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Abstract In this paper we examine several forms of modularity in logics
as a basis for various conceptions of the topical structure of an ontology.
Intuitively, a topic is a coherent fragment of the subject matter of the
ontology. Different topics may play different roles: e.g., the main topic
(or topics), side topics, or subtopics. If, at the lowest level, the subject
matter of an ontology is characterized by the set of concepts of the on-
tology, a topic is a “coherent” subset of those concepts. Different forms
of modularity induce different, more or less cognitively helpful, notions
of coherence and thus distinct topical structures.

1 Introduction

When formalising a set of concepts in some logic we encounter a variety of
structural issues. For example, we look for definitions of concepts in terms of
categorizing attributes, that is, for the “internal” structure of our concepts. We
also seek to discover “external” relations between concepts, e.g., of subsumption,
equivalence, or disjointness. In a logic based knowledge representation system,
we can hope that by giving the former, the system can discover the latter.

Common such systems are those based on description logic ontologies. On-
tologies are (decidable) logical theories describing a shared vocabulary about a
domain in terms of a set of concepts plus the relationships between those con-
cepts. In notable examples, as SNOMED CT1 (Systematized Nomenclature of
Medicine – Clinical Terms) that contains more than 300, 000 axioms, while the
internal structure of any concept may well be intelligible, the large scale struc-
ture is not. In particular, the subsumption hierarchy, as a whole, is not particular
well suited to guide the interested reader toward a grasp of “what the ontology
is about.” All concepts – relevant or irrelevant, well or cursorily described, cen-
tral or peripheral – participate, at least vacuously, in the subsumption hierarchy.
One could attempt to heuristically organise concepts in the subsumption hierar-
chy in some larger grain way so that more strongly related terms were clustered
together (e.g., as in [15]). With such a coarse grain structure, one might hope to
discern the “main topics” of the ontology, various side topics, as well as topics
that are neglected in the formalisation. Unfortunately, such heuristic organisa-
tion, even if based on the prior, logic-derived structural aspects of concepts, is
not, itself, derived from logical features of the representation. That is, it is not
1 http://www.ihtsdo.org/snomed-ct/



derived from, nor is it properly sensitive to, the semantics of our representation.
Ideally, there would be a notion of logical topicality which, 1) comports with our
intuitions and expectations about topical organization, 2) is computationally
reasonable, and 3) supports ontology engineers in practice.

A promising foundation for logical topicality is the extensive recent work on
logically sensible modules, that is, modules which offer strong logical guarantees
for intuitive properties of modules [2]. For example, one such guarantee is called
coverage of a set of terms (signature), and means that the module captures all
the ontology’s knowledge about this set. It is easy to see that such a notion
is a reasonable candidate to underly topicality. The aim of this paper is to lay
foundations for a theory of logical topicality in ontologies, by considering five
different forms of logical modularity and possible sorts of topicality they induce.

2 Preliminaries

In this paper, we are concerned with logic-based ontologies, i.e., finite sets of
axioms, formulated in a suitable logic. Our main focus is on Description Logics
(DLs) [1] – decidable fragments of first order logics closely related to modal
logics that form the logical underpinning of state-of-the-art ontology languages
such as OWL 22 [4] – but our discussion is straightforwardly applicable to other
logical formalisms.

A signature is a set of terms; in DLs, these are individual names to denote
elements of the domain (constants in FOL), concept names to denote monadic
predicates, and role names to denote binary predicates. A given DL, say SHIQ,
determines the set of axioms we can form over terms, and any finite set of axioms
is an ontology. For O an ontology, we will use Õ for the set of terms occurring in
O, i.e., for its signature. For example, the following axioms characterize animals,
define parents, and assert facts about two individuals:

Animal v Organism u ¬Plant
Parent ≡ Animal u ∃hasChild.Animal
Animal(peter), Parent(mary), hasChild(peter,mary)

Traditionally, in DLs, in ontology consists of two parts, namely a TBox – those
axioms that involve only concepts and roles, like the first two axioms above –
and an ABox – those axioms that involve individuals, like the last three axioms
above. For our considerations, however, this distinction can be mostly neglected.

