
THE MODULAR STRUCTURE OF AN
ONTOLOGY:

ATOMIC DECOMPOSITION AND ITS
APPLICATIONS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2013

By
Chiara Del Vescovo

School of Computer Science

Contents

Abstract 1

Declaration 3

Copyright 5

Acknowledgements 7

1 Introduction 9
1.1 Modules . 12
1.2 Contributions of this Thesis . 15

2 Background 19
2.1 Foundations of Description Logics 20
2.2 Conservative Extensions and inseparability relations 25
2.3 Extracting Σ-modules . 28

2.3.1 Conservativity-based Modules 29
2.3.2 Modules based on other inseparability notions 30
2.3.3 Modules based on Locality 30

2.4 Basic Notions of Algebra . 38

3 Modularity 41
3.1 Desirable Properties of Modules 42
3.2 Evaluating a Modular Structure 46
3.3 Evaluation of the existing Modular Structures 47

3.3.1 Parikh’s Approach . 48
3.3.2 Signature ∆-decomposition 51
3.3.3 E-connections . 54
3.3.4 Σ-modules . 57

iii

4 The Atomic Decomposition of an Ontology 61
4.1 Genuine Modules . 63
4.2 Atoms and their Dependence Relation 65
4.3 The AD as a Modular Structure 69

4.3.1 Atoms vs. Genuine Modules 70
4.3.2 Chains of Conservative Extensions 74

4.4 Computation of ADs . 76
4.4.1 The AD Algorithm and its Complexity 77
4.4.2 Experiment: Design and Results 80

5 Labelled Atomic Decompositions 97
5.1 Labels . 98
5.2 LADs with Minimal Seed Signatures 99
5.3 LADs based on Atoms’ Signatures 104
5.4 Comparing LADs . 109
5.5 Model-theoretic Relevance . 111

6 Applications 117
6.1 Module Count . 118
6.2 LADs for Offline Extraction of Modules 123
6.3 Modular Reasoning . 131
6.4 Patterns Evaluation in Ontologies 134
6.5 DeMoSt . 137

7 Conclusions 141
7.1 Summary . 141
7.2 Future Work . 144

A Ontologies Corpus 147

Bibliography 159

Word Count: 44,300

iv

List of Tables

2.1 Constructors in EL and in AL . 21
2.2 Expressive constructors . 22
2.3 Basic logical axioms in DLs . 22
2.4 More expressive logical axioms in DLs 23
2.5 Bot(Σ) and Top(Σ) for the notions of locality ⊥ and > 35

4.1 Summary of the variance in the performance time 82
4.2 Summary of the performance time 86
4.3 Distribution of the ontologies in our corpus by the absolute size of

their biggest atoms . 89
4.4 Distribution of the ontologies in our corpus by the relative size of

their biggest atoms . 89
4.5 Ontologies with huge atoms in absolute value 90
4.6 Ontologies with relatively huge atoms 91
4.7 Overview of the experimental results for all the ontologies in our

corpus . 92
4.8 Overview of the experimental results for ontologies without huge

atoms . 93
4.9 Depth and connectedness of the ADs of the ontologies in our corpus 94

6.1 Experimental results of the labelling algorithm 130

A.1 Expressivity bin numbers for our corpus 149

v

List of Figures

3.1 Concept relations in Zigzagn . 50
3.2 E-connections-based Partitioning Graph of the ontology Koala . . 56
3.3 E-connections-based Partitioning Graph of the ontology Tree . . . 57
3.4 Induced modular structure of the Diamond ontology 59

4.1 Genuine vs. Fake modules in Zigzagn 64
4.2 ⊥-, >-, and >⊥∗-ADs of the Dog ontology 68
4.3 ⊥-AD of the ontology Koala . 69
4.4 ⊥-AD of the ontology Girl . 73
4.5 A chain of CEs in the Child′ ontology 76
4.6 Time to ⊥-AD vs. size of O . 83
4.7 Time to >-AD vs. size of O . 84
4.8 Time to >⊥∗-AD vs. size of O . 85
4.9 A Mexican hat . 86
4.10 >⊥∗-AD of the ontology People . 87
4.11 ⊥-AD of the ontology People . 88
4.12 >-AD of the ontology People . 89

5.1 ⊥-LAD of the ontology Apart . 101
5.2 ⊥-AD of the ontologies On . 104
5.3 (A⊥(Chainn),�, Labsig) of the ontology Chainn 105
5.4 (A⊥(Chainn),�, Lab#

sig) of the ontology Chainn 106
5.5 (A⊥(Split),�, Lab#

sig) of the ontology Split 107
5.6 ⊥-LAD of the ontology Teetotaller 109
5.7 (A(O),�, Lab#

sig) vs. (A(O),�, Labmss) of the ontology Lambda . . 110

6.1 AD vs. GAD of the ontology Hobbies 137
6.2 Screenshot of DeMoSt for the ontology Teetotaller 138
6.3 Screenshot of DeMoSt showing the selection of the term Vegan . . 139

vi

A.1 Diversity of our corpus: Expressivity vs. Number of axioms 149

vii

Abstract

Ontologies are descriptions of the knowledge about a domain of interest encoded
in computer processable languages, e.g., Description Logics, which are decidable
fragments of First Order Logic. The main aim of ontologies is to define unam-
biguous vocabularies to facilitate knowledge sharing and integration.

A critical issue with ontologies consists of their increasing complexity. To
address this problem several notions of modularity have been recently proposed.
Modularity notions can help in two ways: 1) For identifying in a principled way
the appropriate sub-part of an ontology that we want to work with; 2) for defining
a modular structure, induced by the notion of module, which allows users to
explore the entire ontology in a sensible manner (perhaps finding appropriate sub-
parts to work on). However, the most popular notion—locality based modules—
while excelling at modular extraction have thus far resisted attempts to induce
a modular structure. Indeed, due to their nature, ontologies tend to have an
unfeasible number of such modules, i.e., up to exponential in the ontology’s size.

We tackle this problem by identifying basic building blocks of modules as sets
of axioms which “cling together”, that is, such that if any element appears in
a module, then the remaining of the set also occurs. This notion of an “atom”
proves key to defining a useful family of locality based modular structures, the
(Labelled) Atomic Decompositions ((L)ADs).

In this thesis, we define (L)AD and explore its properties. We show that ADs
are efficiently computable and, with appropriate labellings, provide a reasonably
terse representation of the entire set of locality based modules. From ADs, we
are able to distinguish so-called “genuine” modules, i.e., modules that cannot be
decomposed further as the union of two or more modules.

Finally, we explore several of the applications to which (L)ADs have been
applied including module extraction, ontology comprehension, and modular rea-
soning.

1

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institute of learning.

3

Copyright

i. The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright, De-
signs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available
in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations
deposited in the University Library, The University Library’s regulations
(see http://www.manchester.ac.uk/library/aboutus/regulations) and
in The University’s policy on presentation of Theses

5

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

I really need to thank all the people involved in the process of writing my thesis
for their wonderful support. I feel so lucky to have you in my life!

I want to thank my examiners David Rydeheard and Sebastian Rudolph for
the insightful comments they gave me both during and after my thesis defense.

A special thank goes to my supervisors Uli and Bijan who have helped a lot
throughout the 3 years of my PhD, for the patience of unravelling my thoughts,
and for pushing me to write down everything since a theorem does not exist until
its proof is written somewhere.

Thanks to my colleagues Pavel, Thomas and Dmitry: working with you has
shade plenty of light to my research!

Thanks to Eleni, Fabio, Francesco, Ignazio, and Nico, who have helped me
greatly with the implementation, read a large part of my thesis, made great
suggestions, and corrected my English...

Thanks to all my Mancunian friends who have regularly listened to my moan-
ing: Julie, Marialuisa, Martin, Matthew, Mohammad, Patrick, Rafa & Catarina,
Roman, Riccardo, Rishi, Sam, and Sergio & Nathäele. A special special thank
goes to Verena for finding and sharing with me the cutest pictures of koalas...
without a PhD!

Many thanks to my friends all around the world, from Rome to wherever you
are in Italy and beyond, from Belfast to Berlin, from London to Prague, from
Warsaw to Sevilla, and then up to Japan, Nigeria, and the US. I could have not
completed my thesis without you all sending me energy and positivity even when
I have disappeared to write up. I cannot mention you all, but I cannot avoid to
thank Paolo, a friend, a mentor, my father-in-logic.

Thanks to my family back in Rome: we have been apart, but love does not
fear the distance (even if we do).

Finally, least but not last at all, thank to Carlo, who has suffered (not in
silence!) for my stress, and has supported me in more than one way.

7

Chapter 1

Introduction

An ontology is a computer processable description of the knowledge about the
relationships between the terms occurring about a domain of interest. Ontologies
are typically encoded in a Knowledge Representation language. A major class of
ontology languages is based on the family of Description logics (DLs) [BCNP03],
which generally are decidable fragments of First Order Logic. Hence, an ontology
may be viewed as a set of formulae in FOL, called axioms, and it is therefore
a logical theory. A notable example of an ontology language based on DLs is
the Web Ontology Language OWL [HPSvH03], a World Wide Web Consortium
Standard which has been used both in academic and industrial environments
since its first version became a W3C Recommendation in 2004.

The logical foundation of an ontology O provides the vocabulary described
in O with a well-defined, unambiguous meaning. Moreover, it enables the use of
reasoners that are able to draw inferences logically derivable from the ontology.
In other words, a reasoner is able to make explicit the knowledge that the ontology
implicitly encodes. Prominent examples of reasoners are FaCT++ [TH06] and its
Java port JFact, HermiT [MSH07], Pellet [SPC+07], Racer [HM01], CB [Kaz08],
CEL [BLS06], and ELK [KKS11]. We will also briefly describe in Section 6.3 the
recently developed reasoners Chainsaw [TP12] and MORe [ACH12] which are
of particular interest for this thesis.

The potential of providing domains with an unambiguous vocabulary has at-
tracted the interest of many domain experts from diverse areas, such as medicine,

9

10 CHAPTER 1. INTRODUCTION

bioinformatics, and geography. In some examples a strong effort is put in mod-
elling and maintaining ontologies, a notable example of this process being the Na-
tional Cancer Institute thesaurus1 [GFH+11]: NCI-t has been updated monthly
since 2003, and many versions of the NCI-t ontology are freely downloadable.
The progression of the NCI-t corpus has been analyzed in [GPS11]: by compar-
ing each version with the next one, the evidence has emerged of a continuous
restructuring of some of the already encoded knowledge, both in its syntax and
in its semantics. In particular, one can wonder whether all these changes were
planned.

Modelling an ontology is clearly a hard task to perform. This is mainly due
to the mismatch between the intended and the actual representation: whilst
the knowledge of the domain of interest is generally well-understood, or at least
agreed on, it is not trivial to foresee and understand the logical consequences
of adding, removing, or modifying an axiom, especially when the terminology
is highly interconnected. In particular, there is no inherent localization of the
semantic effects of an axiom. The order of the axioms is semantically irrelevant,
ontologies suffer from an inherent lack of structure, and are often treated as
monolithic objects.

Beside lacking a structure, ontologies grow in size and expressivity. These are
all factors that contribute to the complexity of an ontology, which can be divided
into two major categories: computational complexity and cognitive complexity.

The computational complexity of an ontology refers at the amount of time
needed to execute a procedure, e.g., classification. In this area extensive research
has been carried out, aimed at finding the complexity class of reasoning over
ontologies encoded in a certain DL. DL languages vary in the complexity class
they belong to, from low expressive languages whose standard reasoning tasks can
be performed in polynomial time [Baa03, BBL05, CDL+05], to highly expressive
DLs whose complexity class is N2ExpTime [Kaz09] in the size of the input.

Even though highly expressive languages seem intractable, the extreme opti-
mizations of the reasoners means that even large and complex ontologies can be
used in practice. Indeed, the reasoning time for an ontology O is not, in general,
proportional to the size of O and to the complexity class that the language in
which O is encoded belongs to. A comparison of different reasoners’ performances
over a selection of biomedical ontologies is reported in [GPS12] where the number

1https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology

https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology

11

of axioms clearly is not the main factor influencing the reasoning time.
The cognitive complexity of an ontology aims at measuring how hard it is for

a human to understand an ontology. The term “understand” is vague, and to
be evaluated needs to be operationalized by defining a specific task to perform
and measuring the empirical observations of the outcome. Several tasks involve
the understanding of an ontology: from the development and maintainance, to
the use and re-use of ontologies. In these scenarios, the lack of structure is espe-
cially problematic since an ontology does not group semantically related axioms
together, so the users potentially have to keep every axiom in mind as they go
through them.

For this reason, several approaches have been attempted to provide ontology
engineers with a way to read the axioms of an ontology O in order to understand
whether the actual modelling matches the intended modelling, to support the
development, the maintenance, and the debug of ontologies. Among the plethora
of applications providing this kind of information, we mention:

- Tools that reveal axiom pinpointing or justifications, defined to be minimal
sets of axioms from O sufficient for an entailment η to hold [BPS07, Hor11];
in this case, the user is helped in reading an ontology because they do not
have to go through all the axioms of O, and can focus only on those that
play an active role in explaining why η is derivable from the ontology.

- Tools that aim at ordering axioms according to their impact on the rest
of the ontology, especially in the cases where some entailments are clearly
wrong, as it is generally the case for unsatisfiable classes [Kal06, NRG12,
MMV11]. These services aim at supporting the ontology engineers in re-
pairing single entailments, i.e., removing the wrong ones, even though by
repairing one axiom one could obtain that many wrong inferences are re-
moved. In particular, the engineers have to actively search for modelling
errors by checking that each entailment is correct. Since there can be in-
finitely many inferences this approach is unfeasible.

- Tools, such as Protégé, sensitive to the syntactic relations between an axiom
and a term that allow the exploration of an ontology via linking all terms
with the axioms in which they occur. However, the more expressive a
language is, the more complex the logical relations between axioms and
terms can be, and this view is more prone to be misleading on what is

12 CHAPTER 1. INTRODUCTION

relevant for a given term in an ontology: in particular, logically relevant
axioms to a term could be excluded from such a view, and some extraneous
ones may creep in.

Another viewpoint takes into account the fact that the users generally do
not interact with an ontology O as a whole, but they focus on a limited part
of O. The Systematized Nomenclature of Medicine—Clinical Terms2 [SCC97]
(SNOMED CT), for example, contains over 500,000 axioms and covers a broad
range of areas, such as diseases, symptoms, operations, treatments, devices and
drugs, and describes their interconnections and commonalities. However, the
interest of a single user is likely to be focused only on one medical specialization,
for example Cardiology rather than Radiology. So, while on the one hand the
users are interested in taking advantage of the effort put in modelling SNOMED
CT, on the other hand they would prefer to avoid importing the whole ontology
since a large part of it is irrelevant to their purposes.

In this perspective, the idea has recently arisen to explore the notion of mod-
ularity in ontologies. Ideally, the user selects a “topic” they are interested in, and
then, based on the application the module is to be used for, to identify in O the
“relevant part” of O for the topic specified. This “topical” approach can be of
interest also for ontology engineers: by looking at the parts identified and how
they are related, one can also gain an insight on how O is modelled.

1.1 Modules

In recent times, several approaches at modularity have been explored. We can
divide these approaches into two main categories:

1. the approaches that go through the axioms of an ontology and employ
heuristic methods in order to determine whether an axiom belongs to the
module for the “topic” selected by the user that generally is specified as a
signature Σ ⊆ Õ.

2. the approaches that aim at identifying modules that satisfy logical proper-
ties, e.g., to preserve the knowledge defined by the ontology for a suitable
signature Σ ⊆ Õ. For the purposes of this thesis, knowledge can be defined
in two flavours: a model-theoretic flavour (preserving the models over Σ)

2http://www.ihtsdo.org/snomed-ct/

http://www.ihtsdo.org/snomed-ct/

1.1. MODULES 13

or a deduction-oriented flavour (preserving the entailments over Σ). This
property is called coverage.

Among the structural approaches, we mention the PROMPT-FACTOR tool
described in [NM03], and the Web ontology segmentation technique analysed
in [SR06]. The first approach extracts a module M ⊆ O for a given signature
Σ as follows: first, all the axioms mentioning some terms from Σ are added to
M; then, the original signature Σ is expanded with the terms mentioned in the
axioms now included inM; finally, the procedure is repeated until a fixpoint is
reached. The second approach instead works as follows: first, for each term t ∈ Σ

all those axioms are identified that describe t as being equivalent to other terms;
these axioms are then added to the module M, and the original signature Σ is
expanded with the terms mentioned in the axioms now included in M; finally,
the procedure is repeated until a fixpoint is reached. As a consequence, this
approach exploits “upwards” the hierarchical structure of the concepts described
in an ontology, i.e., the inferred forest of concepts summarizing which ones are a
specialization of others (e.g., Man and Woman are specializations of Person).

These approaches are clearly syntax-based, and suffer from not fully capturing
and exploiting the semantics of the ontologies. Examples of modules extracted
with these methods that either do not preserve all the entailments over Σ, or
include axioms that have no role in preserving such entailments can be found
in [CHKS07].

For the purpose of this thesis, the modularisation methods of interest are
those that produce modules satisfying logical properties, one above all being
coverage: given the effort put in representing the domain knowledge into an
ontology we do not want to lose any information that the ontology could provide.
Following [CK07], we distinguish two main categories of approaches:

1. the a priori approaches that involve the design of formalisms (modular
ontology languages) to control the interactions between the modules at de-
veloping time.

2. the a posteriori approaches, aiming at revealing in a given ontology O the
logical relations between the components (terms, axioms, domain) of O.

A priori approaches have been defined in [BLSW02] to cope with the high
computational complexity of languages that allow many different constructors.
The basic idea is to keep separate those tractable fragments of the logics that,

14 CHAPTER 1. INTRODUCTION

if merged, lead to intractable fragments by avoiding in a principled way that
different fragments share terms; indeed, delegating the reasoning over the sin-
gle components is less complex than designing new reasoning methods from
scratch, if they can exist at all. Among these approaches we mention Package-
based Description Logics [BCH06], Distributed Description Logics [BS03], and
E-connections [KLWZ04, CPS06]. However, this choice imposes further limita-
tions to what can be expressed in an ontology since it is crucial to avoid semantic
interrelations to arise between the modules, or unwanted entailments can creep
in the ontology.

A further question that one can ask is whether the modelling implemented
at development time matches the domain conceptualization. Adherence to pre-
defined modelling is not a trivial task, especially in the case where the ontology
is underspecified, and some entailments are accidentally left out: examples have
been reported in [CPSK06] of ontologies whose logical structure differs substan-
tially from the modelling of the domain.

The a posteriori approaches can be divided into two categories:

1. those notions that aim at identifying a modular structure in an ontology O
obtained by fragmenting the ontology in coherent parts (the modules) and
by exposing the logical interactions between these modules, in order to gain
an insight on the actual modelling of O; in this category fall Parikh’s sig-
nature decomposition [Par99], the signature ∆-decomposition [KLPW10],
and the converse use of E-connections as described in [CPSK06].

2. those notions that aim at extracting from O a small, less complex frag-
ment to be used in applications instead of the whole ontology; in this cate-
gory fall the different notions of modules based on conservativity [GLW06,
KLWW08], those based on inseparability for a query language [KPS+09,
KWZ10], and those based on locality [CHKS08, KLWW09].

The target of this thesis are the notions of modules that are a posteriori iden-
tified. It has to be noted, though, that there is a strong relationship between
the a priori and the a posteriori approaches. Cuenca Grau and Kutz investigated
in [CK07] the relationships between the various modular ontology languages, lo-
cality and conservative extensions. In particular, the modular ontology languages
can be expressed in terms of locality and conservative extensions, but not vice
versa.

1.2. CONTRIBUTIONS OF THIS THESIS 15

1.2 Contributions of this Thesis

From the discussion in the previous section, it is clear that logic-based modularity
in ontologies has been recently investigated under several viewpoints.

This thesis makes new advances in this area by providing a unified overview
of the theory of modularity. In particular, we discuss the advantages of choos-
ing notions of modules that satisfy some logical properties. We then define the
modular structure of an ontology O as a pair (F(O),→) where F(O) is a set of
fragments of O that represents all the modules, and → is a logical relation be-
tween the modules, defined to hold between two modules if one needs to import
the other to preserve some logical property.

Having an abstract notion of modular structure allows us to compare different
kinds of logical modules. We have (1) those notions of modules that come from
identifying a modular structure in an ontology; and (2) those notions that derive
from the extraction of suitable subsets that behave for some purposes as the on-
tology does. For the modules of kind (2) we first define a notion of basic modules
(genuine) that build up all the other modules, and then we show that the sim-
ple set-inclusion relation induces over the set of genuine modules a mathematical
structure. This structure is called the Atomic Decomposition of an ontology O,
and it is a succinct representation of all the modules of O that can be feasibly
obtained. These results are quite surprising considering that an ontology O can
contain exponentially many modules of kind (2) in the size of O. Finally, we
investigate a wide range of applications where the ADs can be exploited.

The contributions of this thesis are described in what follows organized by
chapters.

Chapter 3 We provide a unified theory of modularity by analysing the exist-
ing approaches, identifying their commonalities and differences, and defining a
framework to evaluate the modular structures of ontologies. The paper [DPS11]
partially addresses this subject, and it has been published at the International
Conference on Conceptual Structure (ICCS-11).

Chapter 4 We define the Atomic Decomposition of an ontology, i.e., a well-
defined, succinct modular structure for the class of Σ-modules that generates
in general exponentially many modules in the size of an ontology. Set n to be
the number of axioms of O, we devise an algorithm that requires n modules

16 CHAPTER 1. INTRODUCTION

extractions to compute an AD, hence it is polynomial in the size of the ontol-
ogy provided that the notion of Σ-module used is polynomial, as those based on
syntactic locality. Moreover, we also provide strong empirical evidence that the
computation of AD is also feasible in practice. The paper [DPSS11a] addresses
this subject, and it has been published at the International Joint Conference on
Artificial Intelligence (IJCAI-11).
We define a logic-based reading order for axioms via the notion of Chain of Con-
servative Extensions of an ontology, i.e., sequences of modules enlargements in
O such that by adding axioms at each step the meaning of the terms is pre-
served. The paper [DPS12] introduces this notion, and it has been presented at
the International Workshop in Description Logics (DL-2012).

Chapter 5 We define the Labelled Atomic Decomposition of an ontology, i.e.,
the AD enriched with suitable labels that reveal the relations between modules
and signatures. LADs are introduced in [Del11], presented at the International
Workshop in Description Logics (DL-2011).

Chapter 6 The two notions of ADs and LADs have already shown to be of
high interest for the research in Description Logics. We measure their impact by
describing some of the applications already investigated:
Module Count, i.e., an investigation of the use of ADs in the estimation of
the number of modules of an ontology. This subject is addressed in [DPSS11b],
and the paper is published at the International Workshop on Modular Ontologies
(WoMO-11).
Offline Module Extraction, i.e., how to allow the extraction of a module di-
rectly from the AD of O, without the need to load the ontology into an editor,
or to transfer the data between two agents. The paper [DGK+11] addresses this
subject, and it has been published at the International Semantic Web Conference
(ISWC-11).
Modular Reasoning, i.e., the exploitation of modules to improve the perfor-
mance of reasoners. The new meta-reasoner Chainsaw, implemented by Tsarkov
and Palmisano and described in [TP12] put to use the LADs in the case where
the ontology is intractable and needs to be “chopped up” to be reasoned over.
Patterns Evaluation, i.e., an analysis of design patterns identified with the
RIO framework by Mikroyannidi et al. In particular, the sensitivity of the AD of
an ontology both to the syntactic and to the semantic aspects of ontologies are

1.2. CONTRIBUTIONS OF THIS THESIS 17

exploited, and the AD is used as an external criterion to evaluate the quality of
the patterns identified.
Support Understanding, e.g., how to provide the user with a logic-based
overview of the ontology. In this context, the tool DeMoSt has been implemented
and presented at the Demo session of the International Semantic Web Conference
(ISWC-11).

Chapter 2

Background

We assume the reader to be familiar with the basic definitions for First Order
Logic (FOL), Second Order Logic (SOL), and with the associated model-theoretic
semantics. In this chapter, we first introduce the foundations of Description Logic
(DL) languages, their syntax and semantics, and briefly describe the standardized
language OWL (Web Ontology Language) underpinned by DLs. Then, we intro-
duce the notions of Conservative Extensions (CEs) and of inseparability relations
that capture the idea of preserving knowledge key in the definition of logic-based
notions of modules.

In Section 2.3 we will introduce the notion of Σ-modules which is a class
of modules designed to be suitably small subsets of an ontology O that satisfy
a number of logical properties, among which coverage is fundamental, i.e., the
property of a set of axioms to preserve all the entailments of O over a selected
signature Σ.

Finally, we will briefly recap some basic notions of algebra used in this thesis.
The presentation of this subject is rather schematic and it serves only to fix the
notation. For a thorough presentation, we refer the reader to [Sch03].

Aim of this chapter is to fix the notations to be used in the rest of the the-
sis, and to refer the interested readers to the relevant literature. For a com-
prehensive presentation of the main topics concerning DLs we refer the reader
to “The Description Logic Handbook: Theory, Implementation, and Applica-
tions” [BCNP03].

19

20 CHAPTER 2. BACKGROUND

2.1 Foundations of Description Logics

A Description Logic (DL) is a decidable fragment of First Order Logic used for
describing the knowledge about a domain of interest, by defining its relevant con-
cepts and their interrelations. Syntactically, the vocabulary of a DL is obtained
by using:

- atomic concepts, also called concept names, corresponding to unary predi-
cates in FOL, denoted by symbols as A, B;

- atomic roles, also called role names, that in FOL correspond to binary
predicates, denoted by symbols as r, s;

- individuals, that correspond to constants in FOL, denoted by letters in
italics, like a, b;

- constructors, particular logical symbols that allow for the inductive con-
struction of complex concepts or complex roles.

We will refer to individuals, atomic concepts, and atomic roles by calling them
terms or entities. A set of terms will be called a signature.

The expressive power of a DL can be identified by the constructors allowed.
The associated semantics is given by an interpretation I, that is a pair I =

(∆I , ·I), where ∆I is a non-empty set, and ·I is a function that maps each indi-
vidual a to an element aI ∈ ∆I , each atomic concept A to a subset AI ⊆ ∆I , and
each atomic role r to a set of pairs rI ⊆ ∆I ×∆I .

Throughout this thesis we want to avoid that the signature where the inter-
pretation function is defined over includes arbitrary terms that do not occur in
any of the terms that are to be interpreted. Hence, we will adopt the conven-
tion that the interpretation function ·I is defined over a minimal signature. This
choice allows us to define the following notions:

- given an interpretation function I defined over a signature ΣI , and a sig-
nature Σ ⊆ ΣI , we define the Σ-projection I|Σ of I as the interpretation
function defined over Σ obtained by projecting I over Σ, i.e., I|Σ is such
that tI|Σ = tI for each term t ∈ Σ;

- let (∆I , ·I) be an interpretation, and let ΣI be the signature that the inter-
pretation function I is defined over; we say that an interpretation (∆J , ·J)

is an expansion of I if ∆J |ΣI = ∆I and if I is a ΣI-projection of J ;

2.1. FOUNDATIONS OF DESCRIPTION LOGICS 21

- two interpretation functions I and J are said to coincide on a signature Σ,
in symbols I|Σ = J |Σ, if ∆I = ∆J and tI = tJ for all X ∈ Σ;

- let (∆I1 , I1) and (∆I1 , I2
I2) be two interpretations such that ∆I1 = ∆I2

and such that the interpretation functions I1 and I2 are respectively defined
over two signatures Σ1 and Σ2 such that Σ1 ∩ Σ2 = ∅; we define the sum
interpretation J = I1 +I2 as the interpretation defined over ΣJ = Σ1∪Σ2

such that J |Σ1 = I1 and J |Σ2 = I2.

The two basic DLs that we consider throughout this thesis are EL and AL.
The constructors allowed in these languages, their syntax, and their semantics,
are described in Table 2.1.

Language Name Syntax Semantics

EL Top > ∆I

Intersection C u D CI ∩ DI
Existential
quantification ∃r.C {a ∈ ∆I | ∃b. (a, b) ∈ rI ∧ b ∈ CI}

AL Top > ∆I

Bottom ⊥ ∅
Intersection C u D CI ∩ DI
Atomic negation ¬A ∆I \ AI
Limited
existential
quantification ∃r {a ∈ ∆I | ∃b. (a, b) ∈ rI}
Value
restriction ∀r.C {a ∈ ∆I | ∀b.(a, b) ∈ rI → b ∈ CI}

Table 2.1: Constructors in EL and in AL

The basic DLs just described can be extended with more expressive construc-
tors. The extended DL obtained is then denoted by the name of its basic DL
followed by the list of all other constructors allowed. For example, ALC cor-
responds to AL extended by allowing complex concept negation. In Table 2.2
we list the constructors of interest in this thesis. For more details please refer
to [BCNP03].

A logical axiom, denoted by a Greek letter, is a variable-free well-formed
formula that uses special logical operators. In Figure 2.3 we list name, syntax,

22 CHAPTER 2. BACKGROUND

Name Syntax Semantics Symbol

Union C t D CI ∪ DI U
Negation ¬C ∆I \ CI C
Existential
quantification ∃r.C {a ∈ ∆I | ∃b. (a, b) ∈ rI ∧ b ∈ CI} E
Unqualified ≥nr {a ∈ ∆I |#{b ∈ ∆I | (a, b) ∈ rI} ≥ n}
number ≤nr {a ∈ ∆I |#{b ∈ ∆I | (a, b) ∈ rI} ≤ n}
restriction =nr {a ∈ ∆I |#{b ∈ ∆I | (a, b) ∈ rI} = n} N
Qualified ≥nr.C {a ∈ ∆I |#{b ∈ CI | (a, b) ∈ rI} ≥ n}
number ≤nr.C {a ∈ ∆I |#{b ∈ CI | (a, b) ∈ rI} ≤ n}
restriction =nr.C {a ∈ ∆I |#{b ∈ CI | (a, b) ∈ rI} = n} Q
Nominal {a} {a}I ⊆ ∆I with #{a}I = 1 O
Data types the interpretation of number symbols is

standard (D)

Inverse role r− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ rI} I
Composition r ◦ s rI ◦ sI ◦
Transitive
closure r+

⋃
n≥1(rI)n +

Table 2.2: Expressive constructors

and semantics of the basic axioms. Please note that in some applications non-
logical axioms, as annotations, are used. For the purpose of this thesis, though,
only logical axioms are of interest. Hence, in the remainder of this thesis the
simple term “axiom” means a logical axiom.

Name Syntax Semantics

Concept inclusion C v D CI ⊆ DI

Concept equality C ≡ D CI ≡ DI

Concept assertion C(a) or (a : C) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Transitivity Trans(r) (r+)I = rI

Table 2.3: Basic logical axioms in DLs

More complex axioms are also allowed in extended DLs. In Table 2.4 we list
the kinds of axioms that we will use in this thesis.

2.1. FOUNDATIONS OF DESCRIPTION LOGICS 23

Name Syntax Semantics Symbol

Role hierarchy r v s rI ⊆ sI

and role equality r ≡ s rI ≡ sI H
Functionality Func(r) ∀a ∈ ∆I ,

#{b ∈ ∆I | (a, b) ∈ rI} ≤ 1 F
Reflexivity Refl(r) ∀a ∈ ∆I , (a, a) ∈ rI

and Irreflexivity Irrefl(r) ∀a ∈ ∆I , (a, a) 6∈ rI R

Table 2.4: More expressive logical axioms in DLs

Some DLs do not follow the standard naming scheme. The exceptions of
interest for this thesis are:

EL+ + equivalent to ELOR
S equivalent to ALC+
DL-lite a family of sublanguages of SHIF(D) for which the usual DL

reasoning tasks are polynomial in the size of the ontology

Given an axiom α, we will denote the set of terms occurring in α with the
symbol α̃. Given a concept name A, a role name r, a pair of individuals a, b, a
pair of complex concepts C, D, a pair of complex roles r, s, and a datatype R, we
inductively define the length `(α) of an axiom α as follows:

`(C v D) = `(C ≡ D) := `(C) + `(D),

`(r v s) = `(r ≡ s) := `(r) + `(s),

`(C(a)) := `(C) + 1,

`(r(a, b)) := 3,

`(Trans(r)) = `(Func(r)) = `(Refl(r)) = `(Irrefl(r)) := 1,

where

`(>) = `(⊥) = `(R) := 0,

`(A) = `({a}) = `(r) = `(r−) = `(r+) := 1,

`(¬C) := `(C),

`(C u D) = `(C t D) := `(C) + `(D),

`(r ◦ s) = `(r) + `(s),

`(∃r.C) = `(∀r.C) = `(≤nr.C) = `(≥nr.C) := 1 + `(C).

This measure captures the complexity of parsing an axiom, and it will be used in
this chapter after Definition 2.3.13, and in Section 4.4.

24 CHAPTER 2. BACKGROUND

For our purposes, an ontology is a finite set O of logical axioms. Given an
ontology O, its signature, denoted Õ, is the set of terms occurring in one of O’s
axioms. The size s(O) of an ontology O is the number

∑
α∈O `(α) obtained by

adding up the length of each axiom α ∈ O. The expressivity of an ontology O
is defined to be the expressivity of the minimal DL needed to express all the
axioms in O. Please note that logically equivalent ontologies might have different
expressivities.

We say that an interpretation I satisfies an axiom α if the formula αI obtained
by mapping each term in α̃ via the interpretation function ·I is true. The inter-
pretation I satisfies an ontology O if I satisfies each element of O.

If I satisfies an axiom α (resp. a set of axioms O), then we say that I is
a model of α (resp. O), and we write I |= α (resp. I |= O). If every possible
interpretation I is a model for α, we say that α is a tautology. It is useful to
compare models of different sets of axioms O1 and O2: if all models of O1 are also
models for O2, we write that O1 |= O2; for example, this happens if O2 ⊆ O1. A
concept name A is said to be satisfiable in α (resp. in O) if there exists a model
I for α (resp. in O) such that AI 6= ∅. We say that an ontology is consistent if
there exists an interpretation I over Õ such that I |= O.

OWL The Web Ontology Language (OWL) is a standardized language for
defining ontologies, and a W3C recommendation. The underpinning logic is based
on DLs, however OWL offers more (logical and non logical) features, for example
the use of datatypes for managing data assertions, and annotations. In this thesis
we will consider only the logical aspects of ontologies, so the non-logical features
of OWL will be generally disregarded.

The latest version of OWL is called OWL 2, which offers a number of profiles,
i.e., sublanguages with different expressivity power and computational complex-
ity properties. The profiles of interest for this thesis are OWL EL, OWL Lite
(called OWL QL in OWL 2), and OWL DL. OWL EL is based on the logic
EL+ + [BBL05]. OWL QL instead is based on the logic DL-lite [CDL+07]. For
OWL EL and OWL QL, the standard reasoning tasks available are polynomial.
OWL DL corresponds to SROIQ and is the most expressive decidable language
in the OWL family.

2.2. CONSERVATIVE EXTENSIONS AND INSEPARABILITY RELATIONS25

2.2 Conservative Extensions and

inseparability relations

As discussed in Chapter 1, the need has emerged for managing ontologies in a
modular way, to reduce both the cognitive and the computational complexity that
easily arise even for supposed simple ontologies. In this thesis, all the notions of
modules considered are built upon the notion of Conservative Extensions (CEs)
defined in what follows. We will discuss and motivate this choice in Chapter 3.

There are a number of variants of the notion of CEs, which capture the preser-
vation of knowledge to different degrees. We focus on the following basic ones.

