
TCr* = (7-r (refl. trans, closure o f ~ r)

7-r = e S • S I (s2,s) �9 7r
n o , = { (s , 8) �9 s x S l M , . 05}.

A structure M = (S, {TOp }, II) is called a model of a formula 05 if there exists a
state 8 �9 ,5 such that M, s ~ 05. A formula 05 is satisfiable if there exists a model of
05, unsatisfiable otherwise. A formula 05 is valid in a structure M, written M ~ 05,
if for all s �9 S, M, 8 ~ 05.

We call axioms, formulae that are assumed to be valid. Formally, a structure M
is a model of an axiom 05, if M ~ 05. A structure M is a model of a finite set of
axioms P, written M ~ F, if for all 05 �9 1' we have M ~ 05. We say that a finite
set l" of axioms logically implies a formula 05, written F ~ 05, if for all M such that
M ~ F we have M ~ 05.

Observe that satisfiability of a formula 05 can be reformulated in terms of
logical implication simply as ~) V= -`05. In turn a logical implication F ~ 05 can
be reformulated in terms of satisfiability, by making use of the following result
(Kozen and Tiuryn, 1990).

THEOREM 1. Let I" be a finite set o f CPDL axioms, and 05 a CPDL formula. Then
P ~ 05 i f and only i f the CPDLformula

[(P1 U . . . U Pm U P 1 U . . . U Pff)*]r' A -,05

is unsatisfiable, where P1 , . . . , Pm are all atomic programs occurring in F U {05}
and F I is the conjunction o f all axioms in F.

A similar result holds for most propositional dynamic logics, including PDL. In
particular, in PDL, the formula to check for unsatisfiability is [(P1U. . . U Pm)*]r ' A
905. Observe that such a result exploits the power of program constructs (union,
reflexive transitive closure) and the "connected model property"* of propositional
dynamic logics in order to represent axioms (valid formulae).

In the sequel we assume V, [.] to be expressed by means of --1, A, (.). We also
assume, without loss of generality, that the converse operator is applied to atomic
programs only. Indeed it is easy to check that any CPDL formula can be transformed
in linear time in the size of the formula so that such an assumption is fulfilled, by
making use of following equations: (r l ; r 2) - = r 2 ; r 1 , (rl U r2)- = r~- U

(05?)-= 05?.
* That is, if a formula has a model , it has a model which is connected (see below).

ELIMINATING "CONVERSE" FROM CONVERSE PDL 197

The Fisher-Ladner closure (Fisher and Ladner, 1979) of a CPDL formula r
denoted CL(r is the least set F such that �9 E F and such that:

r 1 6 2 =~ r 1 6 2

r E F =~ 9 r E F (if r is not of the form ~r

(r) r => C E F

(r l ; r2) r E F =~ (r l) (r2)r E F

(rl U r2)r �9 F =v (r])r (r2)r E F

(r*)r E F :=~ (r) (r*) r E F

(r162 e F r F.

Intuitively the notion of Fisher-Ladner closure of a formula is closely related to
the notion of set of subformulae in other modal logics: given a formula ~, CL(~)
includes all the formulae that play some role in establishing the truth-value of ft.
Both the number and the size of the formulae in CL(~) are linearly bounded by
the size of r (Fisher and Ladner, 1979). Note that, by definition, if r E CL(~),
then CL(r C CL(r

Let us denote the empty sequence of programs by the program e, and define
(e)r - r and [e]r --" r We call Post(r) the set of programs defined by induction
on the formation of r as follows (a = P [P -) :

Post(a) = {E,a}

Post(r1; r2) = (rl; r2 1 rl e Post(r1)} U Post(r2)
Post(rl O r2) = Post(r1) U Post(r2)
Post(r;) = (rl;r; Ir~ ePost(rl)}
Post(C?) = (c, r

Intuitively, the set Post(r) is formed by the programs that are (not necessarily
proper) "postfix" of the program r. The following proposition holds.

PROPOSITION 2. Let (r) r be a formula. For all r' E Post(r), (r')r E CL((r>r
Proof. By induction on the formation of r.

- r = a or r = r Then Post(r) = (e, r}. By definition, both r E CL((r)r
and (r) r E CL((r)r

- - r = r i ; r 2. ThenPost(rl;r2) = { r l ; r 2 I rl e Post(ri)} UPost(r2).
Since rl is a subprogram of r l ; r2, by induction hypothesis, for all r~ E
Post(rl):

(r~)((r:)r E CL((rl)(r2)r C__ CL((r]; r2)r

On the other hand, since r2 is a subprogram of r l ; r2, by induction hypothesis,
for all r~ E Post(r2):

:(.

