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Abstract. In classical logic, existential and universal quantifiers express that there

exists at least one individual satisfying a formula, or that all individuals satisfy a for-

mula. In many logics, these quantifiers have been generalized to express that, for a

non-negative integer � , at least � individuals or all but � individuals satisfy a for-

mula. In modal logics, graded modalities generalize standard existential and univer-

sal modalities in that they express, e.g., that there exist at least � accessible worlds

satisfying a certain formula. Graded modalities are useful expressive means in knowl-

edge representation; they are present in a variety of other knowledge representation

formalisms closely related to modal logic.
A natural question that arises is how the generalization of the existential and uni-

versal modalities affects the decidability problem for the logic and its computational

complexity, especially when the numbers in the graded modalities are coded in bi-

nary. In this paper we study the graded � -calculus, which extens graded modal

logic with fixed-point operators, or, equivalently, extends classical � -calculus with

graded modalities. We prove that the decidability problem for graded � -calculus is

EXPTIME-complete – not harder than the decidability problem for � -calculus, even

when the numbers in the graded modalities are coded in binary.

1 Introduction

In classical logic, existential and universal quantifiers express that there exists at least one

individual satisfying a formula, or that all individuals satisfy a formula. In many logics,
these quantifiers have been generalized to express that, for a non-negative integer 	 , at least

	 individuals or all but 	 individuals satisfy a formula. For example, predicate logic has
been extended with so-called counting quantifiers 
���
 and 
���
 [GOR97,GMV99,PST00].
In modal logics, graded modalities [Fin72,vdHD95,Tob01] generalize standard existential
and universal modalities in that they express, e.g., that there exist at least 	 accessible
worlds satisfying a certain formula. In description logics, number restrictions have always
played a central role; e.g., they are present in almost all knowledge-representation systems
based on description logic [PSMB � 91,BFH � 94,Hor98,HM01]. Indeed, in a typical such
system, one can describe cars as those vehicles having at least four wheels, and bicyles as
those vehicles having exactly two wheels.

A natural question that arises is how the generalization of the existential and universal
quantifiers affects the decidability problem for the logic and its computational complexity.
The complexity of a variety of description logics with different forms of number restrictions
has been investigated; see, e.g. [DLNdN91,HB91,DL94b,BBH96,BS99,Tob00]. It turned



out that, in many cases, one can extend a logic with these forms of counting quantifiers
without increasing its computational complexity. On the other hand, in some cases the ex-
tension makes the logic much more complex. A prominent example is the guarded fragment
of first order logic, which becomes undecidable when extended with a very weak form of
counting quantifiers (global functionality conditions on binary relations) [Grä99].

When investigating the complexity of a logic with a form of counting quantifiers, one
must decide how the numbers in these quantifiers contribute to the length of a formula,
i.e., to the input of a decision procedure. Assuming that these numbers are coded in unary
(i.e., � 
���
���� �����
	��
� 	���� ������	�� ) might seem odd, but is an assumption often made, for
example in description and predicate logics. It reflects the way in which many decision
procedures for these logic work: they explicitly generate 	 individuals for 
���
 . In contrast,
the assumption that the numbers are coded in binary (i.e., � 
���
���� �����
	������������ 	��
� � �����
	�� )
corresponds more closely to our intuition on the length of a formula, but it is not clear
whether and how decision procedures can avoid the exponential blow up that a translation
from the binary to the unary coding involves.

It is an interesting question whether the complexity of a logic is sensitive to the coding
of numbers in counting quantifiers. It seems as if many logics are insensitive to the coding,
i.e., both complexities coincide, even though one has to “work harder” for binary coding.
For many logics with counting quantifiers, the complexity of the satisfiability problem is
known for unary coding only, and is unknown for binary coding. For example, ! � (two-
variable first-order logic with counting) is known to be NEXPTIME-complete if numbers
in counting quantifiers are coded in unary [PST00]. While this coincides with the com-
plexity of first-order two-variable logic without counting [GKV97], the complexity of ! �
with binary coding is, to the best of our knowledge, unknown so far. Similarly, all the
above mentioned complexity results for description and modal logics, with the exception
of [Tob00,Tob01], assume unary coding of numbers.

In [Tob00,Tob01], Tobies studies graded modal logic, the extension of modal logic
with graded modalities. He proves that the decidability problem for this logic is PSPACE-
complete — not harder than the decidability problem for classical modal logic [Lad77],
even when the numbers in the graded modalities are coded in binary. The binary coding re-
quires additional technical machinery. Indeed, one cannot simply generate (exponentially
many) individuals, but use some form of book keeping to keep track and count the individ-
uals required by counting quantifiers.

The " -calculus [Koz83] extends modal logic with least and greatest fixpoint operators.
The extension makes " -calculus a highly expressive logic, of great theoretical and practi-
cal interest (cf. [Eme97]). In this paper, we study the graded " -calculus, i.e., " -calculus
with graded modalities. We show that the decidability problem for graded " -calculus is
EXPTIME-complete — not harder than the decidability problem for classical " -calculus
[FL79], even if the numbers are coded in binary. Our result substantiates the above hy-
pothesis that most logics are insensitive to the coding of numbers, and is interesting for
two additional reasons. Firstly, many relevant description, modal, and dynamic logics are
fragments of the graded " -calculus; see, e.g., [Sch94,DL94b,DL94a]. Hence we obtain cor-
responding EXPTIME upper bounds for these fragments for free. Secondly, other relevant
description, modal, and dynamic logics are close relatives of the graded " -calculus, and we
could thus use the techniques developed here to prove EXPTIME upper bounds for these
relatives using similar techniques.



Our techniques are based on the automata-theoretic approach [VW86,SE89,Var97]: to
develop a decision procedure for a logic with the tree-model property, one first develops an
appropriate notion of tree automata and studies their emptiness problem. The satisfiability
problem for the logic is then reduced to the automata emptiness problem. We show here
that the appropriate notion of automata is that of graded alternating tree automata, which
generalize standard alternating tree automata by having the ability to count the number of
successors that satisfy a certain condition (standard alternating automata can only count
up to one). We show that graded " -calculus has a tree model property and that, given a
formula � , we can construct a graded alternating automaton ��� that accepts exactly the
(tree abstractions of) models of � . The size of ��� is linear in � � � , even if numbers in
graded modalities are coded in binary. We then present an EXPTIME decision procedure
for the emptiness of graded alternating automaton by an appropriate translation into graded
non-deterministic automata (with an exponential blow-up in the size of the automaton), and
show that emptiness of graded non-deterministic automata can be decided in polynomial
time. Like other automata-based decision procedures, the techniques developed here can be
re-used: once a suitable class of automata for a certain class of logics is designed (together
with the corresponding emptiness test), these automata can be easily re-used for similar
logics. In particular, our technique can be easily extended to handle in EXPTIME " -calculus
with fractional modalities, where we can express, e.g., that at least half of the accessible
worlds satisfy some predicate, as well as all modalities that involve polynomially-checkable
conditions on the number of accessible words that satisfy a formula.

2 The Graded � -Calculus

The graded " -calculus is a propositional modal logic augmented with least and greatest
fixpoint operators [Koz83]. Specifically, we consider a " -calculus where formulas are con-
structed from atomic propositions with Boolean connectives, the graded modalities � 	��	��

(“exist at least 	�� -successors”) and 
 	��	��� (“all but at most 	�� -successors”), as well as
least ( " ) and greatest ( � ) fixpoint operators. We assume that " -calculus formulas are writ-
ten in positive normal form (negation is applied only to atomic propositions). Formally,
given a set ��� of atomic propositions, a set ����� of propositional variables, and a set �������
of (atomic) programs, the set of formulas of the graded " -calculus is the smallest set such
that the following holds.

– ���! �" , #%$'&)(*" , + and ,-+ , for +/.0��� , are formulas,
– �1.2����� is a formula, and
– if � � and � � are formulas, � is a program, 	 is a non-negative integer, and � is a

propositional variable, then � �43 � � , � �25 � � , � 	��	��
 � � , 
 	��	��� � � , "76�� � � �86 	 , and
�96�� � � �)6�	 are formulas.