Definition 2.2.1 (Ghilardi et al., [GLW06], Konev et al., [KLWW09]). Let O
be a SROIQ-ontology,M⊆ O, and Σ a signature. We say that:

1. O is a deductive Σ-conservative extension (Σ-dCE) ofM if, for all SROIQ-
axioms α with α̃ ⊆ Σ, it holds thatM |= α if and only if O |= α;

2. O is a model Σ-conservative extension (Σ-mCE) ofM if {I|Σ | I |= M} =

{J |Σ | J |= O};
3. M is a dCE-based (mCE-based) module for Σ of O if O is a Σ-dCE (Σ-mCE)
ofM;

4. If M is a dCE-based module for Σ, we also say that M covers or provides
coverage to O for Σ.

SinceM ⊆ O, the monotonicity of the logic SROIQ implies that the “only
if” direction of Definition 2.2.1.1 holds trivially. Please also note that, for each
language L ⊆ SROIQ, a module preserving the models over Σ clearly preserves
also all the L-entailments over Σ. In contrast, the converse statement is not
always true: there can be an mCE-based module M of O for a signature Σ for
which the set of the L-entailments over Σ is not preserved since L could be not
expressive enough. In other words, whilst the model-theoretic notion of module
is also able to identify all the deduction-theoretic modules, not all mCE-based
modules can be identified by the notion of dCE. To sum up, all the dCE-based
modules are also mCE-based modules, whilst the vice versa is, in general, false.

In order to abstract from the requirement thatM is a subset of O, the notion of
inseparability relation has been introduced.

26 CHAPTER 2. BACKGROUND

Definition 2.2.2 (Konev et al., [KLWW09]). Let O1 and O2 be two ontologies,
and Σ a signature. We say that:

1. O1 and O2 are model inseparable w.r.t. Σ if {I|Σ | I |= O1} = {I|Σ | I |= O2}.
In this case, we write that O1 ≡mCE

Σ O2.

2. O1 and O2 are deduction inseparable w.r.t. Σ if, for all entailments η over Σ,
O1 |= η ⇔ O2 |= η. In this case, we write that O1 ≡dCE

Σ O2.

The equivalence relations ≡R are defined upon the notion R ∈ {mCE, dCE}
which is called an inseparability relation.

Please note that other notions of inseparability relations can be defined, even
though for the purposes of this thesis we will consider only inseparability relations
R ∈ {mCE, dCE}.
The following property of monotonicity is of crucial importance for the insepa-
rability relations just defined, and will have a deep impact on the properties of
modules of interest in this thesis.

Definition 2.2.3 (Kontchakov et al., [KPS+09]). An inseparability relation R

is called monotone if, for all ontologies O1,O2 and O3 and each signature Σ, it
satisfies the following conditions:

(Msig) if O1 ≡RΣ O2, then O1 ≡RΣ′ O2 for each Σ′ ⊆ Σ;

(Maxs) if O1 ⊆ O2 ⊆ O3 and O1 ≡RΣ O3, then O1 ≡RΣ O2.

The property of monotonicity for an inseparability relation R ∈ {mCE, dCE}
is guaranteed by the monotonicity of the DLs. Please note though that not all
inseparability relations are monotonic. Examples can be found in [CHKS08].

Inseparability relations induce modules defined as follows.

Definition 2.2.4 (Kontchakov et al., [KPS+09]). Let R be an inseparability
relation,M and O two ontologies, and Σ a signature. We callM:

1. an RΣ-module of O ifM≡RΣ O;
2. a self-contained RΣ-module of O ifM≡R

Σ∪fM O;
3. a depleting RΣ-module of O if ∅ ≡R

Σ∪fM O \M.

M is called a minimal (self-contained, depleting) RΣ-module of O ifM, but no
proper subset ofM, is a (self-contained, depleting) RΣ-module of O.

To ease the notation, we will omit the symbol Σ from the notion R of an
inseparability relation whenever the specific signature Σ is irrelevant to our pur-
poses.

2.2. CONSERVATIVE EXTENSIONS AND INSEPARABILITY RELATIONS27

Unfortunately, deciding whether a fragmentM of an ontology O is a module
in this sense is in general computationally hard: in its model-theoretic formu-
lation, deciding conservativity is PTime for acyclic EL ontologies [KLWW08],
coNExp-hard for some fragments of DL-lite [KWZ10] and undecidable already
for general EL ontologies and acyclic ALC ontologies [LWW07]; other approaches
limit the selection of the signature Σ to contain only concept names (such Σ is
then called a concept signature), and obtain that the complexity of deciding
mCE-based modules goes down to PTime for general ELI ontologies, and to
Πp

2 for ALCI [KLWW08]. For the deduction-oriented formulation better results
have been found: deciding whether M is a dCE-based module of O for Σ is
ExpTime-complete in EL [LW10], 2ExpTime-complete in ALC [GLW06] and
ALCQI [LWW07], and undecidable for expressive DLs as ALCQIO [LWW07].

To cope with this various approximations have been devised: the idea is to
define an oracle “x-check” able to decide whether easier conditions hold to guar-
antee that a set of axioms M is an R-module. As a consequence, the x-check
will not be able to find all the R-modules. However, if we require the x-check to
decide whether a set of axiomsM is a self-contained module for a signature Σ,
then we will also have thatM is a module for any Σ′ ⊆ M̃, even if not minimal.
The modules found via the oracle x-check will be called x-modules.

Before going to the next section to describe several notions of x-modules and
the conditions to extract them, we complete the description of the properties of
inseparability relations of interest for this thesis.

Definition 2.2.5 (Kontchakov et al., [KPS+09]). We say that an inseparability
relation R is robust under replacement if, for all ontologies O,O1, and O2, and
for each signature Σ, we have that O1 ∪ O ≡RΣ O2 ∪ O whenever O1 ≡RΣ O2 and
Õ ∩ (Õ1 ∪ Õ2) ⊆ Σ.

This property guarantees that for any signature Σ, the RΣ-moduleM can be
used instead of O, and hence it is fundamental in application scenarios as the
reuse of ontologies. Moreover, R-modules based on inseparability relations that
are robust under replacement benefit from other properties described in what
follows.

Proposition 2.2.6 (Kontchakov et al., [KPS+09]). Let R be a monotone insep-
arability relation that is robust under replacement. Then, every depleting RΣ-
module is a self-contained RΣ module.

28 CHAPTER 2. BACKGROUND

Theorem 2.2.7 (Kontchakov et al., [KPS+09]). Let R be a monotone insepara-
bility relation that is robust under replacement, O an ontology, and Σ a signature.
Then, there is a unique minimal depleting RΣ-moduleM⊆ O.

By Theorem 2.2.7 we know that, if R is monotone and robust under replace-
ment, then there is a unique minimal depleting RΣ-module M ⊆ O, which by
Proposition 2.2.6 is also self-contained. In the remainder of this thesis, we will
deal with modules that satisfy all of these properties. Hence we define a class of
modules that includes them all.

Definition 2.2.8. We define the class of Σ-modules as the set of all those notions
x of modules that satisfy the properties of self-containment and depletion as in
Definition 2.2.4, and such that, for each ontology O and each signature Σ, the
x-module is uniquely determined.

For each notion x of a Σ-module, we denote the x-module for Σ in an ontology
O with the symbol x-mod(Σ,O). If ontology and module notion are clear from
the context, we will use the short formMΣ.

2.3 Extracting Σ-modules

In the previous section we have defined Σ-modules as those notions x of R-
modules that are self-contained, depleting, and uniquely determined. We now
define two more properties of modules of interest when it comes to extract them.
The uniqueness of Σ-modules guarantees that such modules satisfy these proper-
ties.

Definition 2.3.1 (Sattler et al., [SSZ09]). Let x be a notion of module. Then
we say that:

- for any two signatures Σ1 and Σ2, and any ontology O, x satisfies the property
of monotonicity by signature enlargement if the following condition holds:

(msig) Σ1 ⊆ Σ2 =⇒ x-mod(Σ1,O) ⊆ x-mod(Σ2,O);

- for any two ontologies O1 and O2, and any signature Σ, x satisfies the property
of monotonicity by ontology enlargement if the following condition holds:

(maxs) O1 ⊆ O2 =⇒ x-mod(Σ,O1) ⊆ x-mod(Σ,O2).

From the definition and the properties of Σ-modules an algorithm can be
designed to extract the module x-mod(Σ,O) for any signature Σ and any ontology

2.3. EXTRACTING Σ-MODULES 29

O. Let x be a notion of Σ-module, and let us denote by x-check the oracle that
decides whether an axiom needs to be included into the module for Σ. Note
that an axiom α of interest can include terms that do not occur in Σ, and these
terms can further interact on defining models or entailments over Σ, so the initial
signature needs to be extended to Σ ∪ α̃ in order to ensure depletion and self-
containment. Hence, an x-module can be obtained by applying Algorithm 1.

Algorithm 1 General algorithm for computing a depleting x-module
1: Input: An ontology O; a notion x of Σ-module; a signature Σ.
2: Output: The x-moduleM for Σ.

3: M ← ∅
4: repeat
5: Σprev ← Σ ∪ M̃
6: for each α ∈ O do
7: if the x-check returns that α needs to be included in the module for

Σ ∪ M̃ then
8: M ← M ∪ {α}
9: end if
10: end for
11: until Σ ∪ M̃ = Σprev

12: return M

This procedure terminates because a module is a subset of O, so at each
repeat-until iteration, either the module in enlarged and the set of axioms not in
M is strictly smaller than at the previous step, or the module does not change,
and the condition Σ ∪ M̃ = Σprev stops the loop. In particular, the algorithm
needs to perform at most polynomially many x-checks in the number of axioms
of O. Finally, please note that two notions x1 and x2 can be nested to obtain the
module x2-mod(Σ, x1-mod(Σ,O)) that is not larger than x1-mod(Σ,O).

Coverage, depletion, self-containment, and monotonicity are guaranteed to
hold by the extraction Algorithm 1, provided that a suitable oracle is called in
line 7. The notions of Σ-modules that we are going to analyse are modules based
on conservativity and locality.

2.3.1 Conservativity-based Modules

Conservativity-based modules (CBMs) are minimal dCE- or mCE-modules in
the sense of Definition 2.2.4. We already mentioned that these modules are

30 CHAPTER 2. BACKGROUND

hard, or even impossible to compute in highly expressive DLs. However, for
a few lightweight description logics in the ELI and DL-Lite families, CBMs can
be computed efficiently. For example, Konev et al. in [KLWW08] describe a
polynomial-time procedure for computing minimal depleting mCE-modules of
acyclic ELI-terminologies and an implementation in the system MEX. The oracle
to be called in line 7 of Algorithm 1 decides, for each axiom α = A v C, whether
some concept names that are (possibly indirectly) used in the definition of the
concept name A in the complement ofM are in the extended signature Σ ∪ M̃.
For α = A ≡ C, a similar but more complex test is used. In [KLWW08] the same
approach is describes for acyclic ALCI terminologies, but with a computationally
more complex test for the case A ≡ C.

2.3.2 Modules based on other inseparability notions

Kontchakov et al. in [KPS+09, KWZ10] investigate the computation of different
kinds of minimal modules for ontologies in different DL-lite dialects, including
minimal dCE-modules (which are not necessarily depleting), and minimal de-
pleting modules based on query-based inseparability (called MDQMs). Without
going into the details of the underlying notion of query-based inseparability, we
can say that MDQMs fit into the context of this thesis because the inseparability
relation guarantees such module to be Σ-modules. The oracle to be called in
line 7 decides whether O \M∪ {α} ≡q

Σ∪fM ∅.
MDQMs are not polynomial-time computable, but the approach described

in [KPS+09, KWZ10] reduces the inseparability tests to satisfiability of quantified
Boolean formulas (QBF) and employs state-of-the-art QBF solvers.

2.3.3 Modules based on Locality

Locality-based modules (LBMs) are an approximation of CBMs in the following
sense: every LBM is a depleting dCE-module, but not necessarily a minimal
one. That is, LBMs may contain axioms irrelevant for preserving entailments. In
particular, for ontologies that fall into the lightweight fragments mentioned above,
LBMs always contain the corresponding modules computed via the respective
approaches. The major advantage of modules based on locality is that they are
considerably easier to extract, and have been defined, implemented and used
for extracting modules from ontologies encoded in expressive languages up to

2.3. EXTRACTING Σ-MODULES 31

SROIQ [CHKS08]. They come in two flavours – based on semantic and syntactic
locality.

Semantic locality

The intention behind locality is to decide, for each axiom α, independently of the
other axioms whether α is included in the module.

Definition 2.3.2. Let α be an axiom, Σ be a signature, and (∆J1 , ·J1) be an
interpretation over α̃ \Σ. Then, α is said to be J1-local w.r.t. the signature Σ if,
for any interpretation (∆J1 , ·J2) over Σ, the interpretation (∆J1 , ·I) over Σ ∪ α̃
such that the interpretation function I expands both J1 and J2 is a model for α.

Intuitively, if an axiom α is J1-local w.r.t. a given signature Σ, then it is
irrelevant to Σ since any expansion I of J1 leaves any interpretation of Σ possible.

If the interpretation J1 as in Definition 2.3.2 is defined by mapping any con-
cept name A ∈ α̃ \ Σ to S and each role name r ∈ α̃ \ Σ to S × S for a subset
S ⊆ ∆, the notion of J1-locality will be simply called S-locality. In this case,
instead of considering all interpretations over α̃ \ Σ, we consider only “trivial
interpretations”.

Example 2.3.3. Let the domain ∆ be {a}, let α be the axiom A v B, and let
Σ be {A}. Then, α is not ∅-local w.r.t. Σ since the interpretation (∆, ·I) where
AI = ∆ and BI = ∅ is not a model for α. However, α is ∆-local w.r.t. Σ since
any interpretation (∆, ·I) where AI = S for S ⊆ ∆ and BI = ∆ is a model for α.

The different behaviour of locality depending on the choice of J1 can intu-
itively be seen as a way to determine how the interpretation of symbols in Σ is
constrained by the axiom α. In the first case, α not being ∅-local means that A
is indeed constrained by α from above, t.i. α bounds the maximal size of possible
interpretations of A once a model for α is chosen. In the second case, α being
∆-local shows that A is not constrained by α from below, t.i. α does not bound the
minimal size of possible interpretations of A once a model for α is chosen. Now,
on the one hand is useful to be able to separate the different consequences that
the notions of semantic locality show on an axiom. On the other hand, Exam-
ple 2.3.3 shows that defining a “local axiom” as an “irrelevant axiom” tout-court
is not appropriate since, depending on the notion of locality, we have different
values of locality.

32 CHAPTER 2. BACKGROUND

Beside having an interesting intuition behind them, the two notions of ∅- and
of ∆-locality are clearly independent on the choice of the interpretation domain
∆. From now on we will consider only these notions of semantic locality.

Definition 2.3.4 (Cuenca Grau et al.. [CHKS08]). A SROIQ-axiom α is called
∅-local (∆-local) w.r.t. the signature Σ if, for each interpretation function I, there
exists an interpretation function J such that I|Σ = J |Σ, J |= α, and for each
concept name X ∈ α̃ \ Σ, XJ = ∅ (for each C ∈ α̃ \ Σ, CJ = ∆ and for each role
name r ∈ α̃ \ Σ, rJ = ∆×∆).

Modules based on semantic locality are extracted using Algorithm 1 where
the oracle to be called in line 7 decides ∅-locality (∆-locality, respectively) of α
w.r.t. Σ∪M̃. This test can be performed using available DL-reasoners [CHKS08],
which makes this problem considerably easier than testing conservativity. How-
ever, reasoning in expressive DLs is still complex, i.e., N2ExpTime-complete
for SROIQ [Kaz08]. The output of Algorithm 1 is the ∅-module (∆-module,
respectively) of the input ontology O for Σ.

Notation 2.3.5. Given an ontology O and a signature Σ, the set of all axioms in
O that are x-local w.r.t. Σ is denoted by x-local(Σ,O).

Remark 2.3.6. A tautology is, by definition, a valid axiom τ that is valid in all
interpretations I over τ̃ . In particular, a tautology will always be x-local for
any x ∈ {∅,∆}, and no module based on semantic locality and computed via
Algorithm 1 will contain a tautology.

From the previous remark, we have that in general the set of all modules
based on semantic locality is does not cover O, i.e., ⋃MM 6= O. This is not an
issue since they do not add any knowledge to an ontology O. In other words, the
ontology O′ = {α ∈ O |α is not a semantic tautology} is logically equivalent to
O.

The following result proves that testing for locality defines a sufficient condi-
tion forM to be a dCE-based module for Σ of O.

Proposition 2.3.7 (Cuenca Grau et al., [CHKS08]). Let M be a subset of an
ontology O such that all axioms in O \M are ∅-local (or ∆-local) w.r.t. Σ ∪ M̃.
Then,M is a dCE-based module of O w.r.t. Σ.

The inverse implication of Proposition 2.3.7 does not hold, as the following
example shows.

2.3. EXTRACTING Σ-MODULES 33

Example 2.3.8. Let O = {A ≡ B} and Σ = {A}. Then the single axiom is neither
∅- nor ∆-local w.r.t. Σ, but O is a dCE of the empty ontology w.r.t. Σ.

The following example shows a special case of a key property of ∅-modules:
if a concept name A occurs in an ∅-module M of an ontology O, then all the
superconcepts B of A occur inM.

Example 2.3.9. Let us now define the family of ontologies Chainn for n > 2 defined
as follows:

α1 : A0 v A1

. . .

αn−1 : An−2 v An−1

αn : An−1 v An.

Let n be fixed, Chainn the corresponding ontology, and Σ = {A0} be the signature
we want to extract the ∅-module MΣ for. It is easy to see that α1 is the only
axiom to be non-local w.r.t. Σ, so that MΣ 3 α1. For the extraction of MΣ,
then, the signature Σ is extended to include A1, and the ∅-check is run again over
Chainn. The same line of reasoning triggers a chain reaction that leads MΣ to
coincide with the whole ontology. In particular, all the concepts Ai with i > 0

that are superconcepts of A0 end up inMΣ.

Dually to ∅-modules, ∆-modules satisfy a similar property: if a concept name
A occurs in an ∅-module M of an ontology O, then all the subconcepts B of A
occur inM. These results are summarized in the following proposition.

Proposition 2.3.10 (Cuenca Grau et al., [CHKS08], Corollary 47). Let O be
a SROIQ ontology, and let A and B be two concept names in Õ. Then, the
following conditions are equivalent:

(1) O |= A v B;

(2) ∅-mod({A},O) |= A v B;

(3) ∆-mod({B},O) |= A v B.

From Proposition 2.3.7, we have that locality-based modules preserve entail-
ments over their seed signatures. However, these modules are sometimes quite
large; for example, given the ontology O = {Ci v D | 1 ≤ i ≤ n}, the ∆-module
M1 = ∆-mod(O, {C1, D}) contains the whole ontology. Now, we can find a smaller

34 CHAPTER 2. BACKGROUND

ontology that preserves all the entailments over Σ = {C1, D} by extracting an ∅-
module from M1, because by Proposition 2.3.7 we know that the result is still
an mCE for Σ. In practice, we can then extract the ∅-module1 for Σ from the
ontology M1. The resulting set is again an mCE-based module, denoted by
∅∆-mod(Σ,O). Please note that we can also start from an ∅-module, then ex-
tract a ∆-module from the previously extracted module, and denote the resulting
module by ∆∅-mod(Σ,O). Finally, we can keep nesting the extraction until a fix-
point is reached. The number of steps needed to reach this fixpoint can be at
most as big as the number of axioms in O [SSZ09].

In general, ∅- and ∆-modules for a signature Σ in an ontology O are different,
hence by nesting and alternating the two notions of modules we expect that the
module obtained by starting with the extraction of an ∅-module is also different
from the one obtained by starting with the extraction of a ∆-module. However,
this difference is removed when a fixpoint is reached, i.e., the fixpoint module
∅∆∗-mod(Σ,O) coincides with the fixpoint module ∆∅∗-mod(Σ,O). We include
here the unpublished proof for this result by Kazakov.

Proposition 2.3.11. Given an ontology O and a signature Σ, we have that the
two modules ∆∅∗-mod(Σ,O) and ∅∆∗-mod(Σ,O) coincide.

Proof. By the notation ∆∅-mod(Σ,O) we mean that the first extraction of a
module is based on ∅-locality. Because of the fixpoint, we have:

∆∅∗-mod(Σ,O) = ∅∆∗∅-mod(Σ,O) = ∅∆∗-mod(Σ, ∅-mod(Σ,O)).

By Definition 2.3.1 of monotonicity for Σ-modules, it also holds that

∅∆∗-mod(Σ, ∅-mod(Σ,O)) ⊆ ∅∆∗-mod(Σ,O)

||
∆∅∗-mod(Σ,O)

This proves that ∆∅∗-mod(Σ,O) ⊆ ∅∆∗-mod(Σ,O). The converse inclusion can
be proven in the same way.

1The extraction of a ∆-module w.r.t. Σ fromM = ∆-mod(Σ,O) results in the same module
M since all axioms inM are clearly non ∆-local w.r.t. Σ

2.3. EXTRACTING Σ-MODULES 35

Syntactic Locality

Since checking an axiom for locality against a signature is as hard as reasoning,
we have that extracting a locality-based module has the same complexity. Now,
since reasoning in expressive DLs is infeasible in the worst case, approximations
have been defined. Here we focus on the notion of syntactic locality. The idea
behind this notion is that the locality of an axiom α for a signature Σ can be
often revealed already by α’s syntax.

The syntactic identification of local axioms can be conceptually divided into
two steps. The first step consists of identifying those complex expressions that
can be trivially interpreted, whatever interpretation function I over Σ is taken
into account.

Definition 2.3.12. Let O be an ontology, Σ ⊆ Õ a signature, A a concept name,
C, D two (possibly complex) concepts, r a role name, and n a positive natural
number. For each concept name A 6∈ Σ and each role name r 6∈ Σ we define two
aliases denoted by using either the superscript ⊥ or the superscript > (e.g., A⊥

and A>). For the two notions ⊥,> of locality, we inductively define the sets of
⊥-terms Bot(Σ) and of >-terms Top(Σ) is given in Table 2.5.

(a) ⊥-locality
Bot(Σ) ::= ⊥ | A⊥ | r⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃r.C⊥ | ≤n r.C⊥ | ∃r⊥.C | ≤n r⊥.C
Top(Σ) ::= > |¬C⊥ | C>1 u C>2 | ≤ 0 r.C

(b) >-locality
Top(Σ) ::= > | A> | r> | ¬C⊥ | C> u D> | ∃r>.C> | ≤n r>.C> | ≤ 0 r.C

Bot(Σ) ::= ⊥ |¬C> | C u C⊥ | C⊥ u C | ∃r.C⊥ | ≤n r.C⊥

Table 2.5: Bot(Σ) and Top(Σ) for the notions of locality ⊥ and >

The second step needed for the identification of the syntactically Σ-local ax-
ioms of an ontology O consists of parsing each axiom α ∈ O, with the aim
of establishing whether an axiom’s syntax enforces only a vacuous relationship
between the terms in Σ and the complex expressions that are described in Defi-
nition 2.3.12.

36 CHAPTER 2. BACKGROUND

Definition 2.3.13. Let O be an ontology, Σ ⊆ Õ a signature, A a concept name,
C, D two (possibly complex) concepts, r a role name, n a positive natural number,
and a an individual. An axiom α ∈ O is called

(a) syntactically ⊥-local w.r.t. Σ if it has one of the following forms:

C⊥ v C, C v C>, C⊥ ≡ C⊥, C> ≡ C>, r⊥ v r, Trans(r⊥),Func(r⊥)

where any expression with the superscript ⊥ belongs to the set Bot(Σ), and
any expression with the superscript > belongs to the set Top(Σ) as defined
in Table 2.5(a);

(b) syntactically >-local w.r.t. Σ if it has one of the following forms:

C⊥ v C, C v C>, C⊥ ≡ C⊥, C> ≡ C>, r v r>, Trans(r>),Func(r>), (a : C>)

where any expression with the superscript ⊥ belongs to the set Bot(Σ), and
any expression with the superscript > belongs to the set Top(Σ) as defined
in Table 2.5(b).

Given an ontology O, a signature Σ ⊆ Õ, and a notion of locality x ∈ {⊥,>},
the extraction of an x-module can be performed by applying Algorithm 1 where
the x-check is defined upon Definition 2.3.13. As for semantic locality, the two
notions can be nested until a fixpoint is reached, and the corresponding module
notion will be denoted by the symbol >⊥∗.

Clearly, checking an axiom α against locality is polynomial in `(α), and hence
extracting a module based on syntactic locality is polynomial in the size of the
ontology `(O). Most importantly, syntactic modules approximate semantic mod-
ules, as stated in what follows.

Proposition 2.3.14 (Cuenca Grau et al., [CHKS08]). Let O be an ontology. If
M ⊆ O is a ⊥-module w.r.t. a signature Σ, then M is also an ∅-module w.r.t.
Σ. Similarly, ifM is a >-module w.r.t. Σ, thenM is a ∆-module w.r.t. Σ.

As for semantic locality, modules based on syntactic locality also provide cov-
erage; that is, they capture all the relevant entailments, but not necessarily only
those: Example 2.3.8 is applicable to this case too [CHKS08, JCS+08]. Syntactic
locality was at first defined for the DL SHIQ in [CHKS08], and then extended to
SHOIQ(D) in [JCS+08]. A locality-based module extractor is implemented in
the OWL API.2 The implementation provided is highly optimized, and it exploits

2http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/

2.3. EXTRACTING Σ-MODULES 37

theoretical results and technical tricks to reduce the complexity down to O(n · s),
where n is the number of axioms of O and s = maxα `(α). In particular, each
axiom α is checked against locality at most |α̃| times, i.e., only if the enlarged
signature Σi at the i-th iteration includes at least a term t ∈ α̃ that did not oc-
cur in Σi−1. The algorithm used has been devised by Tsarkov and it is described
in [Tsa12].

Since ⊥-modules are approximations of ∅-modules, and >-modules are ap-
proximations of ∆-modules, we have that the same result to that described in
Proposition 2.3.10 holds.

Corollary 2.3.15. Let O be a SROIQ ontology, and let A and B be two concept
names in Õ. Then, the following conditions are equivalent:

(1) O |= A v B;

(2) ⊥-mod({A},O) |= A v B;

(3) >-mod({B},O) |= A v B.

Syntactic locality does not exploit any reasoning service, which is required in
order to identify tautologies. However, particularly simple kinds of tautologies
can be syntactically identified as such.

Definition 2.3.16. Let x ∈ {⊥,>} be a notion of syntactic locality. We say
that an axiom α is a syntactic tautology if, for every signature Σ ⊆ α̃, α is x-local
w.r.t. Σ.

Remark 2.3.17. In contrast with the syntactic tautologies, there are tautologies
that cannot be syntactically identified, as it is the case for τ : A u B v A t B: by
checking τ against ⊥-locality w.r.t. the signature {A, B} we see that both sides
are non trivial complex concepts, hence τ is a non ⊥-local axiom.

Similarly to tautologies for modules based on semantic locality, syntactic tau-
tologies will not belong to any module based on syntactic locality and computed
via Algorithm 1 in locality-based modules.

As for all notions of Σ-modules, we can nest ⊥- and >-modules to reduce the size
of the module for a signature Σ. An analogous result to Proposition 2.3.11 holds.

Proposition 2.3.18. Given an ontology O and a signature Σ, we have that the
two modules >⊥∗mod(Σ,O) and ⊥>∗mod(Σ,O) coincide.

Proof. The proof is analogous to the proof for Proposition 2.3.11.

38 CHAPTER 2. BACKGROUND

2.4 Basic Notions of Algebra

We want to describe the relationships between an ontology O and a family F(O)

of subsets thereof by means of a well-understood structure. To this end, we
introduce in what follows some notions of algebra.

Definition 2.4.1. A weak partial ordering ≤ defined on a set X is a binary
relation over any two elements x1, x2 ∈ X satisfying 3 properties:

(1) x1 ≤ x1 (reflexivity)

(2) x1 ≤ x2 and x1 6= x2 =⇒ x2 6≤ x1 (weak antisymmetry)

(3) x1 ≤ x2 and x2 ≤ x3 =⇒ x1 ≤ x3 (transitivity)

In this case, the pair (X,≤) is called partially ordered set or poset.

Given a poset (X,≤) we can also dually define the binary relation ≥ over the
set X to hold between the two elements of the ordered pair (x1, x2) ∈ X ×X if,
and only if, x2 ≤ x1 holds. The resulting relation ≥ is also a weak partial order,
and the structure (X,≥) a poset.

Definition 2.4.2. A strict partial order < defined on a set X is a binary relation
over any two elements x1, x2 ∈ X satisfying 2 properties:

(1) x1 < x2 =⇒ x2 6< x1 (strict antisymmetry)

(2) x1 < x2 and x2 < x3 =⇒ x1 < x3 (transitivity)

Also in this case the pair (X,<) is called partially ordered set or poset.

Remark 2.4.3. For each weak partial order ≤ over a setX there is a correspondent
strict partial order < defined over X as the binary relation between any two
elements x1, x2 ∈ X such that x1 6= x2 and x1 ≤ x2. Vice versa, given a strict
partial order < over X there is a correspondent weak partial order ≤ defined over
X as the binary relation between any two elements x1, x2 ∈ X such that x1 < x2

or such that x1 = x2.

Remark 2.4.4. Given a strict partial order < over a set X a Directed Acyclic
Graph (V,E) is defined, where the set of vertexes V equals the set X, and the
set of edges E equals the set of pairs (x1, x2) with x1 < x2. Such DAG is called
the Hasse Diagram of the poset (X,<). From Remark 2.4.3 we know that, given

2.4. BASIC NOTIONS OF ALGEBRA 39

any weak partial order ≤ we can derive the corresponding strict partial order <,
and hence a corresponding Hasse diagram.

Definition 2.4.5. Two elements x, y of a poset (X,<) are called comparable if
x < y or y < x. Otherwise they are said to be incomparable. A subset of X in
which any two elements are comparable is a chain. A subset of X in which any
two elements are incomparable is an antichain. If X is finite, we can define its
width to be the maximal size of an antichain in (X,<) and its length to be the
maximal size of a chain in (X,<) minus 1.

Definition 2.4.6. Given a poset (X,<), an element x ∈ X is called minimal if
there exists no element y of X with y < x. Similarly, an element x ∈ X is called
maximal if there is no element y ∈ X such that x < y.

Not all posets have minimal elements. However, if the number of elements is
finite, then the minimal elements exist.

We will make use of the notions of ideal and of principal ideal, defined as follows.

Definition 2.4.7. For an element x ∈ X, the set ↓x := {y ∈ X | y ≤ x} is called
the principal ideal of x. Given a subset S = {x1, . . . , xκ} of X, we define the
ideal of S as the union of the principal ideals of all elements in S, t.i.,

⋃
xi∈S ↓xi.

Chapter 3

Modularity

In Section 2.2 we have described Conservative Extensions, and we have com-
mented on the reasons that have lead to the definition of such a notion, i.e.,
to reduce the complexity of an ontology. Ideally, this notion is at the heart of
the definition of logical modules, intended as fragments of an ontology O that
preserve the entailments of O over a given signature Σ, and hence that provide
coverage as defined in Definition 2.2.1. A module then can be used instead of O
for many purposes, for example when it comes to reusing the knowledge modelled
in comprehensive, possibly huge, well-designed ontologies.

However, deciding if a fragmentM of an ontology O is a module in this sense
is computationally hard: it is ExpTime-complete in EL [LW10], 2ExpTime-
complete inALC [GLW06] andALCQI [LWW07], and undecidable for expressive
DLs such as ALCQIO [LWW07]. Hence, a strong effort has recently been put in
identifying feasible approximations of the notion of module. Extracting modules
from an ontology is now a well studied task, and some of the notions of modules
defined satisfy also more interesting logical properties, discussed in Section 3.1,
of depletion, self-containment, and uniqueness, which CE-based modules do not
satisfy in general. In this chapter we are going to analyse the following notions
of modules:

- Parikh’s approach to split a logical theory [Par99]

- the ∆-decomposition of an ontology [KLPW10]

- decomposition of an ontology using E-connections [CPSK06]

- Σ-modules as defined in Section 2.3, that include some notions of modules

41

42 CHAPTER 3. MODULARITY

based on inseparability relations [KPS+09, KWZ10], conservativity-based
modules that can be extracted by using the MEX system [KLWW08], and
the modules based on semantic and syntactic locality [CHKS08, SSZ09,
JCS+08].

Historically, the first three notions of modules have been defined by identify-
ing, within an ontology O, a decomposition of axioms, terms, or of the domain
into representative fragments that may or may not have some logical interactions.
By “representative” we mean that can be eventually combined to get the whole
set of modules. The set of these fragments together with their interactions is
called a modular structure. The usage of finding a modular structure includes:

- to reveal information about the topics described in O and on how these
topics are described

- to check whether the intended modelling is adequately encoded in O by
identifying connected vs. isolated parts of O.

Quite differently, Σ-modules, designed for different purposes, are not provided
with a modular structure: the substantial overlapping of Σ-modules causes an ex-
ponential blowup in their cardinality, and finding a set of representative modules
is a task previously attempted with little results. However, a trivial modular
structure can be defined as follows: given the set of all Σ-modules, their logical
interrelations are defined by the set-theoretic inclusion relation.

In Section 3.2 we suggest an evaluation framework to summarize the properties
of a modular structure. The evaluation framework is based upon four parame-
ters: coherence, granularity, dependence or its dual concept of independence, and
computability. The modular structures defined or induced by the aforementioned
logical modules are then evaluated in Section 3.3 following this framework, and
conclusions on the structures’ applicability are drawn.

3.1 Desirable Properties of Modules

Modularity in Computer Science has been studied since the late 1960s. In 1972 in
the area of Software Engineering, Parnas recommended the use of functional mod-
ules, i.e. incorporating a function, rather than sequential modules, i.e. determined
by the temporal sequence of actions to perform. The modules are combined via

3.1. DESIRABLE PROPERTIES OF MODULES 43

calls to the modules’ interface, that is, the abstraction of the specification pa-
rameters (i.e. input and output). The system obtained is then independent of the
specific implementation of the functional modules. This property is now called
encapsulation, even though the term does not occur in Parnas’ paper.

Parnas claims that the choice of the parameters to be exposed to the system
needs to be defined upon a principled criterion, called information hiding : at
design time, the engineer has to identify the implementation parameters (e.g.
local variables). To preserve the system’s correctness these parameters should be
inaccessible by other modules, otherwise their values could uncontrollably change.

In what follows we are going to analyse whether these properties can be trans-
lated into analogous properties of interest in ontologies or in logical theories.

In ontologies several approaches to modularity have been designed and im-
plemented, but we limit our investigation to those modules that preserve logical
properties.

Definition 3.1.1 (Garson, 1989). Given a logical theory T , a fragment T ′ (not
necessarily a subset) of T is a logical module if, for some background logic, the
following two conditions hold:
1. T ′ is locally correct, i.e. any sentence provable in T ′ should be provable in T .
2. T ′ is locally complete, i.e. every sentence in the signature of T ′ that is provable
in T should be provable also in T ′.

Local correctness means that T ′ does not have unexpected entailments, i.e.,
entailments that do not already follow from T . If T ′ is a subset of T , then
local correctness follows from the monotonicity of the underlying logic. Local
completeness, on the other hand, guarantees that a logical module T ′ preserves
all entailments of O over the signature T̃ ′, and hence T ′ can be used in place
of the original theory T for everything that concerns T̃ ′. If T ′ is a subset of
T , then local completeness implies that T ′ is a self-contained ≡dCEfT ′ -module of
T in the sense of Definition 2.2.4. Because ≡dCEfT ′ is robust under vocabulary
restrictions [KLWW09], it follows that T ′ covers T for the signature of T ′.

Definition 3.1.1 has a deductive flavour. Definition 2.2.4 is indeed a reformu-
lation and generalization that uses different inseparability relations, including the
model-theoretic counterpart ≡mCE of ≡dCE.

