
Incrementally Updateable and Persistent
Decomposition of OWL Ontologies

Pavel Klinov1, Chiara Del Vescovo2, Thomas Schneider3

1 University of Arizona, AZ, USA
pklinov@email.arizona.edu

2 University of Manchester, UK
delvescc@cs.man.ac.uk

3 Universität Bremen, Germany
tschneider@informatik.uni-bremen.de

Abstract The paper focuses on practical aspects of decomposing OWL
ontologies into logically coherent fragments, called atoms, and maintain-
ing large ontologies in the decomposed form. While the recently proposed
atomic decomposition exhibits some very attractive formal properties
and promises important applications, e.g., module extraction, its prac-
tical applicability has been far from clear. Two particular concerns are
the necessity to recompute the decomposition upon every change to the
logical content of the ontology and the lack of methods for managing the
decomposed structure in a persistent storage. This paper describes tools
which addresses both issues: an algorithm for incremental updates to the
atomic decomposition (with a preliminary empirical evaluation) and an
approach to its persistence in a RDF store or an XML database.4

Keywords: OWL, modularity, atomic decomposition, incremental up-
dates, persistence

1 Introduction

The success of semantic technologies, and OWL in particular, in health, bio, and
chemical informatics has led to the growing number of large ontologies. Some
notably big ontologies, such as SNOMED CT or FMA, have more than 100K
axioms while repositories like the NCBO BioPortal manage dozens of ontologies
with more than 10K axioms, e.g., GO, ChEBI, GALEN, etc. Their growing size
is increasingly becoming a problem since most of the knowledge is irrelevant to
specific applications interested in a particular subarea of, say, anatomy.

The problem is especially relevant for applications concerned with reasoning
since it is desirable to consider all knowledge necessary to draw all (or, at least,
as many as possible) important conclusions while ignoring all irrelevant axioms.
One example is solutions for Semantic Web service discovery and invocation,
4 The presented methods are implemented and the code (including the evaluation
code) is available online under the MIT license at:
http://code.google.com/p/owl-modularity-experiments/

2 P. Klinov, C. Del Vescovo, and T. Schneider

such as SSWAP5 [6], which often do reasoning over only few specific domain
terms to enable a transaction between two services on Web. It is undesirable
to load the entire ontology into memory, or transfer it over the network. One
research direction to tackle this issue is ontology modularity [2]. It provides
theoretical foundations and tool support for extracting modules, small fragments
of ontologies that contain all relevant knowledge for a particular scenario, e.g.,
reasoning over a specific signature. The existing algorithms, namely, syntactic
locality-based module extraction (ME) are linear in the size of the ontology and
can readily support ME services for ontology repositories.6

However, just being linear may not be sufficient when the goal is to do a
transaction-time reasoning over a few terms from, say, GO, to decide if two Web
services can interact. First, loading the ontology into memory for subsequent
ME leads to substantial delays while pre-loading all ontologies into the main
memory can be a considerable burden for large repositories, such as BioPortal.
Second, conventional ME algorithms examine each axiom for relevance which is
also problematic when the number of axioms is high. These issues ask for a new
approach to managing OWL ontologies that is different from the traditional way
of storing them as plain collections of axioms (or triples).

One such approach can be based on the recently developed notion of atomic
decomposition (AD) of OWL ontologies [5]. AD is a partition of an ontology
into logically indivisible sets of axioms, called atoms, which can be regarded
as basic blocks for modules. Among other advantages, AD greatly facilitates
module extraction which can be done by quickly identifying relevant atoms. A
recent study has showed that the state-of-the-art biomedical ontologies are well-
decomposable into atoms and that AD-based ME is considerably faster than
conventional ME [3]. It is, therefore, justified to consider maintaining OWL
ontologies as decomposed structures.

