
The modular structure of an ontology:
an empirical study1

Chiara Del Vescovo, Bijan Parsia, Uli Sattler and Thomas Schneider
School of Computer Science, University of Manchester, UK

{delvescc,bparsia,sattler,schneider}@cs.man.ac.uk

Abstract Efficiently extracting a module from a given ontology that captures all
the ontology’s knowledge about a set of specified terms is a well-understood task.
This task can be based, for instance, on locality-based modules.

In contrast, extracting all modules of an ontology is computationally difficult
because there can be exponentially many. However, it is reasonable to assume that,
by revealing the modular structure of an ontology, we can obtain information about
its topicality, connectedness, structure, superfluous parts, or agreement between
actual and intended modeling. Furthermore, incremental reasoning makes use of a
number of, although not all possible, modules of an ontology.

We report on experiments to estimate the number of modules of real-life ontolo-
gies. We also evaluate the modular structure of ontologies that we succeeded to
fully modularise. In that evaluation, we look at the number and sizes of the mod-
ules, as well as the relation between module size and number and size of signatures
that lead to the module. Chances are that the understanding we report about small
ontologies can be applied to all ontologies.

Keywords. Ontologies, description logics, module extraction, syntactic locality,
ontology comprehension

1. Introduction

Why modularize an ontology? In software engineering, modularly structured systems
are desirable, all other things being equal. Given a well-designed modular program, it
is generally easier to process, modify, and analyze it and to reuse parts by exploiting
the modular structure. As a result, support for modules (or components, classes, objects,
packages, aspects) is a commonplace feature in programming languages.

Ontologies are computational artefacts akin to programs and, in notable examples,
can get quite large as well as complex, which suggests that exploiting modularity might
be fruitful, and research into modularity for ontologies has been an active area for on-
tology engineering. Recently, a lot of effort has gone into developing logically sensible
modules, that is, modules which offer strong logical guarantees for intuitive modular
properties. One such guarantee is called coverage and means that the module captures all
the ontology’s knowledge about a given set of terms (signature)—a kind of dependancy

1This work has been supported by the UK EPSRC grant no. EP/E065155/1.

isolation. This guarantee is provided by modules based on conservative extensions, but
also by efficiently computable approximations, such as locality-based modules.

The task of extracting one such module given a signature, which we call GetOne in
this section, is well understood and starting to be deployed in standard ontology devel-
opment environments, such as Protégé 4,2 and online.3 The extraction of locality-based
modules has already been effectively used in the field for ontology reuse [13] as well as
a subservice for incremental reasoning [4].

While GetOne is an important and useful service, it, by itself, tells us nothing about
the modular structure of the ontology as a whole. The modular structure is determined by
the set of all modules and their inter-relations, or at least a suitable subset thereof. We call
the task of a-posteriori determining the modular structure of an ontology GetStruct and,
in order to determine that structure, we investigate here the task GetAll of extracting all
modules. While GetOne is well-understood and often computationally cheap, GetAll has
hardly been examined for module notions with strong logical guarantees, with the work
described in [7] being a promising exception. GetOne also requires the user to know in
advance the right set of terms to input to the extractor: we call this a seed signature for
the module and note that one module can have several such seed signatures. Since there
are non-obvious relations between the final signature of a module and its seed signature,
users are often unsure how to generate a proper request and confused by the results. If
they had access to the overall modular structure of the ontology determined by GetAll,
they could use it to guide their extraction choices. In general, supported by the experience
described in [7], we believe that, by revealing the modular structure of an ontology, we
can obtain information about its topicality, connectedness, structure, superfluous parts,
or agreement between actual and intended modeling. Our use-cases include: for ontology
engineers, the possibility of checking the ontology design—for example, if the module
relative to some terms corresponds to the intuitive “knowledge encapsulation" about that
term; for end users, the possibility to support the understanding of what the ontology
deals with, and where the topic they want to focus on is placed within the ontology.

In the worst case, the number of all modules of an ontology is exponential in the
number of terms or axioms in the ontology, in fact in the minimum of these numbers.
Hence, it is possibly the case that ontologies have too many modules to extract all of
them, even with an optimized extraction methodology. Even with only polynomially
many modules, there may be too many for direct user inspection. Then, some other form
of analysis would have to be designed.

In this paper, we report on experiments to obtain or estimate this number and to
evaluate the modular structure of an ontology where we succeeded to compute it.

Related work. One solution to GetStruct is described in [7,6] via partitions related
to E-connections. The resulting modules are disjoint, and this technique is of limited
applicability—when it succeeds, it divides an ontology into three kinds of modules: (A)
those which import vocabulary from others, (B) those whose vocabulary is imported, and
(C) isolated parts. In experiments and user experience, the numbers of parts extracted
were quite low and often corresponded usefully to user understanding. For instance, the
tutorial ontology Koala, consisting of 42 logical axioms, is partitioned into one A-module
about animals and three B-modules about genders, degrees and habitats.