We assume that our logic comes with an entailment relation |=. For DLs,
this relation is the standard, first order entailment, which (standardly for these
logics) is not only decidable but for which various decision procedures have been
implemented.

Finally, we make use of the standard notion of conservative extension: roughly
speaking, for Σ a signature and ontologies O1 ⊆ O2, we say that O2 is a (de-
ductive) Σ-conservative extension of O1 if O1 |= α implies O2 |= α, for every
2 http://www.w3.org/TR/owl2-overview/



axiom that we can build over Σ. That is, if O2 is a (deductive) Σ-conservative
extension of O1, then O2 says as much or as little about terms in Σ as O1. Con-
servative extensions and practical approximations have been recently used in
DLs to define notions of modules that are now implemented and used in various
ontology engineering tasks [10,3].

3 Topicality

Similar to, say, a book, an ontology can be about one or more things, from one
or more angles, and it can be about various more or less independent topics. For
example, “Zen and the Art of Motorcycle Maintenance” (by Robert M. Pirsig)
can be said to be about two topics, philosophy and motorcycles, but it ties them
rather closely together so that they may be viewed as dependent. In order to
determine the topic of a book – or an ontology – we thus need to first agree on
a suitable notion of coherence and its dual, independence.

In this paper, we are concerned with the following concepts:

– a description, a syntactical object, e.g., a text, a conversation, a thought, or
an ontology. We assume that this object can be broken down into smaller
pieces such as chapters, sentences, axioms, etc.

– a vocabulary and a grammar used to write well-formed sentences. In logics,
the former is called signature and the latter determined by the syntax of the
logic. We assume that the syntactical object conforms to our grammar and
sticks to the signature.

– a notion of cognitive or logical coherence, which determines whether we take
a given description as a coherent whole, i.e., one where the terms involved
in it depend on each other, or whether it disaggregates into various pieces
that can be said to be independent of each other. Clearly, coherence and
independence are dual to each other, and there can be different notions of
coherence.

– the topic or subject matter of the description, that is, a label describing
the main concepts and their relationships within the description we are con-
cerned with. We want to emphasize that the label describing a topic does
not follow the same grammar rules as the elements of the description. For
example, the topic addressed in the book by R. Pirsig can be described as
“philosophycal discussion during motocycle riding”. This concept description
does not conform to the given grammar as it misses a predicate. For on-
tologies, we may think of a topic as a suitable selection of terms from the
signature, organized in structured expressions such as “animals in terms of
their energy sources and reproduction”.

So, assume you want to automatically determine the topic of an ontology: this
is clearly an underspecified task. Firstly, assume we have a high-quality ontology
that we all agree is a coherent representation of the relevant concepts, regardless
of how strict a notion of coherence we employ. Then, how do we represent its



topic? Clearly, taking the set of all terms is unhelpful: it is probably too ver-
bose and detailed, and also fails to distinguish between the main concepts, e.g.,
animals, and auxilliary concepts, e.g., their energy sources. Thus representing
a topic also involves a measure of importance and means for structuring. Sec-
ondly, both for informal descriptions and for ontologies, we are confronted with
different notions of coherence of varying granularity and with different proper-
ties. For example, it depends on our notion of coherence whether “Zen and the
Art of Motorcycle Maintenance” is about motorcycle maintenance and, rather
unrelated to that, about philosophy, or whether Pirsig has related both topics
together so that the book is about both. Hence we are, in this paper mostly
concerned with logic-based notions of coherence and leave the problem of how
to represent a topic in a useful way for future work.

In what follows, we briefly introduce five logic-based notions of coherence
that will later be discussed in more detail.

Signature independence The most coarse-grained notion of coherence is more
easily defined in terms of indepence: two descriptions are independent if they
talk about different things, i.e., if they do not share any (non-logical) terms.
Thus a description is coherent if it cannot be partitioned into (independent)
fragments whose signatures are disjoint. In general, we would assume each book
to be coherent in this sense, and for its title to be some representation of its
content.