198 GIUSEPPE DE GIACOMO

(rl)4 C CL((r2>4) C_ CL((rl; r2>4).

- r = r l Ur2. Then Post(r1 Ur2) = Post(r1) UPost(r2). By induction hypothesis,
' Post(ri): for i = 1,2, for all r i E

(r~} 4 C CL((ri)4) C_ CL((rl U r2)4) .

- r = r t. Then Post(rt) = {r l ;r ~ I rl E Post(rl)}. By induction hypothesis,
for all r[E Post(rl):

(r~)(<r~*>@) C CL((ri><r~>r C_ CL((r~)r

Finally, we introduce the notion of path. Intuitively a path describes the sequence
o f states a given run o f a program goes through.* Formally, a path in a structure M
is a sequence (s0, �9 . . , Sq) of states of M (q > 0), such that for each i = 1 , . . . , q,
(8i-1,8i) E 7"~a for some a = P I P - . The length o f (s o , . . . , Sq) is q. We
inductively define the set o f paths PathsM(r) of a program r in a structure M , as
follows (the notation r i stands for i repetitions o f t -i.e., r 1 = r , and r i = r; ri- l:

PathsM(a) = 7"r (a = P I P -)
PathsM(rl U r2) = Pathsu(rl) U Pathsu(r2)
PathsM(rl; r2) = { (8 0 , . . . , 8 u , . . . , Sq) I (8 0 , . . . , 8u) E PathsM(rl)

and (su , . . . , Sq) E PathsM(r2)}

PathsM(r*) = {(s) I s E S} U (Ui>oPathsM(ri))
PathsM(4'?) = { (s) I M, s ~ r

The next two propositions describe the basic properties of paths. Proposit ion 3
concerns paths whose length is 0: it says that if a formula (r) r is satisfied in a state
s by means o f a path whose length is 0, then there is a formula (4~?;. �9 �9 ; 49?)4,
where the tests 4 I . 9 , . . . , 4g"9 OCCUr in r , that is satisfied in s and implies (r)4 .

P R O P O S I T I O N 3 . Let M be a structure and (r)r a formula, such that:
M, s ~ (r)r (s) E PathsM(r), and M, s ~ 4. Then there exists a formula
(41"9; " ' " ; 49.9)4, with g >- O, such that:

- all tests 4i? occur in r;
-- M , 8 ~ (4 1 . 9 ; . . . ; 4 0 9 .) 4 ;

- - (41"9; . . . ; 49"9)4 --+ (r) 4 is valid.

* The notion of path used here has the same role as the one of trajectory used in (Ben-Ari et
al., 1982), and that of execution sequence in (Streett, 1982). However, the technical details of the
various notions differ. In order to make the paper complete and self-contained, we are going to give
full-fledged proofs of the basic properties of paths.

ELIMINATING "CONVERSE" FROM CONVERSE PDL 199

Proof. By induct ion on the formation of r.
(1) r --- qS'?.

The thesis holds trivially.
(2) r = r l ; r2.

M, s ~ (rl ; r2)~b and (s) E PathsM(r) implies that M, s ~ (rl)(r2)cb and (s) E
PathsM (rl) and (s) E PathSM (r2). By induct ion hypothesis , we can assume that:

- there is a formula (~b1,17;. �9 ; ~bl,gl ?) (r2)~b such that all tests ~bl,j? occur in r l ,
M , s ~ (r ; r162 and (r ; r162 --~ (r l) (r 2) r
valid;

- there is a formula (~b2,1?;... ; ~b2,g2?)~ such that all tests ~b2,j? occur in r2,
M, s ~ (~ , 1 ? ; . . . ; ~,gl?)~b, and (r ; ~2,92?/ff --+ (r2)~ is valid.

Hence, (~b1,17;... ; ~bl,gl?; ~2,17; . . . ; ~b'2,g2?)~b is such that: (1) all tests ~b~,j? occur
in r l or r2 and therefore in r; (2) M, s ~ (q~1,1?;... ; ~bl,g~?; ~ 2 j ? ; . . . ; ~2,g2?)~;
(3) (ff~,~?;.. . ; ~b1,~1?; 42 ,1? ; . . . ; ~b2,~?)r --+ (r l ; r2)~b is valid.