Unfortunately, there are issues too. First, computing AD is a PTIME but
nonetheless a computationally intensive procedure. This is problematic for fre-
quently updateable ontologies since previously there has been no technique for
updating AD other than recomputing it. A related issue is that there is no
persistence mechanism for AD which partly defeats its advantages (i.e. not re-
quiring to load ontologies into memory). This is particularly inconvenient for
large repositories. These difficulties make AD impractical in many scenarios.

This paper shows how both problems can be addressed. First, it presents a
preliminary algorithm for incremental updates to AD, namely, incorporating new
axioms into the existing atomic structure. It proves some key facts establishing
soundness of the method and then shows its substantial performance benefits
for large, yet simple ontologies like GO or ChEBI. Second, it describes an ap-
proach to persisting AD into an XML or an RDF database so that decomposed
ontologies can be conveniently maintained and used using familar semantic tech-
nologies. The presented methods are used in the module extraction service for
the SSWAP discovery server and APIs.

5 Simple Semantic Web Architecture and Protocol: http://sswap.info
6 The TONES repository has provided a RESTful ME service since 2009.

Practical Decomposition of OWL Ontologies 3

2 Modularity and Atomic Decomposition

Assuming the reader is familiar with OWL and Description Logics (DLs) [1] we
briefly sketch some of the central notions around locality-based modularity [2]
and Atomic Decomposition [5,3]. We use O for ontologies, i.e. finite sets of ax-
ioms, and M (⊆ O) for modules. Moreover, we use α̃ for the signature of an
axiom α, i.e., the set of class, property, and individual names used in α.

Given a set of terms, or seed signature, Σ, a Σ-moduleM based on deductive
conservative extensions is a subset of an ontology O such that, for all axioms α
with terms only from Σ, we have thatM |= α iff O |= α, i.e., O andM have the
same entailments over Σ. Unfortunately, checking if a set of axioms is a module
in this sense is at least as hard as reasoning or even undecidable for expressive
DLs [7,9]. However, if we do not require modules to be minimal in terms of
size or inclusion, we can define “good sized” approximations that are efficiently
computable, e.g. locality-based modules (LBMs). Given an ontology O and a
signature Σ, a single LBM can be extracted in time polynomial in the size of O,
see [2] for details. LBMs still provide strong logical guarantees: they capture all
relevant entailments about Σ, although not necessarily only those [8]. Informally,
LBMs are based on the notion of locality, that is, relevance, of an axiom to a
given signature (axioms appear in the module extracted for the empty signature
are called global). Syntactic module extraction algorithms are implemented in
the OWL API7 and SSWAP.

There are two main notions of LBMs, namely ⊥ and >: roughly speaking,
a >-module for Σ gives a view from above because it contains all subclasses
of class names in Σ, while a ⊥-module for Σ gives a view from below since it
contains all superclasses of class names in Σ. Given a module notion x ∈ {>,⊥},
we denote by x-mod(Σ,O) the x-module of O w.r.t. Σ. The number of modules
of O can be exponential in the size of O [4]. However we can focus only on
genuine modules, i.e. modules that are not the union of two “⊆”-uncomparable
modules. Such modules define a base for all modules, and remarkably the family
of genuine modules is linear in the size of O [5].

Some sets of axioms never split across two modules [5], revealing a strong
logical interrelation. For x ∈ {>,⊥}, we call x-atom a maximal set ax ⊆ O such
that, for each x-moduleMx, either ax ⊆Mx, or ax ∩Mx = ∅. The family of x-
atoms of O is denoted by Ax(O) and is called x-Atomic Decomposition (x-AD).
If x or O are clear from the context, or irrelevant, we drop them.