∆-signature independence Clearly, the above notion is so coarse-grained that
most ontologies will be considered as one coherent whole, regardless of whether
we could easily point out intuitively independent fragments. For example, a more
detailed version of our ontology about animals and their energy sources might
talk both about parts of animals involved in the metabolic process, e.g., their
stomaches, and about parts of metabolic processes. If we use the same role,
say hasPart to describe parthood, then anatomy and metabolism are a coherent
whole w.r.t. to the first notion of coherence, whereas we might want to see
them as two independent “subtopics”. Hence a second notion of coherence can
be obtained from the first one by loosening the signature disjointness condition
and allowing independent fragments to share terms from a special, shared part
of the signature, e.g., hasPart.

Natural independence Another notion of coherence can be identified by observ-
ing that, in our ontology, we may be talking about different kinds of things,
e.g., about animals and (metabolic) processes, and that we describe the former
in terms of the latter. This would allow us to decompose our ontology into a
fragment about processes and one about animals, where the latter depends on
the former. With this in mind, we can say that a fragment is coherent if it talks
about one kind of things, and independent otherwise.

(Ir)relevance Clearly, the above notion is still rather coarse-grained in that it
cannot distinghuish between, e.g., “organisms in terms of their metabolism” and



“organisms in terms of their reproduction”, even though these topics might be
largely independent: we can talk about the former without mentioning the latter,
i.e., the latter does not come up naturally when talking about the former. In this
sense, we can say that a fragment is coherent if it completely covers a set of terms,
e.g., Organism and livesOf. In contrast to the former notion, this now allows us
to consider the same things, e.g., organisms, as being the subject of independent
topics.

Minimal (ir)relevance Now this last notion is a rather loose one: taking it lit-
erally, it would allow us to consider anything that “covers” a set of terms as a
coherent whole, regardless of how loosely connected these terms are. It is hard
to think of an ontology where the fragment of organisms and tax forms could be
considered coherent: we would expect it to fall apart into two fragments. Thus
a further condition leads us to our final notion of coherence: we say that a frag-
ment is coherent if it completely covers a set of terms, e.g., Animal and hasChild,
and is not simply the union of two or more such covering fragments.

Each of these notions of coherence allows us to determine how many topics an
ontology is about. Some of them even give rise to a possibly interesting structure
of topics, i.e., a topic can be a subtopic of another one.

4 Logic-based notions of coherence

In what follows, we relate the five notions of coherence sketched above with the
corresponding logical formalisations.

4.1 Signature independence

The logical formalisation of this first notion of coherence was introduced by
Parikh in 1999 in the context of Belief Revision [14]. The question addressed
originally is essentially the following: if we want to revise a theory with a new
piece of knowledge that contradicts some of what is entailed, do we have to
check it against the whole theory? Or do we have some kind of safety that
allows us not to touch those parts that are independent from this new finding?
Hence Parikh was mainly concerned with independence, and thus his definition
of coherence was only a byproduct. He formalises a way to split a logical theory
T into independent parts each of which is, in a maximally fine-grained split,
coherent.

Definition 1. Let O be a logical theory over the signature Õ and let {Õ1, Õ2}
be a partition of Õ. We say that Õ1, Õ2 split the theory O if there are formulae
α over Õ1 and β over Õ2 such that the logical closure of α and β concides with
the logical closure of O. In this case, we say that {Õ1, Õ2} is a O-splitting. In
general, we say that (mutually disjoint) signatures Õ, . . . , Õn split O if there
exist formulae αi ∈ Õi for i = 1, . . . , n such that O is the logical closure of
α1, . . . , αn.



Please note that Parikh’s splitting is a signature splitting: it may be the case
that O is a single formula, and thus we cannot identify any coherent subsets
of O, even though we can identify independent subsets of its signature: please
note how, in first order logic, we can take any finite set of axioms and express it
equivalently in a single axiom.

A nice property of O-splittings is that they are unique.

Lemma 2. Given a theory O over the signature Õ, there is a unique finest
O-splitting of Õ, i.e. one which refines every other O-splitting.