Let us discuss the notions of coverage and self-containment in more detail.
Coverage guarantees that the use of a module instead of the original theory
is safe because all relevant entailments are preserved. Self-containment instead

44 CHAPTER 3. MODULARITY

aims at making all terms in a module equal in order to provide a module with a
well-defined interface, which simply is the module’s signature. The following is
a simple example showing the roles that coverage and self-containment play in
determining a logical module.

Example 3.1.2. Let us consider the following ontology:

O = {α :A v B u (C t D),

β :C v D,

γ :B v C}.

Then, the axiom α preserves all the entailments of O over Σ1 = {A, B}. However,
not all entailments of O over Σ2 = {A, C, D} are preserved by {α} since η : A v C

is lost. The set of axiomsM = {α, β} instead preserves all axioms over both Σ1

and Σ2, and it would make sense to consider both Σ1 and Σ2 as an interface for
M. However, M does not preserve all the entailments over the union Σ1 ∪ Σ2

of the two interfaces, that also coincides with M̃, and thusM is clearly not self-
contained. In particular, if we now were to useM in a reuse scenario, we would
need a reminder of the signature thatM is used for.

Providing coverage is a necessary condition for a moduleM of a logical theory
to be considered functional: since T ′ preserves the entailments of T over the
signature T̃ ′ it can be, for example, used instead of T for querying T over a
restricted signature. The interface of a logical module is then the set of terms Σ

over which the moduleM preserves the entailments.
Modules providing coverage are called weak modules in [KLWW08] because

coverage alone cannot guarantee encapsulation: it can happen that the same
logical consequences of a Σ-moduleM are entailed also by O \M, as described
in the following example.

Example 3.1.3. Let Dolphin be the following ontology:

{Dolphin v Fish,

∃hasFin.> v Fish,

Dolphin v ∃hasCaudalFin.>,
hasCaudalFin v hasFin,

Mammal v ¬Fish,
Dolphin v Mammal}.

3.1. DESIRABLE PROPERTIES OF MODULES 45

Let us suppose that we want to revise the ontology to remove the entailment
η : Dolphin v ⊥. We start by extracting the following subset M, which is
a logical module for the signature Σ = {Dolphin}, and therefore preserves the
entailment η : Dolphin v ⊥.

{Dolphin v Fish,

Mammal v ¬Fish,
Dolphin v Mammal}.

We can repair the moduleM by removing the axiom α : Dolphin v Fish, and we
obtain the set of axiomsM′ =M\{α} = {Mammal v ¬Fish, Dolphin v Mammal}
that does not entail η anymore. However, α is not the only axiom that causes the
unintended entailment η since by applying the same repair to Dolphin we obtain
the ontology Dolphin′ = Dolphin\{α} that still entails η. In other words, a logical
module for a signature Σ in general does not contain, i.e., encapsulate, all the
reasons for the entailments over Σ to hold.

The issue discussed in Example 3.1.3 does not arise in logical modules that
satisfy the additional property of depletion, see Definition 2.2.4. A moduleM⊆
O is depleting if O \M has no non-trivial entailments η over Σ, i.e., if the set
of axioms in O \M is indistinguishable w.r.t. Σ from the empty set. Hence, if
we want to look at the reasons in O for η to hold, we can restrict our attention
to modify only the module M for η̃ in O. Depleting modules are called strong
modules in [KLWW08].

The information hiding principle described by Parnas aims at making the sys-
tem robust under design modifications. However, a substantial difference between
modules in Software Engineering and modules in Ontology Engineering consists of
the difficulty of defining a criterion such as information hiding in logical theories,
as in the case of global axioms described in the following example.

Example 3.1.4. Let us consider the ontology:

Child = {Child v (=1 hasMother.Mother),

Child v (=1 hasFather.Father),

Mother v ¬Father,
Irrefl(hasMother),

Irrefl(hasFather)}

46 CHAPTER 3. MODULARITY

Child is clearly a module for its signature Σ = {Child, Mother, Father}. Suppose
we now want to describe the situation as in the Bible story of Adam and Eve
in the garden of Eden into an ontology Child′ obtained by adding to Child the
following axiom:

α : > v {Adam} t {Eve}.

The signature α̃ is clearly disjoint from the ontology’s signature Σ. However, the
ontology Child ∪ {α} generates the new entailment Child v ⊥. Hence, it is not
possible to protect the meaning of the terms in a module M by preventing the
changes to use terms from the module’s interface M̃.

This example shows that importing a moduleM of an ontologyO into another
ontology O′ could have a logical impact—both onM and on O′—whose scope is
difficult to evaluate, and this is the reason why the information hiding principle
is hard to follow for logical theories.

Another property of modules of ontologies that we want to investigate is their
computability. Decidability is one of the key properties of DL ontologies that
makes ontologies useful in practice, and a lot of effort has been put in identifying
tractable fragments of DL languages/optimizing reasoners implementations so
that ontologies encoded in intractable dialects can still be efficiently used for
reasoning tasks. With a similar spirit, a module of an ontology should be useful
in practice, hence low complexity is another key aspect to be considered when
modules are used.

3.2 Evaluating a Modular Structure

As mentioned in Section 3.1, the original aim of modularity in Computer Science
was to decompose complex systems into more manageable, loosely related frag-
ments. However, the system functionality is still the key of the decomposition and
the composition of modules. Hence, a modularised system can be represented as
the set of its components, and the interrelations between the components occur
through the components’ interfaces.

For ontologies, we define the notion of modular structure to be a pair (F,→),
where F is a representative set of modules of an ontology O, and → is a binary
relation between the elements of F that captures suitable logical interactions
between the modules of O; in particular M1 → M2 means that M1 needs to

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 47

importM2 to preserve some logical properties. One possible approach to reveal
the impact of adding, removing, or modifying an axiom in an ontology consists
of comparing the two modular structures of the initial ontology O and of the
modified ontology O′. Clearly, there can be more than one notion of modular
structure since there is more than one notion of module. Depending on the
notion used, different kinds of impact can be revealed. By evaluating a modular
structure, then, we can understand what it means for two modules to be distinct,
or to be related, and how coarse the modularisation is.

In the context of Software Engineering, Constantine in 1974 suggested two
measures to be considered when defining functional modules to obtain a struc-
tured system: cohesion and coupling [SMC74]. Cohesion is a measure for evalu-
ating how relevant the components of a module are to the function the module is
designed for: the higher the cohesion, the better the module. Coupling is a mea-
sure for the substitutability of a logical module, and it tries to capture the degree
of encapsulation of a module by measuring the interactions between modules: the
looser the coupling, the better the modularisation. Despite being different con-
cepts, cohesion and coupling often anti-relate: a modularised system that shows
a high cohesion often also shows a low coupling, and vice versa.

Similar aspects can be studied for evaluating the modular structures of a
logical theory. In particular, we will take into account:

1. The internal logical cohesion of a module, called coherence.

2. The coupling between the elements of different modules expressed in terms
of their dependence/independence.

We also want to evaluate the general behaviour of a modular structure. To this
aim, we define another aspect that takes into account the modular structure as
a whole:

3. The coarseness of the set of modules, expressed in terms of its granularity.

3.3 Evaluation of the existing Modular Structures

In this section we describe and evaluate the modules identified in [Par99, KLPW10,
CPSK06]. In these cases, the modules of an ontology O (or of a logical theory
T) are obtained by decomposing O, and the basic fragments obtained together
with their interrelations define different modular structures.

48 CHAPTER 3. MODULARITY

3.3.1 Parikh’s Approach

The logical formalisation of this first notion of modular structure was introduced
by Parikh in 1999 in the context of Belief Revision [Par99]. The question ad-
dressed originally is essentially the following: if we want to revise a theory with
a new piece of knowledge that contradicts some of what is entailed, do we have
to check it against the whole theory? Or do we have some kind of safety that
allows us not to touch those parts that are irrelevant for this new finding? He
formalises a way to “split” a logical theory T into signature-disjoint parts.

Definition 3.3.1 (Parikh, 1999). Let T be a logical theory over the signature
T̃ and let {T̃1, T̃2} be a partition of T̃ . We say that T̃1, T̃2 split the theory T if
there are formulae α over T̃1 and β over T̃2 such that the logical closure of {α, β}
coincides with the logical closure of T . In this case, we say that {T̃1, T̃2} is a
T -splitting. In general, we say that (mutually disjoint) signatures T̃ , . . . , T̃n split
T if there exist formulae αi ∈ T̃i for i = 1, . . . , n such that T is the logical closure
of {α1, . . . , αn}.

In Parikh’s approach, then, a logical module is a set T1 such that the signature
partition {T̃1, T̃ \T̃1} splits the theory T . It has to be pointed out that the theories
Ti are not in general subsets of formulae from T since rewriting could be required
to express a logical theory T ′j over Σj equivalent to Tj. Please note that Parikh
is focusing on SOL, so any finite set of formulae can be equivalently expressed
by a single formula. Hence, it may be the case that the set T is a singleton, but
Parikh’s splitting is non trivial.

Example 3.3.2. Let us consider the singleton ontology:

One = {> v (¬A1 t B1) u (¬A2 t B2) u . . . u (¬An t Bn)}

One can be rewritten into the logically equivalent ontology

All = {A1 v B1,

A2 v B2

. . .

An v Bn}

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 49

Hence, the signature partition Σ1 = {A1, B1}, . . . ,Σn = {An, Bn} splits the ontol-
ogy One.

A nice property of this approach is that, for each theory T the T -splitting is
uniquely determined.

Theorem 3.3.3 (Parikh, 1999). Given a theory T over the signature T̃ , there is
a unique finest T -splitting of T̃ , i.e. one which refines every other T -splitting.

The uniqueness of theory splitting allows us to identify a well-defined modular
structure of any logical theory T : in this case, the representative modules are
those that determine the finest T -splitting. A module in T is simply the union
of some of these basic modules.

Example 3.3.4. Let us consider the following ontology:1

Tree = {Tree v ∃isMadeFrom.Seed,
Seed v ∃isMadeFrom.Fruit,

Fruit v ∃isMadeFrom.Flower,
Flower v ∃isMadeFrom.Branch,
Branch v ∃isMadeFrom.Tree,

Mountain v ∃isMadeFrom.Soil}.

Parikh’s splitting consists of one module containing all the terms in Tree. How-
ever, there is a clear logical difference between the set of terms Σ1 = {Tree,
Seed, Fruit, Flower, Branch} and the set Σ2 = {Mountain, Soil}: by interpret-
ing Tree as the empty set, all the other terms in Σ1 are unsatisfiable, whilst there
is no constraint in the interpretation of the terms in Σ2. Similarly, by interpreting
Soil as the empty set we get that Mountain is unsatisfiable, whilst there is no
constraint in the interpretation of the terms in Σ1. However, we cannot separate
these two sets because they share the term isMadeFrom, so that Tree cannot be
rewritten as the union of two signature-disjoint theories.

Example 3.3.4 shows that the induced notion of coherence is rather loose.
Indeed, two terms A and B belong to the same module if there is an arbitrary
long sequence of intermediate terms {Ai | i ≤ n, n ∈ N} such that A interacts (in

1This ontology is an adaptation and translation into DL of some fragments from the Italian
song Ci vuole un fiore (It takes a flower), by G. Rodari, L. Enriquez, and S. Endrigo.

50 CHAPTER 3. MODULARITY

the model-theoretic sense described above) with A0, Ai interacts with Ai+1 for all
i ∈ {1, . . . n}, and An interacts with B. However, A and B can still not interact
with each other. At the same time, distinct modules are completely unrelated.
This situation is described in the following example.

Example 3.3.5. Let us consider the following family of ontologies:

Zigzagn = {A1 v B1,

A2 v B1,

A2 v B2,

. . . ,

An v Bn,

An+1 v Bn}

The relation between the concepts in Zigzagn is represented in Figure 3.1.

· · ·

A1 A2

B1 B2

A3 An An+1

Bn

Figure 3.1: Concept relations in Zigzagn

For n ≥ 3, the concepts A1 and An+1 are completely unrelated since Zigzagn
has only trivial entailments over the signature {A1, An+1}. However, A1 and An+1

still belong to the same Parikh’s module.

The notion of dependence in Parikh is trivial since the modules, when two or
more of them exist, do not interact at all.

Please note that two equivalent logical theories generate the same partitioning.
Hence, the granularity of this modular structure reveals subterminologies that are
completely unrelated, regardless of the syntactic encoding of the logical theory.

To sum up, the Parikhian modular structure can be evaluated as follows:
- Coherence: loose;
- Dependence relations: trivial;
- Granularity: coarse.

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 51

Parikh is not concerned in studying the practical feasibility of computing the
signature decomposition of a logical theory. However, some insight on this issue
are provided by the computational analysis of signature ∆-decompositions, i.e. a
generalization of signature decomposition proposed in [KLPW10] and described
in the next subsection.

3.3.2 Signature ∆-decomposition

The modules defined by Parikh have proved to be too coarse-grained for both Tree
and Zigzagn: all the axioms ended up into the same and only module, regardless
of whether we could easily point out intuitively independent fragments.

Parikh’s notion of coherence can be made stronger by imposing that any (part
of an) ontology is coherent if its signature cannot be decomposed into disjoint
subsets by discarding some special, common terms. These common terms can be
distinctive of the whole area, but can be used in different contexts, and enforce
substantially different logical relations. In Example 3.3.4, isMadeFrom is such a
special term.

In [Pon08] this idea has been formalized and proposed by introducing signature
∆-decompositions. This approach has been further investigated in [KLPW10],
where the authors explain that some terms behave like logical symbols under
certain points of view. So, the idea is to identify a set ∆ of these terms and then
to decompose the signature of a logical theory T into disjoint subsignatures Σi,
such that there exist theories Ti over the signatures Σi ∪∆ with

⋃
i Ti ≡ T .

Definition 3.3.6 (Konev et al., 2010). Let T a finite theory of formulae in SOL,
∆ ⊆ T̃ and L a fragment of SOL. A partition Σ1, . . . ,Σn of T̃ \ ∆ is called a
signature ∆-decomposition of T in L if there are T1, . . . , Tn theories of formulae
in L such that
- T̃i ⊆ Σi ∪∆ for i = 1, . . . , n

- T1 ∪ . . . ∪ Tn ≡ T .
T1, . . . , Tn is called a realization of the signature ∆-decomposition Σ1, . . . ,Σn in
L.

For L = SOL, the realization of a signature ∆-decomposition always exists,
and, as in Parikh’s approach, is unique.

Theorem 3.3.7 (Konev et al., 2010). Let T a finite theory of SO formulae,
∆ ⊆ T̃ , and let Σ1, . . . ,Σn and Π1, . . . ,Πm be ∆-decompositions of T in SOL.

52 CHAPTER 3. MODULARITY

Then, the partition Σi ∩ Πj for all i, j with Σi ∩ Πj 6= ∅ of T̃ \ ∆ is a ∆-
decomposition of T in SOL. Thus, there exists a unique finest ∆-decomposition
of T in SOL called Unique Decomposition Realization (UDR).

Set T∆ to be a theory over ∆ such that, for any axiom η over T̃∆, T∆ |= η ⇔
T |= η. Then, we define a ∆-module to be a union of T∆ with some theories Ti
belonging to the UDR.

In contrast with what happens in the case of SOL, a realization of a signature
∆-decomposition in a language L different from SOL does not necessarily exist.
In other words, in less expressive logics, like some DLs, the UDR does not exists
in general. However, for some languages we have the guarantee that a UDR
always exists, and when it does, it coincides with the UDR determined in SOL.
A sufficient condition for this to hold is the language L to satisfy the Parallel
Interpolation Property (PIP) defined as follows:

Definition 3.3.8 (Konev et al., 2010). Let L be a fragment of SO, (T1, T2) be
two sets of SO formulae, α an SO formula with T1 ∪ T2 |= α, and ∆ a signature.
A pair T ′1 , T ′2 with T ′i encoded in a fragment of L for i = 1, 2 is called a ∆-parallel
intermediate of (T1, T2) and α in L if the following conditions hold:

- Ti |= T ′i for i = 1, 2;
- T̃ ′i \∆ ⊆ T̃i ∩ α̃ for i = 1, 2;
- T ′1 ∪ T ′2 |= α.

L has the parallel interpolation property (PIP) if, for all T1, T2 encoded in L, all
α in L, and all signatures ∆ such that

1. T̃1 ∩ T̃2 ⊆ ∆,
2. T1 ∪ T2 |= α,
3. T1 and T2 are ∆-inseparable w.r.t. L
there exists a ∆-parallel intermediate of (T1, T2) and α in L.

Theorem 3.3.9 (Konev et al., 2010). Let L be a fragment of SOL with the PIP.
Then:

1. L-decompositions coincide with SOL-decompositions;
2. L has UDR.

The previous result makes sense of analysing, for ontologies encoded in a
language with the PIP, the modular structure defined by the unique finest ∆-
decomposition in SOL. In this case, the representative set of ∆-modules is the

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 53

set of theories {T∆, T1 ∪ T∆, . . . , Tn ∪ T∆, }. The dependence between modules is
slightly more interesting than the Parikhian one, and it consists of one indepen-
dent module (T∆) and n modules (Ti ∪ T∆) dependent on the common module
T∆.

Example 3.3.10. Let us consider the Zigzagn family of ontologies as in Exam-
ple 3.3.5 for n ≥ 3. Then, we see that by choosing ∆ to be a singleton set
{Ai}, where 2 ≤ i ≤ n} the ∆-decomposition obtained consists of three parts: ∆,
{A1, . . . , Ai−1, B1, . . . , Bi−1}, and {Ai+1, . . . , An+1, Bi, . . . , Bn}. Similarly, if ∆ = {Bi}
with 1 ≤ i ≤ n, the corresponding ∆-decomposition is ∆, {A1, . . . , Ai, B1, . . . , Bi−1},
and {Ai+1, . . . , An+1, Bi+1, . . . , Bn}.

If we analyse all these cases, we notice that, for all i ∈ {1, . . . , n} the terms Ai
and Bi are always either in the same part, or in related parts. The same happens
for the terms Ai+1 and Bi. In contrast with this situation, all the other pairs of
terms can be separated by a suitable choice of ∆, so it is clear that the logical
relation between these pairs is looser than the one between the pairs listed before.
Hence, the ∆-decomposition reveals stronger logical relations between the terms
of an ontology O.

Example 3.3.11. Let us consider again the ontology Tree as in Example 3.3.4.
Then, by setting ∆ = {isMadeFrom}, we obtain a decomposition of the signature
of Tree into the two fragments Σ1 = {Tree, Seed, Fruit, Flower, Branch} and
Σ2 = {Mountain, Soil}. This decomposition captures exactly the desired logical
relation as described in Example 3.3.4.

Please note that the choice of the set ∆ hugely influences the decomposition
obtained: given a different set ∆′ = {isMadeFrom, Tree, Fruit}, we obtain a
∆′-split consisting of 3 parts: Σ′1 = {Seed}, Σ′2 = {Flower, Branch}, and Σ′3 =

{Mountain, Soil}.

From Example 3.3.11 it is clear that the major challenge for ∆-decomposing
an ontology is the selection of a suitable set ∆. As the authors say, they “do
not expect signature decompositions to be a push-button technique, but rather
envision an iterative and interactive process of understanding and improving the
structure of an ontology, where the designer repeatedly chooses sets ∆ and ana-
lyzes the impact on the resulting decomposition”. Hence, this method does not
produce any stable, intrinsic modular structure—at least, we still do not have
conditions to ensure such a property.

54 CHAPTER 3. MODULARITY

In [KLPW10] the computability of signature ∆-decompositions has been anal-
ysed for those languages that are shown to have the PIP. In particular, find-
ing the finest ∆-decomposition is polynomial in DL-Lite, and in EL with fur-
ther constraints (either ∆ = ∅ or O being role-acyclic); ExpTime-complete in
ALC,ALCI,ALCQ or ALCQI, and in ALCH or ALCHI under the condition
that ∆ contains all the role and individual names from Õ. For those languages
that do not have the PIP the existence of a ∆-decomposition is not guaranteed.

To sum up, the modular structure based on the signature ∆-decomposition
can be evaluated as follows:
- Coherence: ranging from loose to strict, depending on ∆;
- Dependence relations: almost trivial, and of depth at most 1;
- Granularity: ranging from fine to coarse, depending on ∆.
- Computability: when the UDR exists, it depends on the language, and it can
range from polynomial to ExpTime.

3.3.3 E-connections

An orthogonal approach to decomposing an ontology into modules consists of
trying to capture different kinds of things in an ontology, and how the ontology
describes some things in terms of other ones. For example we could have an
ontology dealing with the concept of Person described both in terms of what she
eats and of her occupational status. Ideally, a modular structure should be able
to reveal these logical interactions, and hence to retrieve a non trivial structuring
of the ontology’s modules.

In [CPSK06] the authors apply E-connections to decompose ontologies, instead
of composing them as originally defined in [KLWZ04]. The notion of module they
are searching for is such that no subsumption relations exist between a concept
(as in DLs, i.e. unary predicates) inside a given module and concepts outside this
module. This intuition leads to the following notion of module.

Definition 3.3.12 (Cuenca Grau et al., 2006). A TBoxMA ⊆ O is a module for
a concept A ∈ Õ if:
1. MA is a logical module in O as in Definition 3.1.1
2. for every concept B ∈ Õ, the following holds:

(a)MA |= {A v B} ⇐⇒ O |= {A v B}
(b)MA |= {B v A} ⇐⇒ O |= {B v A}

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 55

3. there are no concepts C, D ∈ Õ such that C ∈ M̃A, D 6∈ M̃A and either
O |= C v D or O |= D v C.

To obtain such modules from an ontology, the authors describe a 3-steps
algorithm: a safety-check, a partitioning algorithm, and the identification and
extraction of modules.

The safety-check aims at identifying if the ontology O contain any axiom that
constrains the domain size, as the axiom α in the extended ontology Child ∪ {α}
in Example 3.1.4. If some of these axioms occur in O, then the ontology is said
to be not safe, and this algorithm cannot be applied.

After applying the partition algorithm, the concepts are grouped in parts that
do not have to share elements in their extensions (see Theorem 3 in [CPSK06]).
In symbols, there exists a model I for O such that CI ∩ DI = ∅ for all concepts
C and D that belong to different parts. In particular, we obtain a partition of the
domain, whose parts can be of three types: (Red) those which import vocabulary
from others, (Blue) those whose vocabulary is imported, and (Green) isolated
parts. Intuitively, this property means that either the parts correspond to actual
non-overlapping subject matters, or the ontology is underspecified and some of
the parts correspond to “unused information”.

In contrast to signature ∆-decompositions, and like in Parikh’s approach, the
procedure described here is completely automatic, so for any ontology O there
is a unique decomposition into E-connections. The ontology O gets partitioned
into fragments that correspond to independent parts of the domain, connected by
non trivial dependence relations. In particular, distinct parts can share part of
the vocabulary, but no instances. By automatically labelling each part with the
highest common concept name in the concept hierarchy, we obtain the so-called
Partitioning Graph. One example can be found in Fig. 3.2, which represents the
E-connection of the toy ontology Koala2 that contains 42 axioms.

To obtain a logical module in E-connections, after selecting the parts of in-
terest one must import all the parts whose vocabulary is imported. In other
words, the smallest module containing the selection can be obtained by com-
puting the transitive closure over the outgoing edges from the red parts. In
particular, for Koala we have 8 non-empty modules: one for each blue fragment
Gender, Habitat, and Degree, then any combination of these three, and finally
the module for Animal that imports the vocabulary from the other parts. The

2http://protege.stanford.edu/plugins/owl/owl-library/koala.owl

http://protege.stanford.edu/plugins/owl/owl-library/koala.owl

56 CHAPTER 3. MODULARITY

Animal

Degree

Habitat

Gender

Figure 3.2: E-connections-based Partitioning Graph of the ontology Koala

representative set of modules consists clearly of the 4 fragments labelled with
Animal, Gender, Habitat, and Degree.

As mentioned before, this technique fails sometimes in partitioning an ontol-
ogy, and it returns a unique block, even if the ontology seems in principle well
structured.

Example 3.3.13. Let us consider again the family of ontologies Zigzagn as in
Example 3.3.5. Then, for each i ∈ {1, . . . , n} we have that Ai and Bi belong to
the same module since Zigzagn |= Ai v Bi. The same argument can be expressed
for Ai+1 and Bi. Finally, all terms end up in the same module whose label is >.

Similar unexpected aggregation can occur also in cases where the relation
between concepts is different from “v”.
Example 3.3.14. Let us consider the ontology Tree as in Example 3.3.4. Then,
we see that the first axiom Tree v ∃isMadeFrom.Seed connects the two concepts
Tree and Seed. Similarly, the second axiom connects Seed and Fruit, and so
on, until the fifth axiom connects Branch back to Tree. Since these terms are
connected to one another, they end up in the same partition. In contrast, the
terms Mountain and Soil are connected to each other, but not related to the first
partition. The Partitioning Graph of Tree using E-connections is represented in
Figure 3.3.

A more notable example of an ontology where the Partitioning Graph has
a coarse-grained structure is the ontology Periodic3 that describes the distinct
elements of the periodic table, and their properties. Despite the domain being

3www.cs.man.ac.uk/~stevensr/ontology/periodic_full_06012009.owl

www.cs.man.ac.uk/~stevensr/ontology/periodic_full_06012009.owl

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 57

Figure 3.3: E-connections-based Partitioning Graph of the ontology Tree

naturally partitioned, and the ontology expressing this separation, all concepts
end up in the same partition, and the Partitioning Graph consists of one green
circle.

To sum up, the modular structure based on E-connections can be evaluated
as follows:
- Coherence: from very tight to very loose, depending on how the elements of
the domain are interrelated: sometimes, as in Koala, the decomposition is finer
than in Parikh, sometimes instead it is as coarse as the Parikh’s one, while other
approaches are able to identify a finer structure, as it is the case for the ∆-
decomposition of Zigzagn;
- Dependence relations: when E-connections succeeds, the dependence relations
between the modules can reflect intuitive dependencies between elements of the
domain, and the Partitioning Graph provides the user with interesting informa-
tion for comparing the intended modelling of a domain with the actual modelling
of the ontology;
- Granularity: when the ontology does not interrelate the elements of the domain
too much, the granularity of the modular structure based on E-connections is able
to reveal the differences in the specification of the domain.
- Computability: worst-case quadratic in the size of the input ontology.

3.3.4 Σ-modules

As already mentioned, all notions of Σ-modules have not been designed with
a notion of representative set of modules in mind, and hence with a notion of
modular structure. However, a family of Σ-modules is simply a set of sets, so
we can consider the whole family of modules defined by fixing a notion x of Σ-
module, equipped with the natural structure induced by the “⊆” relation between
sets. In particular, we can analyse the modular structure induced by a notion x

58 CHAPTER 3. MODULARITY

of a Σ-module by disregarding the specific notion x since the modular structures
induced have a similar behaviour, and can be all treated at once.

Notation 3.3.15. Given an ontology O and a notion x of Σ-module, we denote by
Fx(O) the set of all x-modules in O. When the notion x of module is clear, or
irrelevant, we use the notation F(O).

Let us now evaluate the modular structure (F(O),⊆) by following the frame-
work defined in Section 3.2 and applied to the modular structures described so
far. The following example shows that a module M ∈ F(O) can be extremely
incoherent.

Example 3.3.16. Let us consider the ontology All as defined in Example 3.3.2.
Recall that All consists of n axioms whose signatures are pairwise disjoint. Now,
for each subset S of All, there is a signature Σ (namely S̃) such that mod(Σ,All) =

S. In particular, every subset S of All is a module. However, we can easily see
that any two disjoint modules M1,M2 ⊆ All do not interact at all since, given
any two models I1 |= M1 and I2 |= M2 defined over the same domain ∆, we
have that the sum interpretation function I1 + I2 is a model forM1 ∪M2.

The set-inclusion relation ⊆ induces a natural structure over the set of all
modules F(O) of an ontology O, and this structure can be represented by the
complete join-semilattice defined by considering as 1-element the whole ontology
O, and as the join of any two modulesM1 andM2 the smallest module contain-
ing bothM1 andM2, well-defined as discussed in Section 2.3. Please note that
this structure also has a 0-element, defined to be the moduleM0 = mod(∅,O).
However, this modular structure is not able to reveal interesting logical interac-
tions between modules, as shown in the following example.

Example 3.3.17. Let us consider the ontology Diamond = {α1 : A1 v A2, α2 : A2 v
A3, β : B1 v B2} and let x = >⊥∗. Then, each subset of Diamond is a module,
hence the induced modular structure can be represented as in Figure 3.4. Clearly,
the modulesM1 = {α1, α2} andM2 = {α1, β} are different since the set of the
entailments deriving fromM1 is strictly larger than the union of the entailments
deriving from M1’s components {α1} and {α2}, whilst there is no entailment
deriving from M2 that was not entailed either by {α1} or by {β}. However,
this difference is not reflected in the representation of the modular structure
(F(O),⊆). Hence, the granularity of the induced modular structure does not
capture in general the logical differences between modules.

3.3. EVALUATION OF THE EXISTING MODULAR STRUCTURES 59

∅

O

βα2α1

α2, βα1, βα1, α2

Figure 3.4: Induced modular structure of the Diamond ontology

Finally, the computability of the set F(O) of all modules of an ontology O
is in general an unfeasible task since the number of modules of an O is poten-
tially exponential in the size of the O, as we have seen in Example 3.3.16: All
has 2n modules, where n is the number of axioms in All. All is a logically dis-
connected ontology, and Parsia & Schneider in [PS10] have wondered whether
the exponential blowup of the number of modules is a feature of this kind of on-
tologies. Hence, they have tried to compute F(O) for several existing ontologies
that they evaluate as well designed, i.e. covering a specific domain to a certain
level of detail, and sufficiently diverse, i.e. different in sizes, expressivities, ratios
of axiom and term numbers, and cover different domains. Unfortunately, despite
the optimizations, they have succeeded in fully modularising only 2 small ontolo-
gies, i.e. Koala, containing 42 axioms and generating 3, 660 >⊥∗-modules, and
Mereology, containing 44 axioms and generating 1, 952 >⊥∗-modules. So, they hy-
pothesize that the number of modules of an ontology is in general exponential in
its size. They evaluate this hypothesis against the experimental results obtained
by extracting all the submodules from a family of size-increasing modules, and
the trendlines they obtain suggest that the numbers of modules of the ontologies
considered show indeed an exponential behaviour.

To sum up, the modular structure (F(O)x,⊆) induced by a given notion x of
Σ-module can be evaluated as follows:
- Coherence: very loose.

60 CHAPTER 3. MODULARITY

- Dependence relations: reflect faithfully the interrelations between modules.
- Granularity: unhelpful, unable to reveal logical differences between modules.
- Computability: unfeasible.

Chapter 4

The Atomic Decomposition of an
Ontology

In Chapter 3 we have surveyed different notions of logical modules. Some of
these notions induce an interesting modular structure, in particular with a well-
definable set of representative modules. For Σ-modules, instead, we have dis-
cussed how the respective sets of all modules contain “uninteresting” modules.
In this chapter we are going to introduce the notion of genuine module, i.e., a
Σ-module that cannot be decomposed as the union of two or more incomparable
modules w.r.t. set inclusion. As a consequence of this definition, we have that
every module can be obtained as the union of suitable genuine modules. In this
sense, genuine modules are representative of all general (as opposed to genuine)
Σ-modules. The set of all genuine modules of an ontology O will be denoted by
G(O).

From now on, we will deal only with Σ-modules. Hence, for simplicity we will
omit Σ, and say modules to mean Σ-modules, unless we want to highlight that we
refer specifically to this notion, rather than to a logical module of another kind.

The definition of genuine module suggests that for finding the set G(O) we
could go through the whole set F(O) of the modules of O, compare the modules
pairwise, and discard those modules that can be decomposed. However, due the
the possible exponential number of general modules (which seems to be the com-
mon case), discussed in Subsection 3.3.4, the naïve approach to finding genuine
modules is infeasible. Hence, other methods to identify genuine modules need to
be devised.

61

62 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

The identification of genuine modules out of all modules starts with an ab-
stract investigation on the features of the set F(O) of all modules of O. Given
F(O), we define an atom to be a maximal set of axioms such that, for each
moduleM∈ F(O), either they all occur inM, or none of them does. Since the
relation of co-occurring in a module is an equivalence relation, atoms are disjoint,
and their union is the whole ontology O. Hence, atoms form a partition of O. In
particular, there are at most as many atoms as axioms. We denote by A(O) the
set of all the atoms of an ontology.

The set of all the modules also induces a dependency relation between atoms:
we say that an atom a is dependent on an atom b if all modules containing a

contain also b. The set of atoms together with the dependency relation is called
the Atomic Decomposition (AD) of an ontology. We prove that this relation,
denoted �, is a partial ordering, so the AD is a poset (recall Definition 2.4.2),
and can be represented by a Hasse diagram.

In Section 4.3 we investigate the AD of an ontology as the modular structure
induced by a notion of Σ-modules: from the properties of Σ-modules it follows
that there is a 1-1 correspondence between atoms and genuine modules, and each
genuine module can be obtained from an atom a by identifying the set of axioms in
the transitive closure of � from a. Moreover, we study the semantic properties of
ADs by defining the notion of a chain of conservative extensions, which provides
a meaning to the dependence relation � defined over the set of atoms in terms
of logical difference between two related atoms.

The computation of the AD of an ontology O does not need to go through the
extraction of all the modules of O, approach that would be unfeasible: we prove
that the genuine modules are indeed α-modules of O, that is, the modulesM for
which there exists an axiom α ∈ O such thatM = mod(α̃,O). Hence, we only
need to perform as many module extractions as axioms in O to obtain A(O).

The low number of modules extractions required to obtain the set G(O) of the
genuine modules of an ontology O suggests that by using modules’ notions whose
extraction is feasible, the computation of the AD of an ontology is feasible as well.
Recall that modules based on syntactic locality can be extracted in polynomial
time in the size s of O. Then, extracting an x-AD, with x ∈ {⊥,>,>⊥∗}, is also
polynomial in s. Furthermore, the optimized implementation devised by Tsarkov
and described in [Tsa12] allows us to extract the ADs from a large corpus of
ontologies, described in Appendix A: in almost all cases the ADs can be obtained

4.1. GENUINE MODULES 63

in a few seconds on a standard machine. In Section 4.4 we will analyse the
results of this experiment, discuss on similarities/differences between the different
notions of ADs, and comment on the decomposability of the ontologies in our
corpus.

The preference of module notions based on syntactic locality is justified by
their efficiency. However, as discussed in Section 2.3, these notions “approximate”
the other notions of Σ-modules. Hence, by looking at ⊥, >, and >⊥∗-ADs, we
have a first insight on the ADs of the other notions. In particular, an empir-
ical comparison between semantic vs. syntactic modules has been carried out
in [DKP+12], and the experimental analysis shows that the syntactic notions in
general approximate quite well the semantic notions. A comparison of locality-
based modules with the other notions of Σ-modules is included in our future
work.

Finally, we apply the framework defined in Section 3.2 to evaluate the AD of
an ontology as a modular structure, and discuss on general coherence, dependence
structure, and granularity of the AD of an ontology.

4.1 Genuine Modules

A first attempt at distinguishing a set of “interesting” Σ-modules is carried out
in [PS10], with the aim of identifying the modular structure that these mod-
ules induce. The authors notice that some modules can be split into two or
more signature-disjoint modules, so they define a genuine∗module, as opposed
to a fake∗module, to be a module that cannot be decomposed into the union
of signature-disjoint modules.1 In other words, they try to get rid of the unin-
teresting modules as those in the ontology All described in Example 3.3.16. In
this case, then, their approach generates a partition of the ontology All, and this
corresponds to the intuition that genuine∗modules are the building blocks of an
ontology.

In general, however, this notion of genuinity fails at identifying a partition
of the ontology. Let us consider the >⊥∗ notion of module, and an ontology
Zigzagn for n ≥ 2. Then, we can represent the modules of Zigzagn as we do for

1We will see later that these notions do not capture the intuition of being the basic elements
for the modules of an ontology, and have been replaced by the notion of genuine and fake
modules defined in [DPSS11a]. To avoid confusion, then, we distinguish the old notions by
using the ∗ symbol as a superscript.