(3) r : r l Ur2 .
M , s ~ (rl U r:)~b implies that, either for i = 1 or for i = 2, M, s ~ (ri)~b
and (s) ~ PathsM(ri). By induct ion hypothesis we can assume there is a formula
(~bi, l?; �9 �9 ; ~bi,a~?)~b such that all tests ~i,3? occur in ri, M, s ~ (~bi, l ? ; . . . ; ffi,a~?)~,
and (~bi,~?;... ;~bi,a,?)~b --+ (ri)q5 is valid. Therefore, considering that (ri)~b
(rl U rz)tk, we get the thesis.

(4) r = r~.
Since (s) ~ PathsM(r~), (r~)qb is equivalent q5 V (rl)(r~)~b, and M , s ~ q~, the
thesis holds trivially (with g = 0). �9

Proposi t ion 4 concerns paths whose length is greater than 0: it says that if a
formula (r) ~b is satisfied in a state s by means of a path whose length greater than 0,
then there is a formula ((~1?;.. . ; (])g?; a) (rl)(~, where the tests (~1 .9 , . . . , (~g? Occur
in r , a is the first transition on the path, and r ' E Post(r), which is satisfied in s
and implies (r)~b.

PRO PO SI TION 4. Let M be a structure, and (r)q5 a formula such that: M, s
(r)~, (s = s o , . . . , Sq) E PathsM(r) with q > O, and M, Sq ~ q~. Then there exists
a formula (~ l ? ; . . . ; ~g?; a)(r')c~, with g >_ O, such that:

- all tests qbi? occur in r;
- r' E Post(r) (andhence (r')q5 E CL((r)qb));
- (so , s l) Yea;
- M, Sl ~ (r')qS;
- (S l , . . . , Sq) E PathsM(r');
- (q~l?; . . . ; ~ba?; a)(r')c~ ---> (r)q~ is valid.

Proof. By induct ion on the formation of r.
(1) r = a.

The thesis holds trivially.

200 GIUSEPPE DE GIACOMO

(2) r = r l ; r 2 .

Let (s o , . . . , si) be the segment of (s o , . . . , Sq) such that (s o , . . . , si) E PathsM(rl)
and (s i , . . . , sq) E PathsM(r2). We consider two cases:

- i > 0. Consider that: (1) M, so ~ (rl)~b' for q7 = (r2)~b; (2) (s o , . . . ,si) E
PathsM(rl) with i > 0; (3) M, si ~ (r2)qS. By induct ion hypothesis , there is
a formula (4)1?;. . . ; ~bg?; a)(r~)(r2)q5 such that:
�9 all tests qSi? occur in ra, and hence in r;
�9 r~ E Post(r1), and hence r~; r2 E Post(r1; r2);
�9 (s0 , s l) E 7 ~ ;

�9 M, 81 ~ (r~)(r2)~b, and hence M, 81 ~ (1"~; ?'2)(/);
�9 (S l , . . . ,si) E PathsM(r~) with i _< q, and hence (S l , . . . ,Sq) E PathsM

((rl;
�9 (~b1.9; �9 �9 �9 ; ~9 .9; a) (r~) (r2) ~ -+ (r l) (r2) ~b is valid, and hence also the formula

(~bl.9;... ; ~bg?; a)(r~ ; r2)~ -+ (rl; r2)~b is valid.
- i = 0. By Proposi t ion 3, there exists a formula (~b1,1.9;... ; ~l,a1.9)(r2)~ such

that
�9 all tests qbl,j? occur in r t ;
�9 M, so ~ (gbl,l.9;..-;(~1,gl.9)(/'2)(~;
�9 (~bl,l?; . . . ; ~bi,gl?)(r2)~b --+ (rl)(r2)~b is valid.
On the other hand, observe that (r2)~b is such that: (1) M, s ~ (r2)gb; (2)
(s = s O , . . . , Sq) E PathsM(r2) with q > 0; (3) M , Sq ~ (b. Therefore, by
induct ion hypothesis , there is a formula (~b2,1 ? ; . . . ; ~,g2?; a)(r~)~b such that
�9 all tests (k2,j? occur in r2;
�9 r~ E Post(r2) (C eost(rl; r2));
�9 (80,81) E ~'~a;

/.! �9 �9 M , 81 ~ (2)(~,
�9 (81, . . . ,8q) E PathsM(r~);
�9 (4)2,1?;... ; 4)2,g2?; a)(r~)ck ~ (r2)~b is valid.
Hence the formula (q51,1?;... ; gbl,al?; ~b2,1?;... ; (kz,a2?; a)(r~)ck is such that
�9 all tests (fii,j.9 Occur in either in rl or in r2;
�9 r~ E Post(rl; r2);
�9 (so, s1) 7 a;
�9 M , Sl ~ (~'~)(~,
�9 (S l , . . . , sq) E PathsM(r~);
�9 (~bl,l?;.. .;~bl,gl?)((~2,1?;.. .;ck2,az?;a)(r~)ck --+ (rl)(r2)~b is valid, and

hence also (~bl,l?;.. .;~bl,al?;ff2,1?;.. .;~b2,a2?;a)(r~)~b --+ (rl;r2)~b is
valid.