As mentioned above, Parikh’s notion of coherence is rather loose: any ontol-
ogy whose signature cannot be decomposed in disjoint, independent subsets is
coherent, and would thus give rise to only a single topic.

4.2 ∆-signature independence

To obtain a more fine-grained view of topics of an ontology, we can loosen
Parikh’s notion of independence, i.e., we can say that any (part of an) ontol-
ogy is coherent if its signature apart from some special, common terms cannot
be decomposed in disjoint, independent subsets. These special, common terms
can be distinctive of the whole area, but can be used in different contexts. They
can be be considered as descriptive of patterns and methodologies of a theory,
but not specific of a topic: roughly speaking, they belong to a “meta-topic”. In
our introductory example, hasPart was such a special term.

In [12] this approach has been formalized by introducing ∆-decompositions.
The authors assert that some terms, like hasPart in our example, behave as
logical symbols under certain points of view. So, the idea is to identify the set ∆
of these terms in order to decompose the ontology into “signature-but-∆”-disjoint
sub-ontologies.

In contrast to Parikh’s approach, we now have an approach that depends on
the choice of ∆.

Definition 3. Let O a finite theory of formulae in SO, ∆ ⊆ Õ and L a fragment
of SO. A partition Σ1, . . . , Σn of Õ \ ∆ is called a signature ∆-decomposition
of O in L if there are O1, . . . ,On theories of formulae in L such that

- Õi ⊆ Σi ∪∆ for i = 1, . . . , n
- O1 ∪ . . . ∪ On ≡ O.

O1, . . . ,On is called a realization of the signature ∆-decomposition Σ1, . . . , Σn

in L.

This definition involves second order logic for technical reasons, namely to
ensure that the realization of a ∆-decomposition always exists. As for Parikh’s
approach, there is a unique finest ∆-decomposition.

Theorem 4. Let O a finite theory of SO formulae, ∆ ⊆ Õ, and let Σ1, . . . , Σn

and Π1, . . . ,Πm be ∆-decompositions of O in SO. Then, the partition Σi ∩Πj

for all i, j with Σi ∩Πj 6= ∅ of Õ \∆ is a ∆-decomposition of O in SO. Thus,
there exists a unique finest ∆-decomposition of O in SO.



Also as in Parikh’s approach, we decompose a signature and not necessarily
an ontology: given an ontology O in a given DL L, it can be the case that
there exists a suitable, non-trivial ∆-decomposition of O but we are not able to
automatically compute corresponding subsets of O in the given DL. That is, in
contrast to second order logic, other logics like DLs do not allow the so-called
unique decomposition realization (UDR).

Another challenge is the suitable selection of a set ∆. As the authors say,
they “do not expect signature decompositions to be a push-button technique,
but rather envision an iterative and interactive process of understanding and
improving the structure of an ontology, where the designer repeatedly chooses
sets ∆ and analyzes the impact on the resulting decomposition.”

This remark leaves us with the open question: can we use this technique
to extract the topics of an ontology? Since the decomposition depends on the
selection of terms in ∆, the result obtained does not reflect an intrinsic logical
coherence of topics – at least, we still do not have conditions to ensure such a
property.

4.3 Natural independence

A totally different approach to the partitioning of an ontology O is carried out
by identifying fragments that respect validity of axioms that they contain. In
1989 Garson [9] proposed that a logical module M should be:

- logically correct, i.e. any axiom entailed byM should be entailed by O
- logically complete, i.e. any axiom over M̃ that is entailed by O should be
entailed byM

The intuition is that a logical module should preserve all the entailments
that involve the signature the logical module “deals with”. This means that dif-
ferent logical modules can share terms. In [5] the authors apply E-connections
to decompose ontologies, instead than to compose them as originally defined
in [13]. The (computable) notion of module they are searching for is such that
no subsumption relations exist between concepts (as in DLs, i.e. unary predi-
cates) inside the module and concepts outside the module. This intuition leads
to the following notion of module.