64 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

the ontology in Figure 3.1, so that each module is a union of segments from the
representation of Zigzagn. Then, the genuine∗modules are all and only those that
are represented by a connected component. Hence, each genuine∗module has a
“starting point” and an “ending point” that are symbols from the signature of
Zigzagn, and contains all the terms “in between”, as represented in Figure 4.1. In
particular, the whole ontology is a module, as well as each single axiom is. So,
on the one end these modules are not signature disjoint, on the other hand O is
the union of disjoint modules. Hence, some modules are uninteresting since they
can be looked at one chunk at a time.

· · ·

A1 A2

B1 B2

A3 An An+1

Bn

GenuineFake

Figure 4.1: Genuine vs. Fake modules in Zigzagn
The ontology Zigzagn contains 2n axioms and 2n(n + 1) genuine∗modules,

and we know that there are genuine∗modules that we would not want to in-
clude within the set of representative modules. We will use Zigzagn as the base-
line for a simple analysis on the number of genuine∗modules: set G(O) to be
the set of genuine∗modules of an ontology O, we can prima facie suppose that
if #G(O) > #G(Zigzagn), then the set G(O) needs to be further refined as
G(Zigzagn) does. We make this rough assumption even though we do not want
to compare the structure of O with the structure of Zigzagn. Unfortunately, we
can apply this analysis only to Koala, containing 42 axioms, and Mereology, con-
taining 44 axioms, since these are the only ontologies for which we have a complete
modularisation, as discussed in Subsection 3.3.4. We compare them to Zigzag21

containing 42 axioms, and obtain that #G(Zigzag21) = 924, #G(Koala) = 2, 143,
and #G(Mereology) = 252. Whilst Mereology seems to have a “low enough” num-
ber of genuine∗modules, #G(Koala) � #G(Zigzagn). Hence, we expect a high

4.2. ATOMS AND THEIR DEPENDENCE RELATION 65

number of genuine∗modules in Koala to be uninteresting. This analysis suggests
that a different notion of genuine module needs to be devised.

As a simple example, let us consider the Person ontology defined as follows:

{α1 : Vegetarian v Person,

α2 : Student v Person,

α3 : Person v Animal}

Since all axioms share the concept Person it is clear that there is only one
genuine∗module, and it coincides with the whole ontology. However, the two
concepts Vegetarian and Student can clearly be independently interpreted—
whilst it is evident that the interpretations for both are dependent on the concept
Person. Intuitively we want to separate α1 from α2. In Software Engineering,
it is common to have distinct modules with common dependencies. In the same
spirit, we discard modules that can be decomposed into ⊆-incomparable modules
to obtain the following new definition for the notion of genuine module.

Definition 4.1.1. Given an ontology O and the set F(O) of all its modules,
we define a fake module to be a module M ⊆ O such that there are (at least)
two modules M1 and M2 of O, with neither M1 ⊆ M2 nor M2 ⊆ M1, and
M =M1 ∪M2. A module is called genuine module if it is not fake.

In principle, we could find all genuine modules by going through all the mod-
ules of O, but we know that computing F(O) is in general an infeasible task. The
following discussion will lead to a characterization of the set of genuine modules
in terms of a feasibly computable set of modules.

4.2 Atoms and their Dependence Relation

By analysing the results of the experiments implemented and described in [PS10],
we have noticed, and reported in [DPSS10], that the co-occurrence of axioms in
a module is not arbitrary. In particular, some axioms occur only if some others
do. We formalize these observations as follows.

Definition 4.2.1. Let x be a notion of Σ-module, and let Fx(O) be the set of
all x-modules of an ontology O. The x-relation ≈x is the binary relation over O

66 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

defined to hold between two axioms α, β ∈ O if, for allMx ∈ Fx(O), α ∈Mx if,
and only if, β ∈Mx.

As usual, if x is clear from the context, or irrelevant, we simply drop it, and
denote the corresponding relation by ≈.

Proposition 4.2.2. The relation ≈ as in Definition 4.2.1 is an equivalence re-
lation.

Proof. The property of of two elements to co-occur in a set of sets is trivially
reflexive, transitive, and symmetric.

Definition 4.2.3. Let O be an ontology, F(O) the set of all modules of O, and
≈ the relation between axioms as in Definition 4.2.1. We define an atom a of O
to be an equivalence class [α]≈ for an axiom α ∈ O. The set of atoms of O is
denoted by A(O), or Ax(O) if we want to emphasize the module notion x.

Remark 4.2.4. Some axioms will not appear in any module. These axioms are
tautologies for all the semantic notions of Σ-modules, and syntactic tautologies
(recall Definition 2.3.17) for modules based on syntactic locality. In all cases,
having fixed a notion of Σ-modules, the equivalence class for any such axiom τ

contains all tautologies, and the corresponding atom is denoted by t.

Corollary 4.2.5. Let O be an ontology. Then:
(1) A(O) is a partition of O.
(2) Each atom a ∈ A(O) is a finite set of axioms.
(3) #A(O) ≤ #O.

Proof. It is an immediate consequence of Proposition 4.2.2 and of the finiteness
of O.

Next, we define a binary relation � over the set A(O) of atoms of an ontology
O to capture the occurrence of some axioms in a module only if some other
axioms occur, as mentioned at the beginning of this subsection. As the notation
suggests, this relation is a partial ordering.

Definition 4.2.6. Let x be a notion of Σ-module, and let a and b be two atoms
induced by ≈x over an ontology O. Then, a is said to be x-dependent on b

(written a �x b or, dually, b �x a) if, for every x-moduleM ∈ Fx(O) such that
a ⊆M, we have b ⊆M.

4.2. ATOMS AND THEIR DEPENDENCE RELATION 67

As usual, we omit the notion x of module if clear from the context, or irrelevant.
In this case the relation �x is simply called “dependence” and denoted by �.

Proposition 4.2.7. The binary relation � as in Definition 4.2.6 is a partial
ordering over the set A(O) of atoms of an ontology O.

Proof. � satisfies the following 3 properties:

Reflexivity: trivial.

Antisymmetry: let us consider two atoms a and b such that: (1) a � b; (2) b � a.
We want to prove that in this case a and b coincide. Equivalently, we can prove
without loss of generality that there is no moduleM such thatM contains a but
not b. By contraposition, letM be such a module. Then, by the definition of �
we have that a 6� b, and this contradicts the hypothesis (2).

Transitivity: let a � b and b � c; that is, every module containing a contains
also b; but since such a module contains b, then it also contains c. Hence, a is
dependent on c.

Hence, � is a partial ordering.

From now on we will consider the strict poset (A(O),�), defined by removing
all pairs (a, a) for any a ∈ A(O) from the graph of �. Hence, the dependence
relation between atoms can be represented by means of a Hasse diagram.

Definition 4.2.8. Given an ontology O, we call Atomic Decomposition (AD) the
pair (A(O),�).

In the cases where specifying the notion x of Σ-module is important, we will
explicitly mention x, and speak of the x-Atomic Decomposition (x-AD) of an
ontology O as the partially ordered set (Ax(O),�x).

We will see in Subsection 4.4.1 how to efficiently compute the AD of an on-
tology. Before proceeding further we provide the reader with some examples of
ontologies and their ADs.

Example 4.2.9. Let us consider the Dog ontology defined as follows:

{α1 : Poodle v Dog u ∃hasCoat.Curly,
α2 : Dog v Mammal u ∃hasPart.Tail,
α3 : Mammal v Animal u ∃givesBirth.Life}.

68 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

For each notion x ∈ {⊥,>,>⊥∗} we give the set of all the x-modules:

F(Dog)⊥ = {∅, {α3}, {α2, α3},Dog}.
F(Dog)> = {∅, {α1}, {α1, α2}, Dog}.
F(Dog)>⊥

∗
= {∅, {α1}, {α2}, {α3}, {α1, α2}, {α2, α3},Dog}.

Then, the corresponding x-ADs can be represented by the the Hasse diagrams as
in Figure 4.2.

α1

α2

α3 α1

α2

α3

α1 α2 α3

Figure 4.2: ⊥-, >-, and >⊥∗-ADs of the Dog ontology

We can see that both in the ⊥-AD and in the >-AD all the atoms are com-
parable. This is in contrast with the >⊥∗-AD, which is totally disconnected since
each atom is incomparable with any other atom. However, at a closer inspection
we can see that the set {α1, α3} is not a >⊥∗-module, so that the smallest module
containing both α1 and α3 is the whole ontology. Intuitively, we can see that
the ⊥-AD shows the dependence of axioms dealing with more specific concepts
(i.e., Poodle) from the axioms dealing with more general concepts (i.e., Mammal).
Dually, the >-AD shows the dependence of axioms dealing with more general
concepts from the axioms dealing with more specific concepts. The >⊥∗-AD,
instead, shows the independence of some axioms even from those that deal with
more specific or general concepts. To sum up, we can say that the ⊥- and the
>-AD reveal a subsumption-preserving kind of dependence, whilst the >⊥∗-AD
shows a finer notion of independence than those revealed by the other kinds of
ADs. We will further investigate this phenomenon in Subsection 4.3.2.

In Figure 4.3 we show the ⊥-AD of the ontology Koala, and we see that there
are 19 atoms, and 1 connected component. To better appreciate how fine-grained
the ⊥-AD is, please compare this figure with the E-connections partitioning graph
for Koala as represented in Figure 3.2, which consists of 4 parts and 1 connected
component.

4.3. THE AD AS A MODULAR STRUCTURE 69

0

1

2

3

4

5 7

6 89

10

11 12

13

14

15

16

17

18

Figure 4.3: ⊥-AD of the ontology Koala

4.3 The AD as a Modular Structure

In the previous section we have defined the Atomic Decomposition of an ontology
O as the pair (A(O),�), where A(O) is the set of the atoms induced by the
modules of O, and � is a partial order between the atoms. In this section we
will investigate the AD of O as the modular structure induced over O by the
Σ-modules.

The first aspect, analysed in Subsection 4.3.1, consists of two consequences
over ADs that the desirable properties of self-containment, depletion, and mono-
tonicity as described in Definition 2.3.1, have:

1. for each atom a ∈ A(O), the principal ideal ↓a = a∪⋃b|a�b b in (A(O),�)

is a genuine module of O;

2. there is a 1-1 correspondence between the genuine modules G(O) of O and
the set of atoms A(O).

70 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

As a consequence, the AD of an ontology is a succint representation of the set of
genuine modules G(O).

The semantic properties of ADs are the second aspect to be analysed in Sub-
section 4.3.2. These properties are captured by the notion of chain of Conserva-
tive Extensions, that provides a meaning to the dependence relation � defined
over the set of atoms in terms of logical difference between two related atoms.

4.3.1 Atoms vs. Genuine Modules

Throughout this subsection, the properties of self-containment, depletion, and
monotonicity (see Definition 2.2.4 and Definition 2.2.3) play a crucial role: they
make the AD of an ontology O to be a succint representation of the genuine
Σ-modules of O.

Lemma 4.3.1. Let x be a notion of module that is monotonic, self-contained,
and depleting. Then, for every atom a in A(O) \ {t}, and every axiom α ∈ a we
have that x-mod(α̃,O) is the smallest module containing a.

Proof. The axiom α ∈ a is clearly a non tautological axiom (recall Remark 4.2.4).
Let us consider the moduleMα := x-mod(α̃,O). Then:
(1)Mα is not empty since it contains α.
(2)Mα ⊇ a, by the definition of atoms.
As discussed in Section 2.3,Mα is the unique, and thus smallest, module for the
seed signature α̃. Let nowM′ be a module containing α, and hence containing
a as well by the definition of atoms. Then, by self-containment we have that
M′ = x-mod(M̃′,O) = x-mod(M̃′ ∪ α̃,O). Moreover, by monotonicity we have
that any module obtained by enlarging the seed signature α̃ is either equal to, or
a superset of Mα, hence M′ ⊇ Mα. Finally, by the arbitrary choice of α ∈ a

we have thatMα is the smallest module containing a for each choice of such an
axiom α.

Corollary 4.3.2. Given an atom a, we have that x-mod(ã,O) = Mα for any
axiom α ∈ a. Moreover, a is dependent on all the atoms contained inMα \ a.

In the proof of Lemma 4.3.1, the module Mα plays a major role. We will
see that this kind of axioms is fundamental for finding the representative set of
Σ-modules.

4.3. THE AD AS A MODULAR STRUCTURE 71

Definition 4.3.3. A moduleM⊆ O is called α-module if, there exists an axiom
α such thatM = mod(α̃,O). In this case,M will be denoted byMα.

Let α be an axiom and a be the module such that α ∈ a. By Corollary 4.3.2
we know thatMα = x-mod(ã,O). Hence, we can equivalently use one these two
notions.

Notation 4.3.4. For each atom a ∈ A(O), the moduleMa := x-mod(ã,O) is an
α-module, and vice versa. Depending on the context, then, we could use the
notationMa to highlight that the module extraction is obtained by considering
the atom’s signature.

Corollary 4.3.5. a is an atom, and α is an axiom in a ⇐⇒ Mα =Ma.

From the set of all modules F(O) of an ontology O, we can then determine
the AD (A(O),�) of the ontology. A natural question now arising is, whether
the AD is a representation of the modules of O.

Theorem 4.3.6. Let O be an ontology, and let (A(O),�) be an AD. Then, for
each atom a ∈ A(O), the principal ideal ↓a is a module.

Proof. Let a be an atom, and let us fix an axiom γ ∈ a. We want to compare
the principal ideal ↓ a = {b | a � b} with the α-module Mγ. By the definition
of atoms, Mγ ⊇↓ a. We still need to prove that the equality holds. By con-
traposition, let Mγ be a proper superset of ↓ a. Then it contains at least one
atom b which a is not dependent on. Let β be an axiom in b, and let us consider
Mβ. By Lemma 4.3.1, Mβ is the smallest module containing b. Then, Mβ is
contained in Mγ, and since the latter is the smallest module containing a, this
means that a is dependent on b. This last fact contradicts the assumption set by
contraposition.

Corollary 4.3.7. A moduleM is an α-module if, and only if, there is an atom
a ⊆M such thatM =↓a.

Corollary 4.3.8. There is a 1-1 correspondence between α-modules and atoms
in A(O) \ t.

So far we have proved that the α-modules of an ontology O can easily be iden-
tified by looking at the AD of O. We show now that all modules are represented
in the AD, even if their identification is not so straightforward as for α-modules.

72 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

Lemma 4.3.9. A module is a disjoint finite union of atoms.

Proof. From the construction of atoms as in Definition 4.2.3, we have that for
any atom a ∈ A(O), there does not exist a module M such that M∩ a $ a.
Moreover, atoms are disjoint. Finally, since any ontology O contains only finitely
many axioms, a moduleM⊆ O can contain only finitely many atoms.

Proposition 4.3.10. Every moduleM is determined by selecting in the atomic
Hasse diagram one suitable antichain a1, . . . ak, k ∈ N, and by taking the union
of principal ideals of these atoms:

M =
k⋃
i=1

↓ai.

Proof. From Lemma 4.3.9, we have that every moduleM is a disjoint finite union
of atoms. Now, ifM contains an atom a, then it contains also all atoms which
a is dependent on, that is, the set {b | a � b}; this set corresponds exactly to the
principal ideal ↓a.

In other words, Proposition 4.3.10 says that, each module M has a unique
decomposition into incomparable principal ideals. Hence, the set A of α-modules
forms a base for the set F(O) of all modules of O. In Definition 4.1.1 we have
already set the notion of a base of modules by introducing the set G(O) of genuine
modules. In what follows, we prove that these notions coincide.

Theorem 4.3.11. The set G(O) of genuine modules and the set A of α-modules
coincide.

Proof. We use the characterization of α-modules as principal ideals in (A(O),�)

stated in Corollary 4.3.7. Hence, we have to prove that, if a module is genuine,
then it is the principal ideal ↓ a of an atom a, and vice versa. We prove both
directions by contraposition.

α-module ⇒ genuine module: By contraposition, letM be a fake module.
Then there are two incomparable modulesM1 andM2 such thatM =M1∪M2.
From Lemma 4.3.9, we have that there exist suitable atoms such that M1 =

a1 ∪ . . . ∪ aκ andM2 = b1 ∪ . . . ∪ b`; since the modules are incomparable, then
there is at least one atom ak 6∈ {b1, . . . , bκ}; similarly, there is at least one atom
bl 6∈ {a1, . . . , aκ}. Moreover, there is no atom c ∈ M = {a1, . . . , aκ, b1, . . . , b`}
dependent both on ak and on bl, otherwise these atoms would be both in M1

and inM2; in particular,M is not an α-module.

4.3. THE AD AS A MODULAR STRUCTURE 73

genuine module ⇒ α-module: By contraposition, letM be a module such
that there exist atoms a1, . . . , aκ such that M =↓ a1 ∪ . . .∪ ↓ aκ, with κ ≥ 2.
Without loss of generality, we can assume the atoms a1, . . . , aκ to be pairwise
independent. Then, by Theorem 4.3.6 we have that the principal ideal of every
atom is a module. HenceM =↓a1∪. . .∪ ↓aκ is a union of incomparable modules,
and more specifically, fake.

Corollary 4.3.12. There is a 1-1 correspondence between atoms and genuine
modules.

We will see in Section 4.4 that a consequence of Theorem 4.3.11 is the feasi-
bility of computing the set G(O) of all genuine modules of an ontology for the
notions of modules that can be efficiently extracted: it suffices to extract a mod-
ule for each axiom α ∈ O, hence it requires a linear number of module extractions
in the size of the ontology.

We saw in Proposition 4.3.10 that each module can be uniquely represented
in the AD of the ontology as the ideal of a suitable set of atoms. However, not
all ideals are modules, as shown by the following example.

Example 4.3.13. Let us consider the ontology Girl defined as follows:

{α1 : Woman v Person,

α2 : Child v Person,

α3 : Woman u Child v Girl}

Then, the ⊥-AD of Girl is represented in Figure 4.4. Now, the atom a1 = {α1}

α3

α1 α2

Figure 4.4: ⊥-AD of the ontology Girl

is a module for the signature Σ1 = {Woman, Person}, and the atom a2 = {α2} is
a module for the signature Σ2 = {Child, Person}. However, their union is not
a module since, whenever we include both the terms Woman, Child in a signature
Σ, then also the axiom α3 is non local, and it is included in the module for Σ.

74 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

More in general, not all unions of atoms are modules. This means that rec-
ognizing modules in the AD of an ontology is possible only by enumeration, and
we know that this task is infeasible. The representation of all the modules of
an ontology can be indeed done by enriching the AD with suitable labels, as we
discussed in [DGK+11]. We will describe the theoretical solution in Section 5.2,
and the experimental results carried on its implementation in Section 6.2.

4.3.2 Chains of Conservative Extensions

The interrelations between the genuine modules are better understood in terms of
the notions of Conservative Extensions underpinning each notion x of Σ-module.
Let R ∈ {mCE, dCE} be an inseparability relation, and let us consider two
ontologies O1 $ O2 such that O1 ≡ReO1

O2. When R = dCE then, by definition, all

entailments of O2 over Õ1 already follow from O1, so we can restrict our attention
to O1 without missing the entailments of O2 over Õ1. Similarly, when R = mCE,
we have by its definition that {I | I |= O1} = {J |fO1

| J |= O2}. Intuitively, we
can think of O2 as extending O1 without spoiling the models already identified by
O1 over its signature.

Let us consider two comparable atoms a1 ≺ a2 ∈ A(O) such that there is
no atom a3 ∈ A(O) for which a1 ≺ a3 ≺ a2 holds, and let us consider the
corresponding genuine modules G1 =↓ a1 and G2 =↓ a2 in G(O). From the
condition a1 ≺ a2 we have that G1 can be safely enlarged with the set of axioms
G2 \ G1, while the meaning of G1 over its signature G̃1 is preserved. Moreover,
since there is no genuine module G3 ∈ G(O) with G1 (G3 (G2 we have that the
enlargement with the set G2 \ G1 is x-minimal, i.e., that there is no proper subset
S of G2 \ G1 such that G1 is an x-module for G1 ∪S over G̃1.

This discussion suggests us the following definition that formalizes safe en-
largements of subontologies.

Definition 4.3.14. Let R ∈ {mCE, dCE} be an inseparability relation, and
let O be an ontology. An R-chain of CEs is a finite sequence of subontologies
O1 (O2 (. . . (Om = O such that, for each i ∈ {1, . . . ,m − 1}, we have that
Oi ≡ReOi

Oi+1.

If R is clear from the context, or irrelevant because the discussion abstracts from
the specific notion of R, we simply omit it.

4.3. THE AD AS A MODULAR STRUCTURE 75

We can prima facie suppose that, the longer an identified chain of CEs in O is,
the easier is looking at each subontology Oi since the number of axioms added at
each step will be on average as small as possible. We have already commented on
the hardness of deciding if O is a CE. However, given an AD it is straightforward
to find chains of CEs of genuine modules.

Proposition 4.3.15. Let (A(O),�) be the AD of an ontology O, and let the
atoms a, b be such that a � b. Then, ↓b (↓a (O is a chain of CEs.

Proof. Trivial: ↓b is a module of O, and it is contained in the module ↓a, hence
it also holds that ↓b ≡e↓b↓a.
Corollary 4.3.16. Given a chain a1 � . . . � aκ of κ atoms, we have that ↓aκ (
. . . (↓a1 (O is a chain of CEs.

Remark 4.3.17. Please note that the empty set is not necessarily a module of O,
hence ∅ (O is not in general a chain of CEs. Let us recall Example 3.1.4. The
global axiom > v {Adam} t {Eve} is included in all modules since it constrains
the domain size, and as a consequence all terms in Õ. However, all global axioms
belong to the moduleM0 = mod(∅,O), andM0 (O is a chain of CEs whenever
M0 6= O.

The aim in defining the chains of CEs is clear: to find a logical preordering
between axioms, so that it makes sense to say that one axiom depends on others.
In the next examples we try to define such a preordering in the Child′ ontology
as defined in Example 3.1.4.

Example 4.3.18. In Figure 4.5 we show the ⊥-AD for Child′, where:

a0 = {α0 :> v {Adam} t {Eve}}
a1 = {α1 : Irrefl(hasMother)}
a2 = {α2 : Mother v ¬Father}
a3 = {α3 : Irrefl(hasFather)}
a4 = {α4 : Child v (=1hasMother.Mother),

α5 : Child v (=1hasFather.Father)}

We have highlighted one chain of ⊥-atoms in (A(O),�): a0 ≺ a1 ≺ a4. The
corresponding chain of CEs is {α0} ({α0, α1} (Child′.

76 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

a0

a1 a2 a3

a4

Figure 4.5: A chain of CEs in the Child′ ontology

First of all, please note that all axioms depend on the global axiom > v
{Adam}t{Eve} since this axiom constrains even the domain ∆ to be at most of
size 2. Another interesting observation concerns the independence of the axioms
Irrefl(hasMother), Irrefl(hasFather), and the axiom Mother v ¬Father: indeed
there is no logical relation between these axioms expressed in the ontology, i.e.,
we can separately interpret the terms in these axioms with no logical consequence
on the others. Quite differently, and unsurprisingly, the axioms describing Child

depend on all the other axioms, so the corresponding module ↓ a4 includes also
atoms that are not selected: in particular, this behaviour reveals that the unsat-
isfiability of the term Child derives from a combination of logical interrelations
between all the axioms of the ontology.

From the observations just pointed out, we can derive a meaningful reading
order for sets of axioms in Child′ as follows: {α0}, {α1}, {α2, α3, α4}. The notion of
chain of CE will be analyzed in Section 6.3 for application in the field of modular
reasoning.

4.4 Computation of ADs

Previously in this chapter we have defined the Atomic Decomposition of an on-
tology O as the modular structure induced by a given notion of Σ-module. So
far, though, we have not discussed the feasibility of computing an AD.

However, the results described in the previous section suggest that computing
an AD is indeed feasible: firstly, please note that we can compute the AD of an
ontology O by pairwise comparing genuine modules rather than all the modules,
and obtain the same set of atoms and the same dependencies since any module is

4.4. COMPUTATION OF ADS 77

the union of genuine modules. Moreover, a hint of the complexity for computing
an AD can be derived from Theorem 4.3.11: the identification of genuine modules
requires only the extraction of one module for each axiom of O, which is clearly
linear in the size of O.

In this section we will determine the complexity of computing an AD given
a notion of Σ-module, and we will enter more in the specific of computing the
AD for the efficiently extractable modules based on syntactic locality. Finally, we
will use the AD as a mean to better understand the notions of syntactic locality
by analysing the results obtained by computing the AD for a large corpus of
ontologies in the biomedical domain.

4.4.1 The AD Algorithm and its Complexity

We have discussed in the previous section how the computation of the AD of an
ontology can be done by extracting only the genuine modules. In Algorithm 2 we
give the pseudocode of a simple procedure to compute the AD. Now we want to
establish the complexity of computing the AD of an ontology O.

Proposition 4.4.1. Let O be an ontology, and n be the number of axioms in O.
Algorithm 2 correctly computes the AD of O and it requires n module extractions.

Proof. The correctness is guaranteed by Theorem 4.3.11 and by the following
description of the algorithm.

Let n be the number of axioms of O. Clearly, n ≤ s =
∑

α `(α). On line 5 in
Algorithm 2 we see that for each axiom α ∈ O the module Module(α) = Mα is
computed. If Module(α) = ∅ then the axiom is put in the atom t that contains all
those axioms that the notion of module recognizes as tautologies of O. Otherwise,
Algorithm 2 checks whether there is an axiom β used in a previous iteration for
which the module Module(β) = Module(α). If not, then α is included in the
set GenAxs of the generating axioms, so that at the end of the for cycle in line
22 there will be one generating axiom for each atom. If instead the axiom α

is not generating a new module, then there is a generating axiom β such that
Module(β) = Module(α), and the atom that contains β is updated to include α.

Now, we only need to prove the tractability of the algorithm. The procedure
described above requires the extraction of n modules, and at most i − 1 com-
parisons for the axiom α into account at the i-th iteration. The extraction of a
module requires at least a linear number of operations in the size of O, hence

78 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

Algorithm 2 Algorithm for computing the AD of an ontology
1: Input: An ontology O; a notion x of Σ-module.
2: Output: The set G(O) of genuine modules; the poset of atoms (A(O),�);

a set of generating axioms GenAxs.

3: GenAxs ← ∅
4: TAtom ← ∅
5: for each α ∈ O do
6: Module(α)← x-mod(α̃,O)
7: if Module(α) = ∅ then
8: TAtom ← TAtom ∪ {α}
9: else
10: new ← true
11: for each β ∈ GenAxs do
12: if Module(α) = Module(β) then
13: Atom(β) ← Atom(β) ∪ {α}
14: new ← false
15: end if
16: end for
17: end if
18: if new = true then
19: Atom(α) ← {α}
20: GenAxs ← GenAxs ∪ {α}
21: end if
22: end for
23: for each α ∈ GenAxs do
24: for each β ∈ GenAxs do
25: if β ∈ Module(α) then
26: Atom(β) � Atom(α)
27: end if
28: end for
29: end for
30: A(O) ← {Atom(α) | α ∈ GenAxs}
31: G ← {Module(α) | α ∈ GenAxs}
32: return [G(O), (A(O),�), GenAxs]

the whole module extraction is at least quadratic, but can be unfeasible for some
notions of modules when applied to ontologies encoded in a highly expressive DL.
The comparison procedure, needed to obtain the partial ordering � and described
after the for cycle in lines 3-22, is determined by selecting two generating axioms
α, β ∈ GenAxs and checking whether one is included in the genuine module for
the other. If so, then the corresponding atoms are comparable. This operation

4.4. COMPUTATION OF ADS 79

requires n(n− 1) comparisons, hence quadratic in the ontology’s size. Hence, the
extraction of the n modules is at least as expensive timewise as the comparison,
and dominates the complexity of computing the AD of O.

The complexity of computing the AD of an ontology heavily depends on the
notion of module used. Next, we determine the complexity of computing ADs
when we use the implementation of the extraction of modules based on syntactic
locality as described by Tsarkov in [Tsa12].

Proposition 4.4.2. The computation of the AD of an ontology O as performed
by Algorithm 2 for one of the notions {⊥,>,>⊥∗} of syntactic locality is quadratic
in the number of axioms of O.

Proof. We have seen in Subsection 2.3.3 that in the process of extracting a mod-
ule, each axiom is checked for locality at most |α̃| times, and that in the worst
case when the locality checks bring in exactly one axiom, then the extraction
of a module requires at most n · c locality checks [Tsa12], where c = maxα |α̃|.
The locality check in the case of syntactic modules requires to parse an axiom
α, and to check it against the given rules, in order to verify whether α is or not
local. The number of rules to check against depends on the language in which O
is encoded, but clearly it contributes to the complexity only as a multiplicative
constant e, hence the computational complexity does not depend on the language
expressivity. To sum up, a module extraction requires at most k · n operations,
where k = c2 · e is a constant. Hence, it is linear in the size of O. Finally, the
extraction of the sets G(O) of genuine modules, GenAxs of the generating axioms,
and A(O) of all atoms, is quadratic in the ontology’s size.

Hence, computing the AD of an ontology O is quadratic in the size of O.

Algorithm 2 can be further optimized as described by Tsarkov in [Tsa12]: let
us suppose that, for an axiom α ∈ O the moduleMα contains an axiom β 6= α.
Then, we know thatMβ ⊆Mα, hence we do not need to check all the axioms in
O in order to findMβ, but only the ones inMα. A further optimization, finally,
consists of exploiting the previous module extractions during the computation of
the AD in the following way: whenever a previously analysed axiom α is nega-
tive against a locality-check during a successive iteration, then the corresponding
genuine module Mα is automatically included in the current extraction. This
optimization, however, does not change the asymptotic complexity.

80 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

4.4.2 Experiment: Design and Results

In this subsection, we are going to describe the experiment carried out to analyze
the AD of an ontology under three main points of view.

The first analysis aims at evaluating the time taken for computing the AD of
an ontology O: from the previous subsection, we know that such a computation
for the notions of modules based on syntactic locality is quadratic in the size of
O. Please note that the number of axioms of an ontology can be as large as 500K
axioms (as it is the case for SNOMED CT), so if we had that a locality check
takes 1ms, then the overall time to decompose SNOMED CT would be higher
than 10 years. We will empirically show that for a large corpus of biomedical
ontologies the average time taken to perform a locality check is two or three orders
of magnitude lower that 1ms (depending on the notion of locality). Moreover,
we show that the optimizations implemented by Tsarkov empirically reduce the
growth power from 2 to ∼ 1.6. In particular, from this estimate we can predict
that the AD of SNOMED CT should be performed in less than 4 hours.

The second analysis of the AD aims at investigating the notions of syntactic
locality and the corresponding modules, and in particular we will provide an
answer to some open questions that can be found in the literature. As already
mentioned before, in [DPSS10] the authors try to fully modularize a small corpus
of ontologies to understand whether the theoretical exponential blowup in the
number of modules occurs in practice. Analyzing the results of the experiment,
the authors observe that in some ontologies that fail at being fully modularized
a high number of modules are disproportionately large, for example this happens
for the People (PEO) ontology. A second observation consists of noticing that
a high number of modules have a common “core”, and differ only by a small
number of axioms that do, or do not, occur. The authors thus wonder whether
these observations are features of the ontology, or rather they depend on the
choice of the signatures analyzed to extract the statistically significant sample of
modules. Using the AD we will show that these observation are indeed features
of some ontologies, and of course of the notion of module used.

As a third outcome of our experiment, we will analyse the ADs computed
under the paradigms defined in the framework described in Chapter 3. This will
allow for a comparison of the modular structures defined by the ADs of an on-
tology with one another, as well as with the modular structures already analyzed
in Chapter 3. In particular, we will see that the ⊥-AD is able to capture and

4.4. COMPUTATION OF ADS 81

represent a notion of logical dependence that preserves the relation of subsump-
tion within an ontology O (e.g., if two named concepts A and B are such that
O |= A v B, then either A and B co-occur in the signature of one atom, or the
atoms in whose signatures A occurs depend on some atoms where B occurs). Du-
ally, the >-AD preserves the relation of supersumption within O. Finally, the
>⊥∗-AD captures a meaningful notion of independence between the axioms of O.

Setting: For our experiments, we have built a corpus containing: (1) ontolo-
gies from the TONES repository2 which have already been studied in previous
work on modularity [DPSS10]: Koala, Mereology, University, People, miniTam-
bis, OWL-S, Tambis, Galen; (2) all ontologies from the NCBO BioPortal ontology
repository.3 From this corpus, we have removed those ontologies with at least one
of the following problems: the ontology is impossible to download; the .owl file is
corrupted when downloaded; the file is not well-formed; the ontology is inconsis-
tent; the ontology contains some constructors that the implementation provided
by Tsarkov does not yet support, e.g., some kinds of datatypes. This selection
results in a corpus of 253 ontologies designed and built by users (domain experts)
for application purposes. These ontologies greatly differ in sizes, expressivities,
ratios of axiom and term numbers, classification times, number of non-trivial en-
tailments, and number of justifications per entailment [HPS11]. More details on
the whole corpus can be found in Appendix A.

The machine used to perform the experiment is a MacBook Pro with 3.06
GHz Intel Core 2 Duo processor, 8Gb of memory and running Mac OS X version
10.6.8.

Time performance: We have decomposed all the ontologies in our corpus
according to the three main notions of syntactic locality: ⊥, >, and >⊥∗. An
external script was designed to call each ontology O and determine the time
needed to compute each AD of O, then further data concerning the ADs have
been collected. The experiment has been performed 5 times, and the median time
has been considered in the result. Please note, however, that the time needed in
general does not vary greatly between the different runs, as described in Table 4.1:
the performance time for ∼ 80% of the ontologies differ less than 5% from the
average.

2http://owl.cs.manchester.ac.uk/repository/
3http://bioportal.bioontology.org

http://owl.cs.manchester.ac.uk/repository/
http://bioportal.bioontology.org

82 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

Notion of # ontologies # ontologies
locality with variance time < 5% with variance time > 20%

⊥ 197 2
> 205 1
>⊥∗ 203 0

Table 4.1: Summary of the variance in the performance time

The extraction of the three kinds of ADs over our corpus took, in the median
case, less than 67mins of overall time so divided: 23mins for the ⊥-ADs, 11mins
for the >-ADs, and 33mins for the >⊥∗-ADs. To concisely represent the time
performance for all the ontologies, we show three graphs drawn as follows: for
each ontology O we consider (1) the size s(O) of O as defined in Section 2.1,
(2) the time tO to compute the AD in µs, and (3) the expressivity bin that O
belongs to. We plot a graph of the points (sO, tO), where the colour of the point
represents the expressivity bin of O. Given the values involved, both axes are
in logarithmic scale. The 3 graphs, one for each kind of AD, are represented in
Figure 4.6 for ⊥-ADs, in Figure 4.7 for >-ADs, and in Figure 4.8 for >⊥∗-ADs.

From the analysis of the computational complexity of Algorithm 2 we could
infer that the language expressivity of the ontology has little influence on the
AD computation time, and this conclusion is shown in the graphs since there is
no substantial difference in general in the trendlines defined by ontologies from
different bins. The equations described in the graphs are the best fitting power
equations to the points represented: in particular we see that in most cases the
exponents involved are ∼1.6, so the quadratic worse-case is generally not met.

We see that in two of the graphs, the one for the ⊥- and the one for the
>⊥∗-AD time, there is one point whose ordinate largely dominates the ordinates
of the other points: in both cases the ontology is nci-thesaurus (NCI), whose ADs
take respectively ∼21mins and ∼24mins.4 Surprisingly, the >-AD computation
for NCI takes only 2.2s to be performed. This observation is even more surprising
if we consider that by discarding NCI and looking at the time needed to compute
the remaining ADs we obtain the following times: 2mins for the ⊥-ADs, 9mins
for the >⊥∗-ADs, and 11mins for the >-ADs. In other words, generally the
computation of the >-AD is the one that takes more time among the three main
notions, whilst for NCI the converse happens.