(3) r = r l t3 r 2.

M , s ~ (rl [..I r2)~b with (s = s o , . . . , Sq) E PathsM(rl U r2) implies that either
for i = 1 or i = 2: (1) M ,s ~ (ri)qb; (2) (s = so,. . . ,Sq) E PathsM(ri)
with q > 0; (3) M , Sq ~ 4. Thus, by induction hypothesis , there is a formula
(qbi,l?;. . . ; ffi,al?; ai)(r~)ck such that:

- all tests (ki,j? occur in ri, and hence in rl t3 r2;

ELIMINATING "CONVERSE" FROM CONVERSE PDL 20 t

- rI e Post(rd c_ Post(r1 u r2);
- (so, s1) e 7"r

- (s l , . . . , Sq) e PathsM(r~);
- (r ; r162 ~ (r i)r is valid, and therefore, considering that,

(r i)r --+ (rt U r2)r is valid, we get that (r ; r ail(r~lr --> (rl U
r2)~b is valid.

(4) r =
Since q > 0, we have that M , s ~ (r~)r implies M , s ~ (rl)(r~)r and
furthermore there is a segment (so,. .. ,si) of (so, . . . ,Sq) with 0 < i _< q,
such that (so , . . . , s i) E PathsM(rl) and (s i , . . . ,Sq) ~ PathsM(r~). Thus we
have: (1) M, so ~ (rl)qY with Ct = (r~)r (2) (so , . . . , s i) E PathsM(rl)
with i > 0; (3) M, si ~ (r~)r By induction hypothesis there exists a formu-
la (r ? ; - . . ; Cg?; a)(r~) (r~)r such that

- all tests r occur in r l , and hence in r~';
- r~ e Post(rt), and hence r~; r~ e Post(r~);
- (so, s l) E ~ ;
- M, Sl ~ (r~)(r;)qb, and hence M, sl ~ (r~; r~)r
- (S l , . . . , si) E PathsM(r~), and hence (s l , . . . , sq) E PathSM(r~; r[);
-- {r -~ (rl)(r~)d? is valid, hence also the formula

(r ? ; . . . ; Cg?; a) (r[; r~)r --4 (rl; r~)r is valid. Therefore, considering that
(rl; r~)r --+ (r~)r we get that (r ;r a){r~; r~)qb --> (r~)r is valid.

[]

3. The Encoding

We now show the encoding of CPDL formulae into PDL. More precisely, we
exhibit a mapping ~f from CPDL formulae to PDL formulae such that, for any
CPDL formula ~, ~ is satisfiable if and only if 7(if) is satisfiable. The formula
~,(~), whose size is polynomial with respect to the size of ~, is said to be the
PDL-counterpart ofc}. We assume without loss of generality that in ff the converse
operator is applied to atomic programs only.

DEFINITION. Let ~b be a CPDL formula with the converse operator applied to
atomic programs only. We define the PDL-counterpart 7 ((~) of ~ as the conjunction
of two formulae, 7(~)) = 3'2 (~) A 3'2(~), where:

- 71 (~) is obtained from the original formula ~ by replacing each occurrence
of P - with a new atomic program pc, for all atomic programs P occurring in
O.

-- 72(~') = [(P1 U . . . UPm UP1 c U . . . U Pr~)*]@ A . . . ATe, where PI , . . . ,Pro
are all atomic programs appearing in r and with a conjunct 71 of the form

202 GIUSEPPE DE GIACOMO

(4 -'+ [P](PC)q 5) A (q5 ---+ [PC](P>qb)

for every ~b E CL("}tl ((I))) and P E {P1, . . . , Pro}.