Definition 5. A TBoxMA ⊆ O is a module for a concept A ∈ Õ if:

- MA is a logical module in O
- for every concept B ∈ Õ, the following holds:
(a)MA |= {A v B} ⇐⇒ O |= {A v B}
(b)MA |= {B v A} ⇐⇒ O |= {B v A}

- there are no concepts C, D ∈ Õ such that C ∈ M̃A, D 6∈ M̃A and either O |=
C v D or O |= D v C.

To obtain such modules from an ontology, the authors describe a 3-steps
algorithm: a safety-check, a partitioning algorithm, and the identification and
extraction of modules.



The safety-check enforces a (mild) limitation in the ontologies that can be
modularized. If an ontology is not safe, then this algorithm cannot be applied.

The partition algorithm, instead, aims at creating groups of concepts that
can be interpreted independently from the other groups (see Theorem 3 in [5]).
In particular, we obtain a partition of the domain, whose parts can be of three
types: (Red) those which import vocabulary from others, (Blue) those whose vo-
cabulary is imported, and (Green) isolated parts. Intuitively, this property means
that either the parts correspond to actual non-overlapping subject matters, or
the ontology is underspecified and some of the parts correspond to “unused in-
formation”. In both cases, this seems to reflect a logical structure of the ontology.
Moreover, any of these partitions can be automatically labelled with the highest
common concept name in the concept hierarchy.

The step that identifies and extracts the modules is needed to determine
which partitions are modules, or if an aggregation of some of these is necessary
to ensure that what we have is a logical module. However, this step is irrelevant
for the purpouses investigated in this paper. In Fig. 1 it is shown the partitioning
of the toy ontology Koala,3 that contains 42 axioms.

Animal

Degree

Habitat

Gender

Figure 1. E-connections of the ontology Koala

Using the procedure described, when E-connections succeeds, it generates
modules that correspond to an intuitive partition of the ontology. Moreover, it
reveals also a structure: parts that need to import other parts to be defined. In
particular, distinct parts can share part of the vocabulary, but no instances: for
example, we can have a part dealing with Pets and another with PetOwners.
Unfortunately, this technique fails sometimes in partitioning an ontology, and it
returns a unique block, even if the ontology seems in principle well structured;
for example, this happens with the ontology Periodic.4

3 http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
4 www.cs.man.ac.uk/~stevensr/ontology/periodic_full_06012009.owl



4.4 (Ir)relevance

Another approach to the identification of topics within an ontology starts from a
different point of view: the same individual can belong to different topics, as for
example if we talk about a person, we can mean she in terms of her job, or she in
terms of her family, etc. Intuitively, we think to these as different topics. In other
words, a topic is identified not from a single label, but from the relationships
between all the concepts it deals with.

In [2] the authors define locality-based modules: given an arbitrary set of
terms Σ, such a module contains all axioms that “know everything” about Σ,
where “know everything” depends on the notion of locality-based module used.
These modules are an approximation of conservative extensions, as defined in
Sect. 2: in other words, an ontology is always a conservative extension of any
locality-based module. Among the strong logical properties that such modules
satisfy, we have that they are logical modules as defined before. Moreover, such
modules can be efficiently extracted. Hence, it would be interesting to investigate
the family of all possible modules of an ontology O.

By definition, locality-based modules can overlap. In principle this could lead
to an exponential number (w.r.t. the size of the ontology) of modules; in [6] the
trendline of the number of modules has been empirically studied for a selection
of different ontologies, and the exponentiality of the family of modules seems
to be confirmed by the experiments. Hence, studying the whole family of all
locality-based modules is in general an infeasible task to be approached by brute
force.

4.5 Minimal (ir)relevance

In [7] we introduced a new approach to represent the whole family FO of locality-
based modules of an ontology O. The key point is observing that some axioms
appear in a module only if other axioms do. In this spirit, we defined a notion
of “logical dependence” between axioms: the idea is that an axiom α depends on
another axiom β if whenever α occurs in a module M then β also belongs to
M.