Since every atom is a set of axioms, and atoms are pairwise disjoint, the AD
is a partition of the ontology, and its size is at most linear w.r.t. the size of the
ontology. Moreover, there is a 1-1 correspondence between atoms and genuine
modules: for each atom a we denote byMa the corresponding genuine module,
that is also the smallest module containing a. Then we can define a second
logical relation between atoms: an atom a is dependent on a distinct atom b
(written a � b) ifMb ⊂Ma. Note that this property then holds for all modules
containing a. The dependence relation � on AD is a partial order (i.e., transitive,

7 http://owlapi.sourceforge.net

4 P. Klinov, C. Del Vescovo, and T. Schneider

reflexive, and antisymmetric) and is computable in polynomial time [5]. Finally,
the union of all atoms which a given atom a depends on is called the principal
ideal of a (denoted as (a]). Interestingly,Ma and (a] coincide [5].

Atoms can be seen as building blocks for modules: for each x-moduleM of
an ontology O, there are atoms a1, . . . , aκ in Ax(O) such that M =

⋃n
i=1 ai.

The converse does not hold, since not all combinations of atoms are modules.
However, an algorithm to perform the extraction of a module from the AD of
an ontology is described in [3].

Example 1. Consider the following ontology and its ⊥-AD:
O = {α1 = [Animal v ∃hasGender.Thing],
α2 = [Animal v≥ 1hasHabitat.Thing],
α3 = [Person v Animal],
α4 = [Vegan ≡ Person u ∀eats.(Vegetable t Mushroom)],
α5 = [TeeTotaller ≡ Person u ∀drinks.NonAlcoholicThing],
α6 = [Student v Person u ∃hasHabitat.University],
α7 = [GraduateStudent ≡ Student u ∃hasDegree.({BA, BS})]} a1

a2

a3 a4 a5

a6

Here the ⊥-atoms in the AD contain the following axioms respectively: a1 =
{α1, α2}, a2 = {α3}, a3 = {α4}, a4 = {α5}, a5 = {α6}, a6 = {α7}.

3 Incremental Changes to Atomic Decomposition

This section describes the incremental AD algorithm and its theoretical basis.
It also presents the results of the evaluation performed on fragments of GO and
ChEBI ontologies which show that adding an axiom into an existing AD is orders
of magnitude faster than recomputing it.

3.1 Theoretical Basis and the Algorithm

We first establish some facts which our algorithm for accommodating new axioms
into an existing AD is based on. The key observation is that whenever new axioms
are added to an ontology, atoms in the new AD are conglomerates of atoms in
the previous AD, but existing atoms are never split into new atoms.8 Intuitively,
this follows from the monotonicity of locality-based modules [2] (in what follows
we continue to consider the module notion x ∈ {⊥,>}).

Lemma 2 (Atoms Do Not Split). Let O ⊆ O′ be ontologies. For any atom
a in the AD of O and any atom b′ in the AD of O′, either a ⊆ b′ or a ∩ b′ = ∅.

Proof. If a ∩ b′ = ∅, then the conclusion is valid. Let now a ∩ b′ 6= ∅. Then, the
conclusion is also valid if a is a singleton. Otherwise, let β ∈ a∩ b′, γ ∈ a, and c′

be the atom in the AD of O′ that contains γ. Now consider the genuine module
x-mod(β̃,O′). Due to monotonicity of the module extraction process, this module
contains x-mod(β̃,O), which in turn contains a [5]. In particular this means that,

8 Yet another justification of the term “atom”!

Practical Decomposition of OWL Ontologies 5

since γ ∈ a, then γ ∈ x-mod(β̃,O′). Therefore, the principal ideal of b′ contains
c′. The same argument with β and γ (and b′ and c′) interchanged yields that the
principal ideal of c′ contains b′. Hence, b′ = c′ and γ ∈ b′. Since γ was chosen
arbitrarily from a, we have established that a ⊆ b′. �

The consequence of Lemma 2 is that every atom of the extended ontology
is a conglomeration of atoms from the previous ontology, possibly together with
axioms that have been added (in other words, it can never contain a part of an
atom from the previous ontology).

Corollary 3. Let O, O1 and O′ = O] O1 be ontologies. Then every atom in
the AD of O′ is either
– the union of one or more atoms of O, or
– the union of zero, one or more atoms of O, enriched with axioms from O1.

