
Artificial Intelligence 48 (1991) 1-26 1
Elsevier

Attributive concept descriptions
with complements

Manfred Schmidt-Schaul3
Software AG, Uhlandstr. 12, 6100 Darmstadt, FRG

Gert Smolka
DFKI and Universitiit des Saarlandes, Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, FRG

Received: February 1989
Revised: January 1990

Abstract

Schmidt-SchaulL M. and G. Smolka, Attributive concept descriptions with complements,
Artificial Intelligence 48 (1991) 1-26.

We investigate the consequences of adding unions and complements to attributive concept
descriptions employed in terminological knowledge representation languages. It is shown
that deciding coherence and subsumption of such descriptions are PSPACE-complete
problems that can be decided with linear space.

I. Introduction

Research in knowledge representation has led to the development of so-
called terminological representation languages [4, 6, 14, 22, 24, 26-28, 35],
which originated with Brachman's KL-ONE [7] and grew out of research in
semantic networks and frame systems. These languages are based on attribu-
tive concept descriptions providing for the partial description of objects by
means of stating membership in concepts and giving restrictions for attributes
called roles. Brachman and Levesque's [5, 20, 21] Tarski-style semantics for
attributive concept descriptions models concepts as sets and roles as binary
relations. The denotation of an attributive concept description is then a set
obtained inductively from the description and the denotations of the occurring
concepts and roles.

The distinctive formation rules for concept descriptions are role quantifica-
tions of the form VR: C and 3R: C, where R is a role and C is a concept
description. A universal role quantification VR: C can be read as "all objects

0004-3702/91/$03.50 (~) 1991 - - Elsevier Science Publishers B.V.

2 M. Schrnidt-Schaufl, G. Smolka

for which all R are in C", and an existential role quantification 3R: C can be
read as "all objects for which there is an R in C". Given an interpretation J for
the occurring concept and role symbols, these descriptions denote the sets

and
(VR: C) '~= {a E DY [V(a, b) E R~: bE C ~}

(3R: C) y = {a E D~[3(a, b) E R~: b E C t} ,

where D ~ is the domain of 5~. Since concept descriptions denote sets, it's clear
how to provide for concept intersection (written CnD) , concept union
(written CLAD), and concept complement (written ~C) . Furthermore, we
assume that there is a concept "top" (written T) that denotes the entire
domain D ~ of the interpretation ~¢.

Concept descriptions can be used to state necessary or defining conditions
for concepts by means of so-called terminological axioms, which are either
inclusions or equations between concepts and concept descriptions. For in-
stance, we may write the terminological axioms

man-~person CI sex: male,

parent=person CI :lchild: T ,

father-parent I~ man,

grandfather-father f-I 3child: parent,

to define the concepts man, parent, father and grandfather in terms of the
concepts person and male and the roles sex and child. With complements we can
express relations like

woman-person - man,

where the concept difference person-man stands for person r~man . This
axiom implies that man and woman are disjoint and that every person is either a
woman or a man.

We can also express conditional knowledge like "animals that are featherless
bipeds are humans":

animal C_ featherless b iped~ human.

The symbol " C " stands for set inclusion and the concept implication

featherless_biped---, human

is an abbreviation for

Attributive concept descriptions 3

mfeatherless_biped LI human,

which is equivalent to

(featherless_biped ~-7 human).

Given a set T of terminological axioms, a concept description C is c o h e r e n t

in T if there exists at least one model of T in which C denotes a nonempty set.
Furthermore, a concept description C s u b s u m e s a concept description D in T if
C denotes in every model of T a superset of D. Checking coherence and
subsumption belong to the basic reasoning services of terminological repre-
sentation systems. Under certain restrictions on the terminological axioms T
[24-26], which are usually enforced in existing systems, coherence and sub-
sumption in T can be reduced to coherence and subsumption with respect to all
possible interpretations. If complements are available, subsumption and in-
coherence are linear-time reducible to each other since

C subsumes D ~ m C [] D incoherent,

C incoherent ~ --lq- subsumes C.

Brachman and Levesque [5, 20, 21] show that the subsumption problem for
descriptions built with concepts, intersections, universal role quantifications
and unqualified existential role quantifications (3R: T) can be solved in
quadratic time while it is co-NP-hard for a, seemingly, slightly more expressive
language. Nebel [23] shows that the subsumption problem for the concept
descriptions employed in the terminological representation system BACK is also
co-NP-hard. Schmidt-Schau8 [31] shows that subsumption is undecidable for
descriptions with so-called role value maps, which are available in KL-ONE [7]
and NIKL [14]. These results are all obtained under the assumption that there
are no terminological axioms. Recently, Nebel [25] has shown that even for the
most simple attributive concept descriptions subsumption with respect to
terminological axioms is co-NP-hard.

In this paper we investigate the computational complexity of subsumption
and coherence of attributive concept descriptions built from concepts, intersec-
tions, complements and universal role quantifications. This attributive concept
description language, called ~/&o~¢, is fairly expressive and enjoys pleasant
mathematical properties. ~/~'¢ is propositionally complete in that all boolean
set operations can be expressed. Union and difference, for instance, can be
expressed with

C L A D =-- -~(-1CN--nD),

C - D = - C m m D .

4 M. Schmidt-Schau[3, G. Smolka

Furthermore, existential role quantification can be expressed with

3R: C -= -I(VR: 7 C) .

As pointed out before, subsumption in 5g~c£ is linear-time equivalent to
incoherence.

We show that deciding coherence and subsumption of ,ff&c~g descriptions are
PSPACE-complete problems and give a linear-space exponential-time al-
gorithm for deciding coherence of ~¢ug descriptions (everything with respect
to all interpretations). Furthermore, we prove more specific complexity results
for sublanguages of MUg. The focus of this paper is on coherence checking,
which is a basic operation of the assertional reasoner in hybrid terminological
representation systems [24, 26]. In this respect our paper complements the
existing literature on terminological reasoning that concentrates on subsump-
tion checking. Although in the case of ~¢ug coherence and subsumption
checking reduce to each other in linear time, starting with coherence checking
leads to technically simpler algorithms and proofs.

Although the expressivity gained by complements could be very useful for
practical applications [10], attributive concept descriptions with complements
have not been studied theoretically before nor are they present in implemented
systems. One of the reasons may be Brachman and Levesque's [5, 20, 21]
influential argument that a knowledge representation service should be de-
signed such that it can be implemented with polynomial complexity, and their
suggestion that expressive power should be traded for tractability. Nebel's [25]
intractability result shows that this tradeoff is not available for terminological
reasoning systems: subsumption with respect to terminological axioms is
intractable even for the weakest attributive concept descriptions.

The conflict between expressive power and computational tractability has led
to the use of incomplete algorithms in existing theorem proving and knowledge
representation systems. The usefulness of such systems certainly increases if
one has a good understanding of the sources of incompleteness. We believe
that the study of complete methods contributes to this understanding and is
essential for the development of better, and better described, partial methods.