4Please note that NCI contains 130,945 axioms.

4.4. COMPUTATION OF ADS 83

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1 10 100 1,000 10,000 100,000 1,000,000

y = 0.3422x1.5445y = 0.1518x1.6514y = 0.1324x1.6228y = 0.1449x1.5686y = 0.7685x1.3399

time (in μs)

size of O

Figure 4.6: Time to ⊥-AD vs. size of O

84 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

time (in μs)

size of O

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1 10 100 1,000 10,000 100,000 1,000,000

y = 0.5359x1.3526y = 0.2397x1.4694y = 1.2144x1.324y = 0.0216x1.9822y = 1.0686x1.3815

Figure 4.7: Time to >-AD vs. size of O

4.4. COMPUTATION OF ADS 85

time (in μs)

size of O

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

1 10 100 1,000 10,000 100,000 1,000,000

y = 0.4903x1.566y = 0.1286x1.7623y = 0.1819x1.6248y = 0.1538x1.5926y = 0.3488x1.5008

Figure 4.8: Time to >⊥∗-AD vs. size of O

86 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

Finally, we want summarize in Table 4.2 the number of ontologies, for each
notion of locality, that are computed within a certain time interval. We see
that the majority of the ontologies (i.e., ∼ 68%) are decomposed in less than
0.1s, i.e., we can say that the decomposition is instantaneous. For more than
a quarter of the ontologies, the decomposition is hardily noticeable by a human
user, i.e., it takes less than 4s. The remaining few cases consists of large and very
large ontologies (i.e., the smallest is mouse-adult-gross-anatomy (MAA) with 3,776
axioms whose computation of the >-AD takes ∼5.4s).

ontologies # ontologies # ontologies # ontologies
Notion of with with with with
locality tO < 0.1s 0.1s ≤ tO < 4s 4s ≤ tO < 10s tO ≥ 10s

>⊥∗ 161 80 6 6
⊥ 177 67 5 4
> 175 59 6 13

Table 4.2: Summary of the performance time

Analysis of the modules through the ADs: In this paragraph we will
answer to two open questions concerning modules by exploiting the ADs of the
ontologies. In specific, we will investigate on the two question arisen in [DPSS10]
for the peculiar behaviour of a statistically significant amount of modules of some
ontologies. The first question comes from observing that in some ontologies (e.g.,
the People ontology) a high number of modules are disproportionately large. The
second question consists of noticing that in some ontologies a high number of
modules have a common “core”, and differ only by a small amount of axioms that
do, or do not, occur. When this happens, the modules of O are called to have
a Mexican hat shape, represented in Figure 4.9: the big central core is a set of
axioms that occur in most of the modules of O. The small circles around the core
represent the axioms that can combinatorially occur in the modules of O.

Figure 4.9: A Mexican hat

4.4. COMPUTATION OF ADS 87

Both these cases can be explained if the corresponding ontology O has a huge
atom a in the lower part of an AD: for what concerns the average size of the
modules of O, we have that, if this happens, then it is quite likely that a non-
empty module contains a large number of axioms. Moreover, if such atom a is the
lowest w.r.t. � among all the atoms, then every non-empty module of O needs
to contain a, thus it is “large”. For what concerns the Mexican hat shape, we can
explain the observation when the huge atom a is in the lower part of an ontology,
and many small atoms depend on a.

In Figure 4.10 we represent the >⊥∗-AD of the ontology People, and we see that
the empirical observations described in [DPSS10] are explained by the >⊥∗-AD,
consisting of 26 atoms, where the >⊥∗-atom a0 contains indeed 73 axioms out of
the 108 that People is made of.

0

1

2

4

3 5

6

7

8

9 10 11 12 13

14

15 16 17 1819 20

21

22

23 24

25

Figure 4.10: >⊥∗-AD of the ontology People

The following proposition establishes a strong connection between the atoms
of the three main notions of ADs based on syntactic locality: the >⊥∗-atoms of an
ontology O are a refinement w.r.t. set inclusion of both the ⊥- and the >-atoms
of O, so that ontologies have more, smaller >⊥∗-atoms than ⊥- or >-atoms.

Proposition 4.4.3. The >⊥∗-AD is finer than both the ⊥-AD and >-AD, i.e.,
for any >⊥∗-atom a, there exists a ⊥-atom b and a >-atom c with a ⊆ b and
a ⊆ c.

Proof. We prove this result for ⊥-modules. The proof for >-modules is analogous.
Let a∗ be one star atom, and let α ∈ a∗. Then, the ⊥-module M⊥

α for α
satisfies M⊥

α ⊇ M∗
α ⊇ a∗. By the arbitrary choice of α in a∗, we have that

∀α ∈ a∗,M⊥
α ⊇ a∗.

88 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

We want now to prove thatM⊥
α =M⊥

β for all β ∈ a∗.
By Lemma 4.3.1,M⊥

α is the smallest ⊥-module containing α; since it contains
β (because it contains a∗) we have thatM⊥

α ⊇M⊥
β . For the same reason we have

thatM⊥
α ⊆M⊥

β . Then, for each axiom γ we have thatM∗
γ is contained inM⊥

γ ,
so that >⊥∗-atoms do not split between ⊥-modules.

To sum up, the >⊥∗-AD is finer-grained than the ⊥-AD.

The next results establishes a further connection of >⊥∗-ADs with the ⊥- and
>-ADs: if two atoms a∗, b∗ are related in the >⊥∗-AD of an ontology O, then
either there exists a ⊥-atom a⊥ that contains both a∗ and b∗, or the two ⊥-atoms
a⊥ cointaining a∗ and b⊥ containing b∗ are comparable w.r.t. �. The analogous
result holds for the >-AD of O.

Proposition 4.4.4. Let O be an ontology, a∗, b∗ two >⊥∗-atoms of O such that
a∗ � b∗, x ∈ {⊥,>} a notion of locality, and ax, bx the two x-atoms of O such
that a∗ ⊆ ax and b∗ ⊆ bx. Then, either ax = bx, or ax � bx in the x-AD of O.

Proof. Let α ∈ a∗ and β ∈ b∗ be two axioms. Let us consider the module
M∗

α = >⊥∗-mod(α̃,O). Then, by the construction of tbstar-modules we have that
M∗

α ⊆ Mx
α = x-mod(α̃,O). In particular, β ∈ Mx

α, andMx
β = x-mod(α̃,O) ⊆

Mx
α. Finally, ifMx

β =Mx
α we have that ax = bx; otherwise, ax � bx.

0

1

2

3

4

5

6

7 8

9 10 11 12 13 14 15 16 17

18

19 20

21

22

Figure 4.11: ⊥-AD of the ontology People

In Figure 4.11 we can see the ⊥-AD of the ontology People: compared to the
>⊥∗-AD represented in Figure 4.10, we have that the atoms a∗14 and a∗9 are merged
into atom a⊥8 , the atoms a∗20 and a∗21 are merged into atom a⊥19, and that the atom

4.4. COMPUTATION OF ADS 89

a∗25 is absorbed into the atom a⊥0 . To sum up, the ⊥-AD of the People ontology
is made of just 23 atoms, and the lowest atom a0 contains 75 axioms.

For the notion > of locality, the >⊥∗-atoms of the ontology People get merged
more frequently than in the ⊥-AD: in Figure 4.12 we see that the >-AD has only
4 atoms; moreover, the lowest atoms a>0 contains 97 axioms.

0

1 2 3

Figure 4.12: >-AD of the ontology People

We have investigated the presence of huge atoms for every ontology O in our
corpus: for each decomposition of O, we have computed maximum, minimum,
and average sizes of the atoms of O. In Table 4.3 we show how the ontologies
are distributed in terms of the absolute maximum size ma

a of their biggest atom.
Similarly, in Table 4.4 we show the distribution of the ontologies in our corpus
by the relative size mr

a of their biggest atom compared to the ontology’s number
of axioms.

Notion of # ontologies # ontologies # ontologies
locality with ma

a ≤ 20 with 20 < ma
a ≤ 500 with ma

a > 500

>⊥∗ 163 70 20
⊥ 157 76 20
> 32 121 100

Table 4.3: Distribution of the ontologies in our corpus by the absolute size of
their biggest atoms

Notion of # ontologies # ontologies # ontologies
locality with mr

a ≤ 20% with 20% < mr
a ≤ 50% with mr

a > 50%

>⊥∗ 215 20 18
⊥ 208 21 24
> 73 36 144

Table 4.4: Distribution of the ontologies in our corpus by the relative size of their
biggest atoms

90 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

We see that ∼ 63% of the ontologies investigated decompose into small ⊥- and
>⊥∗-atoms, and less than ∼ 8% of the ontologies have huge ⊥- and >⊥∗-atoms.
Differently, less than ∼ 13% of the ontologies decompose into small >-atoms,
and almost ∼40% of the ontologies have huge >-atoms. The distribution of the
ontologies does not differ much when we look at relative sizes of atoms.

Proposition 4.4.3 suggests to investigate on the presence of huge atoms by
looking at the >⊥∗-AD of an ontology. We report in Table 4.5 the relevant data
for the ontologies with huge >⊥∗-atoms in absolute terms, i.e., with more than 500

axioms, and in Table 4.6 the relevant data for the ontologies with huge >⊥∗-atoms
in relative terms, i.e., containing more than 50% of the axioms of the ontology.

Ontology O # axioms #max Percentage
(Abbreviation) in O atom a #a/#O
SYN 14,458 14,458 100%
ICF 19,223 12,198 63.46%
NAN 16,353 6,425 39.29%
SNP 11,199 3,233 28.87%
UNI 3,133 2,868 91.54%
CLL 3,996 2,444 61.16%
CCJ 13,612 2,236 16.43%
BTC 2,734 2,201 80.50%
MTP 2,364 1,790 75.72%
CTX 1,969 1,706 86.64%
ODG 1,867 1,601 85.75%
NCI 130,945 1,087 0.83%
CDS 4,322 843 19.50%
SSO 1,684 789 46.85%
IMG 2,114 769 36.38%
NEO 2,843 717 25.22%
ENM 931 650 69.82%
QIB 1,699 607 35.73%
ODM 2,353 607 25.80%
BCG 690 537 77.83%

Table 4.5: Ontologies with huge atoms in absolute value

We carried out a preliminary investigation of ontologies with huge atoms,
trying to understand the reasons for the existence of huge atoms, and identified
two reasons for the presence of huge atoms.

The first reason identified to cause the presence of huge atoms is the occurence
in the ontology of global axioms, as it is the case for concept assertions, i.e.,

4.4. COMPUTATION OF ADS 91

Ontology O #O #max Percentage
(Abbreviation) atom a #a/#O
SYN 14,458 14,458 100%
BFO 95 89 93.68%
AMA 477 445 93.29%
UNI 3,133 2,868 91.54%
CTX 1,969 1,706 86.64%
ODG 1,867 1,601 85.75%
BTC 2,734 2,201 80.50%
BCG 690 537 77.83%
MTP 2,364 1,790 75.72%
ENM 931 650 69.82%
CBO 13 9 69.23%
PEO 108 73 67.59%
ICF 19,223 12,198 63.46%
CLL 3,996 2,444 61.16%
SDO 204 121 59.31%
GMS 216 122 56.48%
MSE 218 122 56.48%
GDP 773 399 51.62%

Table 4.6: Ontologies with relatively huge atoms

axioms of the kind C(a), and role assertions, i.e., axioms of the kind r(a, b).
Global axioms can also pull non-global axioms to be included in a module in the
following way: because of the property of self-containment, the seed signature Σ0

of input for the extraction of a module is enlarged with the terms occurring in
the global axioms. The ontology People falls in this case: it contains 25 concept
assertions, among which the axiom α1 = Person(Walt), and 12 role assertions,
among which α2 = hasPet(Walt ,Dewey). Now, the axiom α3 = DogOwner ≡
Personu (∃hasPet.Dog) is non local w.r.t. any signature that contains the terms
Person and hasPet, hence α3 belongs to any module of People because of α1 and
α2. However, α3 is not a global axiom per se. An even more peculiar example is
the ontology SYN, which contains only concept assertions.

A second reason for huge atoms to occur in the AD of an ontology can be
attributed to the abundance of Disjoint Covering Axioms (DCAs), and we assume
that their abundance is due to a specific usage pattern of ontology editors. More
precisely, one version of DCAs is a pair of axioms of the form {A ≡ (B0 t . . . t
Bn),PairwiseDisjoint(B0, . . . , Bn)}. Since our notion of modularity is based on

92 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

axioms and subsets of an ontology and is self-contained, any module that mentions
Bi contains both axioms, and thus pulls in all axioms about Bj as well. When
DCAs occur on many classes on all levels in the class hierarchy of an ontology,
then this results, unsurprisingly, in a huge atom. Moreover, note that not only
disjointness causes axioms to tie together, as the explicit covering axiom shows the
same behaviour. For disjointness, however, this “pulling-in” effect does not occur
if we rewrite the n-ary disjointness axiom into equivalent pairwise disjointness
axioms or even make the disjointness implicit, as in the following example: {B0 v
Au (= 0R.>), . . . , Bn−1 v Au (= n− 1 R.>), Bn v Au (≥ n R.>)}. Other patterns
could also lead to huge atoms, and an investigation of possible patterns is part
of our future work.

Evaluation of ADs as Modular Structures: We want now to evaluate the
ADs of an ontology by following the framework defined in Section 3.2. Hence,
we will analyse the AD of an ontology in terms of the coherence of its modules,
the dependence/independence that the AD is sensitive to, and the granularity of
an AD and which kinds of logical interrelations it can reveal. The computability
has already been investigated at the beginning of this section.

To carry out this analysis, we first compute a basic set of metrics for each
notion ⊥,>, and >⊥∗ of locality: for each ontology, we compute the average
and maximal size of atoms and Genuine Modules (GM) measured in numbers of
axioms, and then we take the average of the resulting numbers over all the 253
ontologies in our corpus. The results are presented in Table 4.7.

Average Average Average Average
Notion of average maximum average maximum
locality axioms/atom axioms/atom axioms/GM axioms/GM

>⊥∗ 30.99 262.32 187.96 417.09
⊥ 60.75 352.47 332.14 452.89
> 481.70 1,955.41 1,716.26 2,870.51

Table 4.7: Overview of the experimental results for all the ontologies in our corpus

To show the influence on these numbers of those ontologies with huge atoms,
we present in Table 4.8 the same metrics computed for the corpus of ontologies
obtained by removing the 28 ontologies with (absolute or relative) huge atoms
from our original corpus.

4.4. COMPUTATION OF ADS 93

Average Average Average Average
Notion of average maximum average maximum
locality axioms/atom axioms/atom axioms/GM axioms/GM

>⊥∗ 1.42 32.10 34.20 100.50
⊥ 1.75 37.52 46.05 115.96
> 259.10 1,250.99 1,028.59 2,186.64

Table 4.8: Overview of the experimental results for ontologies without huge atoms

It can be seen that, if an ontology does not have huge atoms, then the >⊥∗-AD
is generally quite fine-grained: the average size of an atom is less than 2 axioms;
indeed, 83 ontologies out of 253 have only singleton >⊥∗-atoms, and only 98
ontologies have at least one >⊥∗-atom whose size is greater than 10 axioms.
Next, we observe that ontologies are also, in general, decomposable into small
⊥-atoms: 39 ontologies out of 253 have only singleton ⊥-atoms, and only 109
ontologies have at least one ⊥-atom whose size is greater than 10 axioms.

In contrast, >-AD is substantially coarser than both >⊥∗ and ⊥-ADs as the
average atom is two orders of magnitude larger even if we consider only the
ontologies without huge >⊥∗-atoms. However, this datum does not imply that
small top-atoms do not occur in practice: indeed, 206 ontologies out of 253 have
at least one singleton >-atom.

From the definition of atoms, we understand that the axioms in an atom a

must be always considered at once to grasp their meaning. This remark shows how
tight the logical interrelations between these axioms are, hence the coherence of
an atom is strong. Moreover, from the empirical evaluation described in Table ??
and in Table 4.8 we now know that atoms are, in general, and particularly for
the >⊥∗- and the ⊥-ADs, quite small fragments, often even singletons, so the
aggregation of more than one axiom reveals a tight model-theoretic relationship
between the axioms.

Similarly, we can describe the logical coherence of a moduleM⊆ O as follows:
since a moduleM⊆ O is genuine if there exists an axiom α such thatM =Mα,
we can argue that M is designed to be a suitably small (depleting and self-
contained) subset of an ontology to give O’s meaning to α. In particular, set
a to be the atom such that M =↓ a we have that the chains of CEs defined
in Subsection 4.3.2 reveals an order for importing sets of axioms in order to
guarantee that O’s meaning over a is preserved. Dually, the independence of two
atoms reveals also a fine-grained logical independence.

94 CHAPTER 4. THE ATOMIC DECOMPOSITION OF AN ONTOLOGY

Finally, the granularity of an AD can be thought of in terms of the connected
components of the diagram. In Table 4.9 we show more empirical results that
provide an insight on how different kinds of ADs structurally differ in this sense.
In particular, we have computed the depth, i.e., the length, in atoms, of the
longest chain for each ontology, and the number of connected components of
all the ADs, and then computed the averages of these measures across all the
ontologies in the corpus for each notion {⊥,>,>⊥∗} of locality.

Average Average
Notion of max. depth nr. of connected
locality per ontology components

>⊥∗ 7.73 1, 015
⊥ 10.53 33.06
> 5.73 1.54

Table 4.9: Depth and connectedness of the ADs of the ontologies in our corpus

We notice that the >⊥∗-AD looks rather disconnected since on average an
ontology decomposes into more than a thousand unrelated aggregations of atoms,
whilst the ⊥-AD splits the ontology into 33 components, and the >-AD into only
1 or 2 components. Finally, we see that the ⊥-AD is the one kind that in general
generates the longest chains of atoms among the three main notions of ADs.

Intuitively we can say, then, that the different notions of locality reveal differ-
ent logical interactions between the axioms. Hence, as long as we are aware of the
kind of interrelations, we can prefer one kind of AD of an ontology over another
notion because the diagram of the former is “more interesting” that the latter.
As a rule of thumb, though, the experimental results suggest that in general the
⊥-AD is to prefer as a kind of AD for two reasons: (1) on average the ⊥-AD is
the notion with the highest length of chains and the lowest number of connected
components, and (2) the atoms size is still rather small.

The evaluation of this modular structure can be summarized as follows:
- Coherence: rather tight since two axioms belong to the same atom only if the
module notion x is not able to distinguish them.
- Dependence/Independence: the “�” relation is able to reveal subtle notions of
logical dependence/independence, strongly connected to the notion of conserva-
tive extensions, by allowing the construction of chains of CEs.
- Granularity: especially for the two notions of modules ⊥ and >⊥∗, we have
empirical results that show that on average the granularity of the AD is quite

4.4. COMPUTATION OF ADS 95

fine-grained since the number of atoms is often more than n/2, where n is the
number of axioms in O.
- Computability: efficient in theory and feasible in practice.

Chapter 5

Labelled Atomic Decompositions

In Chapter 4 we have introduced the Atomic Decomposition (A(O),�) of an
ontology O as a structure that represents the set G(O) of the genuine modules
of O, which is a base for all the modules of O, as well as the logic-based relations
between these modules. From Proposition 4.3.10 we know that each moduleM
is uniquely determined in (A(O),�) by a set of atoms {a1, . . . , aκ} such that
M =

⋃κ
i=1 ai. However, from the AD alone we cannot find the unique set of

atoms which form the module for a given signature Σ since the bare structure
does not represent the relation between Σ and the atoms in A(O).

The idea arising from this observation is that we need to enrich the AD of
an ontology with a suitable set of labels to reveal the relations between atoms
and signatures. This enriched structure is called Labelled Atomic Decomposition
(LAD). Please note that there can be more than one relation between signatures
and atoms of interest for different applications.

Throughout this chapter, we will analyse two main kinds of labels. Labels of
the first kind are based on Minimal Seed Signatures (MSSs), i.e., minimal sets Σ

of terms such that the module for Σ is ↓a. Labels of the second kind are simply
based on ã, and reveals which terms are mentioned in an atom.

In Section 5.2 we prove that the LAD defined by using the sets of MSSs as
labels is a suitable representation for extracting the module for a signature Σ

directly from the LAD of O. Hence, these labels capture the logical interrelations
between the modules of O and the signatures in Õ. Intuitively, this means that
by labelling the AD with this kind of label we gain insight onto which terms are
indeed constrained by O.1

1Here we disregard the fact that modules can in general contain unnecessary axioms

97

98 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

The labels based on signatures can help in providing the terms of an ontol-
ogy with a logic-based ordering through the use of chains of CEs (recall Defini-
tion 4.3.14). Intuitively, then, it makes sense to say that an entity is defined in
terms of another, e.g. Person is defined in terms of Animal.

In Section 5.4 we also discuss the idea that, by comparing these two ap-
proaches, one can understand which terms are indeed constrained, and which ones
are just mentioned in the ontology. Such a comparison has interesting application
scenarios to support ontology engineers in the development and maintainance of
an ontology.

Finally, we introduce a preliminary investigation on the notions of relevance
and direct relevance of an axiom to a term t, aimed at formalising the idea that
LADs can be used to identify the relevant of an ontology for a term. Intuitively,
an axiom α is directly relevant to a term if, whenever a model I of α is fixed, then
we can turn I into a non model of α just by changing the extension tI . More
in general, in the context of an ontology O, an axiom is relevant to a term if t
can be interpreted in O \ {α} in a way which is independent on how the terms
in α̃ \ {t} are interpreted in O.

It is not yet clear how the notions of relevance and of direct relevance are
related to LADs. However, we have prima facie evidence that LADs can reveal the
part of an ontology that is relevant for a given term. Completing the investigation
of this issue is part of our future work.

5.1 Labels

Given the AD of an ontology O, we want to provide each atom a with a label
sufficient to capture a given logical relation. As mentioned before, one possible
kind of labelling aims at enabling the extraction of a module M = mod(Σ,O)

for the signature Σ from the AD, as described in the following example.

Example 5.1.1. Let us recall the Girl ontology from Example 4.3.13 and the
⊥-AD for Girl as in Figure 4.4. The ontology’s signature consists of 4 terms:
Woman, Child, Girl, and Person; hence there are 24 = 16 possible signatures to
choose from for extracting a module.

We can summarize the possible signature choices as follows:
- If Σ ⊆ {Person, Girl}, then the module mod(Σ,Girl) is empty.
- If Σ contains the term Woman but not the term Child, then mod(Σ,Girl) = {α1}.

5.2. LADS WITH MINIMAL SEED SIGNATURES 99

- If Σ contains the term Child but not the term Woman, then mod(Σ,Girl) = {α2}.
- If Σ ⊇ {Woman, Child}, then mod(Σ,Girl) = Girl.

In order to reveal which atoms are included in the module MΣ for a given
signature Σ, we could label each atom with all the signatures that make the atom
be included inMΣ, and obtain the following mapping:

a1 7→ {{Woman}, {Woman, Person}, {Woman, Girl}, {Woman, Person, Girl},
{Child, Woman}, {Child, Woman, Person}, {Child, Woman, Girl},
{Child, Woman, Person, Girl}}

a2 7→ {{Child}, {Child, Person}, {Child, Girl}, {Child, Person, Girl},
{Child, Woman}, {Child, Woman, Person}, {Child, Woman, Girl},
{Child, Woman, Person, Girl}}

a3 7→ {{Child, Woman}, {Child, Woman, Person}, {Child, Woman, Girl},
{Child, Woman, Person, Girl}}.

Please note that the same signature can belong to the label of more than one
atom. In general, given an ontology O, the total number of possible labels is 2m

where m = #Õ. Hence listing all the labels λ that lead an atom to be included
in the moduleMΣ for Σ = λ is unfeasible.

Before discussing specific choices for labels, we define a general notion of these.

Definition 5.1.2. Given an ontology O, a label is a set λ = {σ1, . . . , σ`} of
signatures σi ∈ ℘(Õ). The set of all labels will be denoted by the symbol Λ.
A labelling function is a mapping Lab : A(O) → Λ that maps each atom to
its label. A Labelled Atomic Decomposition (LAD) for an ontology O is a triple
(A(O),�, Lab), where (A(O),�) is an AD ofO, and Lab : A(O)→ Λ is a labelling
function.

In the remainder of this chapter we discuss different options for the labelling
function Lab and their applications.

5.2 LADs with Minimal Seed Signatures

In Example 5.1.1 we have shown a kind of labelling that can be easily used to
determine which atoms are included in the module for a given signature Σ; hence

100 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

in principle a procedure for extracting the module mod(Σ,O) for a signature
Σ consists of going through each atom a and checking whether Lab(a) 3 Σ.
The labelling proposed, however, is clearly infeasible since it could involve 2m

signatures, m being the number of terms in Õ. However, it is obvious that the
labels in Example 5.1.1 contain two kinds of redundancies:

1. We know that, if an atom a is contained in a moduleM, then all the atoms
that a depends on are also contained inM. In the example we did not ex-
ploit the dependency structure of the LAD, so every atom contains in its la-
bel the signatures {Child, Woman}, {Child, Woman, Person}, {Child, Woman,
Girl}, and {Child, Woman, Person, Girl}. However, for the atoms a1 and
a2 this information is redundant since, whenever a3 is contained in a module
M, then the dependency relation � already reveals that also a1 and a2 are
contained inM.

2. At a closer inspection, we notice that, if an atom’s label λ contains the sig-
nature σ ⊆ {Child, Woman}, then λ contains also the 3 labels σ ∪{Person},
σ ∪ {Girl}, and σ ∪ {Person, Girl}. In other words, the inclusion of ei-
ther Person or Girl in a seed signature Σ does not change the result of the
module extraction. In general, we can exploit the monotonicity over the sig-
natures Σ as in Definition 2.3.1 to discard those terms from Σ, and include
an atom a in a module MΣ = mod(Σ,O) whenever its label λ = Lab(a)

contains a signature σ ⊆ Σ.

The observations just made allow us to shorten the labels in Example 5.1.1, so
that the labelling function is defined as follows:

a1 7→ {Woman}
a2 7→ {Child}
a3 7→ {Child, Woman}

Definition 5.2.1. LetM be a module in an ontology O. We define a minimal
seed signature forM to be a signature Σ such thatM = mod(Σ,O) and that is
minimal w.r.t. set inclusion, i.e., there is no Σ′ (Σ such thatM = mod(Σ′,O).
We denote the set of all minimal seed signatures of a module by mssig(M,O).
We call an atom a relevant to a signature Σ if there exists Σ′ ∈ mssig(↓ a,O)

such that Σ′ ⊆ Σ.

5.2. LADS WITH MINIMAL SEED SIGNATURES 101

Please note that, in Definition 5.2.1, an atom is relevant to a signature, and not
to a seed signature. Indeed an atom can belong to the moduleMΣ = mod(Σ,O)

even if it is not relevant to Σ, as the next example shows.

Example 5.2.2. Let us consider the ontology Apart defined as follows:

{α1 : A v B u C,
α2 : C u Z v ⊥,
α3 : X v Y u Z}.

The ⊥-LAD of Apart consists of three independent atoms containing one axiom
each, and it is represented in Figure 5.1.

{A} {C, Z} {X}

Figure 5.1: ⊥-LAD of the ontology Apart

Let us now consider the signature Σ = {A, X}. Clearly, the two external atoms
are relevant to Σ. However, mod(Σ,Apart) = Apart. Indeed, α2 is needed to infer
that A v ¬X which is an entailment of Apart over the seed signature Σ.

By looking closer at the process of extracting a module from a signature, we
can see that during the extraction the seed signature Σ is enlarged with the terms
that do not belong to Σ and that occur in those axioms that are non-local w.r.t.
Σ to ensure that the module is self-contained. The alternation between checking
the axioms against locality and enlarging the signature occurs until a fixpoint is
reached, i.e., until Σ is not enlarged anymore. This procedure is monotonic only
for ⊥- and >-modules. We can hence define another procedure, where the check
of axioms against non-locality is substituted by the check for relevance of an atom
against a signature. Then, by applying this procedure for ⊥- or >-locality, we
obtain the module for the signature Σ, as expressed and proved in the next result.

Theorem 5.2.3. Let x ∈ {⊥,>} and Σ0 the input signature. Let us consider
Mx

0 = {α ∈↓a | a is relevant for Σ0} and, for i ≥ 1,Mx
i = {α ∈↓a | a is relevant

for M̃x
i−1∪Σ0}. Then, the chain of inclusionsMx

0 (Mx
1 (. . . eventually stops,

and forMx
∗ the fixpoint, we have thatMx

∗ = x-mod(Σ0,O).

Proof. We prove the inclusionsMx
∗ ⊆ x-mod(Σ0,O) andMx

∗ ⊇ x-mod(Σ0,O).

102 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

(⊆) By induction over i we show thatMx
i ⊆ x-mod(Σ0,O) for all i ≥ 0.

For i = 0 we want to prove thatMx
0 ⊆ x-mod(Σ0,O):

Mx
0 = {α ∈↓ a | a is relevant for Σ0}; this means that there exists Σa ∈ x-

mssig(↓ a,O) such that Σa ⊆ Σ0; hence, by monotonicity we have that
↓ a ⊆ x-mod(Σ0,O). Since this is true for all atoms that are relevant for
Σ0, we have thatMx

0 ⊆ x-mod(Σ0,O).

Let us now suppose Mx
i ⊆ x-mod(Σ0,O). Then, by self-containment

we have that x-mod(Σ0,O) = x-mod(M̃x
i ∪ Σ0,O). Moreover, Mx

i+1 ⊆
x-mod(M̃x

i ∪ Σ0,O) for reasons as above: by definition, for each atom
a ⊆Mx

i+1 there exists a seed signature Σa such that Σa ⊆ M̃x
i ∪Σ0. Then,

by monotonicity we have that the module ↓a is contained in x-mod(M̃x
i ∪

Σ0,O). Since this is true for all such atoms, then Mx
i+1 ⊆ x-mod(M̃x

i ∪
Σ0,O) = x-mod(Σ0,O).

Since the ontology is finite, this process eventually stops, and we find a
fixpointMx

∗ ⊆ x-mod(Σ0,O).

(⊇) Let us describe the standard process of extracting a module as follows:
Let N x

0 be the set of all non-local axioms w.r.t. Σ0 in O. Then, the module
x-mod(Σ0,O) is obtained by recursively extracting N x

j = {α ∈ O |α is
non-local w.r.t. Ñ x

j−1 ∪ Σ0}, until the fixpoint N x
∗ is reached. Note that

N x
j ⊆ N x

j+1, and that the fixpoint is the module x-mod(Σ0,O). It therefore
suffices to show that N x

j ⊆Mx
∗ .

For this purpose, we prove by induction on j that, for each j ≥ 0, there
exists an i ≤ j such that N x

j ⊆Mx
i . We will use the following claim.

Claim(∗): if an axiom α is non-local w.r.t. a signature Σ, then its atom aα

is relevant for Σ.
This claim clearly follows from the definition of atoms and relevance of
an atom for a signature, and from the fact that a genuine module is an
α-module.

For j = 0, we have that N x
0 is the set of all non-local axioms w.r.t. Σ0.

Because of (∗), for each axiom α ∈ N x
0 we have that its atom is relevant to

Σ0, hence it is contained inMx
0 .

Now let j ≥ 1; we want to prove that, if there exists an i ≤ j such that
N x
j ⊆Mx

i , then N x
j+1 ⊆Mx

i+1 or N x
j+1 ⊆Mx

i .

5.2. LADS WITH MINIMAL SEED SIGNATURES 103

N x
j+1 is the set of all axioms that are non-local w.r.t. Ñ x

j ∪ Σ0. Since
N x
j ⊆ Mx

i by inductive hypothesis, it follows that N x
j+1 is contained in

the set of all axioms that are non-local w.r.t. M̃x
i ∪ Σ0. Then, this set is

contained in the set of all atoms relevant for M̃x
i ∪Σ0, i.e.,Mx

i+1. Because
of the inclusion just obtained, we have that N x

j+1 can be already included
intoMx

i .

As we already mentioned, the procedure described in Theorem 5.2.3 computes
x-mod(Σ,O) only for x ∈ {>,⊥}. A counterexample for x = >⊥∗ is provided in
what follows.

Example 5.2.4. Let us consider an ontology Chainn for a fixed n > 2 as defined
in Example 2.3.9. Then, the >⊥∗-ADs of this ontologies consist of n pairwise
independent atoms. However, for each choice of two terms Aκ, A` with κ < `, the
module for the seed signature Σ = {Aκ, A`} is the set >⊥∗-mod(Σ,O) = {Aκ v
Aκ+1, . . . , A`−1 v A`}. The reason for this behaviour can be found in the extraction
procedure: at each iteration i of the outer loop for the extraction of a ⊥- or of a
>-module, either the set Mx

i grows, or the algorithm stops; in contrast, during
the computation of a >⊥∗-module, the intermediate sets of axioms can decrease
in size when the procedure goes from one notion (either ⊥ or >) to the other.

Theorem 5.2.3 suggests a procedure for extracting modules from an ontology
O without the need for loading O into memory, i.e., by offline performing a
module extraction. Moreover, we see that the procedure described in the proof
does not individually check all the axiom in O for locality against a signature Σ;
quite differently, if the procedure finds that an atom a is relevant for Σ, then all
the axioms in ↓a fall into the module for Σ. In particular, the offline extraction
of modules is a promising technique from a performance point of view provided
that the labels are not too large: recall that a genuine moduleM can still have
exponentially many labels in the size of M̃, as described in the following example.

Example 5.2.5. Let us consider the the family of ontologies:

On = {αi : Ai ≡ Ai−1 t A′i−1,

βi : Bi ≡ Bi−1 t B′i−1,

γi : Ci ≡ Ci−1 t C′i−1,

δi : Di ≡ Di−1 t D′i−1,

ηi : (Ai t Bi) u (Ci t Di) v X | i = 1, . . . , n}.

104 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

Then, #On = 5n, #Õn = 8n+ 5, the ⊥-AD of each On consists of 5 atoms, and
the Hasse diagram for (A(On),�) is represented in Figure 5.2.

αi βi γi δi

ηi

Figure 5.2: ⊥-AD of the ontologies On

Let e be the atom containing the axioms of kind η. Now, any axiom ηi is
non-local w.r.t. a signature Σ whenever Σ consists of one term from {Ai, Bi} and
one term from {Ci, Di}. In particular, such a signature Σ is also a minimal seed
signature for ↓ e. Moreover, we obtain another minimal seed signature for ↓ e by
replacing in Σ a term by on of the two terms defining it (for example, Ai can
be replaced by Ai−1, A

′
i−1). Since this procedure can be recursively applied, the

module ↓e has at least 4n minimal seed signatures.

Even though an exponential number of minimal seed signatures for a gen-
uine module can occur, we expect this event to be quite rare in practice, and
we describe the results of an experiment that involves testing this hypothe-
sis in Section 6.2. The algorithm described in Theorem 5.2.3 has been imple-
mented, and an offline module extractor is currently available as a service at
http://sswap.info/modularize. A discussion of the technical details behind
the implementation is described in Section 6.2.

5.3 LADs based on Atoms’ Signatures

In Subsection 4.3.2 we have introduced the chains of CEs in an ontology, and we
have mentioned that the intuition behind this notion consists of the possibility
of defining (many) total orderings of sets of axioms in O in such a way as to ease
the construction of a model I of some genuine moduleM⊆ O. Specifically, the
stepwise construction consists of identifying genuine modulesMi ⊆M such that
Mi (Mi+1. At each step, then, a model Ii is built to interpret the terms in
Σi = M̃i. Please note that at each step the signature Σi is strictly larger than
Σi−1. Hence, the total ordering of sets of axioms induces a total ordering of sets
of terms as well.

http://sswap.info/modularize

5.3. LADS BASED ON ATOMS’ SIGNATURES 105

A suitable LAD can represent both the total orderings (of sets of axioms vs.
of sets of terms) when we use signatures as a base for the atoms’ labels. In
particular, we define the following labelling function:

Labsig(a) := ã.