A propositional variable � occurs free in a formula if it is not in the scope of a fixpoint
operator. Note that � may occur both bound and free in a formula. A sentence is formula
that contains no free variables. We use : to denote a fixpoint operator " or � . For a : -
formula : ��� �����
	 , we write ���;: ��� �����
	 	 to denote the formula that is obtained by replacing
each free occurrence of � in � with : ��� �����
	 . We refer to formulas of the form � 	��	��
 � �
and 
 	��<�=� � � as atleast and allbut formulas, respectively.

We say that a formula � counts up to > if the maximal integer occurring in graded
modalities in � is >@?BA . We refer to > as the counting bound of � . We assume that the



integers in graded modalities are given in binary. The length of � , denoted � � � , reflects this
fact. Formally, � � � is defined by induction on the structure of � in a standard way, with
� � 	��<� 
�� � � ����� � � 	���� A � � � � � , and similarly for � 
 	��<�=� � � � .

We define the semantics of graded " -calculus with respect to a Kripke structure
� �

�8��� ���=� � � ��� ��� ��� 
 , where ��� is the set of atomic propositions, �=� � � is the set of pro-
grams, � is a set of points, ��� �=� � � ?	��

����� assigns to each program a binary relation
on � , and ��� ��� ?	��

� assigns to each atomic proposition the set of points in which
it holds. For a point � and a program � , let ��������� ��� �	� 	 ����� � ��� �!��	 . � �;� 	�" denote
the successors of � in the program � . Given a Kripke structure

� � �8����� ������� ��� �!����� 

and variables � � ������� � ��# , a valuation $��%� � � ������� � �	#&" ?	��
'� maps each variable to a
subset of � . For a valuation $ , a variable � , and a set of points ��(*)+� , let $ 
 �-,.��( �
denote the valuation that is obtained from $ by assigning � ( to � .

A formula � is interpreted over a Kripke structure
� � �8��� ���=� � � ��� ��� ��� 
 as a

mapping �0/ that associates, with each valuation $ , a subset �1/ � $ 	 of � . This mapping
is defined inductively as follows.

���! �" / � $ 	 �2� , # $ &)(*" / � $ 	 �43 ,
for +/.2��� , we have + / � $ 	 �4� � +�	 and � ,-+
	 / � $ 	 �4�657� � +
	 ,
� � � 3 � � 	 / � $ 	 ����� � 	 / � $ 	98 � � � 	 / � $ 	 ,� � � 5 � � 	 / � $ 	 ����� � 	 / � $ 	9: � � � 	 / � $ 	 ,� � 	��	��
 � 	 / �;$�	 �<���/.=�>� �?��@ �������A@�	 .B� �;� 	 , and @ . � / �;$�	�"��DC 	1"
�<
 	��	��� � 	 / �;$�	 �<���/.=�>� �?��@ �������A@�	 .B� �;� 	 , and @=E. � / �;$�	�"��DF 	1"
��"76
� ���86 	 	A/ �;$�	 �HGI�J��(%)K� � �1/ �;$@
 �-,L��( ��	7)M��(;"
�;� 6
� ���86 	 	 / �;$�	 �HNI�J� ( )K� � � / �;$@
 �-,L� ( ��	7OM� ( "

Intuitively, a state � of
�

satisfies the atleast formula � 	��	��
 � iff at least 	��BA suc-
cessors of � in � satisfy � . Dually, � satisfies the allbut formula 
 	��<�=� � iff all but at most
	 successors of � in � satisfy � . Note that ,4� 	��	��
 � is equivalent to 
 	��<�=�!,
� . Indeed,
,4� 	��	��
 � means that less than 	 � A successors of � satisfy � , that is, at most 	 suc-
cessors do not satisfy ,
� . The least and greatest fixpoint operators are interpreted as in
" -calculus; thus, for example, "76�� + 5 � A��<� 
 6 is satisfied in a point � if either � satisfies
+ or � has two different � -successors each of which either satisfies + or has two different
� -successors etc., or equivalently, � is a root of a binary tree embedded in the transition
relation of � in which each path eventually reaches a point that satisfies + . Note that the
interpretation of a sentence is independent of valuations. For a sentence P , a Kripke struc-
ture
� � �)�������=� � �-��� �!���!� 
 , and �1.�� , we write

� �A����2P iff � .QP / , and call
�

a
model of P . A sentence that has a model is called satisfiable.

The modalities � 	��	��
�� and 
 	��	��� � are natural generalizations of the standard existen-
tial and universal next modalities. In particular, �)� 
 � and 
 �=� � of modal logic are equivalent
to �;R �<� 
�� and 
 R �<�=��� , respectively, and the number restrictions �AS 	UT
�
	 and �VF 	UT
� 	
for a role T in description logics [HB91] are equivalent to � 	2? A �!T�
�� and 
 	��AT*� ,
� , re-
spectively (note that �ASWR0T
�
	 is equivalent to ���  �" ).

For technical convenience, we also restrict our attention to formulas and Kripke struc-
tures in which only one program occurs. For the standard " -calculus, the reduction to a sin-
gle program uses, for each atomic program � , a new atomic proposition +YX and translates
�)� 
 � to Z ��� 3 +-X 	 , and 
 ����� to [ � � 5 ,-+-X 	 . In the presence of graded modalities, we can
proceed analogously, translating � 	��<� 
�� to � 	=
 � � 3 +9X 	 , and 
 	��	��� � to 
 	 � ��� 5 ,-+-X 	 ,
where the graded modalities � 	=
 and 
 	 � are evaluated with respect to a single accessibil-



ity relation � . We will accordingly refer to Kripke structures
� � �8��� ��� �!���!� 
 with

��)M���B� , and use ������������� 	 to denote the successors of � .
Note that we can also add new atomic propositions that would take care of the counting

done in graded modalities. Formally, if � counts up to > , we add propositions � � ������������� ,
conjoin � with a requirement that exactly one ��� holds in each point, that successors that are
labeled by the same ��� agree on their label with respect to all formulae in the closure of � ,
and replace an atleast modality � 	��AP 
 by a

�
	���
�������� � ������
�����	
�
������� � � ��� � � � ��
 � � Z ��P 3 �

���
	 , and

dually for allbut modalities. The " -calculus formula we get is satisfiable iff � is satisfiable,
yet the length of each disjunct that replaces a graded modality is exponential in > . Since the
bounds in the graded modalities are written in binary, the length of the formula we get is
doubly exponential in the length of � .

A tree is a set � ) IN  such that if �"!#�0.$� where � . IN  and �0. IN, then also
� .%� . The elements of � are called nodes, and the empty word & is the root of � . For
every � .'� , the nodes �(!)� where � . IN are the children of � . The number of children
of � is called the degree of � , and is denoted *,+�-����
	 . The degree of a tree is the maximum
degree of a node in the tree. A node is a leaf if it has no children. A path . of a tree � is a
set .M)/� such that &2.0. and for every � .0. , either � is a leaf or there exists a unique
�@. IN such that �1!��@.2. . Given an alphabet 3 , a 3 -labeled tree is a pair �4� �65 
 where �
is a tree and 5 �,���73 maps each node of � to a letter in 3 . Note that an infinite word
in 398 can be viewed as a 3 -labeled tree in which the degree of all nodes is A .

In Appendix A, we show that the graded " -calculus has the tree model property. Thus,
if a formula � is satisfiable, it is also satisfiable in a tree. Moreover, the number of atleast
formulas in � and its counting bound induce a sufficient degree for the tree. Formally, we
have the following.

Theorem 1. Consider a sentence P such that P has : atleast subsentences, each counting

to at most > . If P is satisfiable, then P is satisfied in a tree whose degree is at most :;! �;> ��A 	 .
3 Graded Automata

Automata over infinite trees (tree automata) run over 3 -labeled trees that have no leaves
[Tho90]. Alternating automata generalize nondeterministic tree automata and were first
introduced in [MS87]. For simplicity, we refer first to automata over binary trees (i.e., when
� � � R'� A."  ). Consider a nondeterministic tree automaton � � ��32�=<��=> ��?A@��<� 
 , where 3
is the input alphabet, < is a finite set of states, > is a transition function, ?B@ .C< is an initial
state, and � specifies the acceptance condition (a condition that defines a subset of <=8 ; we
define the parity acceptance condition below). The transition function >B�D<E�F3 � 
HG�I
maps an automaton state ? .'< and an input letter J .'3 to a set of pairs of states. Each
pair suggests a nondeterministic choice for the automaton’s next configuration. When the
automaton is in a state ? as it reads a node � labeled by a letter J , it proceeds by first
choosing a pair �K? � �=? � 
@.F>��K?9��J 	 , and then splitting into two copies. One copy enters the
state ? � and proceeds to the node �L!LR (the left child of � ), and the other copy enters the
state ? � and proceeds to the node �M! A (the right child of � ).