The paper is organized as follows. Section 2 introduces attributive concept
descriptions formally and states their obvious properties. Section 3 shows how
coherence of concept descriptions can be expressed in terms of constraint
systems, which will serve as the base for our computational investigations.
Section 4 gives completion rules for constraint systems that yield a proof-
theoretic characterization of coherence. In Section 5 we obtain coherence
checking algorithms for M ~ and some of its sublanguages by organizing the
completion rules with suitable control strategies. In Section 6 we establish the
PSPACE-hardness of coherence checking in J ~ ' g by reducing the validity
problem for quantified boolean formulas to it. Section 7 relates our results with

Attributive concept descriptions 5

work on feature descriptions used in unification grammar formalisms and logic
programming.

2. Attributive concept descriptions

Let two disjoint alphabets of symbols, called concepts and roles, respectively,
be given. We assume that T (read " top") is a concept symbol. The letters A
and B will always denote concept symbols and the letter R will always denote a
role symbol.

The attributive concept descriptions of the language ~/&egg are given by the
abstract syntax rule:

C , D --* A I V R : CI3R: C I C F I D I C U D I ' T C .

An interpretation • = (D ~, .Y) consists of a set D ~ (the domain of ~) and a
function -~ (the interpretation function of 5¢) that maps every concept descrip-
tion to a subset of D ~, every role to a subset of D ~ x D ~, and satisfies the
following equations:

T ~ = D ~ ,

(VR: C) ~ = {a ~ D ~ IV(a, b) ~ RY: b E C y },

(3R: C) ~ = {a E B y 13(a, b) ~ R~: b ~ C ~ },

(C[T D) ~ = C ~ 17 D ~ ,

(CI I D) ~= C y U D ~ ,

(-7C) ~ = D ~ - C ~ .

A concept description C is coherent if there exists an interpretation 5~ such
that C ~ is nonempty. A concept description C is subsumed by a concept
description D if C ~ C_ D y for every interpretation 5~. A concept description C is
equivalent to a concept description D (written C ~ D) if C y = D ~ for every
interpretation 5~.

Proposition 2.1. A concept description C is subsumed by a concept description
D if and only if the concept description C 77 7 D is incoherent.

Hence a coherence checking algorithm for M~'~ can also be used for testing
subsumption in M c~ . Since a concept description is incoherent if and only if it
is subsumed by --aT (the empty set), a subsumption checking algorithm can
also be used for coherence checking.

6 M. Schmidt-Schaufi. G. Smolka

The syntax of a / ~ is redundant. For instance, T is equivalent to A U T A
for every concept symbol A, 3R: C is equivalent to -~(VR: ~ C) and C U D is
equivalent to --7 (-7 C ~ -7 D).

The redundant syntax provides for the simplification of complex comple-
ments to simple complements of the form ~ A , where A is a concept symbol.
This can be done in linear time by pushing down complex complements with
the following equivalences:

-7(VR: C) ~ 3R: 7 C ,

7(3R: C) - V R : ~ C ,

7(CF] D) ~ T C U T D ,

7 (C U D) ~ T C N - T D ,

- 7 7 C - C.

We call a concept description simple if it contains only simple complements.

Proposition 2.2. For every concept description one can compute in linear time
an equivalent simple concept description.

We define three sublanguages of a / ~ :

• a / £ ~ is obtained from a/£e~.g by allowing only simple concept descriptions
containing no unions;

• a/£a0-//is obtained from a/&~-£ by allowing only simple concept descriptions
and restricting existential role quantifications to the form 3R: T;

• a/Z# is obtained from a/£,zg by allowing only simple concept descriptions
containing no unions and restricting existential role quantifications to the
form 3R: T.

Note that a /~ is the intersection of a / ~ and a/Zeq/. The names of these
languages are cooked up as follows: a/~o// is obtained from a/Ze by adding
unions, a/£eg is obtained from a/£o by adding general existential role quantifica-
tions, and a/&ac£ is obtained from ag~ by adding general complements. We
consider a/5~ to be the minimal sensible attributive concept description lan-
guage. Without simple complements no two concept descriptions could be
disjoint.

Proposition 2.3. Deciding coherence of a/£f°R concept descriptions is NP-hard,
and deciding subsumption of ~l~P°ll concept descriptions & co-NP-hard. Th&
holds already for descriptions not containing roles.

Proof. Since C is incoherent if and only if C is subsumed by -7 T, it suffices to
show that checking coherence is NP-hard.

Attributive concept descriptions 7

It is well-known that deciding the satisfiability of propositional formulas in
conjunctive normal form (CNF) is an NP-complete problem (see, for instance,
[12]). A propositional formula in CNF can be seen as an J ~ concept
description by regarding propositional variables as concepts, conjunctions as
intersections, disjunctions as unions, and negations as complements.

Let F = F 1 ̂ - .- A F, be a propositional formula in CNF, where every F~ is a
disjunction of literals. Obviously, F is satisfiable if and only if one can choose
in every F~ a literal L i such that L 1 , . . . , L n don't contain a complementary
pair.

Suppose F is satisfiable. Then there exist L 1 L, as specified above. Let
be the interpretation such that

D" --- {1},

A~=~{1} , if A = Li for some i,
[t~, otherwise,

R ~---0 for every role R .

Then F y = L7 = {1} for i ~ 1 . . n, which shows that F is a coherent concept
description.

Suppose F is a coherent concept description. Then there exists an interpreta-
tion # and an a E D y such that a E F a. Hence every F i contains a literal Li such
that a ~ LT. Thus L 1 , . . . , L~ don't contain a complementary pair, which
shows that F is satisfiable. []

In this paper we are going to prove the following results:

(1) Checking coherence and subsumption of M ~ concept descriptions are
PSPACE-complete problems that can be decided with linear space.

(2) Incoherence (not coherence) of M R concept descriptions can be de-
cided in nondeterministic linear time.

(3) Checking coherence of M~9/ concept descriptions is an NP-complete
problem (we have already shown that checking subsumption of M&'~
concept descriptions is a co-NP-hard problem).

(4) Coherence of MZf concept descriptions can be checked in linear time.

Using some of the techniques of this paper, Donini et al. [8] recently showed
that checking coherence of M&'~ concept descriptions is co-NP-complete, and
that checking subsumption of M&'~ concept descriptions is NP-complete.
Hollunder [13] shows that M~'~ extended with number constraints or role
hierarchies still has a PSPACE-complete subsumption relation. Furthermore,
he shows that M ~ remains decidable if both extensions are added.