Please note that in this definition we abuse the notation of a labelling function
since a label in this case is a signature, and not a set of signatures.

Using the atom’s signature as a label helps to identify where in an AD the
terms of Õ occur. However, the intuition of using a LAD to reveal a logical
dependence between sets of terms is hindered by the terms redundancies, as the
following example shows.

Example 5.3.1. Let us consider again the ontology Chainn for a fixed n, defined
in Example ex:ModsContainHierarchies and used in Example 5.2.4. Then, its
LAD (A⊥(Chainn),�, Labsig) is represented in Figure 5.3. We can see that in this

An−1,

An

An−2,

An−1

A0, A1

Figure 5.3: (A⊥(Chainn),�, Labsig) of the ontology Chainn

case any two directly comparable atoms ai, ai+1 contain the same term Ai in their
labels. However, since by using the notion of chains of CEs we are “reading” the
LAD from below, intuitively we see that Ai is introduced in ai+1, whilst Ai is used
in ai.

The ⊥-AD for Chainn provides an order to the axioms such that the most
general concepts An and An−1 are introduced first, and the most specific concept
A1 is introduced last. Following this ordering, we would like to say that the term Ai

106 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

is defined in terms of Ai+1 since it occurs on the left hand side of the subsumption
axiom Ai v Ai+1. We obtain this kind of dependency by recursively defining the
following notion of labelling function applied to the ⊥-AD.

Lab#
sig(a) := ã if a is a minimal element in (A(O),�)

Lab#
sig(a) := ã \

⋃
b≺a

Lab#
sigb.

Given an atom a, the deletion from Labsig(a) of all the terms belonging to the
labels of the atoms that a depends on will generate what we call a flat label. The
corresponding flat LAD for Chainn is represented in Figure 5.4.

An−1,

An

An−2

A0

Figure 5.4: (A⊥(Chainn),�, Lab#
sig) of the ontology Chainn

Clearly, for each term t in the signature of a genuine module ↓a (and hence
for a general module), there is at least one atom b ⊆↓a such that t ∈ Lab#

sig(b).
In general, though, there can be more than one atom that contain t. Moreover,
this kind of labelling can generate also empty labels. The following is an example
of an ontology where both cases just discussed occur.

Example 5.3.2. Let us consider the ontology Split defined as follows:

α1 :A u B u C v E

α2 :A u B v D

α3 :A u C v D

α4 :D v E

5.3. LADS BASED ON ATOMS’ SIGNATURES 107

Then, the corresponding ⊥-LAD is represented in Figure 5.5.

D, E

A, B A, C

Figure 5.5: (A⊥(Split),�, Lab#
sig) of the ontology Split

Recall the notion of chain of CEs described in Subsection 4.3.2: we mentioned
that this notion allows a stepwise construction of a model for a genuine moduleM
by extending an interpretation I0 over a sequence of subontologies ofM. Then,
a LAD provides information on the signatures over which the interpretations
I1, I2, . . . are defined.

As an example, we build a model for the ontology Split defined in Exam-
ple 5.3.2. We start from the minimal element in the Hasse diagram represented
in Figure 5.5, and consider the chain of CEs consisting of the following modules:
{α4} ({α4, α2} (Split. Please note that chain of CEs is built according to
Corollary 4.3.16. In particular, the chain of subsets {α4} ({α4, α2, α3} (Split
is not a chain of CEs since we know that at each step in a chain of CEs the
signature Σi increases, and in this case it does not.

First we build a model I0 for α4 over the signature {D, E}; for example we
define DI0 = {d} and EI0 = ∆I0 = {a, b, c, d, e}. Then, we extend I0 to a model
I1 of {α4, α2} by setting I1|{D,E} := I0, and by defining AI1 = {a, d, e} and BI1 =

{b, d}. Please note that since DI0 = {d} we have to pay attention that AI1 and BI1

do not contain both a same element beside d. Hence, we have the guarantee that
at least one interpretation I ′1 of {A, B} exists such that I1 = I0 × I ′1 |= {α4, α2}.
However, all such interpretations I ′1 are constrained by the interpretations we
have fixed in the previous step, i.e., there exists a model J of Split such that
I0 × J |{A,B} is not a model of {α4, α2}.

Finally, we complete the model construction for Split as follows: we see that
the last extension in the chain of CEs pulls two more atoms in the module,
i.e., a1 = {α1} and a3 = {α3}, and that Lab#

sig(a1) = ∅. This means that the

108 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

interpretation of the terms in a1 is induced by defining a model for the subsets of ↓
a1. Going down to the “unexplored” atom a3 = {α3} we see that a3’s label contains
A, that has already been interpreted in I1, and C, which is a fresh term. We can
interpret C by defining a model I2 of {α4, α3} that expands I1: for example,
we set I2|{A,B,D,E} := I1, and then define CI2 = {c, d} such that the resulting
interpretation I2 is a model for the whole ontology Split.

The model construction just described shows that a chain of CEs, which is a
total orderings of sets of axioms of an ontology O, induces also a total ordering of
set of terms of O. This observation has motivated us to explore what it means, in
a chain of CEs, for a term to be defined in terms [sic] of other terms. Intuitively,
this notion can be used to support the understanding of O, as shown in the
following example.

Example 5.3.3. Let us consider the ontology Teetotaller defined as follows:

{α1 : Student v Person u ∃hasHabitat.University,
α2 : Person v Animal,

α3 : Vegan ≡ Person u ∀eats.(Vegetable t Mushroom),

α4 : Animal v (= 1hasGender.>),

α5 : TeeTotaller ≡ Person u ∀drinks.NonAlcoholicThing,
α6 : GraduateStudent ≡ Student u ∃hasDegree.{BA,BS},
α7 : Animal v (≥ 1hasHabitat.>),

α8 : Car v Vehicle}

Then, the ⊥-LAD of Teetotaller defined under the labelling function Lab#
sig is

represented in Figure 5.6.

Hence, we can first fix the meaning for Animal and hasHabitat, and then
progressively the meaning for Person in terms of Animal and hasHabitat, the
meaning for Student and University in terms of Person, and so on.

In the remainder of this chapter we will discuss some other notions that can
be exploited to support ontology comprehension.

5.4. COMPARING LADS 109

Car
Vehicle

Animal
hasHabitat
hasGender

Person

{BA, BS}
GraduateStudent

hasDegree

drinks
nonAlcoholicThing

Teetotaller

eats
Vegan

Vegetable
Mushroom

Student
University

Figure 5.6: ⊥-LAD of the ontology Teetotaller

5.4 Comparing LADs

In the previous two sections we have introduced two substantially different la-
belling functions for the AD of an ontology: the first one reveals the signatures
whose terms are non trivially interrelated by the ontology O. The second, in-
stead, determines an order in which the terms in Õ can be fixed (please note
that in general the terms’ order is not uniquely determined). These two notions,
i.e., interrelating vs. mentioning, can be, in general, orthogonal to each other, as
described in the two following examples: in the first, an axiom mentions a term t,
but it is irrelevant for t’s meaning. In the second, an axiom β does not mention
a term t at all, but it clearly says something about t.

Example 5.4.1. Let us consider the ontology O consisting of the following axiom
alone:

α : A v B u (C t ¬C).

Clearly, α does not say anything about C, despite the fact that C ∈ α̃. Hence a
model forO will need to interpret C, and Lab#

sig({α}) contains the term C, although
under any interpretation of C the concept C t ¬C has the same extension of >.
Quite differently, for each notion of locality x, there is no minimal signature Σ

such that α is non x-local w.r.t. Σ with C ∈ Σ. In particular, C 6∈ Labmss({α}) for

110 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

every notion x of locality.

Example 5.4.2. Let us consider the ontology Lambda defined as follows:

α1 :A v ¬B,
α2 :A ≡ C,

α3 :B ≡ D.

Each atom consists of a single axiom, and Lambda equals the principal ideal of
the atom a1 consisting of the axiom α1 that depends on both the atom a2 = {α2}
and the atom a3 = {α3}. In Figure 5.7 we show the two ⊥-LADs of Lambda, on
the left the one whose labels are defined by the labelling function Lab#

sig, and on
the right the one whose labels are defined by the labelling function Labmss.

B, DA, C
{B}
{D}

{A}
{C}

{A, B}
{A, D}
{B, C}
{C, D}

Figure 5.7: (A(O),�, Lab#
sig) vs. (A(O),�, Labmss) of the ontology Lambda

We notice that Lab#
sig(a1) is empty, whilst Labmss(a1) is made of signatures

that cover the ontology’s signature, in particular also the terms C and D that do
not occur at all in ã1. Hence, we realize that the atom a1 has a strong logical
influence on the terms C and D even though α1 does not mention them. The need
of this axiom for the signature Σ = {C, D} is not evident from Lab#

sig.

The intuition is clear: the minimal seed signatures reveal which terms are re-
ally constrained by the set of axioms in an atom, and the comparison between the
two LADs (A(O),�, Labmss) and (A(O),�, Lab#

sig) can highlight the differences in
the occurring terms vs. the constrained terms, hence it has promising properties
to be used for detecting modelling errors. In the next section we are going to
formalize the notion of constrained term either by a single axiom, or by a set of
axioms, i.e. an ontology.

5.5. MODEL-THEORETIC RELEVANCE 111

5.5 Model-theoretic Relevance

While the signature of an ontology describes the entities that the ontology deals
with, it does not say how these objects are related. The relationship between
terms is defined by the axioms of the ontology, that constrain which interpreta-
tions are allowed, and which are not. In particular, the interpretations of two
distinct terms can be conflicting only if there is a set of axioms that does not
allow any model to coincide with those interpretations over the two terms. From
this perspective, the natural choice is to investigate the notion of relevance of an
axiom to a term, rather than relevance between terms.

First, we are going to introduce some notions that we are going to use through-
out the investigation of logical relevance.

Definition 5.5.1. Given a consistent ontology O, a set ∆, and a signature Σ ⊆
Õ, we define a Σ-model over ∆ for O to be an interpretation (∆I , ·I) over Σ such
that there exists a model (∆I , ·J) for O whose Σ-reduct J |Σ = I. In this case,
we say that I is expandable to a model J for O, and any such J is called an
O-expansion of I.
If O is clear from the context, we simply drop it and say Σ-model. Please note
that Definition 5.5.1 is also valid in the case of O being a single axiom.

Example 5.5.2. Let ∆ be the set {a,m, f}, and O be the ontology:

{Child ≡ (=1 hasMother.Mother),

Child ≡ (=1 hasFather.Father)}.

Please note that O is a subset of the ontology Child as in Example 3.1.4. Then,
any interpretation of the singleton signature {Child} is a Σ-model for O. In
contrast, the interpretation function I over the set Σ′ = {Child, hasMother}
defined as ChildI = {a} and hasMotherI = {(a,m), (a, f)} is not a Σ′-model for
O since a Mother is required to be unique for each Child.

Another classical notion that we will make use of is defined in what follows.

Definition 5.5.3. Let I be an interpretation, t be a term, and Σ be a signature.
A {t}-variant of I is an interpretation J such that, for each symbol s ∈ Õ \{t},
we have sI = sJ and tI 6= tJ . A Σ-variant of I is an interpretation J such
that, for each symbol s ∈ Õ \ Σ, we have that sI = sJ and that there exists at
least one term t ∈ Σ such that tI 6= tJ .

112 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

A first very basic notion of relevance has been introduced in Example 5.4.1
where we consider the axiom α = A v B u (C t ¬C). Then, in order for an
interpretation I to be a model of α, it needs to satisfy the relation AI ⊆ BI . In
other words, the acceptable interpretations of both A and of B are constrained.
On the contrary, the interpretation of C is not constrained by α, and we can even
rewrite the axiom into the equivalent A v B that does not even mention C. This
case of relevance provided by a single axiom is described in the next definition.

Definition 5.5.4. An axiom α is directly relevant to a term t if there exists a
model I of α and a {t}-variant I ′ of I such that I ′ 6|= α. We define also:

- γ(α) to be the set of terms directly constrained by α, that is all terms t ∈ α̃

such that α is directly relevant to t

- ϕ(α) to be the set of free terms in α, that is the complement of γ(α) in α̃.

As a straightforward consequence of Definition 5.5.4 we have that, if an axiom
α does not contain a term t in its signature, then α is not directly relevant to it.
This is true because we look at models defined over the minimum signature, as
discussed in Section 2.1.

An interesting property of the terms in ϕ(α) is that, given any interpretation
I, then we can use interchangeably I or any ϕ(α)-variant I ′ of I: if I is a model
for α, then I ′ is; dually, if I is not a model for α, then I ′ is also not a model for
α.

Lemma 5.5.5. Let α be an axiom and ϕ(α) be the set of all free terms in α.
Then, for any model I for α and any set Σ ⊆ ϕ(α), we have that any Σ-variant
J of I is a model for α.

Proof. We prove this lemma by induction on the number n of the terms in Σ.
Base of the induction: n = 1. In this case, Σ is a singleton, so there exists
t ∈ ϕ(α) such that Σ = {t}. In particular, a Σ-variant J of I is a {t}-variant.
Now, if J were not a model for α, this would contradict the assumption of t
belonging to ϕ(α). Hence, J |= α.
Induction hypothesis: let us assume that if #Σ = n− 1, then every Σ-variant I
is still a model for α.
Induction step: let t ∈ Σ and T = Σ \ {t}. Then, by induction hypothesis we
have that any T -variant J of I is a model for α. Hence, a Σ-variant I ′ of I is a
{t}-variant of J , and since t ∈ ϕ(α) we have that I ′ is also a model for α.

5.5. MODEL-THEORETIC RELEVANCE 113

Lemma 5.5.6. Let α be an axiom and ϕ(α) be the set of all free terms in α.
Then, for any interpretation I over α̃ that is not a model for α and any set
Σ ⊆ ϕ(α), we have that any Σ-variant J of I is not a model for α.

Proof. Similarly to the proof for Lemma 5.5.5, we prove this lemma by induction
on the number n of the terms in Σ.
Base of the induction: n = 1. In this case, Σ is a singleton, so there exists
t ∈ ϕ(α) such that Σ = {t}. In particular, a Σ-variant J of I is a {t}-variant.
Now, if J were a model for α, this would contradict the assumption of t belonging
to ϕ(α). Hence, J |= α.
Induction hypothesis: let us assume that if #Σ = n− 1, then every Σ-variant I
is still not a model for α.
Induction step: let t ∈ Σ and T = Σ \ {t}. Then, by induction hypothesis we
have that any T -variant J of I is not a model for α. Hence, a Σ-variant I ′ of I
is a {t}-variant of J , and since t ∈ ϕ(α) we have that I ′ is also not a model for
α.

Next, we want to find connections between the notion of direct relevance and
the notion of model conservativity.

Proposition 5.5.7. Let α be an axiom and t ∈ α̃ a term. If there exists a
signature Σ ⊆ α̃ such that Σ 3 t, α 6≡mCE

Σ ∅, and α ≡mCE
Σ\{t} ∅, then α is directly

relevant to t.

Proof. Let α be an axiom and t be a term such that there exists a signature
Σ ⊆ α̃ satisfying the hypothesis. Since α 6≡mCE

Σ ∅, we know that there exists
an interpretation J over Σ that cannot be expanded to a model for α, i.e., it is
not an {α}-model. In contrast, since α ≡mCE

Σ\{t} ∅, we have that J |Σ\{t} can be
expanded to a model I for α, and is indeed an {α}-model.

Let us now consider the interpretation J ′ that interprets all symbols in α\{t}
as I does, whilst it interprets t as J does. Then, J ′ is not a model for α, and it
is a {t}-variant for I. Hence, α is directly relevant to t.

The inverse implication in Proposition 5.5.7 does not hold in general. For
example, let us consider the ALC axiom > v (∃r.Au∃r.¬A)uB. Then, α 6≡mCE{B} ∅
since in any model I for α, the set BI contains at least two distinct elements,
hence also the domain ∆I is forced to have at least two distinct elements. On the

114 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

contrary, if the ontology is empty, then there are models J such that the domain
∆J is a singleton, hence α 6≡mCE∅ ∅ too.

Direct relevance of an axiom is not the only way for a term to be affected.
The interpretations allowed for a term can also depend on axioms that do not
even mention it, as discussed in the following example.

Example 5.5.8. Let us consider the ontology O = {αi}i=1...n where the i-th axiom
is Ai−1 v Ai. If n ≥ 2 then the axiom αn does not contain A0. However, αn does
indirectly constrain A0 because in any model I of O where AIn−1 = ∅ (and αn is
then satisfied for any interpretation of An) we have that AI0 is forced to be empty.

In other words, in order to define relevance between a term and an axiom
we need then to look at their interpretations in the context of the ontology. In-
tuitively, an axiom α is relevant to t w.r.t. the ontology O if the interpretation
of t and the interpretation of the constrained terms in α̃ \ t cannot be chosen
independently from each other. In what follows we formalise and discuss this
idea.

Definition 5.5.9. Let ∆ be a set, O an ontology, t ∈ Õ a term, and α ∈ O an
axiom. We say that α is relevant to t in O if there exist:

- a subset O′ ⊆ O such that α ∈ O′,
- a {t}-model I1 over ∆ for O′ \ α
- a {γ(α) \ {t}}-model I2 for O′
such that there is no model J |= O′ over ∆ with:

- J |t = I1, and

- J |γ(α)\{t} = I2.

Example 5.5.10. Let us consider the ontology Apart defined in Example 5.2.2.
The term A does not occur in α3 : X v Y u Z. Clearly, γ(α3) = α̃, and α̃ \ A = α̃.

Now, the interpretation I1 defined as AI1 = ∆I1 is an {A}-model for Apart.
However, any Apart-expansion J of I1 is such that XJ = ZJ = ∅. Moreover, the
interpretation I2 defined as XI2 = YI2 = ZI2 = ∆I2 is also an α̃-model. Hence,
there is no model J for Apart such that J |{A} = I1 and J |eα = I2. Hence, α3 is
relevant to A.

The following example shows that requiring I2 to be defined over γ(α) \ t
rather than over α̃ \ t is fundamental for the notion of relevance to capture the
model-theoretic relation between the axiom α and the term t.

5.5. MODEL-THEORETIC RELEVANCE 115

Example 5.5.11. Let us consider the following ontology:

O = {α1 : A v B u (C t ¬C)

α2 : C v D}.

Please note that γ(α1) = {A, B}. Now, for any domain ∆, any {D}-model I1 over
∆ for α2, and any {A, B}-model I2 over ∆ for O, the interpretation J = I1 + I2

is a model for O over ∆ that expands both I1 and I2. Hence, α1 is irrelevant for
D.

In contrast, for any domain ∆ let us now consider the {D}-model I1 for α2

defined as DI1 = ∅, and the α̃-model I2 for O defined as AI2 = BI2 = CI2 = ∆I2 .
Clearly, I1 and I2 cannot be expanded to a same model J for O. In other words,
the purely syntactic relation between C and α1 hinders the semantic independence
of D from α1.

We can equivalently define the irrelevance, dual to relevance, of an axiom α to
a term t, to occur when, for any subontology O′ containing α, for any {t}-model
I1 w.r.t. O′ \ α and any {γ(α) \ t}-model I2 w.r.t. O′, there exists a model J
which is an O′-expansion of both I1 and I2.

The notions of relevance/irrelevance described above are clearly dependent
also on the syntax of the ontology since all our definitions take into account
axioms as they are.

Example 5.5.12. Let us consider again the ontology One and its rewriting All
defined in Example 3.3.2. Then, the unique axiom α ∈ One is relevant to each
term in α̃. In contrast, for each term t ∈ Ãll there is only one axiom out of n to
be relevant to t. In particular, One does not split into unrelated fragments as it
does in Parikh’s approach, whilst All does, despite the fact that One ≡ All.

The notions of direct relevance and relevance are strongly connected: if an
axiom α ∈ O is directly relevant to a term t, then α is also relevant to t in O.

Proposition 5.5.13. Let α ∈ O be an axiom, and let t ∈ γ(α) be a term that α
is directly relevant to. Then, α is also relevant to t in O.

Proof. Let us consider the subontology O′ = {α}. By definition of direct rele-
vance, we have that there is a model I for O′ = {α} and a {t}-variant J of I
such that I 6|= O′. Then, J |t is expandable to a model for O′ \ {α}, since this
ontology is empty. Similarly, the interpretation I|γ(α)\{t} is also expandable to

116 CHAPTER 5. LABELLED ATOMIC DECOMPOSITIONS

the model J for α. However, J is not a model for α. Moreover, since α is irrel-
evant to the terms in ϕ(α), we know by Lemma 5.5.6 that any interpretation J ′
obtained by changing the interpretation of the terms from ϕ(α) in J we still get
a non model for α. Hence, there is no model J ′ of O′ which is an O′-expansion
of both I and J |t, that is, α is relevant to t.

The analogous for Proposition 5.5.7 for the general case of a set of axioms is
expressed in the following proposition.

Proposition 5.5.14. Let O be a consistent ontology, α ∈ O, and t ∈ Õ a term.
If there exists a subset Σ of α̃ such that α 6≡mCE

Σ ∅ and α ≡mCE
Σ\t ∅ then α is

relevant to t in O.

Proof. Let α be an axiom and t be a term such that there exists a signature
Σ ⊆ α̃ satisfying the hypothesis. Then, each possible interpretation I over Σ \ t
is expandable to a model for α. In contrast, not all interpretations over Σ are
expandable to a model for α. Let I ′ be such an interpretation. Since every
possible interpretations over Σ \ α are expandable to a model for α, so it is for
I ′|Σ\α. Let J ′ be an α-expansion for I ′|Σ\α. Then, J ′ is a model for α such that
its t-variant I ′ is not a model for α. Hence, α is directly relevant to t.

We know that in general the model-theoretic notions are hard to decide, so we
want to go back to define a notion of relevance based on locality. An investigation
of how these two notions are related is part of our future work.

Chapter 6

Applications

In the previous chapters we have introduced the Atomic Decomposition of an
ontology O, and the enriched versions called Labelled Atomic Decompositions.
Throughout this chapter we describe those applications of (L)ADs that have been
already investigated.

Since everything started from the question, raised in [PS10, DPSS10], of count-
ing how many Σ-module an ontology has, we show how the AD of an ontology
can be applied to provide a better estimation of this number than the trivial one
2m, m being the minimum between the number of axioms in O and the number
of entities in Õ.

We described in Section 5.2 the LAD based on the labelling function Labmss,
and how to use it for Offline Module Extraction (OME). Here we present the
experimental results investigating the practicality of this approach, especially
with respect to the labelling of the AD since we know that in principle the label λ
of an atom a can be of exponential size in the number of terms in ↓a. In particular
we show that the exponential blowup does not occur often, and introduce a way
to cope with such an eventuality in a practical way.

The efficiency in extracting modules based on syntactic locality, together with
their logical property of coverage, has recently inspired a new generation of rea-
soners [TP12, ACH12] that aim at exploiting the decomposition of an ontology
into modules to speed up the reasoning over complex ontologies. We will discuss
how the AD can be used to drive the selection of suitable modules to be fed to
these modular reasoners.

The AD of an ontology has also been recently used as an external criterion
for evaluating the quality of the design patterns identified with the Regularity

117

118 CHAPTER 6. APPLICATIONS

Inspector for Ontologies (RIO) framework for automatically identifying regular-
ities and for clustering the terms in an ontology according to these regulari-
ties [MISR11, Mik13].

Finally, we present DeMoSt, a prototype for a tool to explore the AD of
an ontology O in order to discover the modular structure of O and the logical
dependencies between the axioms of O. Ideally, this tool can be used for gain-
ing an insight on what it is actually said in O, enhancing and supporting the
understanding of O.

The applications described here show that the ADs and LADs can be used in
several scenarios as a technique to perform engineering tasks, to improve reasoning
performance, and to support the comprehension of ontologies.

6.1 Module Count

As we already mentioned, the investigation for finding a modular structure in-
duced by locality-based modules started in [PS10, DPSS10]. The authors aim at
defining a notion of “interesting” modules from the set of modules of an ontology
O, and then to reveal their interrelations. Since the authors do not have a definite
notion of what an “interesting” module is, they aim at finding all the modules in
O, and then to extrapolate a good notion of interestingness for a module.

Let n be the number of axioms of O, and m be the signature size of O. Recall
that a module M is a subset of O, and that M is extracted from the selection
of a seed signature Σ. Then, in principle an ontology can contain up to 2min{n,m}

modules. Hence, both the search space given by the set of all seed signatures, and
the output space consisting of all modules of O, can in principle be exponential
in the size of O. The exponential blowup in the number of modules of O, then,
would make the search for a modular structure via the full modularisation of O
infeasible. Moreover, even an only polynomial amount of modules can be too
high for direct user inspection.

In order to understand whether this kind of analysis is practically feasible,
the authors define as an intermediate task the investigation on the number of
modules of an ontology O. We will refer to this problem as Module Count (MC).

6.1. MODULE COUNT 119

Approach (without ADs)

In [PS10, DPSS10] the authors try to extrapolate the behaviour of the number of
modules of an ontology by fully modularising a small corpus of eight ontologies
that they evaluate to be well designed and sufficiently diverse. By “well designed”
they mean that these ontologies cover a specific domain to a certain level of detail;
they are axiomatically rich, for example, they do not only connect terms via
atomic subsumptions, which would make module extraction rather uninteresting
because the terms in the signature of a module would hardly cause other terms
to be included in the module. By “diverse” they mean that these ontologies
have different sizes, expressivities, ratios of axiom and term numbers, and cover
different domains. Given the task to be performed, they focus on small ontologies
for practical reasons.

Despite the existence of ontologies such as All (defined in Example 3.3.2) with
exponentially many modules, the authors provide examples of purpose-built less
disconnected ontologies with a reasonable amount of modules, and test the hy-
pothesis that “coherent” ontologies have less modules. Unfortunately, empirically
this does not seem to be the case. In particular, the full modularisation was
successfully completed for two small ontologies only, namely Koala and Mereol-
ogy. For the other 6, the authors sampled subontologies Oi of increasing sizes
ni, extracted all of their modules, and tried to extrapolate the behaviour of the
number f of modules of O from the trendline of the fitting curve for the points
(ni, fi) where fi is the number of modules of the subontology Oi.

The fundamental conclusion the authors draw is that the number of modules
is often exponential in the size of the ontology. The most reasonable estimates
of the total number of modules in small to midsize ontologies (i.e., anything over
100 axioms) show that full modularization is practically impossible.

How ADs can help

From Proposition 4.3.10 we know that each module can be decomposed in a
unique way as the ideal of a set S of incomparable atoms, i.e., an antichain. Since
all modules are represented in (A(O),�), the idea arises of counting modules via
the AD of O rather than enumerating all of them. In particular, two estimates
could be provided:

Upper Bound: we saw in Example 4.3.13 that not every antichain A in (A(O),�)

120 CHAPTER 6. APPLICATIONS

is such that ↓A is a module. However, by estimating the number of antichains
in (A(O),�) we clearly have an upper bound for the number of modules in O.
Such an estimate can be computed by applying the algebraic result known as
Dilworth’s theorem:

Theorem 6.1.1 (Dilworth, [Dil50]). Given a finite poset (O,>), there exists an
antichain A, and a partition of the order into a family P of chains, such that the
number of chains in the partition equals the cardinality of A. When this occurs,
A is largest antichain in the order, and P is smallest family of chains into which
the order can be partitioned.

Corollary 6.1.2. For any poset (O,≤), let P := {A1, . . . , Aw} be a decomposition
as in Dilworth’s theorem into w chains, and let d be the depth of the poset O;
set ci := #Ai + 1 for all i ∈ {1, . . . , w}. Then, the number of antichains in O is
bounded by the quantity c1 · . . . · cw ≤ (d+ 1)w.

Please note that Corollary 6.1.2 provides an upper bound of the actual number
a of antichains in a poset, and that in our case a is also an upper bound of the
number of modules.

Lower Bound: The rationale for looking for a lower bound starts from the obser-
vation that, if all antichains of an AD generate distinct modules, then an efficient
way to find a lower bound of the number of antichains of a poset is simply ex-
tracting the size w of the maximal antichain and compute 2w.

Unfortunately, the measure 2w is not always a lower bound of the actual
number of modules, as the following examples show.

Example 6.1.3. Let us recall the ontology Apart defined in Example 5.2.2. Then,
the ⊥-AD of Apart consists of 3 independent atoms, so we would expect to have
23 = 8 distinct ⊥-modules. However, the set S = {α1, α3} is not a module since
the smallest module containing S is the whole ontology. Hence, Apart contains
only 7 modules, and this technique fails in providing a lower bound for the number
of modules.

Example 6.1.4. Let us now consider the ontologies Chainn as defined in Exam-
ple 5.2.4. The >⊥∗-AD of Chainn consists of n independent atoms containing one
axiom αi each, for every i = 1, . . . , n. Hence, the maximal antichain is of size n,
and we would estimate that O has 2n >⊥∗-modules, hence every subset of Chainn
would be a >⊥∗-module.

6.1. MODULE COUNT 121

However, this is not the case: any non empty >⊥∗-moduleM is such that its
signature M̃ contains at least two concept names Ai, Aj. In particular, let i be
such that i = min{k | Ak ∈ M̃}, and let j be such that i = max{k | Ak ∈ M̃}.
Then, M̃ contains also all the terms Ak with i < k < j, andM is made of all the
axioms αk whose signature {Ak−1, Ak} is contained in the set M̃ just described.
This means that the actual module number is therefore only n(n−1)

2
.

The explanation for the difference lies in the fact that atoms are not really
independent since the minimal seed signatures of the corresponding genuine mod-
ules share terms with some other modules’ signatures.

Discussion

The approach exploiting the ADs of an ontology has been preliminarily investi-
gated in [DPSS11b] for what concerns a lower bound to estimate the number of
modules of an ontology O, that could help in understanding whether O generates
exponentially many modules w.r.t. O’s number of axioms.

Based on the module numbers from the experiment carried out in [DPSS10],
we took into have considered the three ontologies People, Koala, and Galen. We
have computed the >⊥∗-AD of the subontologies for which we have extracted all
their modules, computed the length w of the maximal antichain as well as the ratio
between 2w and the number of >⊥∗-modules for the respective ontology. If that
ratio is greater (less) than 1, then the value 2w overestimates (underestimates) the
module number. The picture below contains plots of the measured ratios against
the subontology size for these 3 ontologies. The y-axis is scaled logarithmically,
ensuring that ratios r and 1/r have the same vertical distance from the value 1.

0,1

1,0

10,0

0 10 20 30 40 50

0,01

0,10

1,00

10,00

70 75 80 85 90 95

0,01

0,10

1,00

10,00

0 10 20 30

Subontology size Koala Subontology size People Subontology size Galen

To interpret the plots for every ontology O and its collections of subsets, the
following observations are of interest.

122 CHAPTER 6. APPLICATIONS

How much does the maximal, minimal, or average ratio differ from 1?
If it tends to differ much in one direction, the estimate needs to be scaled. If it
differs erratically, then the estimate will not be useful.

Does the maximal (minimal) ratio grow (shrink) when the size of O grows?
If it does, the the growth (shrinkage) function needs to be qualified for the esti-
mate to be useful. It is problematic to predict the function if it differs between
ontologies.

Are the differences to the “ideal” ratio 1 the same for the ratios >1 and those <1?
If they are not and if such an imbalance only occurs for some ontologies, then we
should ask the question what property of the ontology is responsible for it. The
degree of imbalance could then serve as gauge for that property.

How much do the maximal and the minimal ratio differ?
Their quotient represents a margin for the estimate. E.g., if the maximal and
minimal ratio are 3.0 and 0.5, then we can conclude from the measured value
x = 2w that O has between 0.333x and 2x modules. The quotient is 6; therefore
we can estimate the >⊥∗-module number up to one order of magnitude. Quotients
> 10 decrease precision to more orders of magnitude.

We made the following observations for the ontologies we examined.

Koala. The ratio ranges from 0.36 to 2.61. For example, if we measure a maximal
antichain of length 10 for any subontology of Koala, then we can estimate that
the module number is between 210

2.61
≈ 392 and 210

0.36
≈ 2, 844. The plot shows an

even balance between “> 1” and “< 1” ratios. The minimal ratio seems to be
constant with growing subontology size, but the maximal ratio seems to grow
slightly. The quotient between max and min is 7.25.

People. The ratio is almost always < 1; it ranges from 0.09 to 1.14. This yields a
quotient of 12.67, i.e., the prediction of the >⊥∗-module number is only up to
two orders of magnitude. For example, for a maximal antichain of length 10,
the number of >⊥∗-modules can now be between 898 and 11,378. Furthermore,
the underestimation appears to grow with the ontology size.

Galen. There is almost always a ratio < 1, and the underestimation appears to
grow with the subontology size. For the first 28 subontologies of very small
size (up to 26 out of Galen’s 4,528 axioms), we already obtain a quotient of
1.14/0.04 = 28.5.

6.2. LADS FOR OFFLINE EXTRACTION OF MODULES 123

In summary, the ratio behaves quite differently for these five ontologies, and this
restricts its use as an estimate of the >⊥∗-module number. For some ontologies,
the measured value 2w tends to underestimate the >⊥∗-module numbers, for
others, there is no tendency. For some ontologies, the margin for the estimate
obtained from 2w is simply too large.

Overall, the AD of an ontology has clearly improved our understanding in the
investigation on the number of modules of an ontology, and we have presented
some interesting preliminary results. Future work to extend the investigation on
the number of modules of an ontology is three-fold:

1. By exploiting the AD of O we plan to drive the search for distinct modules
by combining atoms, and atoms signature, in order to be able to fully
modularize ontologies with a number of axioms higher than 50.

2. We have so far analysed the lower bound only for >⊥∗-modules, and we
discussed in Subsection 4.4.2 that this kind of AD is in general the most
disconnected. We have provided in Example 6.1.3 a case for undetected
logical dependencies even for ⊥-ADs. However, we expect this case to
occur less often in ⊥-ADs and >-ADs rather than in >⊥∗-ADs, so that the
estimates provided by the AD for the number of modules of an ontology are
expected to be closer to the actual number. This estimate can be further
refined by designing suitable LADs to reveal this hidden dependencies to
be exploited, and hence to determine a proper lower bound for the number
of modules of an ontology.

3. We still need to empirically evaluate how well the estimate of the number of
antichains of a poset provided by Corollary 6.1.2 approximates the actual
number of modules of an ontology.

6.2 LADs for Offline Extraction of Modules

Ontologies are often maintained as monolithic collections of axioms in single files
or in a few files. This is not ideal for applications which require access to in-
dividual fragments of ontologies, for example, axioms relevant for a particular
term. One example is use of ontology terms in descriptions of Semantic Web
services or requests for their discovery. In such cases it is undesirable to load the

124 CHAPTER 6. APPLICATIONS

entire ontology into memory (or transfer it over the network) in order to reason
about a limited signature. Therefore it is important to investigate the possibility
of maintaining ontologies in a more flexible form which supports reasoning over
small (from the network’s or the reasoner’s viewpoint) fragments.

We investigated in Section 4.4 on the decomposability and modular structure
of a corpus of ontologies including the NCBO BioPortal repository, and we proved
that in general these ontologies can be split into small atoms. Now we show how
modules can be assembled from their ADs before reasoning. This investigation
aims at demonstrating a way to maintain and develop ontologies in a modular
fashion, with the guarantee that no information get lost or corrupted since our
approach generate correct and complete fragments of an ontology w.r.t. a given
signature Σ. We will refer to this problem as Offline Module Extraction (OME).