For a given set N , let O ���HN 	 be the set of positive Boolean formulas over N (i.e.,
Boolean formulas built from elements in N using 3 and 5 ), where we also allow the for-
mulas true and false and, as usual, 3 has precedence over 5 . For a set P )QN and a
formula R ./O ���KN 	 , we say that P satisfies R iff assigning true to elements in P and
assigning false to elements in N45SP makes R true.



We can represent the transition relation > of a nondeterministic automaton on binary
trees using O ��� � R'� A."M� < 	 . For example, >��H?9�=J 	 � �9�H? � ��? � 
 �*�H? � �=? � 
�" can be written
as >��H?9��J 	 � �;R'�=? � 	 3 � A���? � 	 5 � R'��? � 	 3 � A �=? � 	 , meaning that the automaton can choose
between two possibilities. In the first, the copy that proceeds to direction R enters the state
? � and the one that proceeds to direction A enters the state ? � . In the second, the copy that
proceeds to direction R enters the state ? � and the one that proceeds to direction A enters the
state ? � .

In nondeterministic tree automata, each conjunction in > has exactly one element as-
sociated with each direction. In alternating automata over binary trees, >��H?9�=J 	 can be an
arbitrary formula from O � �V� R � AL"9�"< 	 . We can have, for instance, a transition >��K?9��J 	 �
�;R ��? � 	 3 �;R ��? � 	 5 �;R ��? � 	 3 � A �=? � 	 3 � A �=? � 	 � The above transition illustrates that several
copies may go to the same direction and that the automaton is not required to send copies
to all the directions.

3.1 Graded Alternating Parity Tree Automata

For > S R , let � 
 >	� 
��6� � R�
 �*� A!
 ������� �*�;> 
�" and 
�
 > � � �6� 
 R �%��
 A �%������� ��
 >	� " , and let
� � �

��&D"0:1� 
 >	�8
-:/
 
 >	��� . A graded alternating automaton is an automaton in which the transition
function > maps a state ? and a letter J to a formula in O � � � � � < 	 . Intuitively, an atom
� & �=? 	 means that the automaton sends a copy of itself in state ? to the current node, an atom
� � 	=
 �=? 	 means that the automaton sends copies in states ? to 	��BA different children of
the current node, and �<
 	 �%��? 	 means that the automaton sends copies in state ? to all but 	
children of the current node. When, for instance, the automaton is in state ? , reads a node
� and >��K?9�=5 ���
	 	 � � ����
 ��? � 	 3 � & �=? � 	 5 � 
 
!�%��? � 	 , it can either send four copies in state
? � to four different children of � and send a copy in state ? � to � , or send copies in state
? � to *,+�-����
	 ? 
 children of � . So, while nondeterministic tree automata send exactly one
copy to each child, graded automata can send several copies to the same child, they have
& transitions, and extend symmetric automata [JW95,Wil99] by specifying the number of
children that need to satisfy an existential requirement or are exempt from satisfying a
universal one.

Formally, a graded automaton is a tuple � � � 32� >!�=<��=> ��?A@ �<� 
 , where 3 , < , ?�@ , and
� are as in alternating automata, > is a counting bound, and > ��< �C3+� O ��� � � �"< 	 is
a transition function. A run of � on an input 3 -labeled tree �4� �65 
 is a tree �4�����AT�
 (to be
formally defined shortly) in which each node corresponds to a node of � and is labeled by
an element of IN  �C< . A node in ��� , labeled by ���=�=? 	 , describes a copy of the automaton
that reads the node � of � and visits the state ? . Note that many nodes of ��� can correspond
to the same node of � ; in contrast, in a run of a nondeterministic automaton on �4� �65 

there is a one-to-one correspondence between the nodes of the run and the nodes of the
tree. The labels of a node and its children have to satisfy the transition function. Formally,
the run �H� � �!T�
 is an � IN  9�F< 	 -labeled IN-tree such that & . � � and T�� &�	 � � & ��?�@ 	 , and
for all 6 . � � with T��)6�	 � ���=�=? 	 and >��H?9�65 ���
	 	 �QR , there is a (possibly empty) set� ) � � �"< , such that

�
satisfies R , and for all �K� �	� 	 . �

, the following holds:

– If � �%& , then there is 
 . IN such that 69!�
 .2��� and T��)6
!�
�	 � ���=�	� 	 .
– If � � � 	=
 , then there are distinct � � ������� ��� 
 � � . IN such that for all A F

 F 	 � A ,

there is 
 ( . IN such that 6 !�
 ( .2��� and T��)6
!�
 ( 	 � ���(!�� � �	� 	 .
– If � � 
 	 � , then there are distinct � � ������� ����������������� 
 . IN such that for all A F�
KF
*,+�-����
	 ? 	 , there is 
 ( . IN such that 69!	
 ( .2� � and T��86 !�
 ( 	 � ���M!�� � ��� 	 .



Note that if R � true, then 6 need not have children. This is the reason why ��� may have
leaves. Also, since there exists no set

�
as required for R � false, we cannot have a run that

takes a transition with R � false.
A run �4� � �AT�
 is accepting if all its infinite paths satisfy the acceptance condition. We

consider here the parity acceptance condition, where � � � � � �
�
� ������� �

��� " is such that�
� )

�
� ) !�!�!�) ��� � < . The number � of sets in � is called the index of the automaton.

Given a run �H� � �AT�
 and an infinite path . )/�	� , let � 	��
�4.�	 )/< be such that ? . � 	��
�H.�	
if and only if there are infinitely many 64.". for which T��86 	 . IN � �A?
" . That is, � 	��
�4.�	
contains exactly all the states that appear infinitely often in . . A path . satisfies a parity
acceptance condition � � � � � �

�
� ������� �

� � " iff the minimal index � for which � 	��
�H.�	08� � E�43 is even. An automaton accepts a tree if and only if there exists a run that accepts it.
We denote by � �)� 	 the set of all 3 -labeled trees that � accepts.

Theorem 2. Given a sentence P of the graded " -calculus1 that counts up to > , we can

construct a graded alternating parity automaton �	� such that

1. � � accepts exactly all trees that satisfy P .

2. �
� has � P � states, index � P � , and counting bound > .

Proof. The construction generalizes the one for " -calculus sentences and parity automata
[KVW00]. Given P , we define the graded alternating automaton ����� � 
���
'�	> ����� �;P�	 ��> �!P �<� 
 ,
as follows:
For all J�.=
���
 , we define:

>�� +���J 	 � true if +/.2J , >�� +���J 	 � false if + E.2J ,
>��;,-+���J 	 � true if + E.2J , >��;,-+���J 	 � false if +/.2J ,

>�� � � 3 � � ��J 	 ��� & � � � 	 3 � & � � � 	 , >�� � ��5 � � ��J 	 � � & � � � 	 5 � & � � � 	 ,>�� � 	=
 � ��J 	 ��� � 	=
 � �
	 , >��<
 	 ��� ��J 	�� � 
 	 � � � 	 ,
>���"76�� �
�)6�	 ��J 	 � >����
��"76�� �
�)6�	 	 �=J 	 , >�� �96�� �
�)6�	 ��J 	 � >����
� �96�� �
�)6�	 	 �=J 	 	 .

For a " -calculus sentence P and a subformula � � : 6�� �
�)6�	 of P , we define the alternation

level of � in P , denoted ��:�� ��� 	 , as follows [BC96].