2http://www.co-ode.org/downloads/protege-x
3http://owl.cs.manchester.ac.uk/modularity

It has also been shown in [7] that certain combinations of these parts provide cover-
age. For Koala, such a combination would still be the whole ontology. In general, parti-
tions were observed to be too coarse grained; sometimes extraction resulted in a single
partition even though the ontology seemed well structured. Furthermore, the robustness
properties of the parts (e.g., under vocabulary extension) are not as well-understood as
those of locality-based modules. However, partitions share efficient computability with
locality-based modules.

Another approach to GetStruct is described in [2]. It underlies the tool ModOnto,
which aims at providing support for working with ontology modules that is similar to,
and borrows intuitions from, software modules. This approach is logic-based and a-
posteriori but, to the best of our knowledge, it has not been examined whether such
modules provide coverage in the above sense. Furthermore, ModOnto does not aim at
obtaining all modules from an ontology.

Another procedure for partitioning an ontology is described in [20]. However, this
method only takes the concept hierarchy of the ontology into account and can therefore
not provide the strong logical guarantee of coverage.

Among the a-posteriori approaches to GetOne, some provide logical guarantees
such as coverage, and others do not. The latter are not of interest for this paper. The
former are usually restricted to DLs of low expressivity, where deciding conservative
extensions—which underly coverage—is tractable. Prominent examples are the module
extraction feature of CEL [23] and the system MEX [15]. However, we aim at an ap-
proach that covers DLs up to OWL 2.

There are a number of logic-based approaches to modularity that function a-priori,
i.e., the modules of an ontology have to be specified in advance by features that are added
to the underlying (description) logic and whose semantics is well-defined. These ap-
proaches often support distributed reasoning; they include C-OWL [22], E-connections
[17], Distributed Description Logics [3], and Package-Based Description Logics [1].
Even in these cases, however, we may want to understand the modular structure of the
syntactically delineated parts. Furthermore, with imposed structure, it is not always clear
that that structure is correct. Decisions about modular structure have to be taken early
in the modeling which may enshrine misunderstandings. Examples were reported in [7],
where user attempts to capture the modular structure of their ontology by separating the
axioms into separate files were totally at odds with the analyzed structure.

Overview of the experiments and results. In the following, we will report on ex-
periments performed to extract all modules from several ontologies as a first solution
candidate for GetAll. We have considered three notions of modules based on syntactic
locality—they all provide coverage, but differ in the size of the modules and in other
useful properties of modules, see [19]—and extracted such modules for all subsets of
the terms in the respective ontology. At this stage, we are mainly interested in module
numbers rather than sizes or interrelations: the main concern is whether the suspected
combinatorial explosion occurs. In order to test the latter, we have sampled subsets of
each ontology and performed a full modularization on each subontology, measuring the
relation between module number and subontology size for each ontology. We have also
tried different approaches to reduce the number of modules to the most “interesting”
ones.

An extended version of this paper and additional material for the evaluation of the
experiments, such as spreadsheets and charts, are available online [8,18].

2. Preliminaries

Underlying description logics. We assume the reader to be familiar with OWL and
the underlying description logics (DLs) [11,10]. We consider an ontology to be a finite
set of axioms, which are of the form C v D or C ≡ D, where C,D are (possibly
complex) concepts, or R v S, where R,S are (possibly inverse) roles. Since we are
interested in the logical part of an ontology, we disregard non-logical axioms. However,
it is easy to add the corresponding annotation and declaration axioms in retrospect once
the logical part of a module has been extracted. This is included in the publicly available
implementation of locality-based module extraction in the OWL API.4

Let NC be a set of concept names, and NR a set of role names. A signature Σ is
a set of terms, i.e., Σ ⊆ NC ∪ NR. We can think of a signature as specifying a topic
of interest. Axioms that only use terms from Σ can be thought of as “on-topic”, and
all other axioms as “off-topic”. For instance, if Σ = {Animal,Duck,Grass, eats}, then
Duck v ∃eats.Grass is on-topic, while Duck v Bird is off-topic.

Any concept or role name, ontology, or axiom that uses only terms from Σ is called
a Σ-concept, Σ-role, Σ-ontology, or Σ-axiom. Given any such object X , we call the set
of terms in X the signature of X and denote it with X̃ .

Conservative extensions and locality. Conservative extensions (CEs) capture the above
described encapsulation of knowledge. They are defined as follows.

Definition 1 Let L be a DL,M⊆ O be L-ontologies, and Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) ofM w.r.t. L if for all GCI
axioms α over L with α̃ ⊆ Σ, it holds thatM |= α if and only if O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE ofM w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs, see
[9,16,19]. Therefore, approximations have been devised. We focus on syntactic locality
(here for short: locality). Locality-based modules can be efficiently computed and pro-
vide coverage, that is, they capture all the relevant entailments, but not necessarily only
those [5,12]. Although locality is defined for the DL SHIQ, it is straightforward to ex-
tend it to SHOIQ(D) (see [5,12]), and the implementation of locality-based module
extraction in the OWL API. We are using the notion of locality from [19].

