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Abstract

Let C’g denote the class of first order sentences with two variables and with additional
quantifiers “there exists exactly (at most, at least) ", for i < p, and let C'? be the union
of Cg taken over all integers p. We prove that the satisfiability problem for C? sentences
is NEXPTIME-complete. This strengthens the results by E. Gradel, Ph. Kolaitis and
M. Vardi [15] who showed that the satisfiability problem for the first order two-variable
logic L2 is NEXPTIME-complete and by E. Gradel, M. Otto and E. Rosen [16] who proved
the decidability of C2. Our result easily implies that the satisfiability problem for C? is in
non-deterministic, doubly exponential time. It is interesting that C? is in NEXPTIME in
spite of the fact, that there are sentences whose minimal (and only) models are of doubly
exponential size.

It is worth noticing, that by a recent result of E. Gradel, M. Otto and E. Rosen [17],
extensions of two-variables logic L2 by a week access to cardinalities through the Hartig
(or equicardinality) quantifier is undecidable. The same is true for extensions of L? by
very week forms of recursion.

The satisfiability problem for logics with a bounded number of variables has applicati-
ons in artificial intelligence, notably in modal logics (see e.g. [22]), where counting comes
in the context of graded modalities and in description logics, where counting can be used
to express so-called number restrictions (see e.g. [8]).

1 Introduction

Let L? denote the class of first order sentences with two variables over a relational vocabulary,
and let C? denote L? extended with additional quantifiers “there exists exactly (at most, at
least) ¢”, for ¢ < p. Finally, let C* be the union of Cg taken over all integers p. We prove
that the problem of satisfiability of sentences of C'? is NEXPTIME-complete.

Problems concerning decidability of restricted classes of quantificational formulas have
been studied since the second decade of this century by many logicians including W. Acker-
mann, P. Bernays, K. Godel, L. Kalmar, M. Schonfinkel, T. Skolem, H. Wang [1, 2, 5, 11, 12,
24, 33, 34, 35, 37] and many others. In the late twenties and in the thirties (see [7] and [19]
for more informations) the study of classification of solvable classes of prenex formulas was
one of the most active areas of logic. Now, after the works of Y. Gurevich [18], M. Rabin [30],
S. Shelah [32] and W. Goldfarb [14] the classification of prenex classes has been completed.
Accounts of the classical results in this area can be found in several books [3, 7, 9, 25]. More

*The results included in section 4 have been published as a part of [29].



recent results have been obtained by H.R. Lewis and W. Goldfarb [13, 14, 26]. A short survey
of the research in this area can be found in [19] (see also the introduction to [15]).

In 1962, in a short note, D. Scott [31] proved that the satisfiability problem for L? was
decidable. His proof was based on a reduction of this problem to the problem of satisfiability
of sentences in the Gddel class with equality. Later, in 1975, M. Mortimer gave another proof
of decidability by proving that L? has a finite model property. When in 1984 G.D. Goldfarb
[14] found a counterexample to the claim, that the Godel class with equality had a decidable
satisfiability problem, the very short and elegant proof by D. Scott lost its validity. In
1980 H. Lewis [27] proved that the satisfiability problem for L? was NEXPTIME-hard. The
complexity of an algorithm which could be extracted from the Mortimer’s work was doubly
exponential. Recently, E. Griadel, Ph. Kolaitis and M. Vardi [15] have closed the gap by
providing a very elegant proof that the satisfiability problem for 2 was in NEXPTIME.
Later we found another proof [36] of the same result. Our proof was not as nice as the one
in [15], but we hoped it could be extended to get the complexity bounds for C?2.

In [16] E. Griadel, M. Otto and E. Rosen established decidability of the satisfiability pro-
blem for C'2. They proved that the set of sentences which have infinite models was recursive,
which implied the above mentioned result. No complexity estimates could be obtained from
their proof.

In this paper we prove that the satisfiability problem for C? is in NEXPTIME, so by the
result H. Lewis [27] it is NEXPTIME-complete. By the reduction of C? to C? given in [16]
this implies that C'? is in 2-NEXPTIME. Although our strict upper bound applies only to C2
we believe that we have developed techniques that can be used to close the gap for the entire
class C?.

Our approach is in a very remote way based on the ideas of Mortimer. A very simple
cardinality argument shows that Mortimer’s notion of a star could not be used to give a
NEXPTIME decision procedure. This led to a weakening of this notion to the notion of a
constellation. As the first application of this notion we gave in [36] another proof of the result
of Gradel, Kolaitis and Vardi [15]. There we have also used a stronger notion of a normal
form - going further than Griadel, Otto and Rosen in [16] - a constellation form, in which
additionally, constant symbols do not appear. The proof in [36] is “syntactic”, however, in
the case of L?, the “syntactic” structure coding a model is almost equivalent to a model. This
changes dramatically when we move to €%, and allows for a concise description of models
that can be even infinite.

In contrast to [16] our basic notions are almost entirely syntactic. We like the feudal
terminology of [16] and we treat kings of [16] with proper care and respect. However, kings
in our sense have other virtues besides belonging to a finite set. Population of our kings is
always at most doubly exponential in the size of the language. On the other hand, it is easy
to give examples of models whose sets of kings in the sense of [16] have, for a language of
bounded size, arbitrary large cardinality. This seems to suggest that the method of [16] could
not easily be adapted to give complexity bounds.

To get our result we analyze the structure of the feudal court. We have a few kings and
kings are characterized by the fact, that they are connected between themselves using only
counting types. Instead of a more or less uniform court we have a hierarchy V;, for i < 27" of
vassals, each of which may be a sovereign of perhaps several vassals in V;y;. The union V of
all V;, for i < 27" is included in the set of kings in the sense of [16] and provides information
sufficient to reconstruct a model and thus gives rise a 2-NEXPTIME algorithm for C'?, and
a 3-NEXPTIME algorithm for C%. Of course, we can not easily improve the above bounds,



since we can provide a sentence (see Proposition 4.21) of C? of size n whose unique model
coincides with V' and has cardinality O(2%").

To push the lower bound down we had to provide a finer analysis. We have noticed that
although the number of vassals in a model can be large (doubly exponential), the number of
vassals that are different from the point of view of relations between themselves is smaller
(exponential). In more technical terms a potential model is described by a set of indexed
constellations and numbers of elements that realize these constellations. Roughly speaking,
an indexed constellation in addition to information on two-types realized by pairs containing a
given element carries, for certain two-types requests for partner constellations - constellations
that should realize, together with the given constellation, these two-types. Moreover, we show
that the model is composed of some number of parts (only one of them can be infinite), which
can be treated separately and independently during construction of the model. To check if
the parts can be constructed we use several graph-theoretical results concerning the existence
of Hamiltonian cycles, matchings and bipartition.

It is worth noticing, that by a recent result of E. Griadel, M. Otto and E. Rosen [17],
extensions of two-variables logic L? by a weak access to cardinalities through the Hartig (or
equicardinality) quantifier is undecidable. The same is true for extensions of L? by very weak
forms of recursion.

The satisfiability problem for logics with a bounded number of variables has applications
in artificial intelligence, notably in modal logics (see e.g. [22]) where counting comes in the
context of graded modalities and in description logics, where counting can be used to express
so-called number restrictions (see e.g. [8]). More information on applications and relation of
two-variables logics to modal logics is given in [15].

2 Preliminaries

Throughout the paper we are concerned mainly with signatures that consist of unary and
binary predicate letters without Boolean predicates, function symbols and constants. This
restriction allows to simplify definitions and technical proofs. We would, however, like to
emphasize that it is easy to adapt all notions used in this paper and to modify the proofs in
order to obtain the same results also for the full first-order two-variable logic with counting,
including predicate letters of higher arity and constants (see e.g. [15] for a proof that predicate
letters of higher arity can be eliminated).

We assume that the reader is familiar with standard notions of logic and with basic
concepts of computational complexity theory. In this paper, L-structures are denoted by
Gothic capital letters and their universes by corresponding Latin capitals. Furthermore, if
a structure 2 is fixed, then its substructure with the universe denoted by a Latin capital is
denoted by the corresponding Gothic capital.

By L? we denote the class of first order sentences with two variables over a relational
vocabulary, and by Cg we denote I? extended by additional quantifiers of the form 3=¢, 3<¢
or 327 (there exists exactly, at most, at least 7), for ¢ < p. Finally, C? is the union of C; taken
over all integers p.

Let £ be a relational vocabulary with unary and binary predicate letters only. A I-type
t(z) is a maximal consistent set of atomic and negated atomic formulas of the language £
in the variable . A 2-type t(x,y) is a maximal consistent set of atomic and negated atomic
formulas of the language £ in the variables x,y, such that (¢ # y) € {(z,y). A type t is often



identified with the conjunction of formulas in ¢. For a 2-type {(z,y) we denote by t(z,y){z}
the unique 1-type #(z) included in #(z,y) and we denote by t* the type dual to ¢, that is the
type obtained from ¢ by replacing each occurrence of the variable z by y and each occurrence
of y by . If Ais an L-structure with the universe A, and if a,b € A, then we denote by
tp%(a,b) the unique type realized by the pair (a,b) in 2L.

Recall that for any integer function ¢(n), NTIME(#(n)) is the class of all decision problems
that can be solved by a non-deterministic Turing machine in time #(n), where n is the length
of the input. We put

NEXPTIME = J, NTIME(2°(™),

2-NEXPTIME = |, NTIME(2”"™),

where p is a polynomial.

3 On L? case

In this section we consider the satisfiability problem for L2, the first-order logic with two-
variables and without counting quantifiers. We give an algorithm solving this problem which
runs in non-deterministic exponential time. As we have mentioned in the Introduction, it
follows from the paper of M. Mortimer [28] that the satisfiability problem for L? can be
solved by a non-deterministic algorithm in doubly exponential time. An algorithm whose
complexity matches the NEXPTIME lower bound given by H. Lewis [27] was presented in
a very nice paper by E. Gridel, Ph. Kolaitis and M. Vardi [15]. This algorithm and the
bound that follow from the Mortimer’s work depend on the bounds on the cardinality of a
minimal model of an L? sentence. Our algorithm in contrast to the above, does not exploit
the bounded model property of L?.

This section is a modification of [36] and it is included here following a suggestion of
one of the referees in order to introduce and explain the techniques used later for logic with
counting.

Our approach in a remote way is based on Mortimer’s notion of a star [28], a star being an
arbitrary set of two-types with a consistent center. The notion of a star was a very convenient
technical tool to describe a finite structure and to check, with the help of Ehrenfeucht games of
depth two [10], that this structure is a model of an L? sentence. Unfortunately, the Mortimer’s
notion of a star cannot be directly used to give a NEXPTIME decision procedure since the
cardinality of a star is exponential and the number of possible stars is doubly exponential in
the number of predicate letters in the signature.

We weaken the notion of a star to a notion of a small constellation that we introduce
after a close analysis of L? sentences from the point of view of their satisfiability. As in other
related papers [31, 15] we use a variant of a notion of a normal form of first-order sentences.
Our notion is called a constellation form and it allows to introduce the notion of a small
constellation in a very natural way. Unlike a star, a small constellation is of linear size and it
contains only these two-types that describe a relation of a given point to a witness that must
exist in a model of an L? sentence.

We also introduce a notion of a small galaxy as a set of small constellations that can be
modeled in a first order structure and we prove that an L%-sentence is satisfiable if and only
if there exists a small galaxy (Theorem 3.5). A small galaxy has only exponential size.

As the next step we give necessary and sufficient conditions for a set of small constellations
to form a small galaxy (Definition 3.12, Theorem 3.13). In the proof of Theorem 3.13 we use



notions of special and replicable constellations which are analogous to Mortimer’s notions of
asymmetric and symmetric stars. These notions are crucial for our analysis of models for L2-
sentences. As a result we get a nondeterministic exponential upper bound for the satisfiability
problem for L?-sentences (Corollary 3.14).

3.1 Small constellations, small galaxies and satisfiability

Let R C L be a set of binary predicate letters, R = {Ry,..., R, }.

Definition 3.1 An L-sentence ® is in constellation form if

S = VaVyo(z,y) A /\ VedyRi(z,y),

1<i<m

where ¢ is quantifier-free.

This definition may seem too strong. The second part of the formula seems to suggest
that all elements are similar from the point of view of R. Note however, that we do not
require that = # y, therefore for an element z, by R;(z,z) we can code those relations R;, for
which the existential quantifier of the second part of ® does not apply.

Let A be a set of 2-types closed under operation * and let At = {t € A : Ri(z,y) €
t, for some i < m}.