Unfortunately, the addition of α can also lead to conglomerates of several
“old” atoms without α. The following example shows this behaviour and addi-
tionally illustrates that dependencies involving merged atoms in O′ cannot be
so easily obtained from the dependencies of the respective atoms in O.

Example 4. Consider the ontology O = {S uX v Y, T uX v Z}. In the ⊥-AD
of O, the two axioms constitute two independent atoms a, b. However, if we add
the axiom α = [S ≡ T], we obtain that the ⊥-AD of O′ = O∪ {α} contains two
atoms: c = {α}, and d = a ∪ b. Moreover, d � c.

Next, we briefly describe Algorithm 1 for adding an axiom into an existing
AD. Informally, its idea is to select a fragment of the AD which is affected by the
addition (see Def. 5), re-decompose that fragment, and incorporate it back into
the AD graph. Some more informal insights into various aspects of the algorithm
are given below.

Algorithm 1 Main routine
1: Input: the ontology O, its x-AD A(O), x ∈ {>,⊥}, the new axiom α
2: Output: the updated x-AD A(O ∪ {α})
3: O′ ← O ∪ {α}
4: GA(O) ← the set of x-global axioms in O
5: GA(O′) ← the set of x-global axioms in O′
6: if GA(O′) 6= GA(O) then
7: A(O′) ← decompose(O′)
8: else
9: AFF(O, α) ← find-affected-atoms(A(O), α, GA(O′))
10: remove-atoms-from-AD(AFF(O, α), A(O))
11: A(OAFF) ← decompose(α ∪

S
a∈AFF(O,α) a ∪ GA(O′))

12: A(O′) ← merge-new-AD-into-old(A(O), A(OAFF))
13: end if
14: return A(O′)

6 P. Klinov, C. Del Vescovo, and T. Schneider

Definition 5 (Affected Atoms). Given an ontology O, its x-AD A(O), and
a new axiom α, the affected atoms, denoted as AFF(O, α) are those atoms
whose corresponding genuine modules changed as a result of adding α, i.e.: if
x-mod(ã,O ∪ α) ⊃ x-mod(ã,O), then a ∈ AFF(O, α).

Algorithm 2 is the procedure for computing AFF(O, α). Due to Cor. 3 this
could be done by selecting atoms whose corresponding genuine modules extended
(but never split) as a result of the addition. The algorithm computes AFF(O, α)
by first selecting atoms whose signature contains at least one minimal globaliz-
ing subsignature (MGS) of α (i.e., α is non-local w.r.t. their signature) and then
taking all atoms in the same connected component of the AD graph. Obviously,
this makes the set AFF(O, α) larger than it needs to be and, thus, the algorithm
may re-decompose more axioms than needed. In future work we plan to rectify
this. Note, however, that ADs for many state-of-the-art ontologies are very dis-
connected graphs (see [3]) for which this algorithm works very well, as shown in
the next subsection.

Algorithm 2 find-affected-atoms
1: Input: the current x-AD A(O), the new axiom α, the set of global axioms GA
2: Output: the set of atoms AFF = {a | α ∈ x-mod(ea,O′)}
3: AFF ← {a ∈ A(O) | ∃Σ ∈ MGS(α) s.t. Σ ⊆ f(a] ∪ fGA}
4: return {b | ∃a ∈ AFF and there exists an undirected path from a to b}

The procedures remove-atoms-from-AD and decompose are self-explanatory:
the former removes the given atoms from the AD (including the dependen-
cies), the latter invokes the standard (that is, non-incremental) AD algorithm
for the given set of axioms. Algorithm 3 describes the important procedure
merge-new-AD-into-old which merges the re-decomposed affected part into
the existing AD (from which the affected part had been removed beforehand).