Definition 2 An axiom α is called syntactically ⊥-local (>-local) w.r.t. signature Σ if it
is of the form C⊥ v C, C v C>, R⊥ v R (R v R>), or Trans(R⊥) (Trans(R>)),
where C is an arbitrary concept, R is an arbitrary role name, R⊥ /∈ Σ (R> /∈ Σ), and
C⊥ and C> are from Bot(Σ) and Top(Σ) as defined in Table 1 (a) (Table 1 (b)).

It has been shown in [5] thatM ⊆ O and all axioms in O \M being ⊥-local (or
all axioms being >-local) w.r.t. Σ ∪ M̃ is sufficient for O to be a Σ-dCE of M. The
converse does not hold: e.g., the axiom A ≡ B is neither ⊥- nor >-local w.r.t. {A}, but
the ontology {A ≡ B} is an {A}-dCE of the empty ontology.

It is described in [5] how to obtain modules of O for >- and ⊥-locality. We are
using the notions of >-, ⊥-, >⊥∗- and ⊥>∗-modules from [19, Def. 4]. That is, given an

4http://owlapi.sourceforge.net

(a) ⊥-Locality
Let A⊥, R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | >n̄ R.C⊥ | >n̄ R⊥.C

Top(Σ) ::= > | ¬C⊥ | C>1 u C>2 | >0 R.C

(b) >-Locality

Let A>, R> /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}
Bot(Σ) ::= ⊥ | ¬C> | C u C⊥ | C⊥ u C | >n̄ R.C⊥

Top(Σ) ::= A> | > | ¬C⊥ | C>1 u C>2 | >n̄ R>.C> | >0 R.C

Table 1. Syntactic locality conditions

ontology O, a seed signature Σ and a module notion x ∈ {>,⊥,>⊥∗,⊥>∗}, we denote
the x-module of O w.r.t. Σ by x-mod(Σ,O). If we do not specify x, we generally speak
of a locality-based module.

It is straightforward to show that >⊥∗-mod(Σ,O) = ⊥>∗-mod(Σ,O) for each
O and Σ. In contrast, >- and ⊥-modules do not have to be equal—in fact, the for-
mer are usually larger than the latter. Through the nesting, >⊥∗-mod(Σ,O) is always
contained in >-mod(Σ,O) and ⊥-mod(Σ,O). Finally, we want to point out that, for
M = x-mod(Σ,O), neither Σ ⊆ M̃ nor M̃ ⊆ Σ needs to hold.

The following property of locality-based modules will be of interest for our modu-
larization. For x ∈ {⊥,>}, Proposition 3 has been shown in [5]. The transfer to nested
modules is straightforward.

Proposition 3 Let O be an ontology, Σ be a signature, x ∈ {⊥,>,>⊥∗}; let M =
x-mod(Σ,O) and Σ′ be a signature with Σ ⊆ Σ′ ⊆ Σ ∪ M̃. Then x-mod(Σ′,O) =M.

Genuine modules. In order to limit the overall number of modules, we introduce the
notion of a genuine module. Intuitively, a given moduleM of an ontology is fake if it can
be partitioned into a set {M1, . . . ,Mn} of smaller modules such that each “relevant"
entailment ofM is an entailment of someMi.

Since the definition of relevance of an entailment within a module is still in progress,
we use a computable approximation, described in Definition 4. We first introduce some
useful notions. Let O be an ontology and M be the set of all modules of O. An atomic
concept C is called top-level forM (bottom-level forM) ifO |= A v C (O |= C v A)
for all atomic concepts A ∈ M̃ . A set {Σ1, . . . ,Σn} of signatures is calledM-almost
pairwise disjoint if every two signatures Σi,Σj with i 6= j are disjoint or share at most
one symbol, which is an atomic concept, and if the set of all these shared atomic concepts
contains at most one top-level and at most one bottom-level concept forM.

Definition 4 A moduleM∈M is called fake if there exist modulesM1, . . . ,Mn ∈M

such that M = M1] · · ·] Mn and the set {M̃1, . . . ,M̃n} is M-almost pairwise
disjoint. OtherwiseM is called genuine.

In particular, if a module is fake, then it consists of disjoint modules whose signa-
tures almost disjoint. For example, in Koala, we have a fake module about habitat that
consists of a rainforest and a dryforest submodule, which only overlap in the term habitat
and do not share any other terms and no axioms. Fake modules are uninteresting because
M being fake means that different seed signatures of theMi do not interact with each
other. Given that often the overall number of modules appears to grow exponentially with
the size of the subontology, a natural question arising is whether this is only caused by
the fact that there are exponentially many fake modules.