– If � is a sentence, then ��:�� � �
	 �BA .
– Otherwise, let � � : ( � � - ����	 be the innermost " or � subformula of P that has � as a

strict subformula. Then, if � is free in � and :-( E� : , we have ��:�� � �
	 ��� :�� ����	 �BA .
Otherwise, we have ��:�� ��� 	 ����:�� ����	 .
Intuitively, the alternation level of � in P is the number of alternating fixpoint operators

we have to “wrap � with” in order to reach a sub-sentence of P .
Let � be the maximal alternation level of subformulas of P . Denote by � � the set of

all the � -formulas in ��� ��P�	 of alternation level � . Denote by � � the set of all " -formulas in
��� �;P�	 of alternation depth less than or equal to � . Now, � � � � @�������� � � � � " , where

� @ �H3
1 A graded � -calculus sentence is guarded if for all !#"%$'&)( , all the occurrences of ! that are in a

scope of a fixpoint modality * are also in a scope of a graded modality that is itself in the scope

of * . Thus, a � -calculus sentence is guarded if for all !+",$-&)( , all the occurrences of ! are in the

scope of a graded modality. For example, the formula �.!0/21436587�9;:<!>= is guarded and the formula

7�9;: �.!0/2143?5@!�= is not guarded. Given a graded � -calculus formula, we can construct, in linear time,

an equivalent guarded formula (see [BB87,KVW00] for a proof for � -calculus, which is easily

extendible to graded � -calculus). Accordingly, we assume that all formulas are guarded. This is

essential for the correctness of the construction in the proof.



and, for every A F �*F � , we have
�
� � � � � �

� � � � :8� � and
�
� � � �

� � � � :8� � . It is easy
to see that

�
� )

�
� ) !�!�! ) �

� � .

3.2 Graded Nondeterministic Parity Tree Automata

For an integer > , a > -bound is pair in � � � ���VC ��R 	 ���VF ��R 	 ���VC ��A 	 ���VF ��A 	 ������� ���VC � > 	 � �VF
�	>�	�" . For a set P , a subset

� ) P , and a tuple � � ��� � ������� � �	# 
 .LP # , for some � CMR ,
the weight of

�
in � , denoted �����
	���
 � � ��� 	 , is the number of elements in � that are members

of
�

. That is, �����
	���
 � � ��� 	 ���?� � ��� ��. � "�� . For example, �����
	���
��V��A ��
 �	� "��*� A���
 ��
 ��� ��
�
 	��
� . We say that � satisfies a > -bound �VC � 	�	 with respect to

�
if �����
	���
 � � ��� 	 C 	 , and � sat-

isfies a > -bound �VF � 	�	 with respect to
�

if �����
	���
�� � ��� 	 F 	 .
For a set N , we use O �KN 	 to denote the set of all Boolean formulas over atoms in N .

Each formula R4.0O �HN 	 induces a set � ��� �HR 	U)H
�� such that � . �)��� �4R�	 iff � satisfies R .
For an integer >QS R , a > -counting constraint for 
 � is a relation � ) O �HN 	 � � � . For
example, if N��H�*6 � � 6 � � 6 � " , then we can have

� �<� �)6 � 5 ,�6 � � �VF �	� 	 
 ���)6 � � �VF ��
 	 
 ���86 � 3 6 � ���AC � A 	 
�"��
A tuple ��� ��� � ������� � ��# 
 . � 
�� 	

# satisfies the > -counting constraint � if for all �4R � � 
 .
� , the tuple � satisfies � with respect to �)��� �HR 	 . Thus, when R .(O �HN 	 is paired with �AC � 	�	 ,
at least 	 � A elements of � should satisfy R , and when R is paired with �AF � 	�	 , at most 	
elements in the tuple satisfy R . For example, the tuple � � � � 3'� �*6 � "�� ��6 � "�� �*6 � �<6 � " 
 does
not satisfy the constraint � above, as the number of sets in � � that satisfy 6 � 3 6 � is one.
On the other hand, the tuple � � � � 3 � ��6 � " � �*6 � � 6 � � 6 � "�� ��6 � � 6 � " 
 satisfies � . Indeed, three
sets in � � satisfy 6 � 5 ,�6 � , two sets satisfy 6 � , and two sets satisfy 6 � 3 6 � .

For a constraint � , the width of � is the number of R . O �KN 	 for which there is a
> -bound � such that �HR'� � 
4.�� . Note that R may be paired with several > -bounds. Still,
it is easy to replace � by an equivalent constraint � ( (that is, a tuple � satisfies � iff �
satisfies � ( ) in which R is paired with at most one constraint of the form �AC � 	�	 and at
most one constraint of the form �AF � 	�	 . We assume that we work with such minimized

constraints. Accordingly, for two > -counting constraints � � and � � , we denote by � �
� � �

the minimization of � � :�� � . That is, if �HR'���AC � 	 � 	 
 .�� � and �4R ���VC � 	 � 	<
 .�� � , then
� �
� � � contains only �4R'� �VC ��� �"!-� 	 � � 	 � " 	<
 , and dually for constraints of the form �VF

� 	�	 2.
We say that a constraint � is short if all the formulas R that appear in � are of size

linear in � N � and the width of � is at most � N � . We use # �HN �	> 	 to denote the set of all short
> -counting constraints for 
�� . We assume that the integers in the constraints are coded in
binary. Thus, the size of � .$# �HN �	> 	 is % � � N � ��������� > � 	 .
Lemma 1. Given a constraint � .&# �KN � > 	 and a set

� ) 
�� , deciding whether there is a

tuple � . � 
�� 	  such that � satisfies � can be done in space � A ��������� � > � A 	 � 	�� N � or time
� 
�> � 
 	�' �(' .
Proof. Since the width of � is at most � N � , an algorithm that guesses � (element by element)
and updates a counter for each R that participate in � requires space for storing the guess

2 To keep the ) operator efficient, we do not care for redundancies and contradictions that originate

from the relation between the formulas in the constraints. For example, a minimized * may contain

both 7,+ �.- 10/ - � = : and 7,+ ��- 10/ - � = : for + � that implies + � , and it may contain both 7,+ - 10/ - � = : and

7,+ - 101 - � = :



for the current element in 
�� , and for storing the values of the counters. The algorithm
terminates with a positive decision when the values of the counters are such that all the
> -bounds in � are satisfied. There are at most � N � counters, each may count up to at most
>��0A . Thus, the space required is � N ����� N � �������
�;>��0A 	 � . In addition, since the length of each
formula R that participate in � is linear in � N � , its valuation with respect to each element of
the tuple can be done in space � � � � N � [Lyn77].

A graded nondeterministic parity tree automaton (GNPT, for short) is � � � 32� >!�=< ��> �=? @ �	��
 ,
where 3 and > , ? @ , and � are as in GAPT, and the other components are as follows.

– The state space < is encoded by a finite set N of variables; that is, < )M
 � .
– The function > ��< �"3+� # �KN � > 	 maps a state and a letter to a > -counting constraint

for 
�� .

Note that, like GAPT, a GNPT is symmetric, in the sense it cannot distinguish between the
different children of a node.

A run of the graded nondeterministic automaton � on a 3 -labeled tree �H� �=5 
 is a
< -labeled tree �H� �AT�
 such that T�� &�	 � ?�@ and for every � .$� , the tuple ��T���� ! A 	 �!T����C!

�	 ������� �!T���� ! *,+�- ����	 	 
 satisfies >��;T����
	 �=5 ����	 	 . The run �H� �AT�
 is accepting if all its paths
satisfy the parity acceptance condition.

We consider two special cases of GNPT.

– In forall automata, for each ? . < and J . 3 there is � . < such that >��H?9�=J 	 �
�9� �;, R � 	 ���AF �!R 	<
�" , where R � . O �HN 	 is such that � ��� �HR � 	 � ���." . Thus, a forall au-
tomaton is a notational invariant of a deterministic tree automaton, where the transition
function maps ? and J to ����������� ���*
 .

– In safety automata, there is no acceptance condition, and all runs are accepting. Note
that this does not mean that safety automata accept all trees, as it may be that on some
trees the automaton does not have a run.

Lemma 2. Given a forall GNPT � � with 	 � states and index � , and a safety GNPT � �
with 	 � states and counting bound > , we can define a GNPT � such that � �)� 	 � � �;� � 	�8� �;� � 	 . Moreover, � has 	 � 	 � states, index � , and counting bound > .