The relationship between our attributive concept description languages and
the languages ~ and ~£E- in [5, 20, 21] is as follows:

8 M. Schmidt-SchaufL G. Smolka

~ffL# -= o%5 v + simple complements,

~ / ~ -= g~Sf + general complements

--~ J , ~ + ± + SELF ,

where I is a concept and SELF is a role whose interpretations are fixed as

±J= 0,

SELF J = {(a, a) l a ~ D ~}

in every interpretation 5~. The first equation is obvious. The other two
equations follow from the equivalences:

(RESTRICT (RESTRICT R C) D) - - (RESTRICT R (AND C D)) ,

(ALL (RESTRICT R C) D) - V R : (- T C U D) ,

(SOME (RESTRICT g C))~ 3R: C ,

(ALL (RESTRICT SELF C)_L) ~ - -7C,

VSELF: C ~ C ,

3SELF: C - C .

Since every ff~?-concept description is coherent (see Theorem 4.6), ~5¢- is a
proper sublanguage of ~ ' ~ and , ~ is a proper sublanguage of ~/Lac£.

3. Constraint systems

The applicative structure of concept descriptions is rather unsuitable for
devising coherence checking algorithms. However, every concept description
can be translated in linear time into a constraint system such that the concept
description is coherent if and only if the constraint system is satisfiable. For
constraint systems we will give simplification rules that preserve satisfiability
and unsatisfiability. With an appropriate control these simplification rules yield
transparent satisfiability checking algorithms.

Every M ~ description can be translated into a formula of predicate logic
such that the concept description is coherent if and only if the formula is
satisfiable. This translation translates role quantifiers into the corresponding
quantifiers of predicate logic. The constraints used here are not standard
formulas of predicate logic but are specially designed for M~U-g.

We assume the existence of two further disjoint alphabets of symbols, called
individual and concept variables, respectively. The letters x, y, z will always

Attributive concept descriptions 9

range over individual variables and the letters X, Y, Z will always range over
concept variables.

Let 5~ be an interpretation. An 5~-assignment is a function a that maps every
individual variable to an element of D y and every concept variable to a subset
of D ~. We use Ass ~ to denote the set of all St-assignments.

A constraint is a piece of abstract syntax having one of the forms:

X~_ C, X(VR)Y, X(3R)Y,

XE_ YI I Z , x: X , xRy ,

where C in the first form must be a simple concept description. Given an
interpretation 5~, we extend the interpretation function -~ to constraints by
interpreting them as sets of 5~-assignments:

(X ~ C) ~ = (or E ASSY I or(X) C C'~},

(X(VR) Y) ~ = (a ~ ASS" Ira ~ a(S)V(a, b) E R#: b E a(Y)} ,

(X(3R) Y) ~ = {a ~ ASS # Ira E a(X)3(a, b) E R~: b E a(Y)} ,

(X ~ y[IZ) d--- (or ~ASSI[ot(X) C tx(Y) U tx(Z)} ,

(X: X) # = {o¢ E ASS" I ot(x) ~ o~(X)) ,

(xRy) ~ = (a ~ aSSS [(a(x), a(y)) E RS).

An assignment in ~b s is called a solution of the constraint ~b in 5~.
A constraint system is a finite, nonempty set of constraints. Given an

interpretation ~, the solutions of a constraint system S in 5¢ are defined as
follows:

S ~ = C~ ¢~.
&ES

A constraint system S is called satisfiable if there exists an interpretation ~ in
which S has a solution. The next proposition gives a translation of simple ~ / ~
concept descriptions into constraint systems such that coherence corresponds to

satisfiability:

Proposition 3.1. Let x be an individual variable and X be a concept variable.
Then a simple concept description C is coherent if and only if the constraint

system { x ~ X , X E_ C} is satisfiable.

A constraint system S is simple if for every constraint X C C in S the concept
description C is either a concept symbol different from T or a complemented

concept symbol.

10 M. Schmidt-Schaufl. G. Smolka

The following unfolding rules can be used to simplify general constraint
systems to simple constraint systems:

X ~ V R : C --~ X (V R) Y , Y~_ C ,
where Y is a new variable ,

X U 3 R : C --~ X (3 R) Y , Y E _ C .
where Y is a new variable ,

X ~ C f ~ D ~ XC_C, X E D

X E C L I D -'--> X E _ Y L I Z , Y ~ C , Z C D ,
where Y, Z are new variables,

X~_ T --~ nothing.

Proposition 3.2. Let a constraint system S ' be obtained f rom a constraint system
S by the application o f an unfolding rule. Then S is satisfiable i f and only i f S ' is
satisfiable.

Proposition 3,3. For every constraint system S one can compute in linear time a
simple constraint system S ' such that S is satisfiable if and only i f S ' is
satisfiable.

A simple constraint system defines a labeled, directed graph, called its
skeleton, as follows: every concept variable occurring in the constraint system is
taken as a node, the constraints X (3 R) Y and X (V R) Y define existential and
universal edges from X to Y, respectively, and a constraint X ~_ Y LJ Z defines
an or-connected pair of edges from X to Y and X to Z. Furthermore, the
constraints X _E A and X _E -7 A define A and -7 A, respectively, as labels of the
node X. Thus every node has a finite, possibly empty set of labels, where every
label is either a concept symbol different from T or a complemented concept
symbol. The individual constraints x: X and xRy don't contribute to the
skeleton.

A constraint tree (constraint forest) is a simple constraint system whose
skeleton is a tree (forest). A constraint tree T is fresh if it can be obtained by
unfolding a simple M ~ concept description. Note that a fresh constraint tree
has only one constraint containing an individual variable, which has the form
x: X, where X is the root of the tree. Now we can formulate the main result of
this section:

Theorem 3.4. For every concept description C one can compute in linear time a
fresh constraint tree T such that C is coherent i f and only i f T is satisfiable.

Proof. First C is transformed into a simple concept description using the
simplification rules given in the previous section. Then the corresponding

Attributive concept descriptions 11

constraint system is created, which is then simplified to a fresh constraint tree
using the unfolding rules. All three steps require at most linear time and
preserve coherence/satisfiability and incoherence/unsatisfiability. []

4. Pebble semantics

We now define so-called complete constraint systems whose satisfiability can
be checked in linear time. We will show that every fresh constraint tree can be
transformed into a complete constraint system using completion rules that
preserve satisfiability in both directions. This yields a proof-theoretic charac-
terization of the coherence of ag£°cg descriptions called pebble semantics.
Pebble semantics provides a framework in which coherence checking al-
gorithms are obtained as completion algorithms for fresh constraint trees.

A clash is a constraint system having either the form {x: X, X E--aT) or the
form {x: X, X ~ A, x: Y, YE_~A} .

Proposition 4.1. Every constraint system containing a clash is unsatisfiable.
Furthermore, one can check in linear time whether a constraint system contains a
clash.

A complete constraint system is a simple constraint system S satisfying the
following conditions:

(1) If x:
y : Y

(2) I f x :
(3) Ifx:

X and X (3 R) Y are in S, then there exists a variable y such that
and xRy are in S.
X, X (V R) Y and xRy are in S, then y: Y is in S.
X and X E YU Z are in S, then x: Y or x: Z is in S.