3. Description of the experiments

Ontologies. We performed the experiments on several existing ontologies that we con-
sider to be well designed and sufficiently diverse. “Well designed” means that these on-
tologies cover a specific domain to a certain level of detail; they are axiomatically rich,
for example, they do not only connect terms via atomic subsumptions, which would make
module extraction rather uninteresting because the terms in the signature of a module
would hardly cause other terms to be included in the module. We concentrate on well-
designed ontologies because we want to understand their structure. “Diverse” means that
these ontologies have different sizes, expressivities, ratios of axiom and term numbers,
and cover different domains.

We also selected some ontologies which have had successful and insightful full mod-
ularization by other techniques (in particular, Koala and OWL-S). Unfortunately, we have
had to restrict our attention to rather small ontologies for practical reasons. However, the
selection constitutes a set of ontologies which are commonly discussed in ontology engi-
neering circles and for which people have strong instincts about their modular structure.

Figure 1 gives an overview; most of these ontologies can be found in the TONES
ontology repository5.

Name DL expressivity #Axiomsa #Termsb

Koala ALCON (D) 42 25
Mereology SHIN 44 25
University SOIN (D) 52 39
People ALCHOIN 108 73
miniTambis ALCN (D) 173 226
OWL-S ALCHOIN (D) 277 137
Tambis ALCN (D) 595 494
Galen ALEHF+ 4,528 3,161

aWe only count logical axioms here.
bWe only count atomic concepts as well as abstract and concrete roles here.

Figure 1. Ontologies used in the experiments

Full modularization. Let O be the ontology to be modularized. Our goal is to find all
modules of O, i.e., to compute {x-mod(Σ,O) | Σ ∈ Õ}. In order to keep track of the

5http://owl.cs.manchester.ac.uk/repository

seed signatures, we seek an algorithm which, given O as input, returns a representation
of all pairs (Σ,M) with Σ ⊆ Õ andM = x-mod(Σ,O).

The most naïve procedure is to simply traverse through all seed signatures Σ, extract
the corresponding module and add it to the output. Since there are exponentially many
seed signatures, this is not feasible—even for Koala, 225 runs of even the easiest test is
unrealistic. Fortunately, we have good reasons to believe that there are significantly fewer
modules than seed signatures in realistic ontologies: first, Proposition 3 says that, given
the locality-based moduleM = x-mod(Σ,O), every seed signature Σ′ that extends Σ
and is a subset of Σ∪M̃ yields the same moduleM. Second, even if two seed signatures
Σ and Σ′ are not in such a relationship, the modules for Σ and Σ′ can still coincide.

It should be noted, however, that there are very simple families of ontologies that
already have exponentially many genuine modules, i.e., in the worst case, an exponential
number of modules cannot be avoided. For instance, each taxonomy of the form Tn =
{Ci v B | 1 6 i 6 n} has exponentially many (locality and dCE based) modules:
each subset of {C1, . . . , Cn} as a seed signature leads to a different ⊥-module, which
contains the axiom Ci v B if and only if Ci is in this set. For >-, >⊥∗- and dCE-
based modules, we can add B to each of these subsets and argue in the same way. This
example taxonomy still has only linearly many genuine modules—namely all {Ci v B}.
However, if we add the axiomB v A to Tn, we obtain an ontology having an exponential
number of genuine modules. Every moduleMJ :=M(Tn, A∪ΣJ) is genuine, where J
is a multi-index in the set {1, . . . , n} and ΣJ is the set of concepts with indexes belonging
to J . A relaxation of the genuinity definition does not help because we can replace the
axiomB v Awith a longer inclusion chain or an even more complex inclusion structure.

Other patterns that lead to exponentially many genuine modules include atomic dis-
jointness axioms and axioms involving simple existential restrictions and conjunctions.
Consider, for example, the taxonomy family T ′n = Tn ∪ {Di v Ci | 1 6 i 6 n}, where
each T ′n has only 3n+ 1 genuine modules, namely each nonempty subpath of any of the
n paths in the concept inclusion hierarchy plus the empty module. As soon as we add ax-
ioms {Ci v ¬Cj | 1 6 i < j 6 n} or {Ci v ∃Rij .Cj , Di v ∃Sij .Dj | 1 6 i < j 6 n}
or {Ci uXij v Cj , Di u Yij v Dj | 1 6 i < j 6 n}, all combinations of such paths
become genuine modules.

On the other hand, there are ontologies of arbitrary size that have exactly one mod-
ule, for instance those that consist of only non-local axioms or only tautologies. Fi-
nally, each ontology that consists of only atomic subsumption axioms which form a lin-
ear order has linearly many >- and ⊥-modules (each prefix or suffix of that order) and
quadratically many >⊥∗- and dCE-based modules (each subpath in this order). Thus,
while the worst case number of modules is high, it is not analytically impossible that real
ontologies would have a reasonable number of modules. Unfortunately, empirically, as
discussed in Section 4, this does not seem to be the case.