Proof. Let � � � ��32�!R'��
��


��> � �=? @� �	� � 
 and � � � ��32�	>!��
�� I ��> � ��? @� 
 . Then, � � ��32�	>!�


 �



� � I ��> �=? @� :'? @� �<� 
 , where for a state ? .+
 �



� � I and J .E3 , we define >��H?9�=J 	��
> � �H?08 N � ��J 	�:
> � �K?089N � ��J 	 . Finally, � � � � �I
�� I is obtained from � � by replacing each
set

� � in � � by the set
� � �=
�� I .

4 The Nonemptiness Problem for GAPT

In this section we solve the nonemptiness problem for GAPT and conclude that the decid-
ability problem for graded " -calculus can be solved in EXPTIME. We first translate GAPT
to GNPT, and then solve the nonemptiness problem for GNPT.

4.1 From GAPT to GNPT

Consider a GAPT � � ��32�	>!�6<���> �=?�@��<� 
 . Let
� � � � ��&D"*: �<
 > � 
1: 
�
 >	� ��	 . Recall that the

transition function >���< �03 � O ��� � � �F< 	 maps a state and a letter to a formula in



O ��� � � � < 	 . A restriction of > is a partial function ��� < � 
 ��� � G . For a letter J .'3 ,
we say that a restriction � is relevant to J if for all ?0. < for which >��K?9��J 	 is satisfiable
(i.e., >��K?9��J 	 is not false), the set � �H? 	 satisfies >��H?9�=J 	 . If >��H?9�=J 	 is not satisfiable, then ���K? 	
is undefined. Intuitively, by choosing the atoms that are going to be satisfied, � removes
the nondeterminism in > . Let

�
be the set of restrictions of > . A running strategy of �

for a 3 -labeled tree �4� �65 
 is an
�

-labeled tree �H� � �7
 . We say that �H� � �7
 is relevant with
respect to �4� �65 
 if for all �/.L� , the restriction �
���
	 is relevant to 5 ���
	 .

Consider a restriction � relevant to J . For ? ./< , we say that a finite sequence � �
� @ ��� � ������� ����� � � is a step of � with ? and J if � @ � ? , for all R F ���$: , we have �4& �	�;� � � 	 .
� ���A� 	 , and � :������ � � 	�.���� ��� 	 , for : . �;> 
 : 
 >	� . Thus, � is a step of � with ? and J if by
following the restriction � at a node � labeled J , a run that visits ? can continue by first
taking : subsequent & -transitions and visiting �;@�������� �	� � , and then moving to a child of � in
state � � � � . We refer to � :���� � � � 	 as the last atom taken in the step. Note that : may be R . We
define the value of � , denoted @�� : ��� 	 , as the minimal � such that there is R	� 
IF$: � A with
�
�
. � � . Note that when � contains only two states, its value is induced by � � .
We say that a finite sequence � � �B@ �	� � ������� �	� � is an & -lasso of � with ? and J if

� @ � ? , for all R F�� FE:�? A , we have � & ���A� � � 	�.
��� �A� 	 , and there is R F �BF : such
that � & ����� 	�.
��� ��� 	 Thus, � is an & -lasso of � with ? and J if by following the restriction �
at a node � labeled J , there is R F �IF : such that a run that visits ? can eventually loop
forever in �������������	��� by taking subsequent & -transitions. The value of � with a loop starting
at � , denoted @���: ��������	 , is the minimal � such that there is � F 
BF : with �

�
. � � . We say

that � is rejecting if there is R F$� F : such that @���: ��� 	 is odd.

A local promise for the automaton � is a function � � <���
 G . We extend � to sets of
states, thus for

� )%< , we have ��� � 	 �HN������	���H? 	 . Let � be the set of all local promises.
A promise of � for a 3 -labeled tree �H� �=5 
 is a � -labeled tree �4� ��-'
 . Intuitively, in a run
that proceeds according to the promise �H� ��-'
 , if a node 6 ! 
 has �4. - �86 ! 
�	 �K? 	 and the
run visits its parent 6 in state ? and proceeds by choosing an atom � 	=
�� or 
 	 � � , for some
R F 	 F > , then 69!�
 is among the children of 6 that inherit � .

Consider a 3 -labeled tree �H� �=5 
 , a running strategy �H� � �7
 relevant to �4� �65 
 , and a
promise �4� ��- 
 . We say that a �4� �0< 	 -labeled tree �4� � �AT�
 is consistent with � and - if
�4� � �AT�
 suggests a possible run of � on �H� �=5 
 such that whenever the run �4� � �!T�
 is in state
? as it reads a node �/.2� , the restriction �
���
	��H? 	 is defined, the run proceeds according to
�
����	 �K? 	 , and it delivers requirements to each child �1!�
 according to - ���1!�
�	��H? 	 . Note that
since the counting constraints in �
����	 �H? 	 may not be satisfied, �4�����!T�
 may not be a legal
run. Formally, �H� � �AT�
 is consistent with � and - iff the following holds.

1. & .L� � and T��4& 	 � �4&9�=? @ 	 .
2. Consider a node 6 . ��� with T��86 	 � ������? 	 . Then, �
���
	��H? 	 is defined, and for all
�K� �	� 	 . �
����	 �H? 	 , the following hold:

– If � �%& , then there is 
 . IN such that 6 !	
 .(� � and T��86 !�
�	 � ���=��� 	 .
– If � � � 	=
 or � � 
 	 � , then for each 
/. IN with � . - ���(!�
�	��H? 	 , there is 
 ( . IN

such that 69!�
 ( .2� � and T��86 !�
 ( 	 � ���(!�
��	� 	 .
For a node �/.2� and a state ? .C< , we say that � is obliged to ? by �-��- , and 5 if � is

visited by ? in some labeled tree �4� � �AT�
 consistent with � and - . Note that while there may
be several trees consistent with � and - , they differ only in the order of children of nodes,
thus if � is visited by ? in some consistent tree, it is visited by all consistent trees.



Let 3 ( )E3 � � � � be such that for all �HJ � � � �9
 . 3 ( , we have that � is relevant
to J . For an infinite sequence �HJ @ � � @ � � @ 
 ���KJ � � � � � � � 
 ������� of triples in 3 ( and a sequence
(either finite or infinite) ? @ ��? � ������� of states, we say that ? @ ��? � ������� is a trace induced by
�HJ @ � � @ � � @ 
 �*�HJ � � � � � � � 
 ������� if ? @ is the initial state of � and there is a function + � � � IN �
IN such that + � ��� R 	 � R and for every � SKR , one of the following holds.

1. ����� � � � � �H? � 	 is empty, in which case ? � is the last state in the trace,
2. there is �4& ��? � � � 	 . ����� � � � ���H? � 	 and + � ��� � � A 	 � + � � � � 	 , or
3. ����� � � � � �H? � 	 contains � � 	=
 ��? � � � 	 or �<
 	 �%��? � � � 	 , ? � � � . ����� � � � � � � �K? � 	 , and + � ��� � � A 	��
+ � � � � 	�� A .

Intuitively, ? @ ��? � ������� is a trace induced by �KJ @ � � @ � � @ 
 �*�HJ � � � � � � � 
 ������� , if for every path
. ) � and for every run �4�����!T�
 on a 3 -labeled tree in which . is labeled by J @ �=J � ������� , if
�4� � �AT�
 is consistent with a running strategy in which . is labeled � @ � � � ������� and a promise
in which . is labeled � @ � � � ������� , then �4� � �AT�
 contains a path that visits the states ?�@���? � ������� .

Recall that 3 ( )$3 � � � � . We refer to a 3 ( -labeled tree as �H� ��� 5 � �-��- 	 
 , where 5 � � ,
and - are the projections of the tree on 3 ,

�
, and � , respectively. We say that a running

strategy �4� � �7
 and a promise �4� ��- 
 are good for �4� �65 
 if all the infinite traces induced by
paths in �4� � �K5 � �-��-�	<
 satisfy the acceptance condition � .

Consider a 3 -labeled tree �4� �65 
 , a running strategy �4� � �7
 , and a promise �4� ��- 
 . We
say that - fulfills � for 5 if the states promised to be visited by - satisfy the obligations
induced by � as it runs on 5 . Formally, - fulfills � for 5 if for every node �/.2� , and state
? such that � is obliged to ? by � , - , and 5 , the following hold:

1. For every atom � 	=
�� . �
����	 �K? 	 , at least 	 � A children �1!�
 of � have � .M- ���1!�
�	��H? 	 .
2. For every atom 
 	 � � . �
���
	 �K? 	 , at least *,+�- ����	 ? 	 children �0! 
 of � have � .
- ���1!	
�	��H? 	 .