Proposition 4.2. A complete constraint system is satisfiable if and only if it
contains no clash.

Proof. One direction is obvious. To see the other direction, let S be a complete
constraint system containing no clash. We define an interpretation 5~ by taking
for D s the set of all individual variables occurring in S, for A ~ the set of all x
such that x" X and XE_ A are in S for some X, and by taking for R ~ the set of
all pairs (x, y) such that xRy is in S. Now we obtain a solution a E S ~ by
mapping individual variables to themselves and taking for a(X) the set of all x
such that x" X is in S. []

A fresh constraint tree can be completed by propagating downwards the
individual variable belonging to its root. At existential edges new individual
variables are introduced as needed. The authors liked to visualize the individu-
al variables in this propagation process as pebbles. There are three completion
rules whose logical properties are stated in the following proposition:

12 M. Schmidt-SchauJ3, G. Smolka

Proposition 4.3. Let S be a constraint system. Then:
(1) i f x: X and X (3 R) Y are in S and y is an individual variable not occurring

in S, then S is satisfiable if and only i f S U {xRy, y: Y} is satisfiable;
(2) i f x: X, xRy and X (V R) Y are in S, then S is satisfiable if and only if

S U {y: Y} is satisfiable;
(3) if x: X and X E Y ~ Z are in S, then S is satisfiable if and only if

S U {x: Y} or S U {x: Z} is satisfiable.

To obtain an algorithm, we need to impose some control that ensures that
after finitely many completion steps no further completion step is applicable.
This leads to the completion rules given in Fig. 1.

Proposition 4.4. The basic completion rules in Fig. 1 have the following
properties:

(1) There is no infinite chain o f completion steps issuing from a fresh
constraint tree.

(2) A simple constraint system is complete if and only if none o f the
completion rules applies to it.

(3) I f T ' is obtained f rom a constraint tree T by one o f the completion rules,
then T ' is a constraint tree and T is satisfiable if T ' is" satisfiable.

A completion of a constraint tree T is a complete constraint tree that can be
obtained from T by finitely many applications of the basic completion rules in

Fig. 1.
Next we state the soundness and completeness of our pebble semantics for

fresh constraint trees. Soundness means that a fresh constraint tree is satisfiable
if it has a clash-free completion. Completeness means that every satisfiable
fresh constraint tree has a clash-free completion.

(1) S---~3 {Y: Y, x R y } U S
if x: X and X (3 R) Y are in S, there exists

no variable z such that xRz and z: Y are in S,
and y is a variable not occurring in S

(2) S---~v {Y: Y} U S
if x: X, xRy and X (V R) Y are in S and y: Y is not in S

(3) s {x: z} u s
if x: X and XE_ Y1U Yz are in S,

neither x: Y1 or x: Yz is in S, and Z is either Y /o r Y2

Fig. 1. The basic completion rules for constraint trees.

Attributive concept descriptions 13

Fig. 2. A family of skeletons for which the number of individual variables in every completion is
exponential in the size of the skeleton. These skeletons can be obtained from the concept
descriptions (3R: T) N (3R: T) • (VR: • • -). A "double-line edge" represents a universal edge
and a "single-line edge" represents an existential edge. Note that only one role symbol is used.

Theorem 4.5. Every fresh constraint tree has a completion. Furthermore, a
fresh constraint tree is satisfiable if and only if it has a clash-free completion.

Proof. Follows from the preceding propositions. []

Thus we have an algorithm for deciding coherence and subsumption of ~
concept descriptions. The example in Fig. 2 shows that the completions of a
fresh constraint tree can all be exponentially larger than the initial tree.
However , there is no need to keep the entire completion in memory. In the
next section we will give a smarter control for the completion rules yielding an
algorithm that requires only linear space.

Theorem 4.6. Every ~ concept description is coherent.

Proof. Let F be an f f ~ concept description and T be a simple constraint tree
obtained by unfolding F's translation into an ~ / ~ concept description.
Although F contains neither unions nor complements, T does since they are
introduced by the translation rule

(ALL (RESTRICT R C) D) --~ VR: (mCL3 D) .

However , if we complete T such that individual variables are always prop-
agated to the right-hand sides of unions, we obtain a clash-free completion
since then a pair {x: X, X: 7 A } cannot occur. []

5. Upper complexity bounds

In this section we will prove upper complexity bounds for the attributive
concept description languages ~/Af, M~9~g, M~0-// and M ~ . In particular, we
will show that coherence of MA~ concept descriptions can be decided with
linear space. The basic idea behind the linear-space algorithm is that a
completion can be sliced up into so-called traces such that the completion

14 M. Schmidt-Schaufl, G. Smolka

contains a clash if and only if one of its traces contains a clash. While the size
of completions can be exponential, the size of traces is linear in the size of the
initial concept description. The algorithm systematically enumerates traces
until it either finds a clash or has verified the existence of a clash-free
completion,

A partial completion of a fresh constraint tree T is a constraint tree that can
be obtained from T by finitely many applications of the completion rules. In
particular, a fresh constraint tree is a partial completion of itself. Given a
constraint tree T and individual variables x and y occurring in T, y is called a
successor of x and x is called a predecessor of y if T contains a constraint xRy.
An individual variable x occurring in a constraint tree T is called an individual
root of T if T contains a constraint x: X such that X is the root of the skeleton
of T.

Proposition 5.1. Let T be a partial completion of a fresh constraint tree. Then T
has a unique individual root, the individual root has no predecessor, and every
other individual variable occurring in T has a unique predecessor.

A partial completion U of a fresh constraint tree T is called a trace of T if

(1) no individual variable occurring in U has more than one successor;
(2) the completion rules --~v and --~u don't apply to U;
(3) every application of the completion rule ---~3 to U yields a constraint tree

containing an individual variable having two successors.

Traces can be computed using the following restriction of the existential
completion rule ---~3:

S ---~T3 {Y: Y, xRy} U S

if x: X and X (3 R) Y are in S ,

there is no constraint xR'y ' in S, and

y is a variable not occurring in S .

We define the binary relation ---~r on simple constraint systems by

-- '>T : = "--> T3 U ' ~ > v U --'>LJ ,

where --*rs, - % and --~u are the relations on simple constraint systems given
by the corresponding completion rules. Note that the traces of a fresh
constraint tree T are the --~ r-normal forms of T (that is, constraint trees U such
that T - - ~ U and U-->rV for no constraint tree V).

Attributive concept descriptions 15

eval : nat x constraint tree---> bool

eval(x, S) =
if {x: X, XL_ A , x : Y, YE_-~A}CS v {x: X, X E ~ T } C S

then false
elsif {x: X, X E y I I Z} C_ S A (X: Y) ~ S A (X: Z) ~ S

then eval(x, {x: Y} U S) v eval(x, {x: Z} U S)
else let y = x + 1 in

V{x: X, X (3 R) Y} C S:
eval(y, {y: Y} U {y: Z ' [3 { x : Z, Z (V R) Z ' } C_ S} U S)

Fig. 3. A functional linear-space satisfiability checking algorithm for flesh constraint trees, If T is a
fresh constraint tree and x is the individtial root of T, then eval(x, T) = true if and only if T has a
clash-flee completion, that is, is satisfiable. For convenience, individual variables are assumed to

be natural numbers.