Definition 3.2 Lel S = {s¢, s1,...,5:}, where 0 < k < m, sy is a I-type and, if k > 0 then
S1y...,8; € AT, Define

center(S) = Ao<icr sil{}-
The set § is a small A-R-constellation if the following conditions hold:

1) center(S) = s,

2) for every R; € R, if Ri(z,z) & center(S) then there exists j, 1 < j < k, such that
Ri(z,y) € s,

Notice that the notion of a small A-R-constellation depends on a set A of 2-types and a
set R of binary predicate symbols.

Definition 3.3 Let 2 be an L-structure. An element a € A realizes a small A-R-constellation
S = {s0,...,5:} if tp™(a,a) = sq, for each b € A, tp*(a,b) € A, and there exists a sequence
by,..., by of elements of A such that tp*(a,b;) = s;, 0 < i < k.

A small A-R-constellation S is realized in 2 if there exists a € A which realizes S.

Note that if an element a € A realizes a small A-R-constellation then 2 |= A, ., .,, Iy R:(a,y).

Definition 3.4 Let S be a set of small A-R-constellations. A structure A realizes S if every
element a € A realizes a small A-R-constellation S € S, and every small A-R-constellation
S € S is realized by an element a € A.

The set S is a small galaxy if there is a structure A such that card(A) > 1, and 2 realizes S.

The following theorem gives a necessary and sufficient condition for satisfiability of sen-
tences in constellation form.



Theorem 3.5 Let R = {Ri,..., R} C L and let ® be an L-sentence in constellation form,

® = VaVyo(e,y) A N\ VYedyRi(e,y).
1<i<m
Put A= {t:t(z,y) is a 2-type over L and t(z,y) — ¢(z,y)}.
Then ® has a model with al least two-element universe if and only if there exists a set S
of small A-R-constellations which is a small galaxy.

Proof. (=) Let 2l = ® and card(A) > 1. Since A = VaVyo(z,y), the set A is closed under
the operation *. Moreover, A |= A, ;<,,, Y23y R;(z, y) implies that every element of A realizes
at least one small A-R-constellation. Let & = {§ : § is a small A-R-constellation and S is
realized in 20}. By Definitions 3.4, 2 realizes S.

(<) Let S be a small galaxy and assume A = S. Let ¢« € A. By Definition 3.4, a realizes a
small A-R-constellation S € S, S = {so,...,5;}. This implies that tp*(a,a) = s, and there
exists a sequence by, ..., b of distinct elements of A such that b; # «, for i = 1,...,k, and

L tp*(a,b;) = s;, for i = 1,.. ., k,
2. tp%(a,b) € A, for b € A.

So, by Definition 3.2, the elements by, ...,b; witness that the part A,.,.,, JyR;(z,y) of
® holds for a. Moreover, for every b € A,b # a, tp*(a,b) € A, and so A |= ¢(a,b). Therefore
A= 0.

a

3.2 The reduction

The following reduction theorem is essentially due to Scott [31]. It has been also used in [28]
and [15]. We present a slightly modified version of the theorem given in [15].

Theorem 3.6 There exists a polynomial time algorithm which, given an L? sentence ¥ over
an arbitrary relational vocabulary, construcls a sentence ® in constellation form with the
Sfollowing properties:

1. VU is satisfiable if and only if ® is satisfiable.
2. Every predicate letter occuring in ® has arity at most 2.

3. If n is the length of ¥, then ® contains O(n) different predicate letters and has length
O(nlogn).

3.3 The small galaxy theorem
In this section we fix R = {Ry,..., R} C L, and a set A of 2-types closed under the operation
To simplify terminology in this subsection we write ‘constellation’ instead of ‘small A-R-
constellation” and ‘galaxy’ instead of ‘small galaxy’.
By Theorem 3.6 and Theorem 3.5 the satisfiability problem for L? sentences can be reduced
to the problem of finding an appropriate galaxy. In this subsection we shall give syntactic
conditions that are necessary and sufficient for a set of constellations to be a galaxy.



Definition 3.7 Let S, T be constellations and let t(z,y) € A. S is connectable to T by t(z, y)
if center(S) C t(z,y) and center(T) C t*(z,y).

We say that S is connectable to T if there is a type t(x,y) € A such that S is connectable
toT by t(x,y).

Proposition 3.8 Let S be a galaxy and S € S. Then the following conditions are equivalent.
1. There is a structure A which realizes S, and S is realized in 2 by at least two element.

2. 8 is connectable to S.

Proof. Let S be a galaxy, S € S and let B be a structure such that B = §. To prove
the implication (1) = (2), assume that S is realized in 2 by two elements a and b. Let
t(z,y) = tp¥(a,b). Since A = S, we have t(z,y) € A. Of course, center(S) C t(z,y) and
center(S) C t*(z,y).

Now, we shall prove that (2) = (1). Let ¢ € A be such that center(S) C t(z,y) and
center(S) C t*(z,y). Let b € B realize S in B. We claim that there exists an extension 2 of
B such that A = B U {a}, where a ¢ B and « realizes 5. Indeed, 2 can be obtained from B
by putting A = B U {a}, tp*(a,b) = t(z,y), and tp¥(a,c) = tp*(b, ¢), for every ¢ € B. O

The proposition above motivates the following definition.

Definition 3.9 A constellation S is replicable if S is connectable to S. Otherwise, the con-
stellation S is special.

Let S be a galaxy, and let 2 satisfy §. In the universe A of 2 we can distinguish the
set K C A consisting of all elements which realize special constellations. Flements of the
set I are called kings. A noble is an element of the set N = U,cx{b1,...,0p € A k <
m and {tp¥(a), tp*(a,by),...,tp*(a,by)} € S}. Nobles are those elements of the universe
that are necessary for the existence of kings. Define the court C = K U N. Note that
card(C') < (m+ 1)card(K). There may also be plebeians — elements outside the court; they
are not necessary for the kings but perhaps some nobles may need them. Plebeians may also
depend on kings to survive.

Remark. The notion of a king in a structure has been used in many places. For example,
Yu. Gurevich and S. Shelah have used this notion in [20] to show that their proof of the
solvability of the Gd&del class without equality could not be generalized to the case with
equality. E. Griadel, Ph. Kolaitis and M. Vardi have also used this notion in [15]. We would
like to point out that although in this paper the kings are defined in terms of constellations,
they have the same meaning as in [15].

Definition 3.10 Denote by Sp(S) the subset of S consisting of all special constellations, and
by Rp(S) the set S\ Sp(S).

The following simple observation establishes relations between the notions defined above.

Proposition 3.11 Let S be a galazy, and let A realizes S. Then there exist sets K and C
such that the following conditions hold.

1. K CC CA, card(K) < card(Sp(S)) and, card(C) < (m +
2. FEvery element a € K realizes a constellation S € Sp(S) in

1)card(K).
A1C.



3. Every constellation S € Sp(S) is realized by an element a € K in A | C.
4. For every S, T € Rp(S), S is connectable to T.

Proof. Immediate. O

One can easily check that the converse to the above proposition does not hold. For
example, let

L = R={Ry,Rs},
A = {40,065, 133,
so(z) = Ry(z,z)A Ro(z,z),
to(z) = -Ri(x,2)N-Rs(z,z),
ty = to(x)ANRi(z,y) AN Ro(a,y) AN Ri(y,x) AN Ry, ) A so(y),
ta = to(x) A Ri(z,y) A Ra(,y) AN Ri(y,z) A Ra(y, @) A so(y),
t3 = to(z)AN-Ry(z,y) A Ra(z,y) AN Ri(y,2) A~ Ro(y, ) Ao(y),
S = {5,T}, where S = {so} and T = {to,11,15}.

It is easy to see that the constellation S is special and T is replicable. One can check
that if we define K = {a}, C = K, tp*(a) = s, then conditions (1)—(3) of Proposition 3.11
hold and, since T is connectable to T by t3, condition (4) holds too. Unfortunately, the
constellation T' can not be realized in any structure, since to realize T we need two elements
by and by such that tp®(by) = so, tp¥®(by) = so, and tp¥(by,by) € A, which is not possible.
Therefore, § is not a galaxy.

Now, we shall extend the set of conditions given in Proposition 3.11 to a set of conditions
that will imply that a set S of constellations is a galaxy.

Definition 3.12 Let S be a set of constellations. A small representation of S is a system
<Br7 C’ I7 F7 G>7
where K and C are sets, I,F,G are functions such that I : C — S, F : C x C — A,
G : Rp(S) x K — A, and the following conditions hold.
(s1) K CC, card(K) < card(Sp(S)), and card(C) < (m+ 1)card(K).
(s2) I(K) = S5p(9), I(C\ K) C Rp(S),
F(a,a) = F(a,b)!{z}, and for every a # b F(a,b) = F(b,a)*.
(s3) For every a € K, and every t € I(a) there is an element ¢ € C' such that t = F(a,c).

(s4) For every b € C'\ K, and every t € I(b) if there is no ¢ € C such that t = F(b,c), then
there is a constellation T € Rp(S) such that 1(b) is connectable to T by t.

(s5) For every S, T € Rp(S), S is connectable to T.
(s6) For every S € Rp(S), and every a € K, S is connectable to I(a) by G(S,a).

(s7) For every S € Rp(S), and every type t(z,y) € S if there is no a € K such that G(9,a) =
t(z,y), then there is a constellation T € Rp(S) such that S is connectable to T by t.



Conditions (s1), (s2) and (s3) say that the set C' is a universe of a structure in which
all special constellations are realized. In other words, kings are provided with all they need
to survive. Condition (s4) ensures that every noble can find enough plebeians around him.
Condition (s5) says that plebeians can live together in one society and, by condition (s6), the
society is ruled by kings. Condition (s7) states that plebeians can get what they need — if not
from kings, then from somewhere else.

Theorem 3.13 (Small Galaxy Theorem) A set of constellations S is a galaxy if and only if
there exists a small representation of S.

Proof. (=) Assume that S is a galaxy and 2 realizes S. Let K be the set of kings in 2, and let
C be the court in A. For every a € C choose a constellation S € § which is realized by a, and
put I(a) = S. For every a,b € C, put F(a,b) = tp*(a,b). For every constellation 5 € Rp(S)
find an element b € A which realizes S, and for every « € K put G(S5,a) = tp*(b, a).

It is easy to check that the system (K,C, I, F, ) is a small representation of S.

(<) Let S be a set of constellations, and let (K,C, I, F,G) be a small representation of
S.

We shall construct a structure 2 realizing S such that the universe A of 2 contains C,
every a € K realizes I(a) in A[C, and tp*(a,b) = F(a,b), for each pair (a,b) of elements of
C.

The construction proceeds in steps. The number of step can be infinite. In each step new
elements are added to the universe. A new element is added when there is a request to satisfy
a constellation, say 5. Whenever an element « is added to satisfy 9, I is extended by putting
I(a) = S. An element a such that I(a) = S is inactivated after adding enough elements to
witness that @ realizes S. An unordered pair of elements will be reserved, when a type to be
realized by this pair has been designated.

In every step of the construction the universe of the part of the structure 2 defined so far
is finite. We also assume that there is a fixed linear ordering < of the universe, and each new
element added to the universe is greater then all old elements.

Let S = {Sl,...,Sk}.

Stage 1.
1. Let A=C.
2. For every a,b € C, put tp®(a,b) = F(a,b) (cf. (s2)).
3. For every a € K, inactivate a.
4. For every a,b € C, reserve {a,b}.
5. For every S € Rp(S) such that I(b) # 5, for each b € C, add a new element d to A and
put I(d) = 5.
Stage 2.

6. Let b be the first active (i.e yet not inactivated) element of A.
Note that I(b) € Rp(S). Indeed, b ¢ K, so either b € C'\ K, and so I(b) € Rp(S), by
(s2), or b has been added to A in steps 5, 7(a)ii or 9(b), and whenever we add a new
element b to the universe we always put I(b) € Rp(S).
7. Ifbe C\ K then
(a) for every t € I(b) if there is no element ¢ € C such that ¢t = F(b,¢) do
i. using (s4) find 7' € Rp(S) such that I(b) is connectable to T' by ¢,



ii. add a new element d to A;
iii. put I(d) =T, and tp*(b,d) = t, reserve {b,d} ;
(b) inactivate b and go to 6.
8. Using (s6), for every a € K, put tp*(b,a) = G(I(b),a).
Note that, b ¢ C, so no pair {a,b}, with @ € K, has been reserved earlier.
9. For every ¢ € I(b), if there is no ¢ € A such that {c,b} is reserved and {p*(c,b) = 1*, do

(a) by (s7) find T € Rp(S) such that I(b) is connectable to T" by ¢.
Note that, by step 8, there is no element ¢ € K such that ¢t = G(I(b),a).