THEOREM 5. Let ~ be a CPDL formula, and 7(~) its PDL-counterpart. Then
7(~) is a PDL formula, and its size is polynomially related to the size of r

Proof. 7(r is obviously a PDL formula. Furthermore, since both the number
and the size of the formulae in CL(71(~)) are bounded by the size 171(~)[of
71(ff), and 171 ('I')l = I'I'l, it follows that 17(')1 = O(m. I 1" I'I'l), w h e r e m is
the number of atomic programs occurring in ~. �9

Note that, although the size ofT(ff) is O(m. [ff[. [ff[), the special form of 7((b)
guarantees that ICL(7())I = O(m. ICL(~)I), i.e. the size of the Fisher-Ladner
closure of 7(if) is essentially the same as that of e; multiplied by the number of
atomic programs in ft. This observation is of significant practical interest since the
efficiency of several inference procedures for PDL depends, in fact, on the size of
the Fisher-Lander closure of the formula, and only indirectly on the size of the
formula.

The purpose of,),1 (r is to eliminate the converse of atomic programs (the only
converse programs) from ~I, and replace them with new atomic programs. Each
new atomic program pc is intended to represent P - (the converse of the atomic
program P) in ')'1 (q~).

The purpose of 72(0) is to constrain the models M of 7(if) so that, for all
q5 E CL(71 (if)), for all states s of M, if ~ holds in s then all the P-successors of s
have a PC-successor where ~b holds, and similarly all the PC-successors of s have
a P-successor where ~b holds. We shall show that, as far as satisfiability (but also
validity and logical implication) is concerned, this allows us to faithfully represent
the converse of P by means of pc.

First of all, observe that if instead of 72(~) we imposed, for each P , the two
axiom schemata (~b any formula):

~b -+ [p](pc>~
d? -+ [Pc]<P}q5

then the models of 71 (@) would be isomorphic to the models of ~. In fact, the above
axiom schemata are identical to the ones used in the axiomafizafion of CPDL to
force the program P - to be the converse of P. However the resulting logic would
not be PDL but trivially CPDL.

Instead, ,)'2 (@) can be thought as a finite instantiation of the above two axiom
schemata: one instance for each formula in CL(~).* Although imposing the valid-
ity of such a finite instantiafion does not suffice to guarantee the isomorphism of

* Actually,,),2(ff) already takes into account the reduction from logical implication to satisfiability
of Theorem 1.

ELIMINATING "CONVERSE" FROM CONVERSE PDL 203

the models of 71 (~) and (I,, we show that it suffices to guarantee that 71 ((b) has a
model if and only if ff has a model.

It is a standard result that if a CPDL formula cI, has a model, then it has a
connected model, where a model M -- (,9, {Rp} , I-I) of ff is a connected model,
if for some ss E ,9:

- M , s s ~ ~;
- ,9 = { t l (s s , t) e (U p ' T ' ~ . p U " ~ p -) * } .

Let (I, be either a CPDL formula or a PDL formula. We call a structure M =
(,9, { ~ p } , II) a structure o f ~, if every atomic program P and every atomic
proposition A occurring in ff is interpreted in M, i.e. 7 tp appears in M, and A
appears in the co-domain of II.

In the following we use 7r as an abstraction for both P and pc. Moreover, 7r c
denotes pc , if 7r = P , and it denotes P , if 7r = pc.

Let M = (,9, { ~ r }, II) be a connected model of T(ep). We call the c-closure of
M, the structure M ~ = (S', {7~}, II') of T(~) , defined as follows:

_ , 9 , = , 9 ;

- 7 ~ = 7t~ U {(t, s) I (s, t) E ~ . c } , for each atomic program 7r in 7(~) ;
- IY = II.

Note that in the c-closure M ~ of a model M, each 7~o of M ~ is obtained from Rio
of M by including, for each pair (s, t) in 7~ioc, the pair (t, s) in 7~,, and similarly
each 7t~,~ is obtained from/~p~ by including, for each pair (s, t) in Rio, the pair
(t, s) in ~ , ~ . As a result in the c-closure of a model each atomic program pc is
interpreted as the converse of P .

The next lemma is the core of the results in this paper. Intuitively it says that
the c-closure of a connected model is equivalent to the original model with respect
to the formulae in CL(71 (q~)).

LEMMA 6. Let M = (S, {7~p}, II) be a connected model of T(~), and M ' =
(,9', {7~,}, II ') its c-closure. Then, for every s E ,9 (= ,9'), and every (b E
CL('71(@)):

M,s r iff M' ,s#4.

Proof. We prove the lemma by induction on the formation of ~b (called formula
induction in the following).