Theorem 3. A GAPT � accepts �H� �=5 
 iff there exist a running strategy �4� � �7
 and a
promise �4� ��-'
 such that � is relevant for 5 , � and - are good for �4� �=5 
 , and - fulfills �
for 5 .

Intuitively, if � and - as above exist, the �H� �"< 	 -labeled trees that are consistent with
� and - suggest legal accepting runs of � on �4� �65 
 .

Annotating input trees with restrictions and local promises enables us to transform
GAPT to GNPT, with an exponential blow up:

Theorem 4. Consider a GAPT � such that � runs on 3 -labeled trees. There is a GNPT

� ( such that � ( runs on 3 ( -labeled trees and the following hold:

1. � ( accepts a tree iff � accepts its projection on 3 .

2. If � has 	 states, index � , and counting bound > , then � ( has 
 
 � � �
��� 	�




� � states,

index 	�� , and > -counting constraints.

Proof. Let ��� � 32� >!�=< ��> �=? @ �	��
 with � ��� � � ������� �
��� " . The automaton � ( is the inter-

section of two automata � ( � and � (� . The automaton � ( � is a forall GNPT and it accepts a
tree �H� ��� 5 � �-��- 	 
 iff � and - are good for 5 . The automaton � (� is a safety GNPT, and it
accepts a tree �H� ��� 5 � �-��- 	 
 iff - fulfills � for 5 . Note that, since 3 ( contains only triplets
�HJ � � � � 
 for which � is relevant to J , it must be that � is relevant to 5 . Thus, by Theorem 3,
it follows that � ( accepts �4� � �K5 � �-��- 	 
 iff � accepts �H� �=5 
 .



In order to define � ( � , we first define a nondeterministic co-parity word automaton
�

over 3 ( such that
�

accepts a word if some trace it induces is infinite and violates the
acceptance condition � . We define

� � ��3 (;� � ��� �	� @ � � (�
 , where

–
� � �K< � < �K� A ������� � �	" 	 :K�A?�� � � " . Intuitively, a state �H?9��?����	��
 �A@ 
 indicates that
the current state of the trace is ? , that it was reached by following a step whose last
transition is from the state ? ������
 , and the value of the step is @ (note that values are
calculated with respect to � ). Thus, ? corresponds to states ?;� � � in traces for which
+ � � � ��� A 	 � + � ��� � 	 � A . The number @ is used for the acceptance condition. In
addition, ? ���	�	
 is used for checking the obligation of the current position, given a local
promise in the input word.

– For every �H?9�=? ���	��
 �A@ 
 . �
and �HJ � � � �9
 ."3 ( , we distinguish between two cases.


 If ? E. ���H? ������
 	 , then the current position is not obliged to ? and � � �K?9��? ���	��
 �A@ 
 ���KJ � � � � 
 	��
3 .


 Otherwise, we again distinguish between two cases.
� If there is a rejecting & -lasso of � with ? and J , then � � �K?9��?����	��
 �!@9
 ���KJ � � � � 
 	��
�A?�� � � " .

� Otherwise, �H? ( �=? (���	�	
 �A@ ( 
 .�� �<�H?9�=?����	�	
9�A@ 
 �*�HJ � �-� �9
 	 iff there is a step ?9������� ��? (������
 �=? (
of � with ? and J such that the value of the step is @ ( .

In addition, � �H? � � � ���KJ � � � � 
 	 � �A? � � ��" for all �KJ � � � � 
 . 3 ( . Intuitively,
�

checks
whether a possible step of � with ? and J can participate in a rejecting trace. If the
current position is not obliged to the current state, no step of � can participate in a
trace, so

�
gets stuck. Otherwise, if there is a rejecting & -lasso of � with ? and J , a

rejecting trace is found and
�

moves to an accepting sink. Otherwise,
�

guesses other
possible steps of � with ? and J , and moves to a state which remembers the last two
states visited in the step (possibly ? (���	��
 � ? ), and the value of the step.

– � (@ � �H?�@ ��?�@ �=:;
 , where : is such that ?�@ . �
� . Note that the choice of the second element

is arbitrary, as the local promise at the root of the input tree is irrelevant.

– The co-parity condition is
� ( � � � (� �

� (� ������� �
� (� " , where for : SW
 , we have

� (� �< � < � �A:V" , and
� (� ���K< � < � � AL" 	Y: �;?�� � � " . That is, acceptance is determined

with respect to the values of the steps taken along the trace. Also, since
� ( is a co-parity

condition, the accepting sink ? � � � is in
� (� .

In order to get � ( � , we co-determinize
�

(note that
�

does not have & -transitions) and
expand it to a tree automaton on 3 ( . That is, we first construct a deterministic parity word
automaton

��
that complements

�
, and then replace a transition

�
� ������� 	 � � ( in

��
by a

transition
�
��� � ����� 	 � � � , R ��� ���AF �!R�	 
�" in � ( � , where the states of

��
are encoded by some

set N � of variables and for every state � ( , the formula R ��� ."O �KN � 	 holds only in the subset
of N � that encodes � ( . By [Saf89,Tho97], the automaton

��
has � 	�� 	 


�
states and index 	�� ,

thus so does � ( � . Hence � N � ��� 	�� ����� 	�� .

It is left to define the safety GNPT � (� . Let < ���	��
 �<�A? ������
 �#? ."< " be a copy of < in
which each state is tagged with ������� . The state space of � (� is < ( �<
#G � G����! #" . Intuitively,
each state ? ( of � (� corresponds to a pair � � � � ������
�
1. < � < , with

� � ? ( 8 < and� ���	��
 is obtained from ? ( 80<$���	��
 by removing the prev tags. The element
�

of ? ( is a
set of “commitments” that the current node should satisfy. The element

� ���	�	
 is used for
remembering the state of � that is visited in the parent node. When � (� is in state � � � � ������
�

and reads the letter �KJ � � � � 
 , it checks that all the commitments in

�
are covered by the



local promise ��� � ���	��
 	 in the input, and it delivers, for each ?�. � , the requirements on
the children as specified in � �K? 	 .

Consider a state � � � � ���	�	
 
 . < ( and a letter �KJ � � � � 
 .F3 ( . For every ? . � , let � �� � �
be the > -counting restriction in # � <��	> 	 imposed by � �K? 	 . (If � �H? 	 is undefined, we do not
care about � �� � � , since, as we see shortly, in that case � (� simply gets stuck.) Thus,

� �� � � �H� � �����VC � 	�	 
7� � 	=
�� . � �K? 	�"7: � � , �����VF � 	�	 
7� 
 	 � � . ���K? 	�"��
Intuitively, � �� � � restricts the tuple of the states that visit the children of the current node,
which is visited by � � � � ���	�	
 
 , so that � �H? 	 is satisfied by the first elements of the states. In
addition, the second element of the states in the tuple should be the encoding of

�
tagged

with ������� . This is done by the counting constraint � � , R ���	�	
� ���AF �!R 	<
�" , where R ���	�	
� .
O �K< ���	�	
 	 is such that the only set that satisfies R ������
� is the encoding of

�
tagged with

� � ��� . Finally, for every
� .B
 G , let � �� � � ��� � ����� � �� � � 	9: � �;, R ���	��
� ���VF ��R 	<
�" .

Then, � (� � � 3 ( �=< ( �=> ( � �A? @ ��? @ "!
 , where for every � � � � ���	�	
 
 ."< ( and �HJ � � � �9
 .C3 ( ,
we have

> ( � � � � � ������
 
 ���KJ � � � � 
 	��
�
3 if �
� � ������
 	 E) � or there is ? . � for which � �K? 	 is undefined,
� �� � � otherwise.

Note that < ( is defined with respect to the 
 	 variables <4:"< ���	�	
 . Also, all the formulas
R that are paired to constraints in � �� � � are either � or , � , for � . < , or , R ������
� . Hence, the
counting constraints in � (� are in # � <M:L< ���	��
 �	> 	 .

Now, by Lemma 2, we can define the the intersection � ( of � ( � and � (� as a GNPT with

 
 � � �

��� 	�



� � states, index 	�� , and > -counting constraints.