Proposition 5.2. Let T be a fresh constraint tree. Then:
(1) if T---~ T' and T' contains the constraints x: X and y: X, then x = y

(that is, no concept variable in T' has more than one individual variable
associated with it);

(2) the length of ---~r-derivations issuing from T is bound linearly in the size
of T;

(3) every trace of T is contained in a completion of T;
(4) every completion T of T can be obtained as the union of finitely many

traces.

The recursive function eval in Fig. 3 yields true if the fresh constraint tree
given as its argument has a clash-free completion and false otherwise. The
maximum recursion depth is the height of the given tree. The function eval can
be executed such that, besides some control information, at most a trace of the
given tree is kept in memory. Hence eval needs at most space linear in the size
of the input tree. The total correctness of eval follows from the propositions we
have stated so far. Thus we have:

Theorem 5.3. Coherence and subsumption of sg&¢~¢ concept descriptions can be
checked with linear space.

Proposition 5.4. Let T be a fresh constraint tree not containing union con-
straints. Then:

(1) all completions of T are equal up to consistent renaming of individual
variables;

(2) T is satisfiable ¢~, T has a clash-free completion
¢:~ every completion of T is clash-free
¢~ no trace of T contains a clash.

16 M. Schmidt-Schaufl, G. Smolka

Theorem 5.5. Incoherence of ~ l ~ concept descriptions can be decided in
nondeterministic linear time. Thus the coherence problem for ~ l ~ concept
descriptions is in co-NP.

Proof. We have to show that unsatisfiability of fresh constraint trees containing
no union constraints can be decided in nondeterministic linear time. Since such
constraint trees are unsatisfiable if and only if they have a trace containing a
clash, this follows from the fact that every trace can be obtained by a

-->T-derivation whose length is bound linearly by the size of the constraint tree
it is issuing from. []

To establish our upper complexity bounds for ~¢~0-//and ~¢~, we need yet
another restriction of the completion rule ---~3:

S ---'T3 {Y: Y, xRy} U S

if x: X and X (3 R) Y are in S ,

there is no constraint xRy' in S, and

y is a variable not occurring in S .

Note that ---, T3 C--->T ~ since ---> T3 can be applied to at most one existential edge
at every level while --*T~ can be applied to several existential edges if they are
labeled with different relation symbols. We define the binary relation --->v on
simple constraint systems by

" I ">T : ---- "--'> T '::I U " - - > v U - ' - "~ U •

Note that --*V --C--->T since -"-~T3 ~"-~Y3"

Proposition 5.6. The length of---~T-derivations issuing from fresh constraint
trees is bound linearly in the size of the initial tree.

Proof. Let T be a fresh constraint tree and U be a constraint tree such that
T--** U. Then for every concept variable X in U there exists at most one
individual variable x such that the constraint x: X is in U. With this invariant
the claim is obvious. []

The T-completions of a fresh constraint tree T are the ---~v-normal forms of
T.

Proposition 5.7. Let T be a T-completion of a fresh constraint tree obtainable
by unfolding an ~l~c~Lmll concept description. I f T contains the constraints x: X,
X (3 R) Y and xRy, then T is satisfiable if and only if T tO {y: Y} is satisfiable.

Attributive concept descriptions 17

Proof. Follows from the fact that every concept variable reachable through an
existential edge is an unlabeled leaf. []

Proposition 5.8. Let T be a fresh constraint tree obtainable by unfolding an
~ 9 1 concept description. Then T is satisfiable if and only if T has a clash-free
-F -completion.

Proof. If T is satisfiable, we know by Theorem 4.5 that T has a clash-free
completion. Hence T has a clash-free T-completion. To show the other
direction, suppose T has a clash-flee T-completion U. Using the preceding
proposition, we can extend U to a complete constraint tree V since concept
variables reachable through existential edges are always leaves. Since U is
clash-flee and concept variables reachable through existential edges are not
labeled, V is clash-flee. Hence V is satisfiable. Since T C U C V, we thus know
that T is satisfiable. []

Theorem 5.9. Checking the coherence of M~l l concept descriptions is an
NP-complete problem.

Proof. The NP-hardness was already stated in Proposition 2.3. That coherence
checking is in N P follows from the preceding theorem since unfolding can be
done in linear time, every T-completion can be computed in nondeterministic
linear time, and clash-freeness can be checked in linear time. []

Theorem 5.10. Coherence of M2g concept descriptions can be checked in linear
time.

Proof. Let T be a flesh constraint tree obtainable by unfolding an M~ concept
description. Then all T-completions of T are equal up to consistent renaming
of individual variables. Thus it suffices to compute any -r-completion and to
check it for clashes. []

6. PSPACE-completeness

We now show that deciding coherence and subsumption of M&~-¢ concept
descriptions are problems that are as hard as any problem that can be decided
with polynomial space. Since we have proved in the last section that coherence
and subsumption of M ~ concept descriptions can be decided with linear
space, we will be able to conclude that these problems are PSPACE-complete.
The PSPACE-hardness of the coherence problem for MAc~¢ concept descrip-
tions is proved by reducing the validity problem for quantified boolean
formulas to it.

18 M. Schmidt-Schaufl, G. Smolka

6.1. Quantified boolean formulas

We now review quantified boolean formulas whose validity problem (called
QBF, for short) is known to be PSPACE-complete (see, for instance, [12]). We
use a notation providing for a smooth reduction of QBF to the coherence

problem for , ~ / ~ .

A literal is a nonzero integer. A clause is a nonempty sequence l~ . . . l n of

literals such that I111 <~ 112[<-.. . <-I1,1. Aprefix from m to n, where m and n are
positive integers such that m ~< n, is a sequence

(Qmm)(Qm+lm + 1) . . . (Q , n) ,

where each Qi is either "V" or " 3 " . A quantified boo&an formula is a pair
P.M, where, for some n, P is a prefix from 1 to n and M is a finite nonempty
set of clauses containing only literals between - n and n (M is called the matrix
of the formula).

Let P be a prefix from m to n. A P-assignment is a mapping

{ m , m + l n} ----) {0 ,1} .