(b) add a new element d to A;

(¢) put I(d) =T, tp*(b,d) = t, and reserve {b,d};

(d) for every a < b, if {a,b} is not reserved then using (s5) find ¢ € A such that I(b) is
connectable to I(a) by t, put tp*(b,a) = ¢ and reserve {b,a}.

10. Inactivate b and go to 6.

We shall now show that 2 realizes S. First, let us note that every pair of distinct elements
of A realizes in 2 a two-type of A (see steps 2, 7(a)iii, 8, 9(c), 9(d)).

New elements are added at the end of the fixed ordering, and in step 6 we always consider
the first active element, therefore every element a¢ € A will eventually be inactivated. We
claim, that when an element « is inactivated then a realizes a constellation of S in 2. In
fact an element inactivated in step 3, by (s2) and (s3) of Definition 3.12, realizes a special
constellation of §. Before an element b is inactivated in step 7(b), in step 7(a) every type
of I(b) has been realized by a pair (b,a) for some ¢ € A. Similarly, step 9 ensures that the
element inactivated in step 10 realizes its constellation.

Finally, by step 5 every constellation of § is realized in 2. a

Now, let us consider the cardinality of the structure constructed by the algorithm described
above. If Rp(S) = () then only the first stage of the algorithm is performed and we get a
structure with the universe K. We also get a finite structure if no new elements are added in
step 7(a)i. In this case I(C) = S, and the function F is defined in such a way that no noble
element needs a plebeian. In other cases we get an infinite structure. The construction could
be modified in such a way that it will stop after a bounded number of steps. However, we omit
this modification, since the construction described above is better suited for generalization to
logic with counting.

3.4 Complexity

Corollary 3.14 There is a nondeterministic algorithm with time complexily 0(2‘"2), for
some constant ¢, which, given an L?-sentence ®, decides if ® is satisfiable.

Remark. In [36], using more complicated techniques, we gave a similar algorithm with time
complexity O(2°). Here we provide a simplified version only, since it is easier to understand
and better explains the methods used in the main part of this paper.

Proof. Let ® be an L? sentence of length n. In the first step we use the polynomial time
algorithm of Theorem 3.6 to get a sentence ¥ in constellation form

v = VwaqS(:c, y) A /\ \V/leyRZ(ZU, y)

1<i<m
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which is satisfiable if and only if @ is satisfiable. Moreover, ¥ has at most p = O(n) predicate
letters, and has length O(nlogn).

Then we use Theorem 3.5. We build a set A in time O(2°®), and, in time O((2%)™) =
0(2°0"")), we guess a set S of small A-R-constellations.

Next, we use Theorem 3.12 and we guess sets K and C and functions I, F' and G. Since
card(K) < 2°0") and card(C) < (m 4 1)card(K) we can do this in time O(2°0"").

Finally, we accept ¥ after checking whether (K, C, I, F, ) is a small representation of S.
This can also be done in time O(2°0)), ]

4 Double exponential algorithm

4.1 Constellations, galaxies and satisfiability

Let R = {Ry,..., R} C L be the set of binary predicate letters.

Definition 4.1 An L-sentence ® is in constellation form if

® = VaVyo(e,y) A N\ VeI " yRi(,y),

1<i<m

where ¢ is quantifier-free. ® is in 3=-constellation form if m; = 1 for each i < m.

As Definition 3.1, the definition above may seem too strong, since the second part of the
formula seems to suggest that all elements are similar from the point of view of R. However,
as before, the fact whether R;(z,z) holds is used to code those relations R; for which the
counting quantifier does not apply.

Let A be a set of 2-types closed under operation *.

Definition 4.2 A = ASUA“UAUA™, where
A= = {t € A: there are t,7 < m such that R;(z,y) € t and R;(y,z) € t},
A~ ={t € A:t ¢ A and there exists i < m such that R;(y,z) € t},
A7 ={te A:t ¢ A~ and there exists i < m such that R;(x,y) € t},
A= ={te A: for every i < m,-R;(z,y) €1 and = R;(y,x) € t}.

In the definition above A~ , A~ and A~ represent counting lypes. Since R; appears in
the second part of the formula ® in constellation form, it follows that R;(z,y) € ¢ implies
that for (a,b) and (a,b’) realizing ¢ we always have b = b'.

Definition 4.3 Let S = {sg,S1,...,8:}, where k > 0, 8o is a I-type and, if k > 0 then
S1y...,8, € AT UAT. Define

center(S) = Nocicr sil{z}-
The set S is an A-R-constellation if the following conditions hold:

1) center(S) = s,

2) for every R; € R, if Ri(x,x) ¢ center(S) then there is exactly one j, 1 < j < k, such
that R;(z,y) € s;,

3) for every R; € R, if R;(x,x) € center(S) then for every j, 1 < j <k, Ri(z,y) ¢ s;.

11



Notice that the notion of an A-R-constellation depends on fixed sets A of 2-types and
R of binary predicate symbols. Moreover, the number of two-types in a constellation does
not exceed card(R). It does not follow from Definition 4.3 that each constellation contains a
counting type. There may be constellations S such that center(S) = {R;(z,z): R; € R}. In
fact center(.S) codes the relations in R which are not used in S in the context of counting.

Definition 4.4 Let 2 be an L-structure. An element a € A realizes an A-R-constellation
S = {so,...,s:} if tp*(a,a) = sq, and there exists a unique sequence by,...,by € A that
tp*(a,b;) = 85, 1 < i < k, and for every b € A, b #£ a, b # b, 1 < i < k, we have
tp*(a,b) € A~ UA~. An A-R-constellation S is realized in 2 if there exists an element
a € A which realizes §.

For a € A, we write C¥ to denote the unique A-R-constellation realized by a.

Definition 4.5 Let S be a set of A-R-constellations. A structure A realizes S, if every
element in A realizes an A-R-constellation and every constellation in S is realized in 2.

A set S of A-R-constellations is a galaxy if there is a structure U such that card(A) > 1, and
A realizes S.

The following theorem gives a necessary and sufficient condition for satisfiability of sen-
tences in 37'-constellation form.

Theorem 4.6 Let R = {Ry,...,R,,} C L, and let ® be an L-sentence in 371 -constellation
form,
S = VaVyo(z,y) A /\ VzI3=ty Ri(z, y).
1<i<m
Put A= {t:t(z,y) is a 2-type over L and t(z,y) — ¢(z,y)}.
Then ® has a model with at least two-elements if and only if there exists a set of A-R-
constellations which is a galazy.

Proof. (=) Assume that 2 = ® and card(A) > 1. Since A = VaVy¢(z,y), the set A is
closed under *. Since A E A,¢;c,, V237 yR;(2,y), every element of A realizes some A-R-
constellation. Therefore S = {C%:a € A} is a galaxy.
(<) Let S be a galaxy and assume that 2 realizes S. Let a € A. By Definition 4.5,

a realizes an A-R-constellation S € S, § = {so,...,8:}. This implies that tp*(a,a) = so,
and that there exists a sequence by,...,b; of distinct elements of A such that b; # a, for
t=1,...,k,and

L. tpMa, b)) = s;, for i = 1,...,k,

2. tp*(a,b) € A~ UA™ C A, for each b € A, such that b# aand b#£b;,i=1,...,k,

Therefore by Definition 4.3, the elements by, ..., b; witness that the part A;;<,, F=yR(z,y)
of ® holds for « = a. Moreover, for every b € A,b # a, tp*(a,b) € A, and so A = ¢(a,b).
Hence, 2 = ®. ]

12



4.2 The Reduction

The following theorem has been shown in [16].

Theorem 4.7 There is a recursive reduction NF from C?-sentences to C?-senlences in nor-
mal form over an extended vocabulary, which is sound for satisfiability: ® is satisfiable if and

only if NF(®) is satisfiable.

In the above theorem the normal form is slightly weaker than our 3='-constellation form.
The difference is that in the 3=!-constellation form the quantifier free part of the sentences
with prefix V3=! is atomic, whereas in the normal form in then sense of [16] it could be any
quantifier free two-variable formula. This additional condition can be easily met by introdu-
cing new relation symbols for quantifier free formulas, and adding VV-sentences defining the
newly introduced symbols.

From the proof of Theorem 4.7 given in [16] the following corollaries can be derived.

Corollary 4.8 There exists a polynomial time algorithm which, given a C? sentence ¥ over
a relational vocabulary, construcls a sentence ® in 3='-constellation form with the following
properties:

1. VU is satisfiable if and only if ® is satisfiable.

2. Fvery predicate letter occuring in ® has arily al most 2.

3. If n is the length of U, then ® contains O(n) different predicate letters and has length
O(nlogn).

The reduction for the full logic C? is more expensive.

Corollary 4.9 There exists an exponential lime algorithm which, given a C* sentence ¥ over
a relational vocabulary, constructs a sentence ® in 3=1-constellation form with the following
properties:

1. VU is satisfiable if and only if ® is satisfiable.

2. Every predicate letter occuring in ® has arily at most 2.

3. If n is the length of U, then ® contains O(2") different predicate letters and has length
0(20m).

The exponential increase of the length of the sentence ® given by the algorithm in Corol-
lary 4.9 is caused by the necessity to introduce as many new predicate letters as the maximal
integer which appear as an index of a counting quantifier. If integers are represented in bi-
nary we have to introduce O(2") new predicate letters for a sentence of length n. We do
not know any better reduction and this is the main reason, why we can not improve the
upper complexity bound for the satisfiability problem for the full C'? from double to single
exponential.

4.3 The Galaxy Theorem

In this subsection we fix R = {Ry,...,R,,} C L, and a set A of 2-types closed under *.
Henceforth, whenever the sets A and R are fixed, we write ‘a constellation’ instead of ‘an
A-R-constellation’.
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So far we have shown that the satisfiability problem for C? sentences can be transformed
to the problem of finding an appropriate galaxy. In this section we shall formulate syntactic
conditions which are necessary and sufficient for a set of constellations to form a galaxy, but
before doing that, in order to acquaint the reader with our basic technic and to provide a
better background for the proof of the main result of this section, we shall state and prove
some basic properties of constellations.

At the beginning we introduce a syntactic notion of connectability of two constellations.
This definition says that two constellations are connectable by a 2-type ¢ if ¢ is a connective
type for them, that is ¢ contains the centers of both constellations and either ¢ is non-counting,
or t and t* are distributed between these two constellations. In other words, this notion
provides a necessary condition for two constellations to be realizable in the same structure.

The notion of connectability, together with the notions of constellation and galaxy, plays
a crucial role in this section and is basic in the whole paper. An easy observation (Proposition
4.14) shows that in a specific situation this notion suffices to formulate very simple conditions
that allows to solve the satisfiability problem. This ”specific” situation can be described in
both semantic and syntactic terms: there is a structure in which every constellation is realized
infinitely many times, or every two constellations are connectable by a non-counting type.
Intuitively it means that there are no privileged elements in the structure.

Next, we consider the case when there are some privileged elements in a model. We
prove that if a constellation 5 is realized in a structure sufficiently often then we can build
a structure in which S appears infinitely many times (Lemma 4.15). Constellations that can
be realized infinitely often are easy to deal with, in contrast with those that always appear
only finitely many times.

Lemma 4.16 plays a crucial role in the proof of the main result of this section — the
Galaxy Theorem. It says that every galaxy can be partitioned into two sets: constellations
which can be realized by at most r elements and constellations which can be realized by
infinitely many elements. The integer r is bounded by an exponential function of the number
of constellations in a given galaxy. To prove this lemma, for a structure 2 realizing the given
galaxy, we define a sequence of sets V; C V, C ... C V,_; of subsets of A. The set V; consists
of lords, that is of elements of A which realize constellations appearing in 2 very rarely —
less than 2m+1 times. Every set V;,,, for ¢ > 1, besides members of V;, contains elements
that are vassals of elements of V;. They realize constellations appearing in 2 not very often
with respect to the cardinality of the set V; of sovereigns of the elements of V; ;. In this way
we obtain a finite hierarchy of elements of A and so, a hierarchy of elements of the galaxy
— constellations realized by elements of appropriate V;. This hierarchy does not necessarily
include all constellations.

All the results mentioned above give several necessary conditions for a set of constellations
to be a galaxy. As the next step we introduce the notion of a finite representation of a set
of constellations (Definition 4.17), and we prove the Galaxy Theorem (Theorem 4.18) which
says that the problem whether a set of constellations & is a galaxy can be reduced to the
problem whether there exists a finite representation of S.

Since the components of a finite representation are either finite sets of bounded cardinality
or functions from such sets into some fixed finite sets, and since the conditions on the com-
ponents are easily' computable, the Galaxy Theorem forms a basis for a decision procedure
for the satisfiability problem for C2 (Corollary 4.20 in 4.4).