Since a module can have several seed signatures, we represent a module as a pair
consisting ofM and the set S of all minimal seed signatures Σ for whichM is a module.
Whenever a module for a new seed signature Σ′ is to be computed, we first check whether
Σ′ satisfies Σ ⊆ Σ′ ⊆ Σ∪M̃ for some already extracted moduleM and some associated
minimal seed signature Σ. Only if this is not the case, the moduleM′ = x-mod(Σ′,O)
is computed. IfM′ coincides with some already extracted moduleM, then Σ′ is added
to the set of minimal seed signatures associated withM; otherwise the pair ({Σ′},M′)

Algorithm 1 Extract all x-modules

1: Input: an ontology O with signature Õ
2: Output: a set M = {(S1,M1), . . . , (Sn,Mn)}

of all x-modules of O,
associated with their sets of
minimal seed signatures (SSigs)

3: {Start: extract x-modules for all singleton SSigs}
4: M← ∅
5: for all t ∈ Õ do
6: M← extract x-module of O w.r.t. {t}
7: call integrate(M, {t},M)
8: end for

9: {Extension: iteratively add single terms to SSigs}
10: while M contains (S,M) with marked Σ ∈ S do
11: (S,M)← some elem. of M with marked Σ ∈ S
12: Σ← some marked element of S
13: for all t ∈ Õ \ (Σ ∪ M̃) do
14: M′ ← extract x-module of O w.r.t. Σ ∪ {t}
15: call integrate(M,Σ ∪ {t},M′)
16: end for
17: unmark Σ in (S,M)
18: end while
19: return M

Algorithm 2
integrate(M,Σ,M)

for all (S ′,M′) ∈ M′

do
ifM =M′ then
S ′ ← S ′ ∪ Σ
mark Σ in (S ′,M′)
return

end if
end for
M←M ∪ ({Σ},M)
mark Σ in ({Σ},M′)
return

is added to the set of extracted modules. This is performed by Algorithm 1, which calls
Alg. 2. For soundness and completeness of Algorithm 1 and optimizations, see [8].

Sampling via subsets. In preliminary testing it soon became apparent that even our
optimized algorithm would not reasonably terminate on even fairly small ontologies.
Since we have a search space exponential in the size of the ontology and potentially
exponentially many modules, it was not clear whether the problem was that our algorithm
was not sufficiently optimized (so that the search space dominated) or that the output was
impossible to generate. Since it is pointless to try to optimize an algorithm for a function
whose output is exponentially large in the size of the typical input, it is imperative to
determine whether real-world ontologies do have an exponential number of modules.
This last question is one goal of the experiments described in this paper.

In order to test the hypothesis that real-life ontologies have an exponential number of
modules, we have sampled subsets of different sizes from the ontologies considered. By
fully modularizing each of these subsets, we can draw conclusions about the asymptotic
relation between its size and the number of modules obtained. Randomly generated sub-
sets would tend to contain unrelated axioms, taken out of the context in which they have
been included by the ontology developers. Since unrelated axioms, or ontologies with
many unrelated terms, generally yield many modules, it would be harder to justify the

hypothesis that real-world ontologies tend to have significantly less than exponentially
many modules if we used arbitrary, less coherent subsets.

We have therefore chosen to let each subset be a module for a randomly generated
signature—although we are aware that such subsets are more modular than necessary
because ontologies are not normally developed modularly. But this is not a problem: it
can only cause us to understate the number of modules.

We have sampled 10 signatures of each size between 0 and a threshold of 50 (or
ontology’s signature size if that was smaller). In some cases where the subset sizes were
not optimally distributed (e.g., when small subsets were missing), we sampled 30 signa-
tures of each size. For these signatures, we have extracted the >⊥∗-modules, excluding
duplicates, and ordered them by size. Then we have fully modularized all subsets in de-
scending order, aborting when a single modularization took longer than a preset timeout
of 20, 60 or 600 minutes, see Section 4 for an explanation of that choice. For each subset,
we counted the number of all modules and of its genuine modules. See [8] for computer
specifications.

4. Results

Module numbers for full modularization. Figure 2 shows the full modularization of
Koala and Mereology for the module types >, ⊥ and >⊥∗. In the case of >⊥∗, we also
determined genuine modules, denoted by>⊥∗g . In addition to the number of modules, we
have listed the runtime and four aggregations of module sizes, where “size” refers to the
number of logical axioms. Since the number of axioms is a syntax-dependent measure,
we plan to include other measures, such as the number of terms and the sum of the sizes
of all axioms, in future work.

Koala Mereology
> ⊥ >⊥∗ >⊥∗g > ⊥ >⊥∗ >⊥∗g

#Modules 12 520 3,660 2,143 40 552 1952 272
Time [s] 0 1 9 34 0 6 158 158
Min size 29 6 0 0 18 0 0 0
Avg size 35 27 23 23 26 25 20 22
Max size 42 42 42 42 40 40 40 38
Std. dev. 4 6 6 6 6 7 8 8

>⊥∗g = genuine >⊥∗ modules. “Size” = number of logical axioms.