Then, by using some notions of algebra, we have identified clumps of highly
inter-related axioms, called atoms, defined to be maximal disjoint subsets of
ontologies such that their axioms either appear always together in modules, or
none of them does. In other words, atoms never split over two or more modules.
Therefore, we can slightly extend the definition of “logical dependency” to atoms
as in the following definition.

Definition 6. Let a and b be two distinct atoms of an ontology O. Then:

- a is dependent on b (written a � b) if, for every moduleM⊆ O containing
a, we have b ⊆M.

- a and b are independent if there exist two disjoint modules M1,M2 of O
such that a ⊆M1 and b ⊆M2.



- a and b are weakly dependent if, they are neither independent, nor depen-
dent; in such case, there exists an atom c which both a and b are dependent
on.

Without loss of generality, we can remove from the ontology syntactic tau-
tologies, i.e. always-local axioms, and global axioms, i.e. axioms that belong to
all modules. We can always remove these unwanted axioms and consider them
separately. As a consequence, the empty set is a module of the ontology. More
importantly, the set of atoms is a partitioning of the ontology, hence linear w.r.t.
its size.

The computation of the AD is polynomial w.r.t. the size of the ontology
(provided that the extraction of a module is polynomial), and the algorithm to
obtain the AD given an ontology and a (suitable) notion of module is discussed
in [7]. The first (and fundamental) step can be described as follows: for each
axiom α of the ontology, the algorithm takes as input its signature α̃, and returns
the module >⊥∗-mod(α̃,O). These modules are non empty, since we already
removed syntactic tautologies, and consequently at least α is non-local w.r.t. α̃.
By definition, then, this module contains the atom a that α belongs to. Moreover,
the strong logical properties of locality-based modules imply that this module
is the smallest that contains a. As a consequence, over the set A(FO) of atoms,
called Atomic Decomposition (AD), is induced a structure of partially ordered
set. Hence the AD of an ontology can be represented by means of a Hasse
diagram.

Beside covering all atoms, the modules we obtained following this procedure
do not fall apart into two modules, and are also called genuine. As a consequence,
they form a basis of the family of modules FO.

Definition 7. A module is called fake if there exist two uncomparable (w.r.t.
set inclusion) modulesM1,M2 withM1∪M2 =M; a module is called genuine
if it is not fake.

It is clear that there is a 1-1 correspondence between atoms and genuine
modules. In particular, given an atom a the corresponding genuine modules can
be retrieved by considering all atoms a is dependent on.

Definition 8. The principal ideal of an atom a is the set (a] = {α ∈ b | b �
a} ⊆ O.

We summarize in the following table the ways described so far to look at
ontologies’ fragments.

Structure O FO A(FO)

Elements axioms α modules M atoms a, b, . . .
Maximal size baseline exponential linear
Mathem. object set family of sets poset

The decomposition of an ontology in atoms seems to capture a very fine-
grained notion of coherence; however, in order to determine the topic of an atom



we still need a way to identify a suitable label. Obviously, such suitable label
will be chosen within the signature of the principal ideal of the atom itself. One
possible way consists of labelling each atom a with the vocabulary used in its
axioms, and then, to express the “logical dependency”, of recursively removing
the terms already used in some atom that a is dependent on. In this way, each
atom is labelled only with the “new terms” introduced. Notice that in this case
some atoms can have empty labels. In Fig. 2 is represented the Hasse diagram
for the AD of the ontology Koala, whose labels are picked as described. Please
note that the heights of the nodes vary: the heigher, the more numerous their
axioms are.

MaleStudentWith3Daughters GraduateStudent KoalaWithPhD

Student, 
University

Koala,
Marsupials, 

DryEucForest
Quokka hasDegree

Degree

hasChildren, 
Parent isHardWorking

TasmanianDevil

Person Marsupials Habitat

Animal,
Male, 

Female, 
hasHabitat, 
hasGender GenderHabitat, 

University
Habitat, 
Forest

DryEucForest, 
Forest

Forest, 
RainForest

Figure 2. Locality-based decomposition of part of the ontology Koala

The intuitition suggests that the “core” atoms of an ontology can be recog-
nized by looking at this structure, because many other atoms depend on them.