Algorithm 3 merge-new-AD-into-old
1: Input: the current x-AD A(O), the x-AD for the affected part A(OAFF)
2: Output: the updated x-AD A(O′)
3: NA ←

S
a∈A(OAF F) a

4: A(O′) ← A(O) ∪A(OAFF)
5: for each a ∈ A(OAFF) do
6: for β ∈ x-mod(ea,O′) \ NA do
7: b ← get-atom-for-axiom(β,A(O′))
8: set a � b in A(O′)
9: end for
10: end for
11: A(O′) ← transitive-reduction(A(O′))
12: return A(O′)

Once the set of atoms for A(O′) has been determined, the rest is to figure out
any new dependencies between atoms. Those could be of two sorts: dependencies

Practical Decomposition of OWL Ontologies 7

between atoms in the affected part and dependencies between two atoms where
one is in the affected part and the other is not. The former have already been
computed on the re-decompose step. The procedure merge-new-AD-into-old
takes care of the latter. It relies on the following fact:

Lemma 6 (New Dependent Atoms Are Affected). Let us consider O′ =
O ∪ {α}, and let β, γ ∈ O be two axioms such that:
1. β and γ belong to two independent atoms b and c in O
2. β and γ either belong to the same atom b′ in O′, or they belong to two

distinct atoms b′ and c′ such that b′ � c′.
Then, b ∈ AFF(O, α).

Proof. By condition 2. we know that x-mod(b̃,O′) 3 γ, whilst by condition
2. x-mod(b̃,O) 63 γ. By definition, the atom b is affected iff x-mod(b̃,O′) 6=
x-mod(b̃,O). Hence, b ∈ AFF(O, α). ut

The lemma states that an unaffected atom may not become dependent as a
result of the addition since in that case it must be affected according to Def. 5.
The merge procedure goes through the set of affected atoms and checkes whether
their genuine modules should contain any axioms from the unaffected part. If it
is the case, then a new dependency is added.

Termination of Algorithm 1 is fairly obvious: all its steps are entirely syntactic
procedures which iterate over finite sets (e.g., affected atoms, axioms in a module,
etc.). The only aspect which requires a comment is the search through the set
of minimal globalizing subsignatures of the new axiom (Algorithm 2, line 3).
In principle, this set may not be polynomial in the number of terms in the
axiom. However, it is such in most practical cases and, if not, this step can be
replaced by a PTIME check for syntactic locality of the axiom w.r.t. the atom
signature union the signature of the global axioms. It is easy to see that all other
procedures terminate in polynomial time.

3.2 Evaluation

In this section we present the results of an experiment which compares per-
formance of adding a new axiom into an existing ⊥-AD to performance of re-
decomposing the ontology upon adding a new axiom. Our aim is demonstrate the
utility of the approach on typical state-of-the-art biomedical ontologies, which
are mainly large but simple concept hierarchies without global axioms. For that
purpose we select random subsets of such important ontologies as GO and ChEBI
(note that GO also serves as a perfect representative of the whole family of sim-
ilar ontologies, including the Plant Ontology, the Sequence Ontology, etc.).

We use the following evaluation methodology for both GO and ChEBI: First,
we generate 30 random fragments of the ontology, 10 for each size of 1K, 5K,
and 10K axioms. Second, AD is computed for each. Third, for each fragment
we randomly select 10 axioms which will be added to the AD. Importantly, we
select only those axioms whose signature contains terms already occurring in

8 P. Klinov, C. Del Vescovo, and T. Schneider

the fragment. It makes much more likely that the additions do not simply lead
to new atoms without any logical connections to the existing atoms. For every
addition we compare the average time to incorporate the axiom into the AD and
the average time to re-decompose the fragment with the new axiom. We also
record the size of the affected part (the total number of axiom in affected atom
over the size of the fragment). The results are presented in Table 1.