Figure 2. Full modularization of Koala and Mereology

For both ontologies, the number of modules increases from >- via ⊥- to >⊥∗ mod-
ules as expected: as mentioned before, >-modules tend to be bigger, and therefore more
modules coincide in this case. However,>-modules are too coarse-grained: most of them
comprise almost the whole ontology, and all have a size of at least 29 (69% of Koala) or
18 (41% of Mereology).

The extracted ⊥-modules yield a more fine-grained picture, although all their sizes
for Koala are still above 6 (14%). We already pay for this with an increase in the number
of modules by a factor of more than 43 (Koala) and 14 (Mereology). With >⊥∗, smaller

modules are included, but for the price of another increase in module numbers by a factor
of 7 (Koala) and 3.5 (Mereology). For a more fine-grained modularization, we also pay
with an increased extraction time. See [8] for comments on the observed differences
between Koala and Mereology.

Attempts to fully modularize ontologies larger than Koala and Mereology with the
described algorithm did not succeed. We cancelled each such computation after several
hours, when thousands of modules have been extracted.

Reducing the overall number of modules. Although the total number of modules is
far from the theoretical upper bound of 225 for Koala and Mereology, it is still too large
to inspect each module separately or expect ontology users to do so on a regular basis.
For this reason, we have tried two more ways to reduce the overall numbers to fewer
“interesting” ones.

Apart from distinguishing genuine from fake modules following the extraction, we
have also experimented with a technique of unifying similar modules. It consisted in
replacing a large enough number of modules that differ by a small enough number of
axioms with the union and intersection of all these modules, where “large enough” and
“small enough” are adjustable parameters. In order to obtain a noticeable decrease in
module numbers for Koala, we had to choose parameter values so extreme that the unified
modules could not reasonably be called similar anymore.

Another attempt at reducing module sizes was to vary the ways to obtain the first
modules in Line 5 of Algorithm 1 (start strategy) and to extend the module list in Line 13
(extension strategy). One such strategy was to use the signatures of all axioms in O for
start and extension instead of single terms. The underlying intuition is that the presence
of some axiom in O indicates that its signature constitutes a topic that is relevant to the
ontology. By thus restricting the number of seed signatures, we hoped to restrict the total
number of modules to the more relevant ones. This turned out to have almost no effect
on the number of modules extracted, but increase runtime significantly, partly because
the lexicographic optimization to Line 13 of Algorithm 1 could not be used.

Module numbers for subset sampling. After carrying out the subset sampling tech-
nique described in Section 3, we are strongly convinced that most of the ontologies ex-
amined exhibit the feared exponential behavior. Figure 3 shows scatterplots of the num-
ber of>⊥∗ modules (genuine>⊥∗ modules) versus the size of the subset for People and
Koala. Each chart shows an exponential trendline, which is the least-squares fit through
the data points by using the equation m = cebn, where n is the size of the subset, m is
the number of modules, e is the base of the natural logarithm, and c, b are constants. This
equation and the corresponding determination coefficient (R2 value) are given beneath
each chart. Spreadsheets with the underlying data, as well as spreadsheets and charts for
the other ontologies, can be found at [18]. The R2 values and trendline equations for the
examined ontologies are summarized in Figure 4, where we also included the estimated
number of modules for the full ontology as per the equation, the timeout used and the
overall runtime.

The scatterplots and determination coefficients for the first six ontologies in Figure
4 provide strong evidence that the number of modules depends exponentially on the size
of the subset. In most cases, the exponential behavior was observable with at most a
60-minute timeout.

N
um

be
ro

fm
od

ul
es

0

1000

2000

3000

4000

0 15 30 45

N
um

be
ro

fg
en

ui
ne

m
od

s

0

1000

2000

3000

0 15 30 45

Subset size Koala Subset size Koala

N
um

be
ro

fm
od

ul
es

0

2500

5000

7500

10000

0 25 50 75 100

N
um

be
ro

fg
en

ui
ne

m
od

s

0

2500

5000

7500

10000

0 25 50 75 100

Subset size People Subset size People

Figure 3. Numbers of modules versus subset sizes for Koala and People

Confidence Trendline equation Estimate Timeout Runtime
Ontology R2

m R2
g m g m g [min] [min]

People .95 .95 2 · 10−13e.41n 106 106 20 148
Mereology .87 .94 1.2e.16n 1.1e.13n 103 102 — 4
Koala .90 .88 .45e.21n .50e.19n 103 103 — 4
Galen .94 .86 1.2e.24n 1.6e.16n NaN NaN 60 288
University .84 .83 1.7e.19n 1.6e.14n 104 103 20 354
OWL-S .82 .84 .0027e.17n .0032e.16n 1017 1017 60 73