'n this section ”easily” means in double exponential time.
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We begin the technical part of this section with some additional definitions.

Definition 4.10 Let S, T be constellations, and let t(z,y) € A. S is connectable to T by
t(x,y) if center(S) C t(z,y), center(T) C t*(x,y) and,

l.teSandt* €T ifte A”,
2.te S ifte A,
3. teT ifte A-.

Definition 4.11 Let S be a galaxy, and assume that A realizes S. Define a function rankg :
S — NU {oc} putting ranky(S) = card({a € A:C* = S}).

We write rank(S) = oo if there is a structure B realizing S such that minses(ranksg(9)) >
2m + 1.

Lemma 4.12 Assume that 2 is a structure which realizes S. Let S,T € S. If ranky(S) >
2m + 1, and ranky(T) > 2m + 1, then there exist a,b € A such that C;Zl =5, Cx=T, and
tp*(a,b) € A-.

Proof. Let X = {a € A:C¥*=5},Y ={a€ A:C¥ =T}, and assume that card(X) >
card(Y) > 2m + 1.

By Definition 4.4, for every a € X (a € Y) there is at most m distinct elements b such
that tp*(a,b) € § (1p*(a,b) € T, respectively). So, the number of pairs (a,b) such that
a€ X,beY and tp%(a,b) € S or tp¥*(b,a) € T does not exceed m - card(X)+m-card(Y) <
2m - card(X). On the other hand, the number of pairs (a,b) such that e € X and b € Y is
card(X) - card(Y) > (2m + 1)card(X). m]
Corollary 4.13 Let S be a galary with rank(S) = oco. Then there exists a structure B
realizing S such that ranksg(S) = co, for each S € S.

Proof. Assume that 2 realizes S, S € S, and rankg(S) = n. We claim that there is
an extension B of 2, such that B realizes S, and rankg(S) > n. By Lemma 4.12, for all
constellations 5,7 € §, there exists a type {(z,y) € A~ such that S is connectable to T' by
t(z,y). Let &' be a structure isomorphic to 2 such that AN A’ = . Define B = AU A’, and
let B 1A =92 B A" =2A. Now, for every a € A, and every o' € A’ find #(z,y) € A~ such
that C® is connectable to C’;Zfl by t(z,y), and put tp®(a,a’) = t(z,y). O

Proposition 4.14 The following conditions are equivalent:
1. rank(S) =
2. (a) for every S € S, and every s(z,y) € S, there exists T € S such that S is connectable
toT by s(z,y),
(b) for every S, T € S, S is connectable to T by some t(z,y) € A.

Proof. (1) = (2). Condition (a) follows from Definition 4.5 and condition (b) — from Lemma
4.12.

(2) = (1). We shall give an algorithm which constructs a structure 2 realizing S. In
the process of construction new elements will be added to the universe, some elements of
the universe will be inactivated and some unordered pairs of elements will be reserved. An
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element a¢ will be inactivated when the constellation S that had been earlier assigned to a has
been built, i.e. when elements which witness that a realizes S have been added. An unordered
pair {a,b} will be reserved, when the type realized by {a,b} has been defined. Moreover, a
function I : A — S will be defined in such a way that I(a) = C2, for every a € A.

In every step of the construction the part of the model defined so far 2 will be finite. We
assume that a linear ordering < of the universe is given such that a new element added to
the universe is always greater then the old elements.

Let S = {S51,...,5:}.
1. Let A={ay,...,ap}. Put I(a;) = S;,i=1,... k.
2. Let a € A be the first active (not yet inactivated) element.
3. For every ; € I(a), if there is no element b € A such that {a,b} is reserved, and
tp®(a,b) = 1;, then
(a) add a new element b; to A,
(b) put tp*(a,b;) = 1,
(c) find a constellation T € S such that S is connectable to T' by t;,
(d) put I(b;) = T, and reserve {a,b;}.
4. For every ¢ < a put tp*(a,c) =t € A~ such that I(a) is connectable to I(c) by .
5. Inactivate a.

6. Go to 2.

If minges(ranky(S)) < 2m+ 1, perform the operations from the proof of Corollary 4.13. O

Lemma 4.15 Assume that 2 realizes S. Let V be a finite subset of A and let ' = {C¥ :
a € A\V}Y. IfS'n{C®:a eV} =0, and for every a € A\V, rankg(C¥) > maz(card(V) -
m,2m+1), then there is a structure B realizing S, such that for every S € §' rankg(5) = oo,
and rankg(S) = ranky(S), for every S € S\ S'.

Proof. Let 2 realize S.

An iterative application of the following algorithm applied to every S € &' yields a struc-
ture B such that rankg(S) = oo, for every S € &', and rankg(S) = ranky(S), for every
S € §\ & (inactivation, reserving elements and the function I play the same role as in the
proof of Proposition 4.14). At the beginning, put 2'=2L.

Let A” = A" U {z}.

For every a € A’ put I(a) = C¥, and inactivate a.

Put I(z)=S.

Let 2 be the first active element of A”.

Find @ € A\ V such that C% = I(z), and tp¥*(a,b) € A= U A, for every b € V.

Such an element a exists, since there are at most m - card(V') elements ¢ € A\ V such

that tp%(c,b) € A~ U A-.

6. For every t; € S

(a) if there is b € V such that {p*(a,b) = t; then put tp*(z,b) = t;, and reserve {z, b}
else

Tt s W N =
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(b) if there is no element d € A” such that {z,d} is reserved and {p* (z,d) = t;, then
add a new element b; to A”,
put tp*(x,b;) = t;, reserve {z,b;},
find a; € A\ 'V such that tp¥(a,a;) = t;, and put I(b;) = I(a;).
An element a; can be found since C’;Z[ = § and therefore there is an element ¢; € A such
that tp¥(a, ¢;) = t;. Since ¢; € A\ V, and 9 realizes S we have I(¢;) = C? € §'.)
7. For every ¢ < z, if {c,x} is not reserved, put tp% (z,¢) = t € A~ such that I(z) is
connectable to I(c) in 2 by t, and reserve {z, c}.
(By Lemma 4.12, for every 5,7 € §', S is connectable to T"in 2 by some ¢ € A~.)

8. Inactivate z.
9. Go to 4.

One application of the above algorithm to the constellation S € &’ and the structure 2
expands the structure 2’ to a structure A" such that ranky(5) > ranky/(5).

In step 6, when the types tp'g[”(m, b) are defined, where b € V', the constellation realized
by b does not change, since tpm”(x, b) € A™. Also in step 7, the constellations realized by the
elements ¢ < x are not changed since only types in A~ are used.

Every x € A” is eventually inactivated since new elements b; are added at the end of the
ordering. When an element z is inactivated it is ensured that for every ¢ < z, tpg[”(c, z)is

defined, and C';z[” €S. O

Lemma 4.16 Let S be a galary. There is a constant v, r = O(m - card(8))**S) | and there
exists a structure B realizing S such that ranke(S) < r or rankeg(S) = co, for every S € S .

Proof. Let 2 realize S. It suffices to define V' C A of appropriate cardinality which satisfies
the conditions of Lemma 4.15.
The set V' will be constructed in stages.

Stage 1. Let Vi = {a € A : ranky(C%) < 2m + 1}.
Note that if V; = () then by Corollary 4.13, there is a structure %8 such that for every 5 € S,
ranke(S) = oo. In this case only stages 1 and 2 are performed.
Stage i. (1 > 1)

1. If ranky(C2) > card(Vi_,) - m, for every a € A\ V;_y,

then put V; = V;_; and stop.
2. Put V; = Vi_y U {a € A\ Vi_; : rankg(C®) < card(V,_,) - m}.
3. Go to Stage ¢ + 1.

Note that there is a stage ¢ such that V; = V,_;. Indeed, for every stage ¢, let C(V;) =
{S € §: thereis a € V; such that C’;Z[ = S}. Hence, for every ¢ > 1, if V; # V;_; then
C(V;) D C(V;_1). So, since S is finite, the number p of stages performed is less or equal
card(S). Put V =1V,.

Now, we estimate card(V'). We have card(Vy) < (2m + 1) - card(S), and, for i > 1,

card(V;) < card(Vi_1) 4+ m - card(V;_y) - (1 + m - card(S)).

If we put ¢ = 14+ m - card(S), then we have card(V,) < 3¢*. Moreover, for every a € V,
ranky(C) < card(V), and for every a € A\ V,ranky(C¥) > card(V)-m. Put r = 3-(1+
m - card(8S))**4S). This by Lemma 4.15, finishes the proof. O

Now, we are ready to introduce the main definition of this section.
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Definition 4.17 Let S be a set of constellations. A finite representation of S is a system
<Sl7 ‘/7 C7I7F7 G>7

where Sy is a set of constellations , V and C' are sets, I, F,G are functions such that
I:C—S, F:CxC—=A, G:(S\8)xV —=A,
and the following conditions hold

(f1) 8§ C S,V CC, and card(C) < m - (2m - card(S))*r4S),
(12) IV) = 84, IC\ V) C S\ S,
F(a,a)= F(a,b){z}, and for every a # b, F(a,b) = F(b,a),
G:(S\S8)xV —=A"UA,
(f3) For every b € C define D(b) = {F(b,c):c€ C,c#b,F(b,c)e A~ UA"}. Then
(a) for every b € C, and every t € D(b) there is exactly one ¢ € C,c # b such that
F(b,c)=1t,
(b) D(a) = I(a), for every a € V,
(¢) for every b € C'\'V we have D(b) C I(b), and for every t € I(b)\ D(b) there is
T € 8§\ S such that I(b) is connectable to T by 1,
(f4) for every S,T € S\ 81, S is connectable to T by some t € A~

(f5) for every S € S\ S we have {G(S,a) € A~ :a € V} C S, and for every a € V, S is
connectable to I(a) by G(S5,a)

(f6) for every S € S\ 81, and everyt € S, if t € A~ and there is noT € S\ &, such that S
is connectable to T' by t then there is a unique a € V' such that G(S,a) = t,

(f7) for every S € S\ Si, and every t € S, if there is no a € V such that G(S,a) =t then
there is T € S\ 8, such that S is connectable to T by t.

We say that S is finitely representable, if there is a finite representation of S.

Let us note that the notion of a finite representation is almost identical with the notion
of small representation (Definition 3.12). The role of replicable small constellations is taken
here by constellations in S\ S;.

Theorem 4.18 (Galaxy Theorem) A set of constellations S is a galaxy if and only if S is
finitely representable.

Proof. (=) Let S be a galaxy. Use Lemma 4.16 to get a structure 2 and a constant r
such that 2 realizes S, and for every S € S, ranky(S) < r or ranky(S) = co. Put

S =45 € S:ranky(S) < r},

V ={a € A:ranky(C%) < r},

C =V U{a€ A:thereis be V such that tp*(b,a) € A= U A~}

Note that if § € §\ S; then ranky(S) = co. For every a € V, put I(a) = CX. For every
a,b € C,a# b, put F(a,b) = tp*(a,b). Forevery S € S\ S, find a € A\ C such that C% = §,
and for every ¢ € V put G(S,¢) = tp*(a, c).

It is easy to check that conditions (f1)-(f7) of Definition 4.17 hold.

(<) Let (81,V,C, I, F,G) be a finite representation of S.
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Case 1.

S1 = 0. By condition (f2), V' = 0. Consequently conditions ({7) and (f4) are

equivalent to conditions (a) and (b) of Proposition 4.14.

Case 2. §; = S. By condition (f2), V = C. Therefore, by conditions (f1)-(£3), we can define
90 realizing S with universe V in which tp®(a,b) = F(a,b), for every a,b € V.

Case 3. §; # fand §; # S. We shall construct a structure 2 realizing S with the universe A
(A D C). In our infinite construction, inactivation and reservation have the same role as
in the previous algorithms. Additionally, function I will be extended to all elements of A
in such a way that for every b € A, I(b) = C. In each step of construction the universe
of partially defined model 2 will be finite, and we assume that there is a fixed linear
ordering on the universe such that any new element added to the universe is greater then
the old omnes.

Stage 1.
1. Let A=C.
2. For every a,b € C, put tp%(a,b) = F(a,b) (cf. (2)).
3. For every a € V, inactivate a.
4. For every a,b € C, reserve {a,b}.
5. Forevery S € S\ Sy, if there is no b € C such that I(b) = 5, then add a new element
dto A and put I(d)=S.
Stage 2.
6. Let b be the first active element of A (note that I(b) € S\ Sy).

7.

If b € C then
(a) for every t € I(b)\ D(b) do
i. find T' € §\ S; such that I(b) is connectable to T" by ¢ (use (f3-c)),
ii. add a new element d to A and put I(d) =T,
iii. put tp*(b,d) =t and reserve {b, d},
(b) inactivate b and go to 6.