An assignment a satisfies a literal l if a (l) = 1 if I is positive and a (- l) = 0 if I is
negative. An assignment satisfies a clause if it satisfies at least one literal of the

clause.
Let P be a prefix from m to n. A set A of P-assignments is canonical for P if

it satisfies the following conditions:

(1) A is nonempty.
(2) If P = (3m)P', then all assignments of A agree on m and, if P ' is

nonempty, {alUm+ 1 ~1 o~ EA } is canonical for P'.
(3) If P = (Vm)P ' , then

(a) A contains an assignment that satisfies m and, if P ' is nonempty,
(O~]{m+l }1 a E A A a(m) = 1} is canonical for P ' ;

(b) A contains an assignment that satisfies - m and, if P ' is nonempty,
{a[(m+ 1 ~1 a E A A a (m) = 0} is canonical for P'.

A quantified boolean formula P.M is valid if there exists a set A of
P-assignments canonical for P such that every assignment in A satisfies every
clause of M. An example of a valid quantified boolean formula written in a
readabIe syntax is

Yx3y.(-nx v y) A (X V ~ y) .

The following theorem is taken from [12]:

Theorem 6.1. Deciding the validity of quantified boolean formulas is a
PSPA CE-complete problem.

Attributive concept descriptions 19

6.2. T h e reduc t ion

In the following we assume R to be a fixed role symbol and A to be a fixed
concept symbol. Quantified boolean formulas are translated into ~ concept
descriptions using the equation

[P . { C , , . . . , C ,)] = [P] 1 7 [C ,] ° i - I . - . I q [C , ,] ° ,

where [P] is defined inductively by the equations

[(3re)P] = ((3R: A) [] (3R: 7A)) [] (YR: [P]) ,

[(Vrn)P] = (3R: A) [] (3R: mA) [] ('dR: [P]) ,

[(3m)] = (3R: A) [] (3R: -qA),

[(Yrn)] = (3R: A) [] (3R: 7 A) ,

and [C] m is defined inductively by the equations

[lC] m = v R : [l C] re+l, if I l l > m ,

[m E] m = A I I [C] m ,

[- m C l m = T A I L[CI m ,

[l] m = Y R : [I] m÷l , if Itl > m ,

[m] m = A ,

[- - m] m = T A .

The number argument m of the translation function [C] m for clauses is
needed to ensure that only Unions of the form A II C or mA II C are intro-
duced, which is essential. Figure 4 gives an example of a translation.

1 l :x

A -~A A - A 2: y

w 3~. (~ v y) ,,, (~ v ~y)

Fig. 4. A valid quantified boolean formula and its translation into a constraint tree.

2(! M. Schmidt-SchauJ3, G. Smolka

To show that a quantified boolean formula is valid if and only if its
translation into an M~?~ concept description is coherent, we assign levels to the
variables occurring in constraint trees as follows:

(1) The concept variable that is the root of the constraint tree has the level
0.

(2) If the constraint tree contains a constraint X (3 R) Y or X (V R) Y and X
has the level n, then Y has the level n + 1.

(3) If the constraint tree contains a constraint X E_ YI__] Z, then X, Y and Z
all have the same level.

(4) If the constraint tree contains a constraint x: X, then x and X have the

same level.
(5) If the constraint tree contains a constraint xRy and x has the level n,

then y has the level n + 1.

This defines unique level assignments for constraint trees obtained from
fresh constraint trees by finitely many applications of the completion rules.

Lemma 6.2. A quantified boolean formula P.M is valid if and only if its
translation [P.M] is a coherent JoLcvg concept description.

Proof. Let P. { C~ C~ } be a quantified boolean formula such that P is a
prefix from 1 to m. Fur thermore, let /5 U C~ U • • • U (7,, be a fresh constraint
tree obtainable by unfolding the translation [P . { C ~ , . . . , Cn}], where /5 is a
fresh constraint tree obtainable by unfolding [P] and, for i ~ 1 . . n, Ci is a
fresh constraint tree obtainable by unfolding [Ci].

Let 15 be a trace of/5. T h e n / 5 contains exactly one individual variable x~ for

every i E 0 . . m. Fur thermore, P contains the chain xoRx ~ X m _ l R x m. We
say that i is true in t5 if P contains two constraints xg: X and X _E A, and that i is
false in /5 if t5 contains two constraints xi: X and X E -hA. Every i E 1 . . m is
either true or false in /5 but not both. Thus 15 defines a P-assignment a as
follows: a(i) = 1 if i is true in t5 and a (i) = 0 if i is false in /5.

Since no trace o f / 5 contains a clash, every completion o f / 5 is clash-free.
Fur thermore, the set of the P-assignments defined by the traces contained in a
completion o f /5 is canonical for P. Vice versa, every set of P-assignments that
is canonical for P can be obtained from the same completion of /5. This
correspondence between canonical sets of assignments and completions is
crucial for our proof.

Let C i be one of the clauses. Then Ci contains no existential edges. The
leaves of (~ correspond exactly to the literals of Cz. If l is a positive literal in C,
then the corresponding leaf X of (~i has the level l and C~ contains the
constraint X_~ A. If l is a negative literal in C, then the corresponding leaf X
of C~ has the level - 1 and C~ contains the constraint X ~ - ~ A .

"[P.M] coherent ~ P.M valid". (1)

Attributive concept descriptions 21

Suppose [P.{C~ Cn}] is a coherent ~/&¢~¢ concept description. Then
/5 U (~ U - . . U C~ has a clash-free complet ion/3 U C z U . . " U (~, such that /3 is
a completion of/5.

Let 15 be a trace of /5 such that P C_ t3 and let a be the P-assignment defined
by /5. Furthermore, let C~ be one of the clauses. It suffices to show that C~
contains a literal that is satisfied by a.

Let /5 U (~g be the clash-free trace of /5 U (~i such that C~ C_ (~. Then C~
contains exactly one constraint x: X such that X is a leaf. Since 6 i is clash-free,

satisfies the literal in C, that corresponds to X.

"P .M valid ~ [P.M] coherent". (2)

Suppose P.{ C1 Cn } is valid. Then there exists a set A of P-assignments
that is canonical for P such that every a ~ A satisfies every clause C~. Let /3 be
a c o m p l e t i o n o f / s t h a t yields A. It suffices to show that there exists a clash-free
completion P U Ci of /5 U (~i for every clause C i since the union of these
completions is a clash-free completion of /5 U t~ 1 U . ' . U (~n (because no (~i
contains an existential edge and every individual variable having a level
between 1 and m is either true or false in /3).

Let C~ be one of the clauses and let ---->Q be the following restriction of the
completion rule ~ , :

if X ~_ Yl t_J Y2 , x : X , x : Z, Z ~ C and Y1E_ D are in S ,

then a d d x : Y l i f C = D a n d x : Y 2 i f C ~ D .

By applying the completion rules - % and --~o to /3 U (~i we obtain a comple-
tion P U C i o f / 5 U Ci. It remains to show tha t /3 U C i is clash-free.