4.2 The nonemptiness problem for GNPT

In a nondeterministic parity tree automaton
� � ��32�=<���� ��? @ �<� 
 , the transition function

� � <F� 3 � 
#G�� maps a state and a letter to a set of possible tuples for the children states.
Thus, a run of nondeterministic tree automaton on a tree �4� �65 
 is a < -labeled tree �H� �AT�

in which T�� &�	 � ? @ and for all � . � , the tuple �;T����"! A 	 �AT����"!L
 	 ���������AT����"! *,+�-
���
	 	 
�.
� ��T����
	 �65 ���
	 	 . The nonemptiness test for parity tree automata then uses the local test
� � ��� 
,� � ���9
)G/�F< � � true � false " that given a set

� ) < and a state ? , returns true
iff there is a tuple �2. �  and J . 3 such that � . � �K?9��J 	 . It is easy to see how the
� � ��� 
,� � � test is used in a bottom-up nonemptiness algorithm for automata on finite trees,
where in order to find the set S of states from which the automaton accepts some tree,
one starts with the set

� @ of accepting states then define
� � � � as the set of states ? such

that either ? is in
� � or � � ���"
 � �����,� �=? 	 � true. In parity automata, the algorithm is more

complicated, as one has to also keep track of the acceptance condition, but the same local
test is used. Several nonemptiness algorithms for nondeterministic parity tree automata are
known. In particular, the algorithms in [EJS93,KV98] use % � 	

�
	 calls to is mother, where

	 is the size of < and � is the index of the automaton.
Recall that in GNPT, a run �4� �!T 
 should satisfy T�� &�	 � ? @ and for all � . � , the

tuple ��T����2!9A 	 �AT����2!L
�	 ������� �!T����2!,* +�-�����	 	 
 satisfies >���T�����	 �=5 ���
	 	 , which is a > -counting
constraint. Thus, the nonemptiness test is similar, only that the local test � � ��� 
,� � � �

 GF�
< � � true � false " now returns true for a set

� )/< and a state ? , iff there is � . �  and
J . 3 such that � satisfies >��K?9��J 	 . As with nondeterministic automata, the nonemptiness
algorithm can do % � 	

�
	 calls to � � ��� 
,� � � . Unlike the case for nondeterministic automata,



however, here there is no simple transition function to consult when we perform the local
test. In addition, we should take into an account the fact that the GNPT whose emptiness
we check have larger alphabets than the GAPT we have started with.

Consider a GAPT � � � 32�	> �=<��=> ��? @ �	��
 with 	 states, index � , and counting bound
> . Let us analyse carefully the complexity of the local � � ���"
 � ��� test in the GNPT � (
we constructed from � in Theorem 4. First, � ( has counting constraints in # �KN ( �	>�	 , for
N ( of size 	 � 
 � � ����� 	�� 	 . Hence, by Lemma 1, given

�
, the check whether there is a

tuple � . �  such that � satisfies >��K?9��J ( 	 , for a particular J ( ./3 ( , can be done in time
% � 
�> �4
 	 
 � � �

� � 	 



� � 	 . Now, 3 ( ) 3Q� � � � , where

�
is the set of restrictions for

> and � is the set of all local promises. Let � 3 � � : . Recall that a restriction relevant
to a letter J . 3 maps a state ?2.'< to a subset of

� � � < that satisfies >��K?9��J 	 . We can
restrict our attention to restrictions in which each state is paired with at most one element of
� � > 
 
 , one element of 
 � > 
%� , and & . Thus, � � � is bounded by � 
 > � ��	 
)I and � � � is bounded
by 
 
)I . It follows that � 3 ( �*F : � 
 > � ��	 
)I�
 
)I , thus � � ��� 
,� � � can be checked in time
: � > �4
 	�� � 
 � 
 ��� � � � 	 
 
 � � . Since, as in [EJS93,KV98], the nonemptiness problem can be
solved by % � 	

�
	 applications of � � ��� 
,� � � , we have the following.

Theorem 5. The nonemptiness problem for � ( can be solved in time 	
� : �;>��U
�	�� � 
 � 
 ��� � � � 	 
 
 � � � .

For a graded " -calculus formula P , we get, by Theorem 2, a GAPT � with 	 and �
bounded by � P � , and the same counting bound > as P . While > and : may be exponential in
� P � , only 	 and � appear in the exponents in the expression in Theorem 5. This implies the
upper bound in the theorem below. The lower bound is due to the fact that the " -calculus is
known to be EXPTIME-hard [FL79].

Corollary 1. The satisfiability problem for graded " -calculus is EXPTIME-complete even

if the numbers in the graded modalities are coded in binary.

Note that the space and time bounds in Lemma 1 stay valid for counting constraints that
involve richer bounds than �AC � 	�	 and �AF � 	�	 . For example, we can handle bounds of the
form �VC � �� 	 or �VF � �� 	 , bounding the fraction of elements in the tuple that satisfy a predicate
(of course, this is applicable only to structures where all points have only finitely many
successors). In general, Lemma 1 can handle arbitrary polynomial predicates � ) IN � ,
where a tuple � . � 
�� 	 # satisfies such a constraint �4R'�	��
 if ��� �����
	���
��V��� 
��HR 	 ��� 	 ��� 	 holds.
By defining the corresponding types of alternating automata, we can thus handle " -calculus
formulas with richer types of modalities.
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A Tree Model Property

In this section we show that the graded " -calculus has the tree model property. Thus, if
a formula � is satisfiable, it is also satisfiable in a tree. Moreover, the number of atleast
formulas in � and its counting bound induce a sufficient branching degree for the tree.

We first need some definitions. The closure of a sentence P , denoted ��� ��P�	 , is the small-
est set of sentences that satisfies the following:

– P . ��� �;P�	 ,



– if � � 3 � � . ��� ��P�	 or � � 5 � � . ��� ��P�	 , then � � � � � � " ) ��� ��P�	 ,
– if � 	=
 � .8��� ��P�	 or 
 	 � � . ��� ��P�	 , then � .8��� �;P�	 , and
– if : ��� ������	�.8��� ��P�	 , then ���;: ��� ������	 	 .8��� ��P�	 .

An atom of P is a maximal consistent set
�

of formulas in ��� ��P�	 . Formally,
�

satisfies the
following properties:

– if +0.0��� occurs in P , then +/. �
iff ,-+ E. �

,
– if � � 3 � � . ��� ��P�	 , then � � 3 � � .

�
iff � � � � � � " )

�
,

– if � � 5 � � . ��� ��P�	 , then � ��5 � � .
�

iff � � � � � � " 8
� E�43 , and

– if : ��� ������	�.8��� ��P�	 , then : ��� �����
	 . �
iff ��� : � � ������	 	 . �

.

The set of atoms of P is denoted �����;P�	 .
A pre-model � � ��.=
 for a sentence P consists of a Kripke structure

� � �)��� ��� ��� ��� 

and a mapping . �'� � ������P�	 that satisfies the following properties:

– there is � @ .=� with P .L. �;� @ 	 ,
– for +/.2��� , if +/.2. ��� 	 then �1.B� � +
	 , and if ,-+/.(. �;��	 then � E.Q� � +�	 ,
– if � 	=
 � .0. �;��	 , then there is 5 ) ������� � �;��	 such that � 5 �-C 	 and � .F. �;@�	 for all
@ .C5 , and

– if 
 	 � � .'. ��� 	 , then there is 5 ) ������� � �;��	 such that � 5 �YF 	 and � .'. ��@�	 for all
@ . ������� � �;��	95 5 .

A choice function for a pre-model � � ��.=
 of P is a partial function ��� � ��� ��� �;P�	 �
��� �;P�	9:B

� such that for all �1.=� , the following hold.

– If � � 5 � � .L. ��� 	 , then ��������� � � 5 � � 	 . � � � � � � " 8(. �;��	 .
– If � 	=
 � . . ��� 	 , then ����������� 	=
 � 	 � 5W)<������� � �;��	 such that � 5 ��C 	 and � . . ��@�	

for all @2.25 .
– if 
 	 � � .'. ��� 	 , then ����������
 	 � � 	 � 5 ) ������� � ��� 	 such that � 5 �9F 	 and � .'. ��@�	

for all @2. ������� � �;��	 5S5 .