8. For every a € V, put tp™(b,a) = G(I(b), a) (use (f5) and (f6)).
9. For every ¢ € I(b), if there is no ¢ € A such that {c,b} is reserved, and tp*(c,b) = t*

10.

11.

then

(a) find T € &\ &; which is connectable to I(b) by t* (use ({7)),

(b) add a new element d to A, and put I(d) =T,

(c) put tp*(b,d) = t, and reserve {b,d}.

For every a < b, if {a,b} is not reserved then using (f4)) find ¢ € A~ such that I(b)
is connectable to I(a) by ¢, put tp%(b,a) = ¢ and reserve {b,a}.

Inactivate b and go to 6.

After performing stage 1, every a € V realizes the constellation I(a) € § in the partially
defined structure 21, by f(2) every constellation S € §; is realized by some a € V', and only
elements of V' have been inactivated. Moreover, for every S € S, there is b € A such that

I(b) = §.

The role of stage 2 is to realize all constellations of & \ S; by elements of A. Step 7 is
executed if, at stage 1, some types between the chosen b and the other elements of A were
defined using function F. For every type of I(b) that has not been defined, a new element d
is added to A, and some T' € §\ S, is put as I(d). So, only constellations of S\ S; have to
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be realized in the next steps. In step 10, when the types between an element b and smaller,
already inactivated, elements are defined, the constellation realized by the earlier elements
are not changed because only types in A~ are used.

Every b € A is eventually inactivated since new elements are added at the end of the
ordering. When an element b is inactivated it is ensured that C € S. O

Corollary 4.19 If(S,,V,C,I,F,G) is a finite representation of S then there exists a struc-
ture A realizing S, such that A = C U B, for every a € B, ranky(C¥) = oo, and conditions

(f1)-(f7) hold.

Proof. (Sketch) Take 2 given by part (<) of the proof of Theorem 4.18. a

4.4 Complexity

In this subsection, using the Galaxy Theorem proved in the previous subsection, we provide an
algorithm solving the satisfiability problem for C?. This algorithm works in nondeterministic,
double exponential time. In the next section, using more sophisticated techniques, we will
show that this bound can be improved.

Corollary 4.20 SAT(C?) € 2-NEXPTIME.

Proof. We describe a nondeterministic algorithm which for every sentence ® € C? decides if
® is satisfiable, and works in time doubly exponential with respect to the length of ®.

Let ® be a CZ-sentence of length n. In the first step we use the polynomial time algorithm
from Corollary 4.8 to obtain a sentence ¥ in 3=!-constellation form

U =VaVyd(z,y) A\ V2IT'yRi(z,y)

1<i<m

which is satisfiable if and only if ® is satisfiable. Moreover ¥ has at most p = O(n) predicate
letters, and has length O(nlogn).

Then we use Theorem 4.6. We build the set A in time O(2*), and we guess a set S of
A-R-constellations. Note that card(A) < 2%, and card(S) < (2*)™, where m = card(R) is
the number of existential quantifiers in ¥. Therefore S can be guessed in time (2*)™ -m-4p =
0(200°")),

Next, we apply Theorem 4.18 and guess sets S, V', and C, as well as functions I, F, and
G as in Definition 4.17. Since §; C S, and card(V) < card(C) < m - (2m - card(8))** 4S) we
can guess the components in time:

S, —  O(card(S)) = 0(2°0""),
Vand C — O(m(2m- Ca,rd(s))c&rd(s)) _ 0(220(#)),
ILLF — O((card(C)?) = 0(220("2))7
G — O(card(§\ S8y) - card(V)) = 0(220(73)).

So, the time required for this step is bounded by 0(226"2), for some constant c.
Finally, we check whether the system (S,8;,V,C, I, F,G) is a finite representation of S.

It is easy to see that this can also be done in time O(22™" ). O
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4.5 An example

It is well-known that the class C? admits axioms of infinity, i.e. there are satisfiable sentences
of C? that have only infinite models. Using the notion of a finite representation, in the proof of
Corollary 4.20 we have described an algorithm solving the satisfiability problem for sentences
in constellation form, which did not depend on constructing a complete model.

The size of the finite representation (S;,V,C, I, F,G) of a set of constellations S depends
mainly on the cardinality of the set C'. It is bounded in Definition 4.17 by a number that is
exponential with respect to the number of constellations in & and double exponential with
respect to the number of predicate letters in the signature.

Below we give an example ® of a sentence in C? which has finite models, and is such
that for every finite representation (S;,V,C, I, F,G) of the set of constellations realized in a
model of ¢, the cardinality of C' is doubly exponential. In this example, following the idea
of H. Lewis’s proof [27] that NEXPTIME is reducible to the monadic G&del class, we use a
consize representation of the successor relation between encodings of natural numbers that is
reminiscent to that used by N. Jones and A. Selman in [23].

Let n be a positive integer.

Let £L={B;,...,B,,Cy,Cy,...,Cy, Root, Leaf, Left, Right, In, R}, where B;, C;, Root,
Leaf are monadic predicate letters and Left, Right, In, R are binary predicate letters. The
sentence ® will describe the unique model (up to isomorphism) that is a full binary tree of
height 2™ — 1.

The sentence ® is a conjunction of the following sentences.

Va3=ly R(z,y),

Va3=ly Left(z,y),

Va3='y Right(z,y),

Vz3=ly In(z,y),

VaVy Root(z) A Root(y) — = =y,

VaVy R(z,y) — Root(y),

VaVy =[Left(z,y) A Right(x,y)]V Leaf(x),

Va Leaf(x) — [Left(z,x) A Right(z, )],

VaVy In(z,y) — [~ Leaf(y) A (Lefi(y,z) V Right(y, z))
V Root(x) A Root(y)],

Va Root(z) < No<i<n - B;(z),

Va Leaf(z) < No<icn B;(z),

Yz Co(2) A [Aocicn(Ci() = (Cima(z) A Bi(2)))],

VaVy [-Leaf(z) A (Left(x,y) V Right(z,y))] —
/\ogi<n[Bi(y) < 2(Bi(z) < Ciza(2))].

The sentence ® is a slight modification of the example given in [29]. A similar example can
also be found in [16]. It is worth noticing that ® is in 3=!-constellation form. We have here

R = {In, Left, Right, R}.
Proposition 4.21 The sentence ® is salisfiable and, if A realizes ® then card(A) = 22" — 1.
Proof. Let, for every d, 0 < d < 2" — 1, Level; denote the unique 1-type over the set

{Bi,...,B,} such that B;(z) € Level, if and only if the i-th bit of d in the binary notation
is 1.
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It is easy to see that a full binary tree ¥ (see Fig. 0) is the unique model of ® with the
interpretations for the predicate letters such that for every a,b € ¥

Root(a) iff ais the root of T,
Leaf(a) iff ais aleaf of %,
Left(a,b) iff b is the immediate left successor of a or @ = b is a leaf of T,
Right(a,b) iff b is the immediate right successor of a or @ = b is a leaf of %,
In(a,b) iff b is the immediate predecessor of @ or a = b is the root of %,

Levely(a) iff the distance from the root to a is equal to d.
Since the remaining predicates are explicitly defined by @, their interpretations can be derived
from the interpretations above.
Note that for every d, 0 < d < 2" — 1, there is a € T such that Level(a), and for every
a €T, Leaf(a) if and only if Levelyn_;(a). O

5 The main result

The main result of this paper is the following theorem.
Theorem 5.1 SAT(C?) € NEXPTIME.

We begin this section by providing some intuition arising from a close analysis of the
example given in Subsection 4.5. Then we define a notion of a concise representation of a set
of constellations which will play a similar role to the notion of finite representation but will
require less space. Finally, we show how to use this notion to get a nondeterministic decision
procedure working in exponential time, and solving the satisfiability problem for C2. In the
last step we use graph-theoretical notions and results given in section 6.

5.1 Example continued

In this subsection we want to provide some intuition on how to improve the double exponential
upper complexity bound for C'?. This will be done by discussing in greater detail the example
from Subsection 4.5 of the sentence ® that describes a binary tree of exponential height.

Let us first examine the types and constellations realized in the model of ® (see Fig. 0).
For every pair of elements # and y such that y is an immediate successor of x,  and y are
joined with a thin or a thick line depending on whether Left(z,y) or Right(z,y) holds and
then also, In(y, z) holds. Moreover, every element z of the tree should in the picture be joined
to the root by a line representing R(z,root).

For every element z, the unique 1-type realized by z contains positive formulas of the
form B;(z) for those and only those B;-s which are listed on the right margin. The values
of Cj-s on x are determined by the values of B;-s. If an element z is neither the root nor a
leaf then the 1-type realized by = does not contain any positive appearance of other predicate
letters.

Below, when describing types, we list only atomic formulas with both = and y, omitting
the remaining two-variable conjuncts which are negations of atomic formulas that are not
listed. The elements on the same level d > 0 of the tree realize constellations of two kinds
with the same center. For d = 2,3...,2" — 3 we have the following constellations, each
containing exactly four 2-types

S = {Lefl(y, ) A In(z,y), Left(z,y) A In(y, z), Right(z,y) A In(y,z), R(z,y)},
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leaves e oo B.B,...B,

Figure 0: The model for ®

T = {Right(y,) A In(x,y), Lef(z, y) A In(y, ), Right(z,y) A In(y, 2, B(z,9)}.

So, elements denoted by a,c and e realize the constellation T, and the constellation S is
realized by b and d.

The constellations realized on the first level include exactly three 2-types:

S = {Left(y,z) A In(z,y) A R(z,y), Left(z,y) A In(y, z), Right(z,y) A In(y,z)},

T = {Right(y,z) A In(z,y) N R(z,y), Left(z,y) A In(y, ), Right(z,y) A In(y,z)}.

The root and the leaves realize constellations containing exactly two 2-types. The root
realizes the constellation

S = {Left(z,y) A In(y, ) A R(y,2), Right(z,y) A In(y,z) A R(y, )}

and {In(z,z), R(z,z)} C center(S).
If z is a leaf then

S =A{Lefi(y,z) A In(z,y), R(z,y)},

T = {Right(y, ) A In(z,y), R(z,y)},

and {Left(x,x), Right(xz,x)} C center(S) = center(T).

Note that since elements on different levels of the tree realize distinct constellations, the
number of constellations realized in ¥ is exponential with respect to the number of predicate
letters in £. Moreover, the number of vassals, card(V'), is exponential with respect to the
number of constellations realized in ¥. So, the number of elements that are indistinguishable
from the point of view of constellation they realize can be double exponential.

One could imagine that in order to check whether a sentence in 3='-constellation form is
satisfiable it is not necessary to have the complete submodel with the universe C' defined by
the finite representation but it should be sufficient to know which constellations are realized
in the submodel, and in which number. It is, however, hard to adapt this idea directly.

Note that some elements that realize the same constellation in a given model can be
distinguished by taking into account constellations that are realized by partners of the con-
stellations — elements connected to them with a counting type. For example, elements @ and ¢
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of the tree shown in Fig. 0 realize the same constellation but they can be distinguished, since
the predecessor of a realizes a constellation of kind T" whereas the predecessor of ¢ realizes a
constellation of kind 5. Elements a and e, however, remain indistinguishable even if we take
into account the additional information.

The above remarks suggest that in order to push the complexity down, a potential model
can be described by a set of indexed constellations, and numbers of elements that realize these
constellations. Roughly speaking, an indexed constellation in addition to the information
on two-types realized by an element, carries requests for partner constellations that should
realize, together with the host, the two-types of the host constellation.

5.2 Concise representation

At the end of section 4.3 using the Galaxy Theorem which allows to transform the problem
whether a set of constellations is a galaxy into the problem whether the same set is finitely
representable, we gave an algorithm solving the satisfiability problem for C'Z. As it was shown
in the previous subsection, the size of a finite representation can be exponential with respect
to the number of constellations.

In this section we shall define the notion of a concise representation of a set of constellations
which will play a similar role to finite representation but will use only polynomial space with
respect to the number of constellations.

We need several additional notions, the most important of which are the notion of an
indexed constellation (Definition 5.5) and of a A'-rnk-model (Definition 5.9). An indexed
constellation is a pair (5, f), where S is a constellation and f is a function that associates
a constellation T to each two-type of 5. This definition allows to control not only which
constellation § is realized by an element a, but also which constellations are realized in the
neighborhood of a, that is by elements that together with a realize two-types of 5.

Definition 5.9 describes a model very precisely. It says which indexed constellations are
realized, and in which amount. Additionally, it allows to partition a model into parts, each
part containing elements realizing the same indexed constellation, and it specifies two-types
that can be realized by elements from these parts.