Table 1. Incremental AD evaluation on fragments of GO and ChEBI

Size GO ChEBI
Avg. Avg. Avg. % of Avg. Avg. Avg. % of
decomp. add affected decomp. add affected
time (ms) time (ms) atoms time (ms) time (ms) atoms

1000 118 17 0.55 141 21 0.11
5000 1402 38 0.21 1562 45 0.58

10000 6757 93 0.19 8482 1025 2.93

As expected, the results show a huge benefit from using the incremental
algorithm. Most of the time less than 1% of existing atoms are affected by
adding a new axiom into the existing fragment which leads to quick addition
of the axiom into the AD. One may argue that such ontologies as GO and
ChEBI represent the “happy path” for the current incremental algorithm since
their AD graphs are largely disconnected whereas the algorithm would behave
substantially worse on ontologies with complex dependencies between atoms.
While true, we believe that the speed-up for simple, yet common ontologies
is a sufficient reason for adopting the algorithm. We leave a more thorough
evaluation, including investigation of worst cases, to a future work after we have
addressed the above mentioned issues, in particular, the need to re-decompose
the entire connected component for each affected atom.

4 Persistent Atomic Decomposition

Another major reason why AD may be considered impractical is the lack of engi-
neering solutions for persisting the decomposition and using it without loading
all atoms into memory. Let us go back to our basic scenario of an ontology
repository with a ME service. Each ontology could be decomposed such that the
repository may serve ME requests extremely fast by selecting relevant atoms for
the signature. But maintaining all decompositions in the main memory can be
a scalability and robustness concern, especially for repositories with hundreds
of ontologies (the BioPortal scale).9 What is needed is a solution for keeping all
data structures in the AD in a scalable yet performant storage, e.g., a database,

9 In fact, this issue also arises when ontologies are maintained in a traditional way as
soon as loading/updating axioms in text (or XML) files becomes a bottleneck.

Practical Decomposition of OWL Ontologies 9

which would enable fast execution of the common operations. The operations
include the following:

– Finding directly relevant atoms for a given signature Σ: {a | ∃α ∈ a s.t. α
is non-local w.r.t Σ}. This is the key operation during the AD-based ME
algorithm [3].

– Finding all atoms that a given atom depends (or is dependent) on.
– Loading all axioms for a given atom.

These operations mandate the data structures which need to be maintained.
In particular, the first operation requires i) labels which store minimal set sig-
natures MSS for each atom and ii) an extra term index which maps every term
onto a set of atom whose MSS-labels include that it (intuitively, the set of atoms
which are relevant to the term). The second and third operations suggest man-
agement of persistent graph structures in the form of adjacency lists and a certain
grouping of axioms belonging to the same atom.

For persistence purposes it is handy to regard AD as a tuple 〈G,L,TI,GI〉,
where G = (A,�) is the AD graph, L is the labeling function (e.g., in case of
MSS labels it maps each atom to its MSS), TI is a term index which depends on L
(see previous paragraph in case L is MSS labeling), and GI is global information
which pertains to the AD as a whole (module type, the set of global axioms, the
set of non-logical axioms and syntactic tautologies, etc.). Next, we describe two
particular implementations of managing this information in a persistent storage
using conventional technologies: XML and RDF databases.

4.1 Atomic Decomposition over XML DB

XML databases are databases which store XML natively, i.e. do not map XML
documents into any sort of other structure, e.g., relations. Their popularity has
been growing for the last decade which, in particular, resulted in a certain uni-
fication in the form of commonly supported APIs, such as the XML:DB API.
Most XML DBs provide support for XML collections (which can contain XML
documents or other collections), XPath expressions, and XQuery queries for ac-
cessing collections, documents, and data inside the documents.

The AD data structures map naturally onto hierarchical XML collections.
Our implementation does so in the following way (let ont-log-URI be the logical
URI of the ontology):

– /ont-log-URI: root XML collection for the ontology;
– /ont-log-URI/global.xml: XML document which stores GI;
– /ont-log-URI/atoms: collection of all XML documents representing atoms.