Suppose P U Ci contains a clash. Let xoRx I , . . . , xk_lRx k be constraints in/3
such that x 0 has the level 0 and x k is involved in a clash in /3 U C~. Because
/3 U (~ was obtained using the completion rule '-*e, the greatest level in t~ i
must be k. Let PC_P be a trace of P containing the constraints
XoRX 1 Xk_IRX k and let a ~ A be the P-assignment defined by/5. Now it is
easy to verify that a satisfies no literal in C r This contradicts our assumption
that every assignment of A satisfies every clause. []

Theorem 6.3. Deciding coherence and subsumption of ~ I ~ concept descrip-
tions are PSPACE-complete problems.

Proof. In Section 2 we have shown that the subsumption and incoherence
problems can be reduced to each other in linear time. In Section 5 we have
shown that coherence can be decided with linear space. Since QBF is PSPACE-
complete and the given reduction to the coherence problem can be done in
quadratic time, we have the claim by the preceding lemma, which states the
correctness of the reduction. []

22 M. Schmidt-Schat~[3, G. Smolka

7. Feature descriptions

There is a second family of attributive concept descriptions known as feature
descriptions or feature terms [18, 30, 33, 34], which has been developed for the
syntactic description of natural languages with so-called unification grammars
[15, 19, 29, 32]. Closely related is Ait-Kaci's ~b-term calculus [1-3], which is
geared towards logic programming and knowledge representation. The distinc-
tive difference to ~ / ~ descriptions is that feature descriptions employ only
functional roles, called features, which results in very different computational
properties. In particular, the so-called agreement construct causes undecidabili-
ty with roles but doesn't with features. In this section we review feature
descriptions and compare them with M~7~ descriptions. A survey of both
terminological representation systems and unification grammars pointing out
their similarities and differences can be found in [26].

We first define the agreement construct for roles. For this it is convenient to
take a different, but equivalent, look at roles.

Let M be a set. Then a set function on M is a total function

f :2M----~ 2 M

such that

f(N) = [.J f ({a})
aEN

for every subset N C M. Note that a set function on M is given by its values on
the singletons of M, and that the composition of two set functions on M is
again a set function on M. Now every binary relation r on M defines a set
function r, on M by

r t ({a}) = {b](a, b) ~ r} ,

and every set function f on M defines a binary relation fs on M by

(a,b)Ef+ ¢¢, b E f ({ a }) .

This defines a bijection between the binary relations on M and the set functions
on M since f~T = f and rt~ = r.

A path is a finite, possibly empty sequence of roles. Given an interpretation
5 ~, a path R~ . . . R n denotes the composition of the set functions
(R~) t (R~)r , where (R~) t is applied first. The empty path is interpreted
by 5~ as the identity function of 2 °s.

An agreement is a concept description taking the form p ~ q, where p and q
are paths. Given an interpretation 5~, an agreement p $ q denotes the set of all
elements on which the paths p and q agree:

Attributive concept descriptions 23

(p .1, q)'~ = {d E DSlp~({d}) = qS({d})}.

Agreements are called role value maps in [7], where they are introduced as part
of KL-ONE. Only recently Schmidt-SchauB [31] showed that subsumption of
attributive concept descriptions built from agreements, concepts, intersections
and universal role quantifications is undecidable.

A role R is called a feature in an interpretation ,~ if R ~ is functional, that is,

(a , b) E R S ^ (a , c) E R j ~ b = c

for all a,b,c E D ~. An interpretation 5 ~ is called a feature interpretation if it
interprets every role as a feature.

Let ~/&'?~/be the language obtained from ~ l / ~ by adding agreements. The
already mentioned result of Schmidt-Schau6 [31] implies that coherence and
subsumption of ~¢~-¢~i/ descriptions with respect to all interpretations are
undecidable. However, if only feature interpretations are admitted, deciding
coherence of ~ ¢ ~ ¢ descriptions is an NP-complete problem [33, 34]. Conse-
quently, deciding subsumption of s ¢ ~ ¢ descriptions with respect to feature
interpretations is a co-NP-complete problem. The same complexities already
hold for ~ ¢ ~ descriptions. Hence adding agreement in the case where only
feature interpretations are admitted doesn't change the complexity while it
causes a jump from PSPACE-completeness to undecidability if all interpreta-
tions are admitted.

Not surprisingly, feature descriptions were developed for applications where
feature agreements are essential while applications of terminological repre-
sentation systems exploit general roles but avoid role agreements. Neverthe-
less, there are important applications in computational linguistics (for instance,
coordination) that could be given better solutions using general roles (in this
context usually known as set-valued attributes), and agreements could signifi-
cantly extend the applicability of terminological representation systems.

It is possible to have a decidable language that offers roles as well as
agreements for features. To this purpose one introduces different symbols for
(general) roles and features and admits only those interpretations that interpret
features with functional relations. Furthermore, agreements are only available
for paths containing only features. Hollunder [13] recently showed that such a
modification of ~ ¢ ~ i / h a s a decidable subsumption relation.

A crucial technical difference between features and roles is the fact that
features allow for a disjunctive normal form for concept descriptions while
general roles do not. To see this, note that the equivalences

(CU D) ~ E ~ (C[N E) U (D Vq E)

3R: (CI I D) ~ (3 R : C)t2(3R: D)

V R : (C I I D) ~ (V R : C) I I (V R : D)

24 M. Schmidt-Schau/3, G. Smolka

all hold for features, but that the last equivalence does not hold for roles. A
similar difference is that the equivalence

3R: (CF9 D) ~ (3R: C) V](3R: D)

holds for features but does not hold for roles. Another important difference is
that concept descriptions employing only features can be expressed as quan-
tifier-free formulas of predicate logic [33, 34], while this is not possible for
attributive concept descriptions employing general roles.

For unification grammar-based parsing of natural language algorithms [9, 11,
16, 17] have been developed that are reported to perform satisfactorily in
practice for feature descriptions with unions or disjunctions. It should be
interesting to attempt the extension of these techniques to concept descriptions
with general roles. One difficulty is that the algorithms for feature descriptions
are rather different from the algorithms developed in this paper. In particular,
our coherence checking algorithm for ,ff~U£ is not incremental, that is, doesn't
produce a simplified version of the checked description. The algorithms for
feature descriptions are incremental and are thus much better suited for
practical applications.

Acknowledgement

We are grateful to Bernhard Nebel for inspiring discussions. The research
reported in this paper was done while Schmidt-Schaul3 was with the DFKI in
Kaiserslautern and Smolka was with the IWBS of IBM Deutschland in
Stuttgart. Smolka was funded by the EUREKA Project Protos (EU 56).

References

[1] H. Ait-Kaci, An algebraic semantics approach to the effective resolution of type equations,
Theor. Comput. Sci. 45 (1986) 293-351.

[2] H. Ai't-Kaci, A lattice-theoretic approach to computation based on a calculus of partially
ordered type structures, Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA (1984).

[3] H. Ai't-Kaci and R. Nasr, LOGIN: a logic programming language with built-in inheritance, J.
Logic Program. 3 (1986) 185-215.