The first easy fact proved here (Proposition 5.10) gives several necessary conditions for a
set of constellations to be a galaxy. These conditions are described in terms of new notions
introduced below. We hope that through studying this easy proposition the reader will get
familiar with the complex terminology and notation use here. It should also provide a good
background for the most important notion of concise representation.

Lemma 5.12 is an analogue of the Galaxy Theorem, and one could think that it could form
a basis to formulate another algorithm for the satisfiability problem for C2, as in section 4.3.
However, although the space needed to write a concise representation is small, and most of the
conditions of the definition of concise representation are easily? computable, condition (c5),
however, seems to require still double exponential time since it requires checking whether there
exists a model of double exponential cardinality, which in addition satisfies some conditions.
As a first step towards removing this difficulty we prove the Decomposition Theorem (Lemma
5.15) that shows that such a model is composed of a certain number of parts which can be
treated separately and independently. Unfortunately, to check if the parts can be constructed
we need several technical lemmas.

2Here, ”easily” means in exponential time
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Let R C L be a fixed set of predicate letters with card(R) = m. Let A be a fixed set of
2-types closed under the operation *, and let S be a set of constellations & = {S5;,...,5,}.

Definition 5.2 Let S € §. A set S of types is a sub-constellation of S if ' C § and
center(S) € 5'.

Note that a sub-constellation S’ of S is a constellation (cf. Definition 4.3) only if " = 5.

Definition 5.3 Let 2 be an L-structure, and let 8" = {sq, s1,...,5} be a sub-constellation of
S, for some S € S. An element a € A realizes S’ if tp*(a,a) = so, and there exists a unique
sequence by, ...,b; € A such that tp*(a,b;) = s;, 0 < i <1, and tp*(a,b) € A~ U A", for each
be A, b#a, b#b,0<1i<1. A sub-constellation S’ is realized in 2 if there exists a € A
which realizes S'.

Definition 5.4 Let &' be a set of sub-constellations. A structure U realizes §', if every sub-
constellation S' € 8§’ is realized in A, and every element a € A realizes a sub-constellation of

S'.

Definition 5.5 Let S € S. An indexed constellation S7 is a pair (S, f), where S € S, and
[ 25\ {center(S)} — S is a function such that, for every s € S, S is connectable to f(s) by
s.

We denote by S;,q the sel of all indexed constellations of S.

Definition 5.6 Let A be an L-structure, and let a € A realize a constellation of S. Assume
that for every b € A, b # a, if tp®(a,b) € C* then b realizes a constellation of S.

We denote by ind® the function ind> : C%\ center(C*) — S such that for every b € A,
b # a, if tp*(a,b) € CX then ind(tp*(a, b)) = C.

An element a of 2 realizes an indexed constellation S/ if C* = S, and ind® = f.

Some explanation of Definitions 5.5 and 5.6 was already given the previous section. Con-
sider again the example of Subsection 4.5. The elements a,c and e (see Fig. 0) realize the
same constellation, however a and ¢ realize different indexed constellations, whereas a and e
realize the same indexed constellation.

Definition 5.7 Let T, U C S. A set X, X C S;,4, is an indexing of 7 restricted to U if for
every S € T there is a function f such that ST € X, and for every S7 € X we have S € T,
and f: S\ {center(S9)} — U.

We say that a set X, X C S;,4, is an indexing of 7, if X' is an indexing of T restricted
to S.

A pair (X,rnk) is a rnk-indexing of 7 if X' is an indexing of T, and rnk is a function
such that rnk : X — N*,

Note that if (X', rnk) is a rnk-indexing of 7,4 C 7, X' = {U’/ : U € X and U € U} and
rnk’ = rnk|X’, then (X, rnk’) is a rnk’-indexing of U.

Let X C Sing, U C S and T/ € X. Denote by T/ U the sub-constellation = {s € T :
f(s) e U} U{center(T)} of T.

Definition 5.8 Let (X, rnk) be a rnk-indexing of T, and let A be a finite set. A function
lab : A 2% X is called a rnk-labeling of A, if for every TS € X, card({a € A : lab(a) =
T7}) = rok(T7).
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Let (X, rnk) be a rnk-indexing of 7, and let A be a finite set. If lab is a rnk-labeling of
A then, for every T; € T, we put A'®* = {a € A : lab(a) = T/, for some f such that T/ € X}.

Definition 5.9 Let X C S;,q and let (X, rnk) be a rnk-indexing of T. An L-structure 2
is a X-rnk-model for 7 (A E7F T) if and only if there exists a rnk-labeling lab of A such
that for every Aj*", A", and every a € A[™, a realizes the sub-constellation lab(a){T;} in
the substructure of U restricted to {a} U Al*.

The notions of an indexed constellation, and of a X'-rnk-model are fundamental in our
proof of the single exponential upper bound on the complexity of SAT(C?). The intuitions
behind the above definitions are explained by the next proposition.

Proposition 5.10 If S is a galaxy then there exist a structure A, a set C C A, subsets
81,82 of S, X C Sina, and a function rnk : X — {1,...,card(C)}, such that U realizes S,
card(C) < m(2m - card(8))*"*S), and the following conditions hold

(1) §iNSy =0, X = Xy U Xy, where X, is an indexing of S, restricted to §; U S, and X, is
an indezing of Sy restricted to S, (X, rnk) is an rnk-indezing of S U S,

(2) for everya € C, C* € S US,,

(3) for every a € A, if C* € S, then a € C and, for every a € A and every S € Sy, if
C%* =6 then C¢ =S,

(4) CEFFSIUS,,
(5) for every S € S\ 81, ranky(S) = .

Proof. Let § be a galaxy, and let (S;,V,C,I, F,G) be a finite representation of § which
exists by Theorem 4.18. Let 2 be a structure realizing § whose existence follows from Corol-
lary 4.19. The domain of the structure 2 is divided into two parts B and C' with B = A\ C,
and V C C.

Let S, ={S€S8:5=C2, for some a € V},

S;={S€8:5=C% forsomeacC\V},

X, ={C¥ aqcV,f=ind},

Xy ={CH :ac C\V,f=ind}, ¥ = X, UAs,

and for every 57 € X, let rnk(S7) = card({a € C : § = C¥ and f = ind¥}.

Assume that §; = {S51,..., 9}, So = {Se41,..., 9}, and X' = {(S1, f11), .-+, (51, f1.0.),
<527 f21>7 R <527 f2,vz>7 LERE <Sy7 fy1>7 R <Sy7 fy,Uy>}7 where v = Card({fij : Sifij € ‘Y})v 1<
1 < 9.

We have partitioned the set C' into sets C'y,...,C, in such a way that for every a € C,
if € C; then C¥* = S, (see Figure 1). Furthermore, every set C; is partitioned into classes
of elements realizing the same indexed constellations (5;, f;;). Moreover, for every a € C;, if
C; CV then C% = §;. This means that for every a € V, for every b € B, tp*(a,b) € A~ U A~
(¢ A~ UA™) which is denoted in Fig. 1 by the slashed arrows.

Define a rnk-labeling lab of C letting lab(c) = S/, where § = C% and f = ind™.

It is easy to check that conditions (1)—(5) hold. O

The main idea of the proof of Theorem 5.1 is to replace in Proposition 5.10 the condition
there exists a structure 2, by something easier to verify, and to substitute the implication by
an equivalence. To do this we add several additional conditions, which are easily computable.
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Figure 1: Partition of the universe according to the rnk-labelling

Definition 5.11 A concise representation of S is a system
(81,82, X, rnk,Y),
where 81, Sy are sets of constellations, (X, rnk) is a rnk-indexing of S;USy, Y is an indexing
of §\ 81, and the following conditions hold.
(c1) 8,85, C S, S NSy =10,
(c2) X = X, UX,y, where Xy is an indexing of S; restricted to S; U Sy and, Xy is an indexing
of 8y restricted to S,
(c3) Jor every (S, 1),(S, f2) €V, fr = o,
(¢4) Ysrex Tnk(ST) < m(2m - card(S))** ),
(¢c5) there is a structure € such that € EP* S U S,,
(c6) for every ST € Y, and every s € S, if f(s) € Sy then s € A~

(c7) for every ST € Y and every T € Sy, card({s € S : f(s) =T}) < Y rsex, Tnk(T’) and
if card({s € 5: f(s) = T})(Xpsex, Tnk(T7) then there exist t € A~ such that S is
connectable to T by t,

(c8) for every S,T € S\ 81, S is connectable to T' by some t € A™.

Some comments are in order here. Conditions (c1)-(c8) of the above definition precisely
describe the situation illustrated in Figure 1.

(c1) Three subsets of S are distinguished: S; - constellations realized by elements of V| S,
- constellations realized by elements of C'\ V, and &\ &; - constellations realized by
elements of B.

(c2) A} is an indexing of &; and it defines partitions of set C; C V into appropriate clas-
ses. The indexing guarantee that the elements of V realize constellations of §; in the
substructure restricted to C. Similarly, X, defines partitions of C; C C'\ V.

(c3) The indexing Y defines 2-types which are realized by pairs of elements (a,b), where
a € B, and b € V. Note, that if B is nonempty then the constellations realized in B or
in C'\ 'V are expected to appear infinitely many times.
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(c4) The function rnk defines the cardinality of every class of C; and so, the cardinality of V
and C.

(ch) This condition takes care of definability of €. In particular, it specifies which elements
in C; are connected with elements in C; by counting types, and which counting types
are used to realize the connections.

(c6) An element a € B can be connected to an element b € V only by a type from A~ U A~
These types do not change the constellation realized by elements in V.

(c7) If an element a € B realizes S such that S/ € Y, then the number of elements in V/
is sufficient to realize types of 5. Moreover, it is possible to define non-counting types
between a and elements of V, if necessary.

(c8) Every two constellations which are realized infinitely many times are connectable by a
non-counting type in A~.

Lemma 5.12 A set of constellations S is a galaxy if and only if there exisls a concise repre-
sentation of S.

Proof. (=) Let § be a galaxy. Take a structure 2, a set C C A, §,5, C S, &, and a
function rrk given by Proposition 5.10. For every constellation S € &\ S; find an element
be A\ C such that b realizes S (if it exists) and add the indexed constellation realized by b
to Y. Note that if S = S§; then Y = ().

It is obvious that (S, Ss, X', rnk,Y) satisfies conditions (c1)-(c8).

(<) Let (81,82, X,rnk,Y) be a concise representation of S. By Theorem 4.18 it suffices
to show that there exists a finite representation of §. Let € be the structure given by (c5),
and let lab be the rnk-labeling of C'. Let V = {a € C : lab(a) € S;}. We will define functions
I, F,G so that the system (S;,V,C, I, F,G) is a finite representation of S. To define I, for
every a € C, put I(a) = 5, where lab(a) = (9, f). In order to define F, for every a,b € C,
put F(a,b) = tp®(a,b). Now, let S € (S\ S1), S = {S0,81,-..,8:}. By (c3), there exists
(S, f) € Y. By condition (c8), find k distinct elements ay,...,a; € V such that for every ¢,
1<t <k, f(s;) = lab(a;). For every a;, 1 <1i <k, define G(5,a;) = s;. If there is an element
b € V such that G(S5,b) has not been defined yet, then, by (c8), find a type s € A~ such
that S is connectable to lab(b) by s, and put G(S5,b) = s. It is easy to check that conditions
(f1)-(f7) of Definition 4.17 hold. O

5.3 Complexity

Proof of Theorem 5.1.

The proof proceeds in the same way as the proof of Corollary 4.20.

Let ® be a C?-sentence of length n. By Corollary 4.8 we obtain a sentence ¥ in 3=!-
constellation form which is satisfiable if and only if ® is satisfiable. After defining the set A,
we guess a set § of A-R-constellations, as in Theorem 4.6.

Then, we guess sets §; and S, of constellations, a rnk-indexing (X', rnk) of §; U S,, and
an indexing Y of § \ &1, as in Definition 5.11.

In contrast to the proof of Corollary 4.20, this step can be performed in time 0(2”3)
since card(S;ing) < 2”3, and the length of a maximal value of the function rnk is bounded by
log(m(2m - card(8)) 43y = 0(2%"), for some constant d.
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Finally, we check in time O(2%") whether (Sy, S, X, rnk,Y) is a concise representation
of S. O

Remark. It can be easily seen that all the conditions of Definition 5.11 except (¢5) can
be verified in time O(2%"°), for some constant d. It is less obvious that the same holds for
(ch5). We devote the next subsection to the problem how to verify (¢5) in exponential time.

As a consequence of Theorem 5.1, by Corollary 4.9, we get the following corollary.
Corollary 5.13 SAT(C?) € 2-NEXPTIME.