- q~ = A. M, s ~ A iff A E II(s) iff, by construction of M ' , A E II '(s) iff
MI, s ~ A .

- ~b = -~b r. M, s ~ ~ b r i f f M, s ~: ~Y iff, by the formula induction hypothesis,
M', s iff M', s

- q5 = ~bl A q52. M, s ~ ~bl A 4~ iff M, s ~ q51 and M, s ~ ~ iff, by the formula
induction hypothesis, M r, s ~ ~bl and M r, s ~ ~bz iff M ~, s ~ ~bl A ~b2.

204 GIUSEPPE DE GIACOMO

- 4 = (r)4' . =~. M, s ~ (r)4' iff there is a path (s = s 0 , . . . , Sq) ~ PathsM(r)

such that M, Sq ~ 4 ~. We show that M ~, 8 ~ (r)4 ~, by induction on the length
of the path (called path induction in the following).

q = 0. In this case (s = so) E PathsM(r) and M, s ~ 4'. Then, by Proposi-
tion 3, there exists a formula (r ; 4g?)4 ~ such that:
�9 all tests 4i? occur in r, and hence all 4i are subformulae of (r)4~;
�9 M , s ~ (r162
�9 (41 .9 ; . . . ; 4 g 9 .) 4 ! -'ze (r)4 ' is valid.
By the formula induction hypothesis, for every 4z E {41 , . . . , 4g, 4~}, we
have that M, s ~ 4x iff M t, s ~ 4x. Hence, since a formula of the form
(41 ? ; . . . ; 4g?)4 t is equivalent to 41 A . . . A 49 A 4 ~, we conclude that M ~, s
(r)4'.
q > 0. In this case, by Proposition 4, there exists a formula (41?; . . - ;
49?; 7r)(r')r ~ such that:
�9 all tests 4i? occur in r, and hence all 4i are subformulae of (r)4';
�9 r 'E Post(r), and hence (r ')4 ' ~ CL((r)4') C_ CL(71(~));
�9 (80,81) E T~Tr;
�9 M, sl ~ (r')4';
�9 (S l , . . . , Sq) E Pathsm(r');
�9 (41 .9 , . . . ; 4g.9; 7 r) (r ') 4 ! ~ (r) 4 ! is valid.
By the formula induction hypothesis, for every 4z E {41 , . . . , 4g), we have
M, so ~ 4x iff M' , so ~ 4z-
By construction o f M ~, (so, sl) E R~r implies (so, 81) E ~ .
Considering that (/) 4 ' E CL((r)4') C CL(71(~)), by the path induction
hypothesis, M, 81 ~ (/) 4 ' and (81,..., Sq) E PathsM(r') implies M', 81
(r')4'.
Hence M' , so ~ (r)4' .

r M' , 8 ~ (r)4 ' iff there is a path (s = s o , . . . , Sq) E PathSM,(r) such that
M ~, Sq ~ 4 ~. We prove that M, s ~ (r)4 ~, by induction on the length of the
path (called path induction in the following).

q = 0. In this case (s = so) E PathsM,(r) and M ~,s ~ 4 ~. Then, by
Proposition 3, there exists a formula (41 ? ; . . . ; 4g?)4 ~ such that:
�9 all tests r occur in r, and hence all r are subformulae of (r)r
�9 M' , s ~ (41.9;... ; 4g.9)4';
�9 (41?; . . . ; r --+ (r)4' is valid.
By the formula induction hypothesis, for every 4z E {41 , . . . , 4g, 4'}, we
have that M t, s ~ 4x iff M, s ~ 4x. Hence M, s ~ (r)4 ~.

q > 0. In this case, by Proposition 4, there exists a formula
(417;. . . ;4g?; r)(r ')41 such that:

ELIMINATING "CONVERSE" FROM CONVERSE PDL 205

�9 all tests r occur in r, and hence all r are subformulae of (r)r
�9 r E Post(r), and hence (r ')r t E CL((r)r C CL(71 (if));
�9 (80,81) e n ~ ;
�9 M ' , 81 ~ <rt)r
�9 (Sl , . . . , Sq) E PathsM,(rt);
�9 (r ;r r) (r ') r --+ (r)r is valid.
By the formula induction hypothesis, for every r E {r Ca}, we have
M', so ~ Cx iff M, so ~ Cx.
Considering that (r ')r t E CL((r)r ~) C CL(71 ((I))), by the path induction
hypothesis, M', 81 ~ (r')qY and (81 , . . . , 8q) E PathsM, (r') implies M, sl
<r')r
Since (so, Sl) E ~ , by construction of M', we have that either (so, 81) E "]~r,
or (so, sl) ~ 7~ and (sl, so) E 7~c.
�9 If (so, Sl) E ~ , then we can immediately conclude that M, so ~ (r)r
�9 If (so, Sl) ~ ~ and (sl, so) E ~ r then considering that (r ')r is equiva-

lent to a formula r E CL('71 (~)), by 72 (~I,) we have that

M, 81 ~ (rt)r [TrC](Tr)(r')r '.