Tambis .75 .70 1.1e.22n 1.4e.13n 1058 1033 600 681
miniTambis .47 .52 2.6e.18n 2.5e.14n 1014 1010 600 963

m, g >⊥∗ modules, genuine >⊥∗ modules
R2

m, R2
g Determination coefficient of fitted trendlines

Estimate Module numbers for full ontology as per trendline
NaN Estimate is larger than 10142

Figure 4. Witnesses for exponential behavior

Weight analysis for Koala. Even if we consider only genuine modules, there are ontolo-
gies that have exponentially many of them. In order to focus on even fewer, “interesting”
modules, we have devised the measures cohesion and pulling power. Thy are based on
the number of seed signatures (SSigs) of a moduleM and the number of terms in M̃. An
SSig Σ ofM is called minimal (MSSig) if there is no signature Σ′ ⊂ Σ that is an SSig
ofM. If we ignore terms not present in the module, we speak of a real MSSig forM:
this is a signature Σ′ = Σ ∩ M̃ where Σ is an MSSig forM. Let r, s,m be the number
of real MSSigs forM, the size of the smallest MSSig forM, and the size of M̃.

The cohesion of M measures how strongly the terms in M are held together, as
indicated by the number of seed signatures forM. More precisely, the cohesion ofM
is defined to be the ratio r/s. The pulling power of M measures how many terms are
needed in an MSSig to “pull” all terms intoM that we find there. We define the pulling
power ofM to be the ratio m/s.

As a first draft, we define the weight of a module M to be the product of its co-
hesion and pulling power: w = r·m

s2 . We computed the weight of all 3660 modules of
Koala. The 11 heaviest modules and their set differences yield a partition of almost the
whole ontology into 10 parts, each of which consists of terms that intutively form a topic
(subconcepts included): Animal; Person and isHardWorking; Student; Parent; Koala and
Marsupial; TasmanianDevil; Quokka; Habitat; Degree; Gender. These topics reflect the
core parts of the ontology. Those axioms that do not occur among the heaviest modules
tend to be those that we intuitively would call less important for the ontology, for instance
RainForest v Forest.The first 11 modules cover almost all of Koala’s logical axioms (39
out of 42), and all axioms are covered from the 34th heaviest module on. The first 19
heaviest modules are also genuine.

The next step will be to refine this measure and apply it to more ontologies. Since
we cannot expect to fully modularise ontologies bigger then Koala, we will need to find
ways to extract heavy-weight modules separately.

5. Discussion and outlook

The fundamental conclusion is clear: the number of modules, even when we restrict our
attention to genuine modules, is exponential in the size of the ontology for real ontolo-
gies. Our most reasonable estimates of the total number of modules in small to midsize
ontologies (i.e., anything over 100 axioms) show that full modularization is practically
impossible. As we are computing locality based modules, which tend to be larger than
conservative extension based modules, our results give us a lower bound on the number
of modules.

It is, of course, possible that there are principled ways to reduce the target number
of modules. We could use a coarser approximation, though that would be hard to justify
on logical grounds. Attempts to use “less minimal” modules or to heuristically merge
modules have exhibited bad behavior, with a strong tendency to collapse to very few
modules that comprise most of the ontology.

We believe that this conclusion is robust, even with the failure of our experiments
on Tambis and miniTambis to uncover exponential behavior. As we said in Section 4, our
expectation is that a longer timeout will reveal the problematic behavior.

Furthermore, we observe that these ontologies have a large number of unsatisfiable
concepts, with large justifications for those, and comparatively long axioms with large
signatures. Since each module for such a concept contains at least one justification6,
modules for these ontologies tend to be large, which decreases the overall number of
modules. Similarly, large axioms with large signatures tend to raise the chances of in-
teraction between terms as well as increasing the signature size of modules which, in
turn, make for large numbers of non-minimal seed signatures. However, these facts do

6We have strong reason to believe that a locality-based module, due to being depleting [19], always contains
all justifications for each entailment within its extended signature.

not indicate a difference in kind between Tambis and miniTambis and other ontologies
we examined, such as University, or even Koala. Both Koala and University have unsat-
isfiable concepts. The justifications for the unsatisfiable concepts in Koala have a max
size of 5 axioms, whereas University tops out at 9, with most being below 6. miniTambis
and Tambis’s justifications have a max size of 13 axioms, with a large percentage over
6. If our hypothesis about the role of the justifications is correct, then it seems likely that
the exponential break is merely delayed. Thus it is still possible, and we believe proba-
ble, that an exponential behavior is present but is only visible with a sufficiently higher
timeout. Furthermore, the large size of the justifications in Tambis and miniTambis is a
bit artificial as it is dependent on the unsatisfiability. These ontologies have large chains
of “dependent” unsatisfiabilities [14] which increase the size of justifications along the
chain. When the unsatisfiabilities are resolved, those concepts will no longer have those
particularly lengthy justifications as part of all of their modules.