[4] A. Borgida, R.J. Brachman, D.L. McGuiness and L.A. Resnick, CLASSIC: a structural data
model for objects, in: Proceedings ACM S1GMOD International Conference on Management
of Data, Portland, OR (1989) 59-67.

[5} R.J, Brachman and H.J. Levesque, The tractability of subsumption in frame-based descrip-
tion languages, in: Proceedings AAAI-84, Austin, TX (1984) 34-37.

[6] R.J. Brachman, V. Pigman Gilbert and H.J. Levesque, An essential hybrid reasoning system:
knowledge and symbol level accounts in KRYPTON, in: Proceedings IJCAI-85, Los Angeles,
CA (1985) 532-539.

Attributive concept descriptions 25

[7] R.J. Brachman and J.G. Schmolze, An overview of the KL-ONE knowledge representation
system, Cogn. Sci. 9 (2) (1985) 171-216.

[8] F. Donini, B. Hollunder, M. Lenzerini, A.M. Spaccamela, D. Nardi and W. Nutt, The
complexity of existential quantification in terminological reasoning, DFKI-Rept., DFKI,
Kaiserslautern, FRG (to appear).

[9] J. D6rre and A. Eisele, Determining consistency of feature terms with distributed disjunc-
tions, in: D. Metzing, ed., GWAI-89, 13th German Workshop on Artificial Intelligence,
Informatik Fachberichte 216 (Springer, Berlin, 1989) 270-279.

[10] J. Doyle and R.S. Patil, Language restrictions, taxonomic classifications, and the utility of
representation services, Tech. Memo MIT/LCS/TM387, Laboratory for Computer Science,
MIT, Cambridge, MA (1989); also Artif. Intell. (1991).

[11] A. Eisele and J. D6rre, Unification of disjunctive feature descriptions, in: Proceedings 26th
Annual Meeting of the ACL, Buffalo, NY (1988) 286-294.

[12] M.R. Garey and D.S. Johnson, Computers and Intractability--A Guide to the Theory of
NP-Completeness (Freeman, San Francisco, CA, 1979).

[13] B. Hollunder and W. Nutt, Subsumption algorithms for concept description languages,
DFKI-Res. Rept. RR-90-04, DFKI, Kaiserslautern, FRG (1990).

[14] T.S. Kaczmarek, R. Bates and G. Robins, Recent developments in NIKL, in: Proceedings
AAAI-86, Philadelphia, PA (1986) 978-987.

[15] R.M. Kaplan and J. Bresnan, Lexical-functional grammar: a formal system for grammatical
representation, in: J. Bresnan, ed., The Mental Representation of Grammatical Relations
(MIT Press, Cambridge, MA, 1982) 173-381.

[16] R.T. Kasper, Feature structures: a logical theory with applications to language analysis, Ph.D.
Thesis, University of Michigan, Ann Arbor, MI (1987).

[17] R.T. Kasper, A unification method for disjunctive feature descriptions, in: Proceedings 25th
Annual Meeting of the ACL, Stanford, CA (1987) 235-242.

[18] R.T. Kasper and W.C. Rounds, A logical semantics for feature structures, in: Proceedings
24th Annual Meeting of the ACL, New York (1986) 257-265.

[19] M. Kay, Functional grammar, in: Proceedings Fifth Annual Meeting of the Berkeley Linguis-
tics Society, Berkeley, CA (1979).

[20] H.J. Levesque and R.J. Brachman, Expressiveness and tractability in knowledge representa-
tion and reasoning, Comput. Intell. 3 (1987) 78-93.

[21] H.J. Levesque and R.J. Brachman, A fundamental tradeoff in knowledge representation and
reasoning (revised version), in: R.J. Brachman and H.J. Levesque, eds., Readings in
Knowledge Representation (Morgan Kaufmann, Los Altos, CA, 1985) 41-70.

[22] R. MacGregor and R. Bates, The Loom knowledge representation language, Tech. Rept.
ISI/RS-87-188, University of Southern California, Information Science Institute, Marina del
Rey, CA (1987).

[23] B. Nebel, Computational complexity of terminological reasoning in BACK, Artif. Intell. 34
(1988) 371-383.

[24] B. Nebel, Reasoning and revision in hybrid representation systems, Ph.D. Thesis, Universit~it
des Saarlandes, Saarbriicken, FRG (1989); also in: Lecture Notes in Artificial Intelligence
(Springer, Berlin, to appear).

[25] B. Nebel, Terminological reasoning is inherently intractable, IWBS Rept. 82, IWBS, IBM
Deutschland, Stuttgart, FRG (1989); also Artif. Intell. 43 (1990) 235-249.

[26] B. Nebel and G. Smolka, Representation and reasoning with attributive descriptions, IWBS
Rept. 81, IWBS, IBM Deutschland, Stuttgart, FRG (1989); also in: K.H. Bl/isius, U.
Hedtstiick and C.-R. Rollinger, eds., Sorts and Types in Artificial Intelligence, Lecture Notes
in Artificial Intelligence 418 (Springer, Berlin, 1990) 112-139.

[27] B. Nebel and K. yon Luck, Hybrid reasoning in BACK, in: Z.W. Ras and L. Saitta, eds.,
Methodologies for Intelligent Systems (North-Holland, Amsterdam, 1988) 260-269.

[28] P.F. Patel-Schneider, Small can be beautiful in knowledge representation, in: Proceedings
IEEE Workshop on Principles of Knowledge-Based Systems, Denver, CO (1984) 11-16.

[29] C. Pollard and I.A. Sag, An Information-Based Syntax and Semantics, CSLI Lecture Notes 13
(Center for the Study of Language and Information, Stanford, CA, 1987).

26 M. Schmidt-Schaufl, G. Smolka

[30] W.C. Rounds and R.T. Kasper, A complete logical calculus for record structures representing
linguistic information, in: Proceedings First IEEE Symposium on Logic in Computer Science,
Boston, MA (1986) 38-43.

[31] M. Schmidt-Schauf3, Subsumption in KL-ONE is undecidable, in: R.J. Brachman, H.J.
Levesque and R. Reiter, eds., Proceedings First International Conference on Principles of
Knowledge Representation and Reasoning, Toronto, Ont. (1989) 421-431.

[32] S,M. Shieber, An Introduction to Unification-Based Approaches to Grammar, CSLI Lecture
Notes 4 (Center for the Study of Language and Information, Stanford, CA, 1986).

[33] G. Smolka, Feature constraint logics for unification grammars, IWBS Rept, 93, IWBS, IBM
Deutschland, Stuttgart, FRG (1989); also J. Logic Program. (to appear).

[34] G. Smolka~ A feature logic with subsorts, L/LOG Rept. 33, IWBS, IBM Deutschland,
Stuttgart, FRG (1988).

[35] M.B. Vilain, The restricted language architecture of a hybrid representation system, in:
Proceedings IJCAI-85, Los Angeles, CA (1985) 547-551.