Thus there exists a state s t E S (different from sl) such that (so, s]) E 7B~r
and M, s t ~ (r')r Hence, also in this case, we can conclude that M, so
(r)r

The previous lemma has the following consequence.

LEMMA 7. Let M be a connected model of7(~) and M r its c-closure. Then M'
is a model ofT(~) as well.

Proof Let M = (S, (TEar}, H) and M' = (S', {TB~}, II'). By Lemma 6, for all
s E S = S' and all r E CL(71((I))):

M,s ~ r iff Mt, s ~ r

Furthermore, by definition o fM' , (s, 8') E ~ implies (J, s) E 7~c. Thus, for
all s E S' and all r E CL(7I (~)) :

M' ,8 ~ r -+ [p](pc)r
M', s ~ r --+ [pc] (p) r

Hence we can conclude that the thesis holds. �9

Below we formulate the main result of the present work.

THEOREM 8. A CPDL formula d) is satisfiable iff its PDL-counterpart ~/(q?) is
satisfiable.

206 GIUSEPPE DE GIACOMO

Proof. =~. Let M cPDL = (•CPDL {7~CpPDL}, I'ICPDL) be a model of ~. We
define a structure M PDL = (,~PDL, {T4PDL}, IIPDL) o f ")'((I)) as follows:

_ s P D L : sCPDL;

- T~ PDL -- T~t~, PDL and v P D L -- ,'..pc ~-- { (t , 8) I (8, t) E ~r~CPDL}, for all atomic
programs P occurring in (I);

_ HPDL : II CPDL.

It is easy to verify that M P D L is a model of 7((I)).

r Let M PDL = (S PDL, {7"~PDL}, 1"I PDL) be a connected model of 7((I)) and
M PDL~ = (S PDL', {R~DL~), II PDL~) its c-closure. By Lemma 7, M ~ is a model
of 7((I)) as well.

Observe that, by definition, M ~ is such that, for each atomic program 7r, R PDLt =
(7~ PDff) - . We define a structure M cPDL = (S CPDL, {T~ CpPDL }, H cPDL) of 7((I))

as follows:
_ s C P D L = sPDLt;

_ ,~C.pPDL : ,-~PDL I for all atomic programs P occurring in (I);
__ II CPDL = 1-[PDLI.

It is easy to verify that M CPDL is a model of ft. �9

4. Conclusion

The logics PDL and CPDL share many characteristics, and many of the results for
PDL extend to CPDL without difficulty. For instance the proofs of finite model
property and decidability for PDL in (Fisher and Ladner, 1979) are easily extended
to CPDL, as well as the proof of EXPTIME-completeness of satisfiability in (Pratt,
1979). However, while efficient - in practical cases - inference procedures have
been successfully developed for PDL, extending them to CPDL has proved to be a
difficult task, and to the best of our knowledge had been unsuccessful till now.

To be more precise, the inference procedures for P DL based on the enumeration
of models such as those in (Fisher and Ladner, 1979; Pratt, 1979) can be easily
modified to accommodate converse programs. But these procedures are better suited
for proving theoretical results than for use in practice, since they are inherently
exponential, not only in the worst-case.

In contrast, inference procedures for PDL such as those in (Pratt, 1978; Pratt,
1980), based on tableaux methods, which are much more efficient in practical
cases, are difficult to modify to cope with converse programs.

The difficulty can be intuitively grasped by observing how these procedures
attempt to build a model of a PDL formula in order to check its satisfiability.
They start by introducing an initial state, and try to make it satisfy the formula. At
first, reasoning is carded out locally, i.e. considering subformulae that involve state
transitions, simply as atomic propositions. Next, when no more local reasoning is
possible, the successor states, introduced by atomic programs, are generated, and

ELIMINATING "CONVERSE" FROM CONVERSE PDL 207

the relevant formulae that these states ought to satisfy are propagated. For each
successor state the two steps above are recursively repeated until certain termination
conditions are met. The key point is that once the successors of a given state have
been generated, there will be no more reasoning involving that state carried out.
Thus, to check satisfiability of a PDL formula, a tableaux based procedure can be
organized so as to work only "forward". This feature turns out to be essential in
order to ensure efficient termination criteria.