These considerations suggest that, in general, the ratio between genuine and fake
modules can be seen as a measure of axiomatic richness, at least indicating how strongly
the axioms in the ontology connect its terms: the fewer of its modules are fake, the more
“mutually touching” its terms are.

Attempts at estimating the module number statistically were unhelpful too. We could
randomly draw a small number of seed signatures, compute their modules and use that
number to estimate the number of all modules. We convinced ourselves using elementary
stochastics that we cannot get a confident estimate by sampling only a small proportion
of all seed signatures. See [8] for details.

While the outcome of the experiments is discouraging from the point of view of us-
ing the complete modularization in order to analyze the ontology, it does suggest several
interesting lines of future work. First, we have already seen several features of ontolo-
gies that correlate well with a large or small number of modules. However, except for
the phenomenon seen in Mereology, we do not have a verified explanation. Thus, for
example, we need to get a precise picture of the relationship between justificatory and
modular structure. Second, even if we cannot compute all modules, we may be able to
compute a better approximation of their number. Given that signature sampling did not
seem to help, we intend to explore sources of module number increase or reduction, such
as the shape of the inferred concept hierarchy and patterns of axioms. Methodologically,
it seems that artificial ontologies should be used, e.g., for confirmation of the relationship
between justificatory structure and module number. Third, our preliminary experiments
aimed at computing heavy weight ontologies are promising: our weights seem to cap-
ture nicely the cohesion and pulling power of a module, and the resulting heavy modules
seem to correlate nicely with topics. We are currently investigating whether it is possible
to compute all heavy modules without computing all modules, and also looking into a
suitable notion of building blocks of modules. The latter concept is closely related to fake
and genuine modules, which we are also investigating in more detail.

References

[1] J. Bao, G. Voutsadakis, G. Slutzki, and V. Honavar. Package-based description logics. In Stuckenschmidt
et al. [21], pages 349–371.

[2] C. Bezerra, F. L. G. de Freitas, A. Zimmermann, and J. Euzenat. ModOnto: A tool for modularizing
ontologies. In Proc. WONTO-08, volume 427 of CEUR, 2008.

[3] A. Borgida and L. Serafini. Distributed description logics: Assimilating information from peer sources.
J. Data Semantics, 1:153–184, 2003.

[4] B. Cuenca Grau, C. Halaschek-Wiener, and Y. Kazakov. History matters: Incremental ontology reason-
ing using modules. In Proc. of ISWC/ASWC-07, volume 4825 of LNCS, pages 183–196, 2007.

[5] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: Theory and
practice. J. Artif. Intell. Res., 31:273–318, 2008.

[6] B. Cuenca Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using E-connections. JWebSem,
4(1):40–59, 2006.

[7] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web ontologies. In Proc. of
KR-06, pages 198–209, 2006.

[8] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of an ontology: an
empirical study. Technical report, University of Manchester.
http://www.cs.man.ac.uk/%7Eschneidt/publ/modstrucreport.pdf .

[9] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for conservative extensions in
description logics. In Proc. of KR-06, pages 187–197, 2006.

[10] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. of KR-06, pages
57–67, 2006.

[11] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making
of a web ontology language. JWebSem, 1(1):7–26, 2003.

[12] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider, and R. Berlanga Llavori. Safe and economic
re-use of ontologies: A logic-based methodology and tool support. In Proc. of ESWC-08, volume 5021
of LNCS, pages 185–199, 2008.

[13] A. Jimeno, E. Jiménez-Ruiz, R. Berlanga, and D. Rebholz-Schuhmann. Use of shared lexical resources
for efficient ontological engineering. In SWAT4LS-08, volume 435 of CEUR, 2008.

[14] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes in OWL ontologies.
JWebSem, 3(4), 2005.

[15] B. Konev, C. Lutz, D. Walther, and F. Wolter. Logical difference and module extraction with CEX and
MEX. In Proc. of DL 2008, volume 353 of CEUR, 2008.

[16] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularization. In Stuckenschmidt
et al. [21], pages 25–66.

[17] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract description systems.
Artificial Intelligence, 156(1):1–73, 2004.

[18] Materials. http://owl.cs.manchester.ac.uk/modproj/meat-experiment .
[19] U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In DL 2009,

volume 477 of CEUR, 2009.
[20] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept hierarchies. In Proc. of

ISWC-04, volume 3298 of LNCS, pages 289–303, 2004.
[21] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies: Concepts, Theories

and Techniques for Knowledge Modularization, volume 5445 of LNCS. Springer, 2009.
[22] H. Stuckenschmidt, F. van Harmelen, P. Bouquet, F. Giunchiglia, and L. Serafini. Using C-OWL for the

alignment and merging of medical ontologies. In Proc. KR-MED, volume 102 of CEUR, pages 88–101,
2004.

[23] B. Suntisrivaraporn. Module extraction and incremental classification: A pragmatic approach for EL+

ontologies. In Proc. of ESWC-08, volume 5021 of LNCS, pages 230–244, 2008.