Each atom is a separate document, e.g., /ont-log-URI/atoms/atom_i.xml,
in one of the XML-based syntaxes of OWL (RDF/XML or OWL/XML);

– /ont-log-URI/graph.xml: XML document defining the graph structure of
the AD (that is, G);

– /ont-log-URI/labels.xml: XML document for storing labels.

10 P. Klinov, C. Del Vescovo, and T. Schneider

The graph document can be easily maintained in one of the standard XML-
based graph languages (in our case, GraphML). The graph structure may always
be loaded into memory or be maintained in the DB and loaded in a lazy fashion.
The term index TI may be stored in a separate document or computed on-the-fly
based on labels. Format of the labels document depends on L. Listing 1 is an
example for MSS-based labels (for each labeling function L one can create an
XML Schema document to make the format explicit).

Listing 1 A fragment of labels.xml representing two MSS labels for an atom
<labels>

<atom id="1">
<label>

<signature>
<term>http://purl.org/obo/owl/GO#GO_0005262</term>
<term>http://purl.org/obo/owl/GO#GO_0005261</term>
...

</signature>
<signature>

<term>http://purl.org/obo/owl/GO#GO_0006641</term>
<term>http://purl.org/obo/owl/GO#GO_0006639</term>
...

</signature>
</label>

</atom>
...

</labels>

Once the (MSS-labeled) decomposition is stored in such XML collections,
it is very easy to use, for example, for module extraction. The AD-based ME
algorithm (see [3]) is based on labels and does not require explicit axiom locality
checks. As such, it boils down to using the term index and labels to find directly
relevant atoms for a signature, the graph structure to find dependent atoms,
and finally, loading axioms for the found atoms. All these operations can be
implemented simply by using XPath/XQuery capabilities of modern XML DBs.

4.2 Atomic Decomposition over RDF DB

It is often the case that ontology providers prefer RDF to bare XML for the
underlying storage format for OWL ontologies,10 so we show how that can be
10 This appears to have roots in the famous Semantic Web cake according to which

RDF is the basis of OWL. We believe that translation of OWL axioms into RDF
triples is often unnecessary and OWL/XML (which is natural to store in an XML
DB) is often a more sutable syntax than RDF-based syntaxes. However, these issues
are beyond the scope of this paper.

Practical Decomposition of OWL Ontologies 11

done too. The main difference is that instead of collections and XML documents
the AD data structures are mapped onto named graphs and triples.

One particular inconvenience with using RDF is its lack of support for hier-
archical data organization. While named graphs are great for separating atoms
from each other they are not, unlike XML collections, meant to be nested so
grouping all atoms for the same AD is not easy.11 Therefore, we dedicate each
AD its own RDF DB. In our ontology repository scenario this even helps scalabil-
ity w.r.t. the number of ontologies at the cost of maintaining a special (system)
DB which maps each ontology URI to the DB which stores the decomposition.

The AD data structures are represented as follows. Each atom is assigned a
unique URI, which is the URI of the named graph that stores all axioms for the
atom. The set of global axioms is also stored in a separate named graph. Axioms
are translated into RDF triples. Then we introduce a special RDF vocabulary
for representing the AD graph structure, global information, and labels. All
data except of axioms can be stored in the default graph since ADs for different
ontologies never share a DB. The vocabulary is a tiny RDFS ontology which
provides classes (Atom, Label, MSSLabel, etc.) and object properties (dependsOn,
hasLabel, hasTerm, etc.) for representing and verifying consistency of stored
ADs. Example is shown in Listing 2.

Listing 2 A fragment of RDF representation of an atomic decomposition
ad:atom_1 rdf:type ad:Atom
ad:atom_2 rdf:type ad:Atom
ad:atom_1 ad:dependsOn ad:atom_2
ad:atom_1 ad:hasLabel ad:label_1
ad:label_1 rdf:type ad:MSSLabel
ad:label_1 ad:hasSignature ad:mss_sig_1
ad:mss_sig_1 ad:hasTerm GO:GO_0005262
...
<http://sswap.info/ad-in-rdf/atom_1>

{
GO:GO_0005262 rdfs:subClassOf GO:GO_0005261 .
...