The presence of converse programs does not allow us to extend the above
approach in an obvious way. Indeed, reasoning on a state cannot be completely
carried out without generating its successors, because, through converse programs,
some successors may require further properties to be satisfied by the original state.
Therefore, to check satisfiability of a CPDL formula, a procedure has to work both
"forward" and "backward", thus losing efficiency, since at any point reasoning may
involve all of the model built so far.

Is there any way out of this problem? One possible solution is by trying to single
out a (hopefully small) set of additional formulae to be checked in every state, that
in some sense anticipates the properties successor states may require at a later stage
of the computation.

What the encoding of CPDL into PDL presented in this paper does is single
out exactly a set of additional formulae as that mentioned above. Hence it can
be the basis to develop better reasoning procedure for CPDL, on top of inference
procedures forPDL. In fact, the encoding allows us to build a satisfiability procedure
for CPDL by simply translating a CPDL formula to a PD L formula and then running
a P D L satisfiability procedure on it. Therefore, considering that the encoding is
polynomial, by employing an efficient satisfiability procedure for PD L we get an
efficient satisfiability procedure for CPDL.

References

M. Ben-Ari, J. Yo Halpern, and A. Pnueli. Deterministic propositional dynamic logic: finite models,
complexity, and completeness. Journal of Computer and System Sciences, 25:402-417, 1982.

P. Blackburn and E. Spaan. A modal perspective on computational complexity of attribute value
grammar. Journal of Logic, Language and Information, 2:129-169, 1993.

G. De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis,
Dipartimento di Informatica e Sistemistica, Universit~ di Roma "La Sapienza", 1995.

G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics and
propositional dynamic logics. In Proceedings of the Twelth National Conference on Artificial
Intelligence (AAAI-94), pages 205-212, 1994.

G. De Giacomo and M. Lenzerini. What's in an aggregate: foundation for description logics with
tuples and set. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), pages 801-807, 1995.

M. Fattorosi-Barnaba and F. De Caro. Graded modalities I. Studia Logica, 44:197-221, 1985.
N. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer

and System Sciences, 18:194--211, 1979.
N. Friedman and J. Halpern. On the complexity of conditional logics. In Proceedings of the Fourth

International Conference on Principles of Knowledge Representation and Reasoning, page 202-
213, 1994.

208 GIUSEPPE DE GIACOMO

G. Oargov and V. Goranko. Modal logic with names. Journal of Philosophical Logic, 22:607-636,
1993.

J. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge
and belief. Artificial Intelligence, 54:319-379, 1992.

D. Harel. Dynamic logic. In Handbook of Philosophical Logic, pages 497-603. D. Reidel Publishing
Company, Oxford, 1984.

D. Kozen and J. Tiuryn. Logics of programs. In Handbook of Theoretical Computer Science, pages
790-840. Elsevier Science Publishers, 1990.

S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Information and Computation,
93:263-332, 1991.

V. R. Pratt. A practical decision method for propositional dynamic logic. In Proceedings of the lOth
Annual Symposium on Theory of Computing, pages 326-337, 1978.

V. R. Pratt. Models of program logics. In Proceedings of the 20th IEEE Symposium on the Foundations
of Computer Science, pages 115-122, 1979.

V. R. Pratt. A near-optimal method for reasoning about action. Journal of Computer and System
Sciences, 20:231-255, 1980.

K. Schild. A correspondence theory for terminological logics: preliminary report. In Proceedings of
the Twelth International Joint Conference on Artificial Intelligence (IJCA1-91), pages 466-471,
1991.

C. Stirling. Modal and temporal logic. In Handbook of Logic in Computer Science, pages 477-563.
Clarendon Press, Oxford, 1992.

R. S. Streett. Propositional dynamic logic of looping and converse is elementary decidable. Informa-
tion and Control, 54:121-141, 1982.

J. Van Benthem and J. Bergstra. Logic of transition systems. Journal of Logic, Language and
Information, 3(4):247-283, 1995.

J. Van Benthem, J. Van Eijck, and V. Stebletsova. Modal logic, transition systems and processes.
Journal of Logic and Computation, 4(5):811-855, 1994.

W. van der Hock and M. de Rijke. Counting objects. Journal of Logic and Computation, 5(3):325-345,
1995.