However, we still need to carry out real experiments to validate how cognitively
significant this way of representing an ontology and of labelling it is.

5 Discussion and Outlook

The more an ontology reflects faithfully the knowledge about a domain, the more
flexible and reusable it can be. However, ontologies are complex systems, since
the tasks that ontology engineers have to perform are per se complex, and include
the design, the implementation and the maintenance of ontologies. The design
deals with the understanding of the domain, the implementation is a translation
of the knowledge about the domain into a suitable ontology language, and the
maintenance consists of updating the knowledge about the domain, as well as
testing the consistency between the intended modelling of the domain and the
actual modelling of the ontology.

Hence, the complexity of ontology engineering demands for the development
of tools and methodologies to support engineers in manipulating ontologies. A
crucial task is to support ontology engineers in the comprehension of ontologies.
In particular, we have addressed the problem of topicality in ontologies, that
is, “what the ontology is about”, by means of modularity. However, to support
comprehension of an ontology, we need to identify not only coherent fragments
of the ontology but also their meaning.

The first two approaches we described here define coherence as “sharing ter-
minology”, and this, as we have seen, lead to a coarse decomposition of the
ontology, the second being a refinement of the first. In principle, this can pro-
vide support in the understanding of the big picture of the ontology. Whilst the
signature independence is straightforward to determine, the computation of ∆-
independence can involve rewriting part of the ontology: complexity results for
different languages are also carried out in [12]. However, both techniques are still
merely theoretical, that is, there is no implementation, and we do not have any
evaluation of their cognitive usefulness: these approaches can display a weakness
in applicability if ontology engineers need only tools to support a fine tuning
of the ontology. Moreover, since these methods do not involve any extraction
of topic, the ontology engineers still have to look at all axioms of a partition.
Finally, we recall that the selection of terms to be included in the set ∆ is not
automatic or guided: for any selection of terms, the engineer has to evaluate if
the decomposition obtained matches with her understanding of the domain.

The approach based on E-connections aims at identifying fragments of the
ontology dealing with different kinds of individuals. The method has been im-
plemented and it is available on the web.5 In [5] the authors prove that the
modularisation algorithm is polynomial in the size of the ontology. Moreover,
when the algorithm succeeds in partitioning the ontology, the result corresponds
to the intuition of users, and since it provides also labels, it helps in the under-
standing the structure of the ontology. Ontology engineers use this tool in real

5 http://www.mindswap.org/2004/SWOOP



applications. However, it does not capture the finer-grained notion of topic, that
occurs when we want to focus on individuals in terms of a specific aspects. And
this is the intuitive reason for returning just one part – the ontology itself – for
highly interrelated ontologies.

The extraction of a locality-based module is a well-understood and starting
to be deployed in standard ontology development environments, such as Pro-
tégé 4,6 and online.7 It is used, for example, in the field for ontology reuse [11]:
the modules extracted are quite small, and capture the knowledge of the ontol-
ogy about the signature provided for the extraction. In [6] the authors tried to
extract all such modules from ontologies in order to get insight into the modular
structure of the ontology, but for medium size ontologies the algorithm, although
highly optimised, did not succeed in the task. However, such modules capture
the notion of topicality described as relationships between terms.

The atomic decomposition takes advantage of the nice logical properties of
locality-based modules and separate parts of the ontology that show a minimal
irrelevance. In [8] the authors prove that computing the atomic decomposition of
an ontology is polynomial in the size of the ontology, provided that the extrac-
tion of a module is polynomial. Although methods for automatically labelling the
atoms are future work, from a first evaluation it seems that this kind of decom-
position can be used by ontology engineers in fine tuning ontologies. Moreover,
this structure suggests a different notion of relevance from just counting the
number of axioms of a part: an atom is more relevant if it is needed by many
atoms. However, for big ontologies the decomposition looks too fragmented. This
problem can be solved by using one of the previous methods, even if other formal
techniques to group together some atoms into meaningful but coarser parts are
included in our future work.
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