}

Triples in Listing 2 say, respectively, that atom_1 depends on atom_2, atom_1
has a MSS label with a signature (mss_sig_1) which contains a GO term
GO_0005262, and atom_1 stores the axiom that GO_0005262 v GO_0005261.

The RDF representation also supports the same basic operations, e.g., finding
all atoms relevant to a term, just instead of XQuery it is done via SPARQL.
Again, the structure of the DB is less transparent than for XML DB but this
is addressable via a suitable API. On the other hand, it is fairly possible that

11 One can still achieve this by using graph URIs sharing a common prefix.

12 P. Klinov, C. Del Vescovo, and T. Schneider

modern RDF stores outperform XML DBs on large datasets although we have
not done such an evaluation.

5 Summary

The solutions presented in this paper—incremental updates and persistence for
AD—aim to make ontology decomposition a practically feasible and attractive
technique. AD is a very promising tool for module extraction, ontology compre-
hension, and collaborative development, but it has to efficiently support all tra-
ditional use cases, most importantly editing and browsing, to be widely adopted.
Ideally, the physical organization of an ontology (whether it is decomposed or
not, stored in a DB or in a text file) should be separated from its logical repre-
sentation, i.e., a set of axioms. The presented methods are the first step towards
that goal.

Importantly, the incremental updates algorithm and persistent management
play well together. Persistent ADs, whether XML or RDF based, efficiently sup-
port all the operations needed for the incremental algorithm, that is, finding
(affected) atoms, inserting axioms into atoms, and adding new atoms and de-
pendencies into the graph. A common interface may completely hide the per-
sistence aspects from the updating algorithm. In fact, incremental updates to
a persistent AD are even more important than to a non-persistent one since it
reduces the amount of IO in addition to avoiding full re-decomposition.

Since this is, indeed, the first step, there is a lot of room for improvement,
especial regarding incremental updates. This paper shows that it works well on
large and simple ontologies but there are problems with ontologies whose AD
graphs are highly connected. The algorithm is naïve in the sense that it simply
re-decomposes the affected part of the AD. A better way would be to avoid the
re-decomposition step with a more clever procedure for distinguishing between
possible consequences of adding an axiom (creating a new atom, adding the
axiom into an existing atom, or merging atoms). Finally, we plan to investigate
updates to AD upon deletion of an axiom.

Acknowledgements This material is based upon work supported by the Na-
tional Science Foundation (NSF) under grant #0943879 (PI: Damian Gessler)
and the NSF Plant Cyberinfrastructure Program (#EF-0735191).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. J. of Artif. Intell. Research 31, 273–318 (2008)

3. Del Vescovo, C., Gessler, D., Klinov, P., Parsia, B., Sattler, U., Schneider, T.,
Winget, A.: Decomposition and Modular Structure of BioPortal Ontologies. In:
Proc. ISWC-11 (2011)

Practical Decomposition of OWL Ontologies 13

4. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: an empirical study. In: Proc. of DL 2010. ceur-ws.org (2010)

5. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: Atomic decomposition. In: Proc. of IJCAI-11. pp. 2232–2237 (2011)

6. Gessler, D., Schiltz, G., May, G., Avraham, S., Town, C., Grant, D., Nelson, R.:
SSWAP: A simple semantic web architecture and protocol for semantic web services.
BMC Bioinformatics 10, 309 (2009)

7. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conservative
extensions in description logics. In: Proc. of KR-06. pp. 187–197 (2006)

8. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga Llavori, R.:
Safe and economic re-use of ontologies: A logic-based methodology and tool support.
In: Proc. of ESWC-08. LNCS, vol. 5021, pp. 185–199 (2008)

9. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Veloso, M.M. (ed.) Proc. of IJCAI-07. pp. 453–458 (2007)