How LADs can help

We have extensively discussed in Section 5.2 the notion of Labelled Atomic De-
compositions with Minimal Seed Signatures (MSSs). In particular, we have de-
scribed a procedure for offline extracting a module from such a LAD. However,
this kind of structure can in principle generate labels containing exponentially
many signatures w.r.t. the ontology’s signature size. Hence, the main challenge
to OME consists of computing all the MSSs for each genuine module in an ontol-
ogy O. To avoid infeasibility, an approximated version of the LAD with MSSs is
generated: when the computation of the MSSs for a genuine module ↓a takes too
long, the procedure is interrupted and the atom is flagged as dirty. The inclusion
of these atoms in a module is then handled with care when it comes to perform
the OME.

Once the LAD is generated, the OME can be performed by checking whether
the extended seed signature obtained by recursively enlarging a given seed signa-
ture Σ is a subset of one of the MSSs of the genuine module ↓ a for each atom
a ∈ A(O), as described in Section 5.2.

In the remainder of this section the practicality of computing MSSs lasbels is
empirically evaluated over a large corpus of ontologies from the NCBO BioPor-
tal repository. From this analysis we can conclude that maintaining ontologies
decomposed into their LADs is indeed practical.

6.2. LADS FOR OFFLINE EXTRACTION OF MODULES 125

Labelling Algorithm and Evaluation We now describe an AD-driven algo-
rithm for computing, for each atom a in the decomposition, the set of its minimal
seed signatures MSS(↓a).

Algorithm 3 first computes the set MGS(a) (minimal globalizing signatures)
for all axioms in a (Line 4). For an axiom α and a given notion of locality x,
MGS(α) is the set of all Σ ⊆ α̃ such that α is non-x-local w.r.t. Σ and α is x-local
w.r.t. all proper subsets of Σ. For bottom atoms a (i.e., atoms which do not
depend on other atoms), we have that a =↓a, and the sets MSS(a) and MGS(a)

coincide.
Now, every signature Σ ∈ MGS(a) is necessarily a seed signature for ↓a but,

unless a is a bottom atom, is not necessarily minimal. The reason is similar to
the one described in Example 6.2.1, but the redundancies can arise also from the
atoms that a depends on: Σ′ ⊂ Σ could be a seed signature for a module ↓ b,
for some atom b ≺ a if Σ ⊆ Σ′ ∪ ↓̃b. In that case, informally, Σ′ first “pulls” ↓b
into the module (Σ′ being a seed signature for ↓ b) and then the extended seed
signature Σ′ ∪ ↓̃b “pulls” the axioms of a and the rest of ↓a. By “extended seed
signature” we mean the seed signature against which locality is checked at some
iteration of the standard ME algorithm. Currently, the algorithm is limited to >
or ⊥-locality.

Please note that in Algorithm 3 the symbol ∪∗ means “union and minimisation
w.r.t. set inclusion”. This operator guarantees that every set S of seed signatures
does not contain Σ′ if Σ ⊆ Σ′ for some Σ ∈ S, as shown in the following example.

Example 6.2.1. Let us consider the axioms:

α1 : A ≡ B

α2 : A ≡ B u C

Then, both axioms belong to the same ⊥-atom a. Now, MGS(α1) = {{A}, {B}}
and MGS(α2) = {{A}, {B, C}}. Thus, to get the MSSs for a we have to exclude
the signature {B, C} since it is a proper superset of {B} which occurs among the
MSSs of α1. Hence, MSS(a) = {{A}, {B}}.

A counterintuitive and surprising fact of MSSs for a genuine module ↓ a is
that there can be some which are not subsets of ã, and hence that belong to the
atoms that a depends to. This clearly poses a computational challenge in finding
them since we have to explore the whole module ↓ a. An ontology showing this

126 CHAPTER 6. APPLICATIONS

Algorithm 3 Computing MSSs for a principal ideal
1: Input: Ontology O; x ∈ {>,⊥}; O’s x-AD; an atom a

2: Output: MSS(a), the set of all MSSs for ↓a
3: MSS(a),PreMSS(a) ← ∅
4: MGS(a) ← ⋃∗

α∈a MGS(α)
5: DD(a) ← the set of atoms that a non-transitively depends on
6: if DD(a) = ∅ then
7: return MGS(a)
8: end if
9: for each b ∈ DD(a) do
10: MSS(b) ← recursively compute MSSs for ↓b
11: end for
12: for each Σ ∈ MGS(a) do
13: RCΣ(a) ← {b ∈ DD(a) | Σ ∩ ↓̃b 6= ∅}
14: for each {b1, . . . , bn} ∈ ℘(RCΣ(a)) do
15: Σa ← Σ \⋃i=1,...,n ↓̃bi
16: for each X ∈ MSS(b1)× · · · ×MSS(bn) do
17: PreMSS(a) ← PreMSS(a) ∪∗ {Σa ∪X}
18: end for
19: end for
20: end for
21: for each Σ ∈ PreMSS(a) do
22: MSS(a) ← MSS(a) ∪∗ {{Σ′} | Σ′ ⊆ Σ and x-mod(Σ′,O) =↓a}
23: end for
24: return MSS(a)

behaviour is described in what follows.

Example 6.2.2. Let us consider the following ontology:

O = {α : A ≡ B u C,
β : B ≡ D t E,
γ : C ≡ F t G}

The ⊥-genuine modules in O are described in what follows:

⊥-mod({A},O) = ⊥-mod({B, C},O) = {α, β, γ}
⊥-mod({B},O) = ⊥-mod({D},O) = ⊥-mod({E},O) = {β}
⊥-mod({C},O) = ⊥-mod({F},O) = ⊥-mod({G},O) = {γ}

6.2. LADS FOR OFFLINE EXTRACTION OF MODULES 127

Therefore, there are three atoms a = {α}, b = {β}, c = {γ} with the dependencies
b ≺ a and c ≺ a. Now take the MSS {B, C} for a and replace B and C, which occur
in b and c, with the MSSs {D} and {F} for b and c. Then {D, F} is an MSS for
↓a, although clearly {D, F} is disjoint with ã and with any member of MGS(a).

Despite these complications, axioms of a can only be pulled into the module
once the extended seed signature includes at least one of the members of MGS(a).
The algorithm next recursively computes MSS for all direct children of a (Line 10)
and then proceeds to discover other MSSs of ↓ a by combining the sets MSS for
direct children of a with the set MGS(a) (Lines 12–20). It does so by “elaborating”
each Σ ∈ MGS(a). It selects those atoms b ≺ a which behave as described above,
i.e., ↓̃b overlaps with Σ. The set of all such direct children of a w.r.t. Σ is stored
as RCΣ(a) (Line 13). Then the algorithm removes from Σ (the signature being
“elaborated”) the terms in the “lower” atoms (

⋃
i=1,...,n ↓̃bi) and stores the result in

Σa (Line 15). Lines 16–18 go through all seed signatures X which are guaranteed
to pull every atom in RCΣ(a). Then, X ∪ Σa is a seed signature (not necessarily
minimal) for ↓a, as explained above. All such X ∪Σa are collected in PreMSS(a).

The members Σ ∈ PreMSS(a) are not guaranteed to be minimal seed sig-
natures for ↓ a because of possible weak dependencies between direct children
of a. Informally, there could be a subset of Σ which first pulls some bi, then
some child of bi and only then bj. Therefore, the algorithm has to “minimize”
every Σ ∈ PreMSS(a) by checking whether any of its subsets are, by themselves,
already seed signatures of ↓ a (Lines 21–23). However, entries of PreMSS(a) are
usually good approximations of truly minimal seed signatures; in particular, they
are much better approximations than just the signature of ↓a.

Properties of the Labelling Algorithm The correctness of Algorithm 3
can be seen as follows. For soundness, we need to prove that every Σ that is
added to MSS(a) is an MSS for ↓ a. In case a is not dependent on any atoms,
MSS(a) = MGS(a) due to lines 6–8. Due to line 4, Σ is a minimal element of
the set of all MGSs Σ ⊆ α̃ for some α ∈ a and therefore a seed signature for
↓a. Then, all α ∈ a are local w.r.t. every subset of Σ; hence Σ is a minimal seed
signature for ↓a.

In case a depends on other atoms, MSS(a) is constructed solely in line 22. Only
seed signatures for ↓ a enter MSS(a). Since all subsets thereof are considered in
this line too, all signatures remaining in MSS(a) must be MSSs.

128 CHAPTER 6. APPLICATIONS

For completeness, we need to argue that every MSS eventually enters MSS(a).
In case a is not dependent on any atoms, the MSSs for a are exactly the MGSs
for axioms in a. All these are captured in Line 7.

In case a depends on other atoms, say DD(a) = {b1, . . . , bn}, an MSS Σ for a

can be smaller than an MGS for an axiom in a, as explained above: the terms in
Σ may contain MSSs for some atoms in DD(a) that contain the terms needed to
make Σ an MGS for an axiom in a. To sum up, the following proposition holds.

Proposition 6.2.3. Let a be an atom and DD(a) the set of atoms on which a

directly depends. For every seed signature Σ of ↓a, there exists some Σ′ ∈ MGS(a),
some b1, . . . , bn ∈ DD(a) with n > 0, and Σi ∈ MSS(bi) for every i = 1, . . . , n,
such that Σ ⊆

(
Σ′ \⋃i=1,...,n ↓̃bi

)
∪⋃i=1,...,n Σi.

This means that every MSS Σ of a is contained in some Σ′, with Σ′ obtained
from some MGS for an axiom of a by replacing the signature of the principal
ideal for any atom bi ∈ DD(a) whose signature overlaps with Σ′ with some MSS
for bi. This set Σ′ is computed as PreMSS in Lines 12–20 exactly as described
here, and is filtered for minimal seed signatures Σ in Line 22.

We will now analyze the complexity of Algorithm 3. It is clear that, in the worst
case, there can be exponentially many MSSs for modules of an ontology O. Since
any MSS is added to MSS(a) in Line 22, the worst-case runtime and memory
consumption of the algorithm both have to be exponential in the size of O.

Even when the modules of O have relatively few MSSs, there still needs to be
an exponential amount of operations carried out in the for-loop in Lines 12–20.
The loop in Lines 14–19 cycles through a potentially exponential subset of the
powerset of all atoms on which a depends. Hence PreMSS(a) may become of
exponential size. Furthermore, the for-loop in Lines 21–23 may cycle through all
subsets of every member of this large set PreMSS(a).

The remaining data structures, such as MGS(a) and DD(a) are at most ex-
ponential in the size of axioms in O or linear in the size of O, respectively.
Therefore, the outer for-loop in Lines 12–20 only squares the exponent of the
exponential in the worst case. To see that the recursive call does not lead to
a runtime with a tower of exponentials, it suffices to see that the sets MSS(a)

can be computed bottom-up w.r.t. the dependency relation, and there are only
linearly many atoms.

Despite the worst-case intractability the algorithm has the anytime property: the

6.2. LADS FOR OFFLINE EXTRACTION OF MODULES 129

loops for elaborating (Lines 14–21) and minimizing (Line 21–23) a seed signature
could be interrupted upon time-out, which will result in computing some subset
of the MSSs set for an atom.1 This allows for practical approximations in the
case when computing all MSSs takes too long. We call atoms whose labels do not
contain all MSSs dirty (other atoms are called clean).

Dirty atoms require special handling during module extraction because their
relevance may not be determinable due to missing of some MSSs. In other words,
if a dirty atom a is not relevant to a signature, it could mean two things: first,
the atom is not a part of the module or, second, the atom is part of the module
but a seed signature, which would indicate the relevance of a, has not been
computed due to the time-out. Therefore, in order for an OME algorithm to
remain correct, we need to force it to include dirty atoms into the module even
though they may be irrelevant. This means, in particular, that the performance
of the OME algorithm directly depends on whether the MSSs algorithm has been
able to compute all MSSs for every atom.

Algorithm 4 shows the pseudocode for performing the OME given the LAD
(A(O),�, Labmss). As for the Labelling Algorithm 3, also in this case the choice
of the notion of locality is restricted to s ∈ {⊥,>}.

Algorithm 4 AD-based module extraction algorithm (OME)
1: Input: LAD for OME of an ontology O, a seed signature Σ
2: Output: The module x-mod(Σ,O), where x ∈ {>,⊥}
3: M ← ∅
4: repeat
5: enlarged ← false
6: M ← M∪ “all atoms that are possibly relevant to Σ”
7: if M̃ \ Σ 6= ∅ then
8: enlarged ← true
9: end if
10: Σ ← Σ ∪ M̃
11: until enlarged = false
12: return M

The relevance check at line 6 takes into account the possible dirtiness of an
atom. In other words, the atom is possibly relevant to Σ if it is clean and there
exists Σ′ ∈ MSS(a) such that Σ′ ⊆ Σ or it is dirty and ↓̃a ∩ Σ 6= ∅ and there is

1Minimization has to be interrupted carefully to make sure that all produced signatures are
minimal w.r.t. inclusion even though some signatures could be missing.

130 CHAPTER 6. APPLICATIONS

no Σ′ ∈ MSS(a) such that Σ ⊂ Σ′.2

The OME algorithm has two important advantages over the standard module
extraction algorithm. First, it should be faster for most of ontologies because it
benefits from the labeled AD in two ways: i) it exploits labels to quickly detect
relevant atoms, ii) once an atom a is established to be relevant the corresponding
module ↓a is added to the module without further checks. Second, it consumes
substantially less memory since only relevant atoms (and their principal ideals)
need to be loaded.

Discussion

We follow [DGK+11] and discuss the evaluation of the labelling algorithm on a
large portion (181 ontologies) of the NCBO BioPortal repository which is part
of our corpus. The main goal of the evaluation is to assess the practical feasibil-
ity of computing all MSSs for atoms in the BioPortal ontologies. The time-out
for computing labels for every atom is set to be 5 seconds, so the algorithm is
guaranteed to finish in 5 times the number of atoms in seconds. The results are
presented in Table 6.1, where the second column reports on the number of MSSs
per genuine module, the third on the number of different terms in a label; both
values are first averaged within an ontology, and the results are then averaged
across all ontologies. The remaining columns report on the maximal number of
MSSs reported for one atom, the number of ontologies with dirty axioms, and the
maximal number of dirty atoms in an ontology.

Total no. Avg. size Avg. number Max. size Number of Max. number
of ont.s of MSS(a) of terms in of MSS(a) ont. with of

all MSS(a) dirty atoms dirty atoms
181 1.4 2.1 4, 252 5 554

Table 6.1: Experimental results of the labelling algorithm

For the vast majority of ontologies (176 out of 181) the algorithm was able
to compute all MSSs for all atoms. Also, the average label size and the average
number of terms in all MSSs per atom are small: 1.4 and 2.1, respectively. In
contrast, we see that the few ontologies with dirty atoms either do not decompose
well or have an interesting property of the AD graph: certain atoms depend on

2Observe that if a subset of MSS(a) contains a proper superset of Σ, then, since all seed
signatures are minimal, the full set MSS(a) cannot contain a subset of Σ.

6.3. MODULAR REASONING 131

a high number of other atoms. As an example, we mention that both reasons
are true for the International Classification for Nursing Practice ontology CNP
for which the MSSs algorithm left 72 dirty atoms and and managed to compute
4, 252 MSSs sets for one atom.

Similar reasons can be found in Example 5.2.5, where the ontologies On de-
fined have labels of exponential size in #Õn. On the one hand, the atom e contains
n axioms which is a fifth of the overall number of axioms of On and indicates a
poor decomposability. On the other hand, e depends on 4 atoms only, but this
kind of dependency is “well entangled” in the following sense: please note that
#ẽ = 4n+ 1, and that all terms in ẽ but X already appear in one of the 4 atoms
that e depends on. In particular, many signatures Σ obtained as combinations of
terms from at least two of these 4 atoms make the module for Σ to include e as
well. To sum up, the exponential size of the labels seems to depend on the strong
interrelations between the terms established by the ontology.

To come back to BioPortal, then, this remark suggests that in general for these
ontologies the strict entanglement between terms does not occur. At this stage
we cannot say whether this behaviour can be predicted, for example whether
specific domains, consisting of highly interrelated concepts, need to be described
into highly tangled ontologies. We leave it for future research to investigate such
cases, where a subset of an ontology turns out to be relevant for such a high
number of distinct, but overlapping, seed signatures.

6.3 Modular Reasoning

As we mentioned in Chapter 1, ontologies tend to grow in size, expressivity, and
reasoning time. The increasing complexity of ontologies makes up a challenge for
reasoner developers, and new approaches are under investigation. Recently, the
idea has emerged of dealing with reasoning tasks for complex ontologies in a mod-
ular way, i.e., by decomposing an ontology O into supposedly more manageable
fragments while still preserving all the entailments derivable from O, following
a general principle that smaller and less expressive ontologies should be easier
to deal with [TP12, ACH12]. Clearly, modules based on syntactic locality are a
quite interesting candidate to be used in modular reasoning since they provide
coverage as required, are generally small, and can be efficiently extracted.

The supposed easier manageability comes from two factors: expressivity and

132 CHAPTER 6. APPLICATIONS

number of axioms. For expressivity, we know that ontologies in languages like
EL+ + can be reasoned over in polynomial time on the input, whilst ontologies
encoded in SROIQ require up to N2ExpTime on the input to be reasoned
over. Chopping ontologies into modules means that each module M could be
assigned to a suitable reasoner for dealing withM. For example, in [ACH12] the
authors describe the reasoner MORe and the experimental speed up compared
to HermiT [MSH07] for the classification of ontologies. MORe searches in an
ontology O the largest module M ⊆ O encoded in EL+ + whose reasoning
can be delegated to ELK [KKS11], a Java-based reasoner able to classify the
SNOMED CT ontology in 5 seconds. The remainder of the ontology is then
classified by using HermiT [MSH07].

For the number of axioms, as a word of caution, we have to point out that
the rule “small fragment, hence little reasoning time” is not always true since
the complexity of an ontology is not, in general, proportional to the number of
its axioms. A comparison of different reasoners performances over a selection of
biomedical ontologies is reported in [GPS12] where the number of axioms clearly
is not the main factor to increase the reasoning time. The authors then define
hot spots, which are small amounts of axioms that, removed from an ontology O,
decrease the reasoning time by several orders of magnitude. The detection of hot
spots is primarily intended to be used by ontology developers who might want to
understand which axioms cause an ontology to degrade its reasoning performance.
However, some possibilities are under investigation for optimizing the detection
of hot spots, and to use this technique to implement an approximated reasoner.
Clearly, this implies that the ontology gets modified since the hot spots need to
be removed. The purpose of modular reasoning instead is to make possible, or at
least to speed up, reasoning on very hard ontologies without changing them.

How LADs can help

The LAD of an ontology has properties useful for modular reasoning. The idea
is that it could help in driving the choice for the modules to be extracted and
delegated to different reasoners, as the following results show.

Proposition 6.3.1. Let O be an ontology, Lab#
sig the labelling function based

on flattened atoms’ signatures as defined in Section 5.3, and (A⊥(O),�, Lab#
sig)

the corresponding LAD. Let A ∈ Õ be a concept name such that there exists
another atomic concept name B with O |= A v B. Then, there is a unique atom

6.3. MODULAR REASONING 133

a ∈ A(O) \ {t}, where t is the atom for the syntactic tautologies, such that
A ∈ Lab#

sig(a). Equivalently, if there is a concept name A that occurs in more than
one label, then there is no concept name B such that O |= A v B.

Proof. Let us consider the module MA = ⊥-mod({A},O). Then, by hypothesis
we know that there exists a concept name B such that O |= A v B, and then by
Proposition 2.3.15 we know thatMA is non empty. In particular, A, B ∈ M̃A.

We claim thatMA is the unique, smallest module among the modulesM⊆ O
such that A ∈ M̃. This follows from Definition 2.3.1 and from Algorithm 1
describing the procedure to extract a Σ-module: by enlarging the seed signature
of a moduleM = ⊥-mod(Σ,O) we obtain a superset ofM, hence:

M = ⊥-mod(M̃,O) ⊇ ⊥-mod({A},O) =MA. (6.1)

We want now to prove that there exists a unique atom a such thatMA =↓a
with A ∈ Lab#

sig(a). By contraposition, let us now suppose that there exists at
least two atoms a1, a2 such that A ∈ Lab#

sig(ai), and that MA =↓ a1 ∪M′
A with

M′
A ⊇↓ a2. Please note that by the definition of the labelling function Lab#

sig we
have that a1 and a2 must be incomparable. Now, let us consider the module ↓a1.
Then, ↓ a1 is a proper subset of MA. Moreover, A ∈ ↓̃a1 since A ∈ Lab#

sig(a).
Hence, ↓a1 is a smaller module thanMA that A ∈ M̃. This contradicts (6.1).

Corollary 6.3.2. Let A ∈ Õ be a concept name as in Proposition 6.3.1. Then,
the moduleMA = ⊥-mod({A},O) is genuine.

Proof. It follows immediately from Proposition 6.3.1.

Properties of LADs are exploited by Chainsaw, a wrapper of reasoners de-
scribed in [TP12]. The main idea behind Chainsaw consists of dealing with some
expensive reasoning tasks as classification in a lazy way, and to initiate the reason-
ing procedure to decide over a query q by computing the LAD (A(O),�, Lab#

sig)

as a first step. The authors describe two main bottlenecks in using a modular
approach to reasoning about q. The first consist of the need for recomputing a
suitable module each time a new query q is asked, whilst it can easily be the case
that the same module is suitable for more than one query. The second consists
on the time needed to delegate and initialize a reasoner for each query. The
solution adopted consists of using a cache for modules and reasoners, which can
strike a tradeoff between performances and memory footprint according to the

134 CHAPTER 6. APPLICATIONS

available resources. The use of separate, independent reasoners also suggests the
possibility of using multiple threads, even when the delegate reasoners do not
themselves take advantage of multicore processors. This feature, however, is not
implemented in Chainsaw yet.

Discussion

Exploiting LADs to be used for modular reasoning is at its dawn, but the very pre-
liminary results seem quite promising in future application in this field. Chain-

saw, for example, was designed to meet a specific need in the use of the interface
OWLKnowledgeExplorerReasoner, only implemented by the reasoner FaCT++,
applied to the Ontology for Biomedical Investigations OBI.3. Unfortunately,
FaCT++ does not easily manage OBI: for classifying the ontology, in fact,
FaCT++ takes four hours and approximatively six gigabytes of memory to reach
97%. Chainsaw instead, by computing modules and never classifying the whole
ontology, allows to complete this task in less than 4 hours, and it uses considerably
less resources, i.e., approximatively only three gigabytes of RAM.

The reasoner MORe described in [ACH12] uses highly optimized heuristics
to find for the largest module of an ontology encoded in EL+ +. In the future
we plan to investigate on the performance of using an AD-driven approach to
find such a module. However, it could be the case that computing the whole AD
is a too long procedure to be performed only to select the module. Other lazy
techniques, as the computation of an approximate AD, could be explored.

6.4 Patterns Evaluation in Ontologies

In [MISR11] the authors study the problem of recognizing an emerging design
pattern within an ontology O. Please note that a pattern here is not intended
as one expressing a best practice to describe a domain, rather it is intended as
a design template adopted by the developers of an ontology. A consequence of
applying one such design pattern consists of the presence of repetitive structures
in an ontology. The regularities are then provided as generalised axioms, also
called generalisations, i.e., axioms in which some of the entities are replaced with
variables.

3http://obi-ontology.org/

http://obi-ontology.org/

6.4. PATTERNS EVALUATION IN ONTOLOGIES 135

The authors propose the Regularity Inspector for Ontologies (RIO) frame-
work for automatically identifying regularities and for clustering the terms in an
ontology according to these regularities. We here disregard a discussion of the
different methods that can be used to identify clusters, and present the results
obtained for the socalled “popularity replacement function” method. We refer the
interested reader to [Mik13] for more information.

Example 6.4.1. Let us consider the ontology Hobbies defined as follows:

α1 : Cycling v Sport

α2 : Swimming v Sport

α3 : Sightseeing v Hobby

α4 : Painting v Hobby

α5 : Freestyle v Swimming

α6 : Breaststroke v Swimming

α7 : OilPainting v Painting

α8 : WatercolorPainting v Painting

The following are generalisations obtained by applying the RIO framework to the
ontology Hobbies.

g1 : ?Hobby v Hobby ?Hobby ∈ {Sightseeing, Painting}

g2 : ?Painting v ?Hobby ?Painting ∈ {OilPainting, WatercolorPainting}
?Hobby ∈ {Painting}

g3 : ?Sport v Sport ?Sport ∈ {Cycling, Swimming}

g4 : ?Swimming v ?Sport ?Swimming ∈ {Freestyle, Breaststroke}
?Sport ∈ {Swimming}

Detecting these regularities means the possibility of identifying parts of the
schemas and guidelines upon which ontologies are often built, especially in the
absence of explicit documentation. In contrast, detecting deviations from a given

136 CHAPTER 6. APPLICATIONS

regular design might either be of help in identifying defects in the ontology mod-
elling.

However, evaluating the goodness of the clusters obtained is not an easy task.
We mention two possible approaches: the first is based on internal criteria based
on measurements that involve the data set themselves. The second approach
is based on external criteria, i.e., the clustering results are assessed based on a
pre-specified structure, which is imposed on a data set and reflects an intuition
about the clustering structure of the data set. Among the external criteria,
an interesting choice consists of checking the results against the schema and
design documentation provided to the ontology developers. Unfortunately, this
information is not always available.

How ADs can help

The AD of an ontology is sensitive to both its semantics, thanks to the strong
logical properties that Σ-modules satisfy, and to its syntax since the logical ax-
ioms are untouched. From this observation the idea arises of using the AD of
an ontology as an external criterion for evaluating the goodness of the clusters
obtained [Mik13]. Of course, the input in both structures is the same ontology
but the methods for partitioning this input are different.

The basic idea consists of projecting the original AD into the AD for the
generalised axioms that we will call GAD, and of measuring the compression
obtained. In fact, we expect that since a generalisation represents more than one
axiom, then the GAD’s atoms will result as the merging of the AD’s atoms. In
particular, we expect the GAD structure to be different from the AD, but not
orthogonal. This intuition is captured by the following example.

Example 6.4.2. Let us consider again the ontology Hobbies. In Figure 6.1 we
show the original AD and its compression after the detection of the regularities
as listed in Example 6.4.1.

We see that the GAD contains only 4 atoms, hence the generalisation causes
a 50% compression of the AD. Moreover, we also see that, if two axioms αi, αj
belong to two comparable atoms, then this relation is preserved for their gen-
eralisation in the GAD. The compression indicates that indeed the generalised
axioms are able to capture the design patterns in Hobbies that the AD shows as
spread across the ontology.

6.5. DEMOST 137

α1 α2

α5 α6

g1

g2

g3

g4

α3 α4

α7 α8

Figure 6.1: AD vs. GAD of the ontology Hobbies

Discussion

In [Mik13] the percentage compression GAD/AD is used as an indication of good
quality of generalisations for 93 ontologies from BioPortal that have been in-
spected to detect regularities with the RIO framework. Of the 93 ontologies used
in the experiment, 33 of them exhibit less than 50% GAD/AD compression, and
9 have this metric below 30%. 5 of the ontologies have a 0% compression, but all
of these have at least a huge atom, with more than 50 axioms per atom.

To sum up, the high correlation between the AD structure and the general-
isations found by RIO shows that the detected generalisations are not random,
rather they correspond to repetitive structures also reflected in the AD structure.

6.5 DeMoSt

Finally, we want to describe the preliminary results of applying the AD in the
field for supporting the comprehension of an ontology O. The idea is to provide
the user with a tool to explore the AD of O, in order to discover the modular
structure of O, and the logical dependencies between the axioms of O. The
prototype is implemented as a plugin for Protégé, a popular editor of ontologies,
and it is called DeMoSt (Decomposition & Modular Structure).

We want to show how DeMoSt can be used by working out a cognitive walk-
through for an ontology engineer who designed the ontology Teetotaller defined
in Example 5.3.3. We assume them to have knowledge and experience with OWL
ontologies, and with their features and representations, like concept- and role-
hierarchies. Moreover, we assume them to have some basic notions of posets, as,
for example, how to represent them via Hasse diagrams. This last requirement
enables the users to understand the meaning of the representation shown, but it
is not necessary in order to navigate the tool.

138 CHAPTER 6. APPLICATIONS

DeMoSt takes an OWL ontology O as input and it outputs an interactive
window divided into 3 panes:
- a terminology pane, showing the concept-hierarchy (or, optionally, the role-
hierarchy) of O
- a navigation pane, showing the AD of O over a selected area, with a control bar
to zoom in/out and to change the centre of the picture
- an info pane, either summarizing statistics about O or showing information
concerning single terms or atoms whenever one of these is selected.

Now, let us suppose that the user wants to verify if the modular structure
of Teetotaller reflects her intentions. In Figure 6.2 we show the screenshot of
DeMoSt when we open the ontology Teetotaller.

Navigation pane

Info pane

Terminology
pane

Figure 6.2: Screenshot of DeMoSt for the ontology Teetotaller

We see:
- in the navigation pane, a view of the whole ontology AD at the default zoom
rate
- the concept- and the role-hierarchy in the terminology pane
- in the info pane, some data concerning occurrence frequency of terms w.r.t.
atoms.

6.5. DEMOST 139

Next, let us suppose that the user wants to look closer at the term Vegan.
She selects it in the terminology pane; then the minimap pane highlights all
atoms where this term occurs (in our case, only in atom a3), whilst the info
pane shows the atoms’ IDs (this function is useful for the case that the change in
highlighting cannot be observed in a big graph). So she selects the term Vegan in
the terminology pane, and DeMoSt shows in the navigation pane that this term
occurs only in a3 which depends on a2. She selects the atom a3, and sees in the
info pane that it contains only axiom α4.

Figure 6.3: Screenshot of DeMoSt showing the selection of the term Vegan

However, she knows that a vegan has limitations also in what to drink (no
milk, for example). She selects the term drinks in the terminology pane, and sees
that the only atom where it occurs is a4. So she understands that the ontology is
not well modelled since it does not state any logical connection between α4 and
α5, and that at least it should include the axiom α9 = ‘Vegan v ∀drinks.¬Milk’.

Chapter 7

Conclusions

In this thesis we have defined the (L)AD which we show to be a reasonable and
useful notion of locality based modular structure. It is reasonable in that:

1. it allows us to give a principle distinction between genuine (i.e., distinctively
interesting) modules and “fake” modules (i.e., those were are mere unions
of other modules),

2. it is easily computable,

3. it is terse, and

4. it allows us to capture other critical notions such as relevance.

It is useful in that it supports several critical applications such as offline module
extraction and modular reasoning and seems promising for several others.

7.1 Summary

The focus of this thesis was advancing the state of the study of logic-based mod-
ularity in ontologies, with a look towards the modular structures that different
notions of modules induce, and towards the applications that modular structures
aim at in the fields of performance optimization for standard and non-standard
reasoning tasks, and of the comprehensibility of an ontology.

We have discussed why some logical properties of modules are desirable by
stating an analogy with the notion of modularity in Software Engineering, and
analysed similarities and differences. In particular, we have argued that modules

141

142 CHAPTER 7. CONCLUSIONS

should satisfy the following 4 properties: (1) coverage, i.e., modules that preserve
the knowledge of O over a set of terms Σ ⊆ Õ; (2) self-containment, i.e., modules
M that can be used instead of O for all the terms in M̃; (3) depletion, i.e., mod-
ules that contain all the knowledge of O over a signature Σ; (4) uniqueness, i.e.,
modules that are uniquely determined by the signature Σ they provide coverage
for.

A modular structure is a pair (F(O),→), where F(O) is the set of modules
of O, or a representative subset thereof, and → is a logical relation between the
elements of F(O) that generally means that, whenever M1 → M2, then M1

needs to import M2 in order to preserve certain logical properties. We have
described a framework to evaluate the modular structure of an ontology based
on three features: (1) the coherence of the modules identified, i.e., if further
refinements of an element of F(O) can be identified that the notion of module
used does not capture; (2) the interestingness of the structure identified, i.e.,
which kind of logical dependence/independence reveals; (3) the granularity of
the modules, i.e., how scattered the elements of F(O) are in the ontology O.
We have used this framework to evaluate several notions of modular structures
can be found in the literature applied to a number of toy ontologies designed to
highlight pros and cons of the different approaches.

We have defined the class of Σ-modules, i.e., a broad class of modules designed
for ontology reuse and that satisfy the 4 properties described above. These mod-
ules were not provided with any interesting notion of a modular structure. The
main issue with Σ-modules is that their number can be exponential in the number
of axioms of the ontology O, and extracting all of them is in practice infeasible
even for the most efficiently computable notions of modules over ontologies of size
greater than 100.

Despite these complications, we have been able to define the Atomic Decompo-
sition (A(O),�) of an ontology O, i.e., an interesting modular structure induced
on O by Σ-modules. In essence, (A(O),�) is a dependency graph between atoms,
defined as maximal sets of axioms such that for each moduleM either they all
occur in M, or none of them does. The atoms of O form a partitioning of O,
hence there can be only linearly many atoms in the number of axioms of O.

The AD of an ontology is also a succinct representation of all the genuine
modules of an ontology, i.e., those modules that constitute a base for all the
other modules of O. Genuine modules are interesting for themselves since they

7.1. SUMMARY 143

are indecomposable w.r.t. the module notion; this feature shows a strong logical
coherence of genuine modules. There is a 1-1 correspondence between genuine
modules and atoms, so, in surprising contrast with all modules that can be expo-
nentially many, the number of genuine modules is linear in the number of axioms
of O. Moreover, the problem of computing (A(O),�) and of computing the set
G(O) of all genuine modules are interreducible, and the poset structure (G(O),⊆)

is dual to the AD of an ontology.

A key result about genuine module is that filtering them out of the set of
all modules of an ontology does not require the computation of all the modules:
in fact we prove that genuine modules are also α-modules, i.e., modules M for
which there exists an axiom α ∈ O such that M is the module extracted for
the signature α̃. This observation in particular means that we only need to
perform as many module extractions as the number of axioms in O. Hence, this
task can be performed in polynomial time w.r.t. size of the ontology whenever
we consider efficiently computable notions of modules, such as those based on
syntactic locality. Because of the duality between (G(O),⊆) and (A(O),�), this
means that the AD of an ontology can be computed also in polynomial time for
the same notions of modules.

The efficient computation of ADs is validated by empirical results: we have
computed three kinds of ADs for a corpus of 230 ontologies including BioPortal,
which is a repository of ontologies used in the biomedical domain and publicly
available on the Web. Overall our corpus includes more than 500,000 axioms.
The whole experiment took less than one hour on a standard machine, and only
in 2 cases it exceeded 2mins.

The AD of an ontology allows the identification of a logic-based reading order
for the axioms of an ontology: we have defined chains of Conservative Extensions,
i.e., sequences of sets of axiomsM1 (M2 (. . . (Mκ in O such that by adding
axioms at each step the meaning of the terms is preserved. This construction can
be done by using modules, however the AD allows for the identification of the
longest sequences of such chains, so that the complexity of understanding each
enlargement is minimal.

What the AD (A(O),�) of an ontology O does not show are the complex
relationships between modules and signatures: for example, while all the mod-
ules, also the non genuine ones, are represented in A(O), the AD alone does not

144 CHAPTER 7. CONCLUSIONS

provide any means to support modules identification. We have solved this prob-
lem by enriching the AD of an ontology with suitable labels for each atom, i.e.,
by defining a labelling function Lab and hence the corresponding Labelled Atomic
Decomposition (LAD). ADs and LADs can be of help in many application sce-
narios; some of them have been preliminarily addressed and described, but many
other remain to be discovered and put to use.

7.2 Future Work

While the investigation of the (Labelled) Atomic Decomposition of an ontology
is at an advanced stage, and our understanding and exploitation of (L)ADs has
already lead this notion to be used for several applications, a number of challenges
remain.