An adorned pre-model � � ��.������ 
 consists of a pre-model � � ��.=
 together with a choice
function ��� . For an adorned pre-model �<�8��� ��� �����!� 
 ��.�� ���!
 of P , the derivation relation
� ) � � �%��� ��P�	 	 � � � �8��� ��P�	 	 is defined as follows:

– if � � 5 � � .2. ��� 	 , then ����� � � 5 � � 	
� ����������� � � 5 � � 	 	

– if � � 3 � � .2. ��� 	 , then ����� � � 3 � � 	
� ����� � � 	 and ����� � � 3 � � 	

� ����� � � 	 .
– if � 	=
 � .L. �;��	 , then ������� 	=
 � 	 � ��@-� � 	 for each @ .8����������� 	=
 � 	 ,
– if 
 	 ��� .L. ��� 	 , then ������
 	 ���
	 � ��@-� � 	 for each with @ . ������� � ��� 	Y5 ����� 
 	 � � 	 ,
– if : ��� ������	�.L. ��� 	 , then �����	: ��� ������	 	 � ����� ���;: ��� �����
	 	 	

Intuitively, the derivation relation � is such that in order to derive the satisfaction of � in
� as suggested by ��� , one needs to satisfy � ( in � ( , for all � ( and � ( with �;��� �
	 � ��� ( � � ( 	 .
For a least-fixpoint sentence, one should avoid a cyclic dependency in the derivation chain.
Formally, we say that a least-fixpoint sentence " ��� �����
	 is regenerated from point � to
point @ in an adorned pre-model � � ��.�� ����
 if there is a sequence � � � �!� � 	 ������� � � �

� �A� � 	@.
����� ��P�	 � � 	  with � S 
 such that � � � � � � " ��� �����
	 , � ��� � , @ �W�

�
, the formula

" ��� ������	 is a sub-sentence of each � � in the sequence, and for all A F � � � , we have
� � � �A� � 	 � � � � � � �A� � � � 	 . We then say that � � ��.�������
 is well-founded if there is no least
fixpoint sentence " ��� �����
	 . ��� ��P�	 and an infinite sequence � @��A� � ������� such that, for each
� SKR , " � � �����
	 is regenerated from � � to � � � � .



Lemma 3. A sentence P has a model
�

iff P has a well-founded adorned pre-model

� � ��.�� ����
 .
Proof (sketch): Assume first that P has a well-founded adorned pre-model � � ��.�� ����
 .
The proof that

�
is then a model of P is very similar to the analogous claim for " -calculus

formulas [SE89]. For the other direction, we should show that given a model
�

of P , we
can tag each state of

�
with an atom and a choice function and get a well-founded adorned

pre-model. This direction is harder, as it is not clear that the same choice can be made in
different visits to the same state of

�
. In [EJ91] (see also [Tho97]), a memoryless winning

strategy is defined for parity games. The strategy being memoryless means that the same
choice is made by the strategy in different visits to the same position of the game. Since
" -calculus formulas correspond to parity games, this implies the correctness of the lemma
for a " -calculus formula P . As we now show, graded " -calculus formulas also correspond
to parity games. A position of the game is a pair ��� � � 
 where � ) � is a set of points
and � is a formula. Essentially, the game is played between player 1, who tries to show that
� is satisfied in all the points in � , and player 2, who tries to show the opposite. Assume
that the current position of the game is ����� ��
 . When the set � is not a singleton, player 2
chooses � .�� and the game moves to position �;��� ��
 . When � � ��� " is a singleton,
the game proceeds as follows. If � � � � 3 � � , then player 2 chooses � � and the game
moves to position ����� � �;
 . On the other hand, when � � � � 5 � � , player 1 chooses the � �
to move to. Formulas of the form � 	=
 � ( and 
 	 ��� ( also involve a disjunction, and player 1
proceeds by picking the set of successors that should satisfy � ( , thus the new position is
��� ( � � ( 
 , where the size of � ( ) ������� � ��� 	 is 	 � A or *,+�-���� 	 ? 	 , respectively. Recall
that then, player 2 chooses the point in � ( to continue with. Finally, when � is of the form
: ��� � ( ���
	 , the new position is ����� � ( �;: ��� � ( ���
	 	 
 . Note that in parity games that correspond
to " -calculus formulas (equivalently, in the game described above with 	�� R ), the set � is
always a singleton. The parity winning condition is similar to the one for " -calculus. Now,
as in [SE89], the a memoryless strategy in the game induces the required choice function
and implies the existence of a well-founded adorned pre-model. ��

Theorem 6. Consider a sentence P such that P has : atleast subsentences, each counting

to at most > . If P is satisfiable, then P is satisfied in a tree with branching degree bounded

by :D!��;> � A 	 .

Proof. Assume that P be satisfiable. By Lemma 3, P has a well-founded adorned pre-
model � � ��.������ 
 . Let

� � �8��� ��� �!���!� 
 and let � @ . � be such that � @ . P / . Also,
let � 	 � 
 � � ������� �*� 	 �;
 � � be all the atleast formulas in ��� ��P�	 . Recall that > � � � !	� 	�� � A F
�&F :V" . We embody � � ��.������ 
 in a tree with branching degree bounded by : �;>��BA 	 . For
that, we define a partial mapping � � ��A ������� ��: �;> �BA 	�"  � � inductively, together with
an adorned pre-model � � ( ��. ( � ��� ( 
 , where

� ( � �)������� ( ��� ( ��� ( 
 is such that � ( is the
subset of � A ������� ��: � > � A 	�"  for which � is defined. The functions � ( and . ( are directly
induced by � and . . Formally, for a point �1.�� ( , we define . ( ����	 � . � � ���
	 	 , and for an
atomic proposition +�./��� , we define � .�� ( � +
	 iff � ���
	 .�� � +
	 . The choice function ��� (
for disjunctions is also directly induced by ��� . Formally, ��� ( ����� � � 5 � � 	 ������� � ����	 � � � 5� � 	 .

It is left to define ��( and the choice function ��� ( for atleast and allbut subsentences.
This is done inductively, together with the definition of � . The induction proceeds on the
length of the nodes � . � A ������� �=: �;> � A 	�"  . For the induction base, we set � � &�	��2� @ . Let



� SKR be such that � ����	 is already defined for nodes in ��. � A ������� �=: � >�� A 	�" � . Then, for all
�1. ��A�������� ��: �;> ��A 	�" � for which � ���
	 is defined and for all AUF 
IF$: , we do the following.

– If � 	
�

 �
�
. . ( ���
	 , then, since � � ��.�� ����
 is a pre-model and . ( ����	 � . ��� ���
	 	 , we

have that ����� � ���
	 �*� 	 � 
 � � 	 � � @ � ���������A@ 
�� � � " ) ������� � ��� ���
	 	 is such that for all
A F T F 	

�
� A , we have �

�
.(. �;@ � 	 . For all A F T F 	

�
� A , we do the following.

(i) If there is some 
 ( such that � ���1!	
 ( 	 �2@ � , we add � !�
 ( to the set ��� ( ���=�*� 	 � 
 � � 	 .
(ii) Otherwise, we set � ��� !���
 ? A 	�: ��T 	 � @ � , add ����� � � ��
 ? A 	�: ��T 	 
 to � ( , and add
�M! � � 
 ? A 	�: � T 	 to ��� ( ���=�*� 	 � 
 � � 	 .

– for each � with � ���
	�.�� and 
 	 � � .2. ( ���
	 , we set ��� ( ������
 	 � � 	���� � !	
 � � ���(!	
�	 .
������� ���
	 ��
 	 � � 	�" .
Since � � ��.������ 
 is an adorned pre-model, so is � � ( ��. ( ����� ( 
 . Moreover, if a sentence

" ��� ������	 is regenerated from � to 6 in � � ()��.9()� ��� ( 	 , then " � � �����
	 is also regenerated from
� ����	 to � �)6 	 in � � ��.������ 
 . Thus, since � � ��.������ 
 is well-founded, so is � � ( ��. ( ����� ( 
 . Fi-
nally, since all the transitions in � ( are from a node in the tree � A ������� �=: !��;>�� A 	�"  to its
children in the tree, then

� ( is the tree we seek, and P is satisfied in its root & .