There are at least two reasons why it is difficult to improve the above result. One has been
already discussed at the end of section 4.2. Another one is that it is difficult to generalize the
notion of a constellation to count an arbitrary number of witnesses without increasing the
number of possible constellations to double exponential. In spite of this we conjecture that
the satisfiability problem for the full C'2 has only exponential complexity.

5.4 Verification of (c5)

The following definition will be used in the Decomposition Theorem (Lemma 5.15).

Definition 5.14 Let 7 C S, and let (X,rnk) be a rnk-indexing of T. For 5;,5; € T we
define X;; = {S7 € X : 5 =5; or S =5;}, and rnk;; = rnk|X;;.

The following lemma gives a condition which is equivalent to condition (c5) of Definition
5.11 but is more tractable.

Lemma 5.15 (Decomposition Theorem) Let 7 C S, and let (X, rnk) be a rnk-indexing of
T. Then the following conditions are equivalent:

1. There is a structure ¢ such that ¢ =7 T,
rnk;;

2. For every 5;,5; € T there exisls a structure &;; such that &; =%, ™ {5, 55}

Remark. Condition 1 coincides with condition (c5).
Proof. (1) = (2) is obvious.
(2) = (1). Assume that condition (2) holds. Let
X = {<517 f1,1>7 R <517 fl,v1>7 <527 f2,1>7 Ty <527 f2,v2>7 RS <Sy7 fy,1>7 S <Sy7 fy,vy>}'
For every ¢,7,1 <1 < j <y, let ¢; be a structure such that ¢;; |:;nfj {Si,5;}, and let lab;;
be the rnk;;-labeling of (the universe of) ¢;;. Note that

card({a € Cyj :lab(a) = S and S7 € X;}) = D raky(S]) = card(Cy).

slex,

We are going to define a structure €. Let C', the universe of €, be a set such that there
exists a rnk-labeling of C', and let lab be such a labeling. It is easy to notice that C' could
also be defined as a union of disjoint copies of Cj;. In fact, define C; = {a € C : lab(c) =
57, for some function f}, for every i, 1 < i < y. Then C = Uic, Ciy and card(C;) =
card(Cy).

3The notation Xj;, Ci;, and €; can be misleading — the notation X;, C;, and &; would be more intuitive,
but we keep the less intuitive notation since it is more uniform.
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Now, we shall define types realized by pairs of elements in €. For every ¢,7 such that
1 <14 < j <y, choose a function g,;; such that g;; : Cj; i—;—? C; U}, and for every a € C};,
lab;j(a) = lab(g;;j(a)). For every a,b such that a € C;, b € C; and i < j, put tp®(a,b) =
1% (g5 (a). g5 (b)).

To show that the structure ¢ satisfies condition 1, let S;,.5; € 7, and a € C; (cf. Definition
5.9). Set B = {tp®(a,b): b € C;} N (A~ UA~). By construction, B = {tp®i(g;;'(a),g;' (b)) :
beCi}n (AT UA™) and B U {tp%i(a,a)} = lab;;(g;;' (a))1{S;} = lab(a){5;}. ]

Now, we present three technical lemmas each of them showing how to check condition 2
of Lemma 5.15. Lemma 5.18, deals with the case ¢ = j, Lemma 5.19 with the case when ¢ # j
and both 5; and 5; are realized by many elements, and Lemma 5.20 with the when case i # j
but only one of 5; and 5; is realized by many elements.

We are very sorry that in spite of the suggestions of the referees, many requests of our
friends and our best intentions we have not been able to make the proofs more readable.

We have tried to write a reader-friendly paper, but we have been only partially successful
in this attempt. We did not find a way to avoid yet another technical definition below.

We will use the following notation.

Definition 5.16 Assume that 7 C S, and (X,rnk) is a rnk-indexing of T. Let q be a
positive integer. For S;,5; € T, and every s € S; define

¢ = Z rnk(S7),
sfex
u”(s) = Z T?’Lk(szf), fOT S € Siv
sTex f(s)=5;

S = {s€8inNA” ruy;(s) < qf,

AL = {8/ € x;; : for some s € S, f(s) = 8 U
{ij € Xjj ¢ for some s € S, f(s7) = 8i},
rokl; = rok;l A

Observe that the notions defined by Definition 5.16 have the following meaning in the
context of ¢;;.

C; is the cardinality of ¢;,

u;;(s) is the number of all elements a which realize S{1{S;}, and for which there is a b,
b # a, such that (a,b) realizes s, and b realizes Sf 1{5:},

S is the set of 2-types of §; which are realized in ¢;; by at most ¢ pairs (a,b) such
that a realizes S{1{S;}, and b realizes S]f[{SZ-},

A is the restriction of Aj; to the constellations including types of S

rnkj;  is the restriction of rnk;; to Ajj.

Note that ug;(s), ¢;, 5§, &, and rnkf; are easily computable from A" and rnk in time

0(2n3 .2dn2) = 0(28"3), for some constant e.

q
iy

Definition 5.17 Let X C S;,4, let (X, rnk) be a rnk-indexing of 7, and let B C A. Given a
L-structure A we write A |:’B”2’{, T if and only if there exists a rnk-labeling lab of the universe
A of A such that for every S;,S; € T, and every a € A",

tp*(a, a) = center(lab(a)[{S:}),
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{tp*(a,b): b€ A"} N (AT UAT) = lab(a)I{S;} N B,

and for every 2-type t € lab(a)!{S;} N B there exists a unique b € A" such that tp¥(a,b) =
Wz, y).

The above definition says that 2 |:g”§( 7T if and only if there exists a rnk-labeling lab of A
such that for every Aj**, A" and every a € A{*, a realizes the sub-constellation lab(a)[{5;}N
B in the substructure of 2 with the universe {a} U A}**. Note that in case B = A the above
definition is equivalent to Definition 5.9.

Lemma 5.18 Let S; € 7, and assume that ¢; > 2™.

There is a structure ¢; such that &; |:SZ:“” {5;,9:} if and only if
(i) for every s € S; N A”, u;;(s) = u;(s*) and w;(s) is even if s = s*,
(i) S; is connectable to S; by some t € A~

iit) there exisls a structure ¢ such that ¢ :M;k;’, S;}t, where ¢ = 14m.
59 X! ’ q

Proof. (=) This follows directly from the definition of u;(s), Lemma 4.12, and Definitions
5.9, 5.17 and 5.16.

(<) Assume that (i)-(iii) hold. Assume that {s;,...,s,} = {s € S, N A7 : u;(s) >
0}U{s € S5;NA" :u;(s) >0}, where v < card(S;) and {s;,...,s,} = SL*™. Let lab’ be the
rnk};-labeling of C’ given by (iii) and Definition 5.17.

Let Cj; be a set of cardinality ZS{eX“- rnk(Sif), and let lab be a rnk;-labeling of Cj;.
We shall build a structure ¢;; with the universe Cj; such that, for every a € Cy;, a realizes
lab(a){9;} in Cy;. The structure ¢; will be built in several steps.

First we def;m? an embedding h of ¢ into &; as follows.

Let h : C' —— C};, be such that for every a € C’, lab'(a) = lab(h(a)). For every a,b €
h(C"), such that tp® (h=Y(a), h=1(b)) € A~ U A~, define 1p%i(a,b) = tp® (h~'(a),h=1(D)).
Now, it remains to define, for each type s; € {s,41,...5,}, the set of pairs of elements
of C;; which realize s;. To do this we shall use the graph-theoretical Lemmas 6.2 and 6.3
given in Appendix. We proceed by induction. Assume that, for some | > p, the sets of pairs

satisfying types s;,...,s_; have been defined. We shall now define set of pairs satisfying s;.

Case 1. s5; € A~.
Let X,Y C Cj; be defined as follows

X ={a€eCi:s €labla)l{S;}},

Y ={a€Cy:s;€lab(a)l{S:}}.
Observe that s; can be realized only by pairs (a,b) such that ¢ € X, and b € Y. Also, if
s; = sj, for some j < [, then the type s; has been considered. By condition (i), card(X) =
card(Y'), and if s; = s; then card(X) is even. Moreover, since card(X) = u;;(s;), we have
card(X) > 14m.

Let G* = (X UY, E*), be the graph such that £* = {{a,b} : either (a,b) or (b, a) realizes
a type s;, 7 < l}. Then, d(G*) <1 <m. Let G = (X UY, E) be the graph complement of G*,
and let n = card(X UY'). We have d(G) > n—1+ 1> n— m. Note that if F(a,b) then the
type of (a,b) has not been specified so far.

Case la. s; = s].
By the definition of X and Y, we have X = Y. By Lemma 6.2, there exists a Hamiltonian
cycle 4 = [ay,...,a,] in G, and by (i) n is even. For each odd j such that 1 < j < n, put
tp®i(aj,a;41) = 5.
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Case 1b. 5, € A7, and s; # s;.
Let X' =X\Y,Y'=Y\X,Z=XnY,n =card(X') = card(Y"), and ny = card(Z). We
consider 2 subcases.

Subcase 1ba. card(Z) < 2m.

Let Gx = (Z, X', Fx), where Ex = {{a,b} € F:a € Z,b e X'}. Then Gx is a bipartite
graph such that for every A C Z, card(I'g,(A)) > n' =1+ 1 > 3m > card(A). So, by
Lemma 6.1, there is a matching E of Z onto X, C X'. For every a € Xz, b € Z such that
{a,b} € E%, put (p%i(a,b) = 5.

Similarly, there exists a matching Fj from Z onto Yz C Y’ in the graph Gy defined in
the same way as Gx. For every a € Z, b € Y, such that {a,b} € F}, put tp%i(a,b) = s,.

Figure 2: Case 1b, card(Z) < 2m.

Finally, let G' = (X' \ Xz,Y’\ Yz, E’) be the bipartite graph such that £’ = {{a,b} €
E:ae X'\Xz,b€eY'\Yz}. Put " = card(X'\ Xz) = card(Y'\ Yz). Then, n” > 2m and
d(G') >n" —14+1>n" —m. By Lemma 6.3, there exists a matching £, from X'\ X, onto
Y'\Yy. Forevery a € X'\ X, b €Y'\ Yy, such that {a,b} € Ey, put (p%i(a,b) = s,.

Subcase 1bb. card(X') < 2m.
We have X UY = X'UZUY" and d(G) > n—1+1 > n—m. By Lemma 6.4, there exists a set
7' C 7 such that X’ and Y’ can be matched onto Z’. Let Ex: be the matching of X’ onto
7', and let Fy, be the matching of Y/ onto Z'.

For every a € X', b € Z' such that {a,b} € Ex., put tp%i(a,b) = s;. For every b € 7',
¢ € Y' such that {b,c} € Ey, put tp%i(b,c) = s;.
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Figure 2: Case 1b, card(X') < 2m.

Finally, let G' = (Z\ Z', E'), where E' = {{a,b} C Z\ Z' : {a,b} € E}. Put 0" =
card(Z \ Z'). Then, n” > 2m, and d(G’) > n” — 1+ 1 > n — m. By Lemma 6.2, there
exists a Hamiltonian cycle g = [ay,...,a,+] in G'. For every j such that 1 < j < n”, put
tp%i(aj,a;41) = s;, and put tp&i(a,n, ar) = s;.

Case 2. 5; € A™.
Let X = {a € Cy; : s, € S/1{S;}, where fis a function such that lab(a) = 5 }.

Let G* = (Cy;, E*), where E* = {{a, b} : either (a,b) or (b, a) realizes s;, for some j < [}.
Then, d(G*) < I < m. Let G = (Cy;, E) be the graph complement of G*, and let n = card(Cy;).
We have d(G) > n—1+4+1 > n —m, so by Lemma 6.2, there exists a Hamiltonian cycle
p = [ai,...,a,] in G. For every j such that 1 < j < n and a; € X, put tp%i(a;,a;41) = s,
and put (p%(a,,a,) = 3.

Notice that by condition (ii), there exists a type ¢t € A~ such that \5; is connectable to 9;
by t. So to finish the proof, it suffices to define tp%(a,b) = ¢, for any a,b € Cy;, such that
tp%i(a,b) has not been defined yet. O

Lemma 5.19 Let 5;,5; € T, ¢ # j, and assume that ¢;,c; > 3m.
There is a structure €;; such that €;; |:;(”ka {Si,5;} if and only if
(i) there are structures ¢;;, €;; such that €; |:’/.",("lC {8;}, and ¢;; |:;r;f“ {5;},
(11)  w;(s) = uj;(s*), for each s € S;NA", and u;;(s) = u;;(s*), for each s € ;N A",
. rnkd.
(iti) there exists a structure €' such that € [Fga 3a {5, 9;}, where ¢ = 2m,

(iv) S; is connectable to S; by some t € A~.