Theoretical/conceptual ADs, as we define them, are intimately tied to local-
ity based modules and thus suffer from their limitations. Most notably, we are
bound by axiom structure. Since most ontologies in principle can be rewritten
as a single axiom, we necessarily miss some aspects of the semantic structure of
the ontology. It may be possible to produce normalizations of the ontology that
would allow for canonical ADs, though there is a risk of making the ontology in-
comprehensive to its users. The investigation of the geometry of the AD structure
when an ontology gets normalized or modified is a research line that could shade
some light on a number of conceptual issues, from the unification of ontologies to
the definition of design patterns.

For what concerns the labelled versions, we can see from the problems with
module counting that our current labelling schemes still fail to capture some
information about the set of modules. While module counting is perhaps itself
uninteresting now that we have a good notion of genuine modules, it is still
a sign of the information content of a LAD. An investigation in this field is
needed to deepen the understanding of the way the LAD represents the modules
of an ontology, so that LADs can be used to execute and optimize engineering
procedures.

Empirical Although the corpus of ontologies used for the experimental results
of this thesis shows some nice features, like diversity of sizes and expressivities, it

7.2. FUTURE WORK 145

has to be noted that most of it is based on ontologies in the biomedical domain.
An interesting investigation would be to compare the repositories of ontologies
from other communities, in order to analyse whether and how different modelling
styles impact on the structure of ADs.

Applications The (L)ADs of an ontology clearly has a number of interesting
features that can be exploited in other applications beside those already inves-
tigated. We highlight the following two features: (1) the definition of a logical
ordering of axioms, that allows the reading of the axioms of an ontology in a
principled way, and can be further explored for supporting the development,
maintainance, and repair of ontologies; (2) the guidance through the selection of
the modules of an ontology; this feature could be of help in scenarios that include
the selection of the right seed signature: in fact, the users of ontologies are often
interested in extracting a (possibly minimal) set of axioms that “know everything”
about a term t, for example “everything about Bones”. However, modules based
on locality are designed to solve the related, but different problem of preserving
the logical relations occurring between the terms in the seed signature Σ, hence
defining a singleton seed signature is likely to lead to a modules that leaves out
relevant axioms describing the relations of Σ with other terms. A suitable LAD of
an ontology could be of help in driving the user to select the right seed signature
by showing how Σ is related to the other terms.

Appendix A

Ontologies Corpus

For our experiments, we have built a corpus containing: (1) all the ontologies
belonging to the NCBO BioPortal ontology repository1 in November 2012; (2)
those ontologies from the TONES repository2 which have already been studied
in previous work on modularity [DPSS10]: Koala, Mereology, University, People,
miniTambis, OWL-S, Tambis, Galen From this corpus, we have removed those
ontologies with at least one of the following problems: the ontology is impossible
to download; the .owl file is corrupted when downloaded; the file is not parsable;
the ontology is inconsistent; the ontology contains some constructors that the
implementation provided by Tsarkov does not yet support, e.g., some kinds of
datatypes, the ontologies with more than 20K axioms, with the exclusion of the
NCI thesaurus ontology (NCI). Please note that the ontology NCI has been modified
to exclude class assertions (more than 5K axioms) since the analysis conducted
in [GPS11] has detected that the presence of a huge amount of individuals is likely
to be due to either a modelling or a tooling error: NCI contains both an annotation
property and a data property named “code”. This presumably results in the
parsing of data property assertions rather than annotations, therefore leading to
the mass-creation of individuals.

This selection results in a corpus of 253 ontologies designed and built by users
(domain experts) for application purposes. These ontologies greatly differ in sizes,
expressivities, ratios of axiom and term numbers, classification times, number of
non-trivial entailments, and number of justifications per entailment [HPS11].

We want to give an idea of how diverse this corpus is at least w.r.t. ontologies’

1http://bioportal.bioontology.org
2http://owl.cs.manchester.ac.uk/repository/

147

http://bioportal.bioontology.org
http://owl.cs.manchester.ac.uk/repository/

148 APPENDIX A. ONTOLOGIES CORPUS

sizes and expressivities. We can prima facie suppose that the length of an average
axiom in a user designed ontology does not exceed a certain threshold c, and
hence it can be considered as a multiplicative constant across all ontologies in the
calculation of an ontology’s size. Hence, we can discard this parameter, so that
the significant factor in identifying the size of an ontology is, simply, the number
of its axioms.

The analysis of expressivities requires some attention: the family of DL di-
alects consists of the combinations of the possible constructors as defined in Sec-
tion 2.1, and even if some of these languages coincide, we still have a large number
of different dialects. Moreover, two different languages can still be too similar to
belong to two different bins. Hence, we follow a similar approach to the one de-
scribed in [WPH06], and group the ontologies into bins defined upon families of
languages.

We can easily identify three expressivity bins upon the main OWL and OWL 2
Profiles available: OWL Lite (called OWL QL in OWL 2), whose underpinning
DL is a DL-lite language, hence in SHIF(D); OWL (1) DL, whose underpinning
DL is SHOIN (D), and OWL (2) DL, whose underpinning DL is SROIQ(D).
These DL languages can be totally ordered by their expressivities since SHIF (
SHOIN (SROIQ. Note that this is unusual since DL languages can be
incomparable.

Although OWL Profiles provides us with a rough idea of the distribution of
expressivities among ontologies, we can still see that SHIF has a large number
of sublanguages, hence we want to refine this bin further. The smallest language
that can be detected by the OWL API isAL,3 hence it is the natural candidate for
being the smallest language bin. Moreover, we split this bin further by identifying
S as an intermediate language between AL and SHIF . Finally, for simplicity
we ignore the presence of datatypes, hence AL(D) is considered the same as AL.

To sum up, we have identified five bins: the first contains all the ontologies in
AL/EL; the second contains those ontologies in S that are strictly more expres-
sive than AL; the third contains all ontologies in SHIF that need more than
S to be expressed; the fourth contains those ontologies that are strictly more
expressive than SHIF and can be expressed in SHOIN ; the fifth bin contains
the remaining ontologies.

3Please note that the EL language is labelled under AL

149

In Table A.1 we show how our corpus gets subdivided by following this ex-
pressivity binning.

Bin AL S SHIF SHOIN SROIQ
Count 56 63 51 36 47

Table A.1: Expressivity bin numbers for our corpus

Figure A.1 aims at giving an idea of the diversity of the ontologies w.r.t. their
sizes and expressivity: each ontology is represented by a point (E,A), where
the abscissa E corresponds to the expressivity bin that O belongs to, and the
ordinate A is the number of axioms in O. Please note that the ordinates follow
a logarithmic scale.

1

10

100

1,000

10,000

100,000

1,000,000

1 2 3 4 5

Figure A.1: Diversity of our corpus: Expressivity vs. Number of axioms

In what follows, we list the whole set of ontologies considered in our experi-
ments.

150 APPENDIX A. ONTOLOGIES CORPUS

Table A.2: Corpus of ontologies included in experiments
Ontology Abbr. DL express. #axs

aba-adult-mouse-brain ABA ALCI 3,441
adverse-event-reporting-ontology AER SHOIQ(D) 873
african-traditional-medicine ATM ALE 208
amino-acid AMA ALCF(D) 477
amphibian-gross-anatomy AGA ALE 2,673
amphibian-taxonomy AMT ALE 12,163
anatomical-entity-ontology AEO ALE 368
animal-natural-history-and-life-history ALH ALCOF(D) 638
apollo-akesios AAK AL 2
ascomycete-phenotype-ontology APO AL 294
basic-formal-ontology BFO ALC 95
basic-vertebrate-anatomy BVA SHIF 388
bilateria-anatomy BIA ALEH+ 138
bio-health-ontological-knowledge-base-cystic-

-fibrosis BCF ALCHIF 660
bioassay-ontology BAO SROIQ(D) 1,797
bioinformatics-operations-types-of-data-

-formats-and-topics BDT ALEH 3,814
bioinformatics-web-service-ontology BWS SROIQ(D) 430
biological-imaging-methods BIM S 548
biomedical-resource-ontology BRO SHIF(D) 634
biopax BPX SHIN (D) 391
bioportal-metadata BPM ALUHIN (D) 822
biotop BTP SRI 922
birnlex BLX AL 3,572
bleeding-history-phenotype BHP ALCIF(D) 1,925
body-system BOS AL 28
book BOO ALCHOIN (D) 529
breast-cancer-grading-ontology BCG SHOIN (D) 690

Continued on next page

151

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

breast-tissue-cell-lines BTC ALCH(D) 2,734
brenda-tissue-enzyme-source BTE ALE 6,451
c-elegans-development CED AL 71
c-elegans-gross-anatomy CEG ALE 12,341
c-elegans-phenotype CEP AL+ 2,366
cao CAO SHIQ(D) 442
carelex CAX ALH(D) 327
cell-behavior-ontology CBO ALUO 13
cell-culture-ontology CCO SHOIF 9,467
cell-line-ontology CLO ALCH(D) 3,996
cell-type CTY SH 2,975
cereal-plant-development CPD ALE 235
cerebrotendinous-xanthomatosis CTX ALCOIN (D) 1,969
chemical-information-ontology CIO SROIN (D) 1,237
clinical-measurement-ontology CMO ALE+ 1,382
cognitive-atlas COA ALC 4,100
common-anatomy-reference-ontology CAR ALE+ 54
common-terminology-criteria-for-adverse-

-events CTC AL(D) 6,940
comparative-data-analysis-ontology CDA SROIQ(D) 462
computational-neuroscience-ontology CNO SHOIF 1,121
dendritic-cell DEC ALC 313
dengue-fever-ontology DEN SROIF 5,534
dictyostelium-discoideum-anatomy DDA ALE+ 379
dikb-evidence-ontology DEO ALCHOIN (D) 660
drosophila-development DRD ALEH+ 410
drosophila-gross-anatomy DGA SH 19,538
eagle-i-research-resource-ontology ERR SHOIF(D) 4,378
electrocardiography-ontology ECO ALCIF(D) 1,274
emotion-ontology EMO SROIQ 728
environment-ontology ENO S 1,752

Continued on next page

152 APPENDIX A. ONTOLOGIES CORPUS

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

enzyme-mechanism-ontology ENM ALCRQ(D) 931
epilepsy EPI ALH(D) 145
event-inoh-pathway-ontology- EIP ALEH+ 7,131
evidence-codes EVC ALE 363
experimental-conditions-ontology EXC ALE+ 269
experimental-factor-ontology EXF ALHIF+ 7,156
exposure-ontology EXP ALER+ 101
family-health-history-ontology FHH ALCHIF(D) 1,103
fda-medical-devices-2010- FDA AL 4,907
fission-yeast-phenotype-ontology FYP SH 12,265
fly-taxonomy FLY AL 6,587
flybase-controlled-vocabulary FCV ALE+ 793
fungal-gross-anatomy FGA ALEI+ 106
gene-regulation-ontology GR1 ALCHIQ(D) 962
gene-regulation-ontology GR2 ALCHIQ(D) 962
general-formal-ontology-biology GFB SHIN 466
general-formal-ontology GFO SHIQ 212
genomic-clinical-decision-support-genomic-cds GCD ALCQ 4,322
health_indicators HEI AL 548
health-level-seven HEL AL 8,072
hom_elixhauserscores HEC AL 29
hom_mdcs-drgs HMD AL 774
hom-datasource_oshpd HDD AL 351
hom-datasource_oshpdsc HDC AL 351
hom-dxprocs_mdcdrg HDM AL 774
hom-dxvcodes2_oshpd HD2 AL 16,064
hom-harvard HOH AL 189
hom-icd9_dxandvcodes_oshpd HID AL 16,066
hom-icd9_procs_oshpd HIP AL 4,642
hom-icd9cm-ecodes HIE AL 1,490
hom-icd9pcs HI9 AL 4,643

Continued on next page

153

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

hom-mdcdrg HMO AL 790
hom-oshpd_usecase HOU AL 393
hom-oshpd-sc HOS AL 266
hom-procs2_oshpd HPO AL 4,642
hom-ucare HUC AL 64
homerun-ontology HOO AL 1,194
host-pathogen-interactions-ontology HPI SHI 403
human-developmental-anatomy-abstract-

-version-v2 HD1 ALE+ 13,495
human-developmental-anatomy-abstract-

-version HDA ALE 2,336
human-developmental-anatomy-timed-version HDT ALE 8,339
human-disease-ontology HDO ALE 6,743
human-phenotype-ontology HPH AL 13,153
hymenoptera-anatomy-ontology HAO SR 3,944
icps-network ICP AL 24
imgt-ontology IMG SHIN (D) 2,114
immune-disorder-ontology IDO AL 1,676
infectious-disease-ontology INF SROIF 1,233
influenza-ontology INO SROIN (D) 1,696
information-artifact-ontology IAO ALRIF + (D) 554
interaction-network-ontology INN ALC 1,034
interaction-ontology ION AL 39
international-classification-for-nursing-practice CNP SHIF 11,891
international-classification-of-external-causes

-of-injuries CCJ AL(D) 13,612
international-classification-of-functioning-

-disability-and-health-icf- IFD ALCHOIF(D) 19,223
kinetic-simulation-algorithm-ontology KSA ALCRIQ(D) 710
linkingkin2pep L2P SHIF(D) 30
lipid-ontology LIO ALCHIN 2,375
loggerhead-nesting LON ALE 347

Continued on next page

154 APPENDIX A. ONTOLOGIES CORPUS

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

mahco-an-mhc-ontology MAM ALCIQ(D) 13,781
maize-gross-anatomy MGO ALE 217
malaria-ontology MAL ALER+ 3,212
mammalian-phenotype MAP AL+ 10,934
mass-spectrometry MAS ALE+ 2,518
measurement-method-ontology MMO AL 332
medaka-fish-anatomy-and-development MFA ALE 4,402
mego MEG ALE+ 421
mental-functioning-ontology MFO SROIQ 514
microrna-ontology MRN ALEI 638
minimal-anatomical-terminology MAT ALE 504
mixs-controlled-vocabularies MIX AL 518
molecule-role-inoh-protein-name-family-

name-ontology- MPF ALE+ 9,629
mosquito-gross-anatomy MGA ALE+ 2,733
mosquito-insecticide-resistance MIR ALE+ 4,413
mouse-adult-gross-anatomy MAA ALE+ 3,776
mouse-experimental-design-ontology MED ALH 86
mouse-gross-anatomy-and-development MGD ALE 13,730
mouse-pathology MOP ALE+ 808
multiple-alignment MUA ALE+ 168
nanoparticle-ontology NAN SHIN (D) 16,353
nci-thesaurus-repaired NCI SH(D) 130,945
neglected-tropical-disease-ontology-ntdo- NTD SRIQ 1,237
neomark-oral-cancer-ontology NOC SHIQ 399
neural-electromagnetic-ontologies NEO SHIQ(D) 2,843
neural-immune-gene-ontology NIG SH 8,835
neuro-behavior-ontology NBO ALE 1,314
nif-cell NIC SROIF(D) 3,570
nif-subcellular NIS SROIF(D) 4,061
nmr-instrument-specific-component-of-

metabolomics-investigations NMR SH(D) 599
Continued on next page

155

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

obo-relationship-types ORT ALR+ 33
oboe OBE SRIQ(D) 265
ontologia-proj-alternativa OPA ALUIN + (D) 270
ontology-for-disease-genetic-investigation ODG SHIN (D) 1,867
ontology-for-drug-discovery-investigations DDI SHOIN (D) 996
ontology-for-general-medical-science GMS ALCO 216
ontology-for-genetic-interval OGI SHIN (D) 509
ontology-for-microrna-target-prediction MTP ALCHIQ(D) 2,364
ontology-for-parasite-lifecycle OPL SHOIF 885
ontology-of-clinical-research-ocre- OCR ALCHIF(D) 51
ontology-of-data-mining ODM SHOIQ(D) 2,353
ontology-of-experimental-variables-and-values EVV ALCO(D) 189
ontology-of-general-purpose-datatypes GPD SHOI 773
ontology-of-geographical-region OGR AL 38
ontology-of-glucose-metabolism-disorder GMD AL 132
ontology-of-homology-and-related-concepts-

-in-biology OHC ALC 83
ontology-of-language-disorder-in-autism LDA AL 35
ontology-of-medically-related-social-entities MSE ALCHOIQ 218
ontology-of-physics-for-biology OPB ALCHIQ(D) 954
pathogen-transmission PAT AL 24
pathway-ontology PAO ALE 1,432
pediatric-terminology PET AL 893
phare PHA ALCHIF(D) 459
phenotype-fragment-ontology PFO ALUHI+ 28
phenotypic-quality PHQ SH 1,916
phenx-terms PHT AL 339
phylogenetic-ontology PHY ALCH(D) 194
physical-medicine-and-rehabilitation PMR ALU 163
physicalfields PHF ALI 136
physico-chemical-methods-and-properties PCM ALE 1,684

Continued on next page

156 APPENDIX A. ONTOLOGIES CORPUS

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

physico-chemical-process PCP ALE 734
pilot-ontology PIL ALCIF(D) 85
pko_re PKO ALCF 771
plant-anatomy PLA ALE+ 2,128
plant-environmental-conditions PEC AL 499
plant-ontology PLO S 2,545
plant-structure-development-stage PDS ALE+ 281
plant-trait-ontology PTO ALE 1,429
platynereis-stage-ontology PSO ALE 31
pma-2010 PMA AL(D) 10
protein-modification PMO ALE+ 1,986
protein-ontology PRO ALCF(D) 691
protein-protein-interaction PPI ALE+ 1,007
proteomics-data-and-process-provenance PDP SHOIN (D) 732
proteomics-pipeline-infrastructure-for-cptac PIC ALCF(D) 1,118
prov-o PRV ALCRIN (D) 185
pseudogene PSG AL 19
quantitative-imaging-biomarker-ontology QIB ALUIF(D) 1,699
rapid-phenotype-ontology RPO ALF(D) 2,047
rat-strain-ontology RAS ALE 4,739
reproductive-trait-and-phenotype-ontology RTP AL 91
rna-ontology RNA SRIQ 666
sample-processing-and-separation-techniques SPS AL 193
sanou SA1 ALC 400
sanou SA2 ALC 400
semanticscience-integrated-ontology SSI SRIQ(D) 2,044
sequence-types-and-features STF SHI 2,627
skin-physiology-ontology SPO ALERIF+ 678
sleep-domain-ontology SDO ALCO 204
smoking-behavior-risk-ontology SBR ALEI+ 185
snp-ontology SNP SHOIN (D) 11,199

Continued on next page

157

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

software-ontology SOO ALHI + (D) 5,507
solanaceae-phenotype-ontology SOP ALE 422
soyontology SOY AL 1,816
spatial-ontology SPA ALEHI+ 236
spider-ontology SPI ALE+ 778
student-health-record STU ALH(D) 418
subcellular-anatomy-ontology-sao- SAO SHIN (D) 2,935
symptom-ontology SYM AL 839
synapse-ontology SYN AL 14,458
syndromic-surveillance-ontology SSO ALIF(D) 1,684
sysmo-jerm SYG SHI(D) 482
systems-biology SYB AL 587
systems-chemical-biology-chemogenomics SCC SHIN (D) 489
taxonomic-rank-vocabulary TRV AL 58
teleost-anatomy-ontology TAO ALERI+ 5,188
terminological-and-ontological-knowledge-

-resources TOK SRIQ(D) 466
terminology-for-the-description-of-dynamics TDD SRIQ(D) 12,344
thesaurus-alternativa THA AL(D) 138
thesaurus THE AL(D) 138
thomcan-upper-level-cancer-ontology TUL AL 51
tick-gross-anatomy TGA ALE+ 948
time-event-ontology TEO SROIQ(D) 1,042
tissue-microarray-ontology TMA ALI(D) 60
translational-medicine-ontology TMO SRIN (D) 502
uni-ece UNI SOIF(D) 3,133
units-of-measurement UOM ALE 371
units-ontology UNO AL 63
vaccine-ontology VAC SROIQ 12,451
variation-ontology VAO ALEI+ 390
vertebrate-homologous-organ-groups VHO ALE+ 1,688

Continued on next page

158 APPENDIX A. ONTOLOGIES CORPUS

Table A.2 – Continued from previous page
Ontology Abbr. DL express. #axs

vertebrate-skeletal-anatomy-ontology VSA ALER+ 455
vertebrate-trait-ontology VTO AL+ 3,691
vital-sign-ontology VSI SROIQ 743
web-service-interaction-ontology WSI ALER+ 29
wheat-trait WHT AL 175
xeml-environment-ontology XEO ALE 237
xenopus-anatomy-and-development XAD ALE+ 4,819
yeast-phenotypes YEP AL 266
zebrafish-anatomy-and-development ZAD ALE+ 10,600

Galen GAL ALEHF+ 4,528
Koala KOA ALCON (D) 42
Mereology MER SHIN 44
MiniTambis-repaired MNT ALCN 170
OWL-S OWL ALCHOIN (D) 276
People PEO ALCHOIN 108
tambis-patched-repaired TPR SHIN (D) 592
University UNV SOIN (D) 52

Bibliography

[ACH12] Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks.
MORe: Modular combination of OWL reasoners for ontology clas-
sification. In Proceedings of the 11th International Semantic Web
Conference (ISWC-12), volume 7649 of Lecture Notes in Computer
Science, pages 1–16, 2012.

[Baa03] Franz Baader. Terminological cycles in a Description Logic with
existential restrictions. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), pages 325–
330, 2003.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI-05), pages 364–369, 2005.

[BCH06] Jie Bao, Doina Caragea, and Vasant G. Honavar. On the semantics
of linking and importing in modular ontologies. In Proceedings of
the 5th International Semantic Web Conference (ISWC-06), volume
4273 of Lecture Notes in Computer Science, pages 72–86. Springer-
Verlag, 2006.

[BCNP03] Franz Baader, Deborah Calvanese, Diego andMcGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL—
a polynomial-time reasoner for life science ontologies. In Proceedings
of the 3rd International Joint Conference on Automated Reasoning

159

160 BIBLIOGRAPHY

(IJCAR-06), volume 4130 of Lecture Notes in Computer Science,
pages 287–291. Springer-Verlag, 2006.

[BLSW02] Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fu-
sions of description logics and abstract description systems. Journal
of Artificial Intelligence Research, 16:1–58, 2002.

[BPS07] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn.
Pinpointing in the description logic EL+. In Proceedings of the 30th
Annual German Conference on Artificial Intelligence (KI-07), pages
52–67, 2007.

[BS03] Alexander Borgida and Luciano Serafini. Distributed Description
Logics: Assimilating information from peer sources. Journal on Data
Semantics, 2800:153–184, 2003.

[CDL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. DL-Lite: Tractable description logics
for ontologies. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-05), pages 602–607, 2005.

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient
query answering in description logics: The dl-lite family. Journal of
Automated Reasoning, 39(3):385–429, 2007.

[CHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Just the right amount: Extracting modules from ontologies.
In Proceedings of the 16th International World Wide Web Conference
(WWW-07), pages 717–726, 2007.

[CHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Modular reuse of ontologies: Theory and practice. Journal
of Artificial Intelligence Research, 31(1):273–318, 2008.

[CK07] Bernardo Cuenca Grau and Oliver Kutz. Modular ontology lan-
guages revisited. In Proceedings of the Workshop on Semantic Web
for Collaborative Knowledge Acquisition (SWeCKa-07), 2007.

BIBLIOGRAPHY 161

[CPS06] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Combining
OWL ontologies using E-connections. Journal of Web Semantics,
4(1):40–59, 2006.

[CPSK06] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya
Kalyanpur. Modularity and Web ontologies. In Proceedings of the
10th International Conference on the Principles of Knowledge Rep-
resentation and Reasoning (KR-06). AAAI Press/The MIT Press,
2006.

[Del11] Chiara Del Vescovo. The modular structure of an ontology: Atomic
decomposition towards applications. In Proceedings of the 24th In-
ternational Workshop on Description Logics (DL-11), volume 745 of
CEUR (http: // ceur-ws. org/), 2011.

[DGK+11] Chiara Del Vescovo, Damian Gessler, Pavel Klinov, Bijan Parsia,
Ulrike Sattler, Thomas Schneider, and Andrew Winget. Decomposi-
tion and modular structure of BioPortal ontologies. In Proceedings of
the 10th International Semantic Web Conference (ISWC-11), volume
7031 of Lecture Notes in Computer Science, pages 130–145, 2011.

[Dil50] Robert P. Dilworth. A decomposition theorem for partially ordered
sets. Annals of Mathematics, 51(1):161–166, 1950.

[DKP+12] Chiara Del Vescovo, Pavel Klinov, Bijan Parsia, Ulrike Sattler,
Thomas Schneider, and Dmitry Tsarkov. Syntactic vs. semantic lo-
cality: How good is a cheap approximation? In Proceedings of the 6th
International Workshop on Modular Ontologies (WoMO-12), volume
875 of CEUR (http: // ceur-ws. org/), 2012.

[DPS11] Chiara Del Vescovo, Bijan Parsia, and Ulrike Sattler. Topicality in
logic-based ontologies. In Proceedings of the 19th International Con-
ference on Conceptual Structures (ICCS-11), pages 187–200, 2011.

[DPS12] Chiara Del Vescovo, Bijan Parsia, and Ulrike Sattler. Logical rele-
vance in ontologies. In Proceedings of the 25th International Work-
shop on Description Logics (DL-12), volume 846 of CEUR (http:
// ceur-ws. org/), 2012.

http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/

162 BIBLIOGRAPHY

[DPSS10] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas Schnei-
der. The modular structure of an ontology: an empirical study. In
Proceedings of the 23rd International Workshop on Description Log-
ics (DL-10), volume 573 of CEUR (http: // ceur-ws. org/), 2010.

[DPSS11a] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas Schnei-
der. The modular structure of an ontology: Atomic decomposition.
In Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI-11), pages 2232–2237, 2011.

[DPSS11b] Chiara Del Vescovo, Bijan Parsia, Ulrike Sattler, and Thomas Schnei-
der. The modular structure of an ontology: Atomic decomposition
and module count. In Proceedings of the 5th International Work-
shop on Modular Ontologies (WoMO-11), volume 230 of Frontiers in
Artificial Intelligence and Applications, pages 25–39, 2011.

[GFH+11] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim Hendler, Jim
Oberthaler, and Bijan Parsia. The National Cancer Institute’s The-
saurus and Ontology. Web Semantics: Science, Services and Agents
on the World Wide Web, 1(1), 2011.

[GLW06] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my
ontology? A case for conservative extensions in Description Logics. In
Proceedings of the 10th International Conference on the Principles of
Knowledge Representation and Reasoning (KR-06), pages 187–197.
AAAI Press/The MIT Press, 2006.

[GPS11] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Analysing
the evolution of the NCI thesaurus. In Proceedings of the 24th
IEEE International Symposium on Computer-Based Medical Systems
(CBMS-11), page 76. IEEE Xplore Digital Library, 2011.

[GPS12] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Performance
heterogeneity and approximate reasoning in description logic ontolo-
gies. In Proceedings of the 11th International Semantic Web Confer-
ence (ISWC-12), volume 7649 of Lecture Notes in Computer Science,
pages 82–98, 2012.

http://ceur-ws.org/

BIBLIOGRAPHY 163

[HM01] Volker Haarslev and Ralf Möller. RACER system description. In
Proceedings of the 1st International Joint Conference on Automated
Reasoning (IJCAR-01), volume 2083 of Lecture Notes in Computer
Science, pages 701–705. Springer-Verlag, 2001.

[Hor11] Matthew Horridge. Justification based Explanation in Ontologies.
PhD thesis, The University of Maryland, 2011.

[HPS11] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. The state of
bio-medical ontologies. In Proceedings of the Bio-Ontologies SIG at
ISMB 2011, 2011.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontology lan-
guage. Journal of Web Semantics, 1(1):7–26, 2003.

[JCS+08] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler,
Thomas Schneider, and Rafael Berlanga Llavori. Safe and economic
re-use of ontologies: A logic-based methodology and tool support. In
Proceedings of the 5th European Semantic Web Conference (ESWC-
08), volume 5021 of Lecture Notes in Computer Science, pages 185–
199, 2008.

[Kal06] Aditya Kalyanpur. Debugging and Repair of OWL ontologies. PhD
thesis, The University of Maryland, 2006.

[Kaz08] Yevgeny Kazakov. RIQ and SROIQ are harder than SHOIQ. In
Proceedings of the 11th International Conference on the Principles of
Knowledge Representation and Reasoning (KR-08), pages 274–284.
AAAI Press, 2008.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for Horn SHIQ
ontologies. In Proceedings of the 22nd International Workshop on De-
scription Logics (DL-09), volume 477 of CEUR (http: // ceur-ws.
org/), 2009.

[KKS11] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. Con-
current classification of EL ontologies. In Proceedings of the 10th
International Semantic Web Conference (ISWC-11), volume 7031 of
Lecture Notes in Computer Science, pages 305–320, 2011.

http://ceur-ws.org/
http://ceur-ws.org/

164 BIBLIOGRAPHY

[KLPW10] Boris Konev, Carsten Lutz, Denis Ponomaryov, and Frank Wolter.
Decomposing Description Logic ontologies. In Proceedings of the 12th
International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR-10), pages 236–246. AAAI Press/The MIT
Press, 2010.

[KLWW08] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Seman-
tic modularity and module extraction in description logics. In Pro-
ceedings of the 18th European Conference on Artificial Intelligence
(ECAI-08), pages 55–59, 2008.

[KLWW09] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. For-
mal properties of modularization. In Heiner Stuckenschmidt, Chris-
tine Parent, and Stefano Spaccapietra, editors, Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of Lecture Notes in Computer Science, pages 25–66.
Springer-Verlag, 2009.

[KLWZ04] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Za-
kharyaschev. E-connections of abstract description systems. Arti-
ficial Intelligence, 156(1):1–73, 2004.

[KPS+09] Roman Kontchakov, Luca Pulina, Ulrike Sattler, Thomas Schneider,
Petra Selmer, Frank Wolter, and Michael Zakharyaschev. Minimal
module extraction from DL-Lite ontologies using QBF solvers. In
Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI-09), pages 836–841, 2009.

[KWZ10] Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev.
Logic-based ontology comparison and module extraction, with an
application to DL-Lite. Artificial Intelligence, 174(15):1093–1141,
2010.

[LW10] Carsten Lutz and Frank Wolter. Deciding inseparability and conser-
vative extensions in the description logic EL. Journal of Symbolic
Computation, 45(2):194–228, 2010.

[LWW07] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative ex-
tensions in expressive Description Logics. In Proceedings of the 20th

BIBLIOGRAPHY 165

International Joint Conference on Artificial Intelligence (IJCAI-07),
pages 453–458, 2007.

[Mik13] Eleni Mikroyannidi. Detection of syntactic and semantic regularities
in ontologies. PhD thesis, The University of Manchester, 2013. To
appear.

[MISR11] Eleni Mikroyannidi, Luigi Iannone, Robert Stevens, and Alan L.
Rector. Inspecting regularities in ontology design using clustering.
In Proceedings of the 10th International Semantic Web Conference
(ISWC-11), volume 7031 of Lecture Notes in Computer Science,
pages 438–453, 2011.

[MMV11] Kodylan Moodley, Thomas A. Meyer, and Ivan José Varzinczak.
Root justifications for ontology repair. In Proceedings of the 5th
International Conference on Web Reasoning and Rule Systems (RR-
11), volume 6902 of Lecture Notes in Computer Science, pages 275–
280. Springer-Verlag, 2011.

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. A hypertableau calcu-
lus for SHIQ. In Proceedings of the 20th International Workshop on
Description Logics (DL-07), pages 419–426. Bozen/Bolzano Univer-
sity Press, 2007.

[NM03] Natalya F. Noy and Mark A. Musen. The prompt suite: interactive
tools for ontology merging and mapping. International Journal of
Human-Computer Studies, 59(6):983–1024, 2003.

[NRG12] Nadeschda Nikitina, Sebastian Rudolph, and Birte Glimm. Interac-
tive ontology revision. Journal of Web Semantics, 12:118–130, 2012.

[Par99] Rohit Parikh. Beliefs, belief revision, and splitting languages. In
Lawrence S. Moss, Jonathan Ginzburg, and Maarten de Rijke, ed-
itors, Logic, Language and Computation, volume 2, pages 266–278.
CSLI Publication, Cambridge University Press, 1999.

[Pon08] Denis Ponomaryov. On decomposability in logical calculi. Bulletin
of the Novosibirsk Computing Center, 28:111–120, 2008.

166 BIBLIOGRAPHY

[PS10] Bijan Parsia and Thomas Schneider. The modular structure of an on-
tology: an empirical study. In Proceedings of the 12th International
Conference on the Principles of Knowledge Representation and Rea-
soning (KR-10), pages 584–586. AAAI Press/The MIT Press, 2010.

[SCC97] Kent A. Spackman, Keith E. Campbell, and Roger A. Côté.
SNOMED RT: A reference terminology for health care. Journal of
the American Medical Informatics Association, pages 640–644, 1997.

[Sch03] Bernd S. W. Schröder. Ordered Sets: An Introduction. Birkhäuser,
2003.

[SMC74] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine.
Structured system. IBM Systems Journal, 13(2):115–139, 1974.

[SPC+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics, 5(2):51–53, 2007.

[SR06] Julian Seidenberg and Alan L. Rector. Web ontology segmentation:
analysis, classification and use. In Proceedings of the 15th Interna-
tional World Wide Web Conference (WWW-06), pages 13–22, 2006.

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev.
Which kind of module should I extract? In Proceedings of the 22nd
International Workshop on Description Logics (DL-09), volume 477
of CEUR (http: // ceur-ws. org/), 2009.

[TH06] Dmitry Tsarkov and Ian Horrock. FaCT++ Description Logic rea-
soner: System description. In Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR-06), volume 4130
of Lecture Notes in Computer Science, pages 292–297. Springer-
Verlag, 2006.

[TP12] Dmitry Tsarkov and Ignazio Palmisano. Divide et impera: Metar-
easoning for large ontologies. In Proceedings of the 9th International
Workshop on OWL: Experiences and Directions (OWLED-12), vol-
ume 849 of CEUR (http: // ceur-ws. org/), 2012.

http://ceur-ws.org/
http://ceur-ws.org/

BIBLIOGRAPHY 167

[Tsa12] Dmitry Tsarkov. Improved algorithms for module extraction and
atomic decomposition. In Proceedings of the 25th International Work-
shop on Description Logics (DL-12), volume 846. CEUR (http:
//ceur-ws.org/), 2012.

[WPH06] Taowei D. Wang, Bijan Parsia, and James Hendler. A survey of
the web ontology landscape. In Proceedings of the 5th International
Semantic Web Conference (ISWC-06), volume 4273 of Lecture Notes
in Computer Science, pages 682–694. Springer-Verlag, 2006.

http://ceur-ws.org/
http://ceur-ws.org/

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Modules
	Contributions of this Thesis

	Background
	Foundations of Description Logics
	Conservative Extensions and inseparability relations
	Extracting -modules
	Conservativity-based Modules
	Modules based on other inseparability notions
	Modules based on Locality

	Basic Notions of Algebra

	Modularity
	Desirable Properties of Modules
	Evaluating a Modular Structure
	Evaluation of the existing Modular Structures
	Parikh's Approach
	Signature -decomposition
	E-connections
	-modules

	The Atomic Decomposition of an Ontology
	Genuine Modules
	Atoms and their Dependence Relation
	The AD as a Modular Structure
	Atoms vs. Genuine Modules
	Chains of Conservative Extensions

	Computation of ADs
	The AD Algorithm and its Complexity
	Experiment: Design and Results

	Labelled Atomic Decompositions
	Labels
	LADs with Minimal Seed Signatures
	LADs based on Atoms' Signatures
	Comparing LADs
	Model-theoretic Relevance

	Applications
	Module Count
	LADs for Offline Extraction of Modules
	Modular Reasoning
	Patterns Evaluation in Ontologies
	DeMoSt

	Conclusions
	Summary
	Future Work

	Ontologies Corpus
	Bibliography