Proof. (=) This part of the proof is obvious.

(<) Assume that (i)-(iv) hold. Let {sy,...,s,} = {s € SiN A~ :u; > 0} U {s €
(S: U S55) N AT 2 uii(s) > 0}, where v < card(S; U S;). Assume that 57 = {s1,...,5,}, and
{Sr415- s} ={s € (5, U8;)NA™ 1 u;(s) > 2m}.

Let ¢; and €;; be such that (i) holds, and assume that ¢; and ¢;; are disjoint. Let
Ci; = Ci; UCy;. For every a,b € Cy, put tp%i(a,b) = tp®i(a,b), and for every a,b € C;;, put
tp%i(a,b) = tp%i(a,b). Let lab;; be the rnk;-labeling of Cj;, and lab;; be the rnk;;-labeling
of C'j; as in Definition 5.9. To define the rnk;;-labeling lab;; of C;;, we put lab;; = lab,; Ulab;;.

Now, for @ € C;; and b € C};, we shall assign a type to (a,b), in such a way that for every
a € Cy;, a realizes in ¢;;1C;; U {a} the sub-constellation lab;;(a)[{5;}, and for every b € C};,
b realizes in @;;[C;; U {b} the sub-constellation lab(b);;1{5;}.
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As in the proof of Lemma 5.18, the construction proceeds in steps. First, we embed the
structure ¢’ given by (iii) into €;;, and then we consider types s; € {s,41,...,5,}.

Define

X ={aeCiy:s €labla){59;}},

Y ={aeCyj:s;eclabla){S9:}}.

Now, we deal with types in A~. Let s; € A~. By (ii) card(X) = card(Y). Moreover,
by the definition of w,;;, for every s € A7, s € 9; if and only if s* € §;. Since card(X) =
u;;(s1) > 2m, we can proceed as in Case 1b of the proof of Lemma 5.18 with Z = ().

Finally assume that we have already dealt with the types s;,...,s,, and we want to realize
types in Spq1,...,Sy.

Let £ = {{a,b}:a € C;;,b € Cj; and (a,b) realizes s;, j < r}, and G = (Cy;,Cy;, E) be a
bipartite graph. For every a € Cy;, let d'(a) = card(lab(a)[{5;}).

Now, by Lemma 6.5 G can be expanded to a bipartite graph G’ = (Cy;, Cy;, E') such that
ECEF,

(a) for every a € Cy;, dg:(a) = d'(a) and

(b) for every b € Cy;, dgi(b) < ¢; — m.

By (a), for every a € Cj;, we can find card(lab(a)[{5;} N A7) elements b € C}; such that
(a,b) € E'\ E, and assign types in lab(a)]{5;}NA™ to pairs (a,b). On the other hand, by (b),
for every b € Cj;, we can find card(lab(b)1{5;} N A7) elements a € Cj; such that (a,b) ¢ E’
to realize the types of lab(b)[{5;} N A~. |

Let
w= > uy(s)+ D wuj(s).
SEATUA— sEA™

The integer u is the number of pairs of elements of ¢;; which realize counting types

Lemma 5.20 Let 5;,5; € T, © # j, and assume that ¢; > 3m and ¢; < 3m.
There is a structure €;; such that ¢;; |::Zf” {8i,5;} if and only if
(i) there are structures €;, &;; such that &; =7 {S;}, and ¢;; |:;'j,fjj {5;},
(ii)  for every s € S;NAT, u;;(s) = uj;(s*), and for every s € S;NAT, uji(s) = u;;(s*)
(iii) there exists a structure © with the domain D = D,UD,, and there exists a
rnk’-indezing (X', rnk’) of {S;,S;} such that card(D;) < 3m?, card(D,) < ¢,
card(Ds) = ¢;, X' C Xy, for every Sf € &, S]-f € X', for every Sf e X,
ruk!(S) = rnk;;(S7), for every S{ € X', ruk!(S]) < rnk;(S!) and

D EEY {8, 8},

(iv) Jor every S{ € X, card((S{1{S;}) \ {center(5:)}) < ¢;,
(v) ifu<c¢-c; then S; is connectable to S; by some t € A~

Proof. (=) This direction is obvious.

(<) Assume that (i)-(v) hold. Assume the structures ¢;; and ¢;; given by (i) have disjoint
universes. Put Cy; = Cy; U C};, for every a,b € Cyy, put (p®(a,b) = tp%(a,b), and for every
a,b € Cj;, put tp%i(a,b) = tp%i(a,b). Let lab;; be the rnk;-labeling of Cy;, and lab;; be the
rnk;j-labeling of C;; as in the definition 5.9. Define the rnk;;-labeling lab;; of the set Cy; by
putting lab;; = lab;; U lab;;.

Now, by (iii), define an embedding h of © into ¢;; as follows.
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Let h : D l;—} Cij, be a mapping such that for every a € D, lab'(a) = lab(h(a)). For
every a,b € h(D) such that a € Cy; and b € Cy; put tp®i(a,b) = tp®(h~"(a), h='(b)).

Observe that by Definition 5.17, for every a € C}; U h(D,), CC [h(D) = = lab(a)1{5;, S;}.
Moreover, by (i) and (iii), for every indexed constellation S{ € Aj;, if there is a type s €
Si N A~ such that f(s) = S;, then rnk/(S]) = ruk(S{). It follows that if a € Cy \ h(D) then
s ¢ A=, for each s € lab(a){5;}. By (iv), for every a € C;; \ h(D), for every s € lab(a)1{5;}),
find b € C;; such that {p®7(a,b) has not been defined, and put ¢p%i(a,b) = s. To finish the
proof of Lemma 5.20, for every a € Cy;, for every b € Cj;, if tp%i(a,b) has not been defined
then put ¢p®i(a,b) = t, where t € A~ and S; is connectable to S; by ¢ (cf. (v)). ]

Corollary 5.21 (¢5) can be checked in exponential time.

Proof. By Decomposition Theorem (Lemma 5.15), it suffices to check whether, for every

5:,8; € S1US,,
(*) there exists ¢;; such that ¢; |:;Tif” {S:,5;}.

In the case ¢ = 7, if ¢; < 2™, (*) can be checked by guessing the structure ¢; of cardinality
¢;, and then verifying if ¢; 5" {$,,9,}. This will take no more than 0(2™) = 0(2™)
steps. If card(Cy;) > 2™, then by Lemma 5.18, it suffices to verify conditions (i)-(iii). This
can be done in time O(2%"°), for some constant d.

In the case v # 7, if ¢;,¢; < 3m, it suffices to guess a structure ¢;; of cardinality ¢; + ¢;
and verify if ¢;; |—Mk {S:,5;}. This can be done in time polynomial with respect to m. To
check whether (*) holds for ¢; > 3m, it suffices to verify conditions (i)-(iv) of Lemma 5.19 or
conditions (i)-(v) of Lemma 5.20. This also can be done in time O(2%°), for some constant
d.

In each of the cases above, checking whether (*) holds can be done in time O(2%*°), so it
takes at most O((2%")%) = O(2°*") steps to verify that (*) holds for every 4, 5. This finished
the proof and completes the proof of Theorem 5.1. a

6 Appendix

We assume that the reader is familiar with the basic notions of graph theory. We use standard
notation of graph theory (see e.g. [4]).

In this paper a graph G = (X, E) is a finite set X of nodes and a set E of edges, which
are unordered pairs of nodes. For z € X we denote by I'¢(z) the set of neighbors of z, i.e.
the set {y : {z,y} € E}, and, for A C X, we put I'¢(A) = U,e4 ['a(a). The degree of a node
x, denoted by dg(z), is the number of neighbors of . By d(G) we denote the minimal value
of dg(z). Given a graph G = (X, E), a matching is defined as a set Fy C F such that, for
each pair {u, v}, {u',v'} € Eq of edges, we have {u,v} N {u',v'} = 0. A graph is bipartite if
its nodes can be partitioned into two sets X;, X, such that no two nodes in the same set are
adjacent, such a bipartite graph is often denoted as G = (X, X5, £). Given a bipartite graph
G = (X,Y, F)and we say that X is matched into Y if there is a matching Fy C F such that
for every z € X there exists y € Y such that {z,y} € E,.

Let m be a fixed nonnegative integer. The proof of the main result of this paper (Theorem
5.1) heavily depends on the following lemmas.
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Lemma 6.1 (Konig-Hall Theorem [21], cf. [4], p. 134) In a bipartite graph G = (X,Y, E), X
can be matched into Y if and only if card(I'c(A)) > card(A), for every A C X.

Lemma 6.2 Let G be a graph with n nodes and with d(G) > n—m. If n > 2m then G has
a Hamiltonian cycle.

Proof. This is an easy consequence of the theorem by J.A. Bondy [6] (cf. [4], p. 212) which
says that a graph G with n > 3 nodes, and with degrees dy <,...,< d, has a Hamiltonian
cycle if for every i, j such that i # j, d; <1 and d; < j, we have d; +d; > n.

In fact, we have d(G) > n — m, so d; + d; > n always holds for n > 2m. ]

Lemma 6.3 If G = (X,Y, F) is a bipartite graph such that card(X )= card(Y) = n, d(G) >

n—m and n > 2m then X can be matched into Y .

Proof. We use Lemma 6.1. Towards a contradiction, assume that there exists A C X
such that card(Tg(A)) < card(A). Then card(Tg(A)) < n and, since d(G) > n — m,
card(I'g(A)) > n — m and card(A) > n —m. Let y € Y \T'g(A). For every z € X, if
z € I'g(y) then z ¢ A. Moreover, card(I'¢(y)) > n — m and so, card(A) < m. This gives a
contradiction if n > 2m. ]

Lemma 6.4 Let G = (V, E) be a graph with n nodes such that d(G) > n — m, and assume
that V.= X'UZUY", where card(X') = card(Y') < 2m. If n > 14m then there exists 7' C 7
such that both X' and Y' can be matched onto 7Z'.

Proof. Let X' = {ay,...,ar}, Y' = {by,..., b}, where k < 2m. Since d(G) > n — m, we
have card(I'g(a;)) > n — m. We claim, that there is an element ¢; € I'g(a;) N Z such that
c1 € (b)) N Z. Indeed, card(g(a1)NY) >n—m—4m = n—5m, and card(I'g(b1)NZ) >
n —5m. So, T'g(a;)NTg(b)NZ # 0, provided n > 10m. Similarly, T¢(a;) N Te(b) N (Z\
{c1,...,¢i_1}) # 0, provided n > 10m + 2(i — 1). O

Lemma 6.5 Let G = (X,Y,F) be a bipartite graph such that for every b € Y, dg(b) <
card(X)—m. Letd : X — {0,...,m} and for everya € X, dg(a) < d'(a). If card(X),card(Y) >
3m then there exists a bipartite graph G' = (X,Y, E') such that E C E', for every a € X,
dg/(a) = d'(a), and for every b €Y, dg/(b) < card(X) — m.

Proof. Let G = (X,Y, F) be a bipartite graph such that for every b € Y, dg(b) < card(X) —
m, and let d' : X — {0,...,m} be a function such that for every a € X, dg(a) < d'(a).

To build the graph G’ we will add new edges to the graph G repeating the following
operation until we get a graph as needed.

(*) Let @ be an element of X such that dg(a) < d'(a). Find an element b € Y such that
{a,b} ¢ E and for every ¢ € Y with {a,c} ¢ F, dg(b) < dg(c). Put E = E U {a,b}.

We will now show that an element b as above exists, and that the operation (*) preserves
assumptions of the lemma.

Since dg(a) < m < card(Y), there exist at least card(Y) — m elements ¢ in Y such
that {a,c} ¢ E. We claim that among these elements there is an element b such that
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da(b) < card(X)— m. In fact, towards a contradiction, assume that dg(b) = card(X) — m,
for each ¢ € Y such that {a,c} ¢ E. Then,

Z dg(c) = E dg(c) + Z dg(c) > (card(Y) — m)(card(X)— m).

ceY ceY\T'g(a) celg(a)

On the other hand, dg < m, for every e € X, which gives
Y dg(c) =D dg(e) < m-card(X).
ceyY e€EX

By the above inequalities,
m - card(X) > (card(Y) — m)(card(X)—m)
and hence,
(1) card(X)eard(Y) — m(card(X )+ card(Y)) — m(card(X)— m) < 0.
Assume card(X) > card(Y'). Then,

card(X )card(Y) — m(card(X )+ card(Y)) — m(card(X)— m) >
card(X)card(Y) — 3m - card(X) + m? >
card(X)(card(Y) — 3m) > 0, provided card(Y) > 3m.

The last inequality contradicts (1). O
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