Probabilistic (Randomized) algorithms

Idea:

Build algorithms using a ‘random’ element so as gain
improved performance. For some cases, improved
performance is very dramatic, moving from intractable to

tractable.

Often however, there is some loss in the reliability of
results: either no result at all may be produced, or an
incorrect result may be returned, or, for numerical results,

an approximate answer may be produced.

Because of the random element, different runs may produce
different results and therefore the reliability of results may

be improved with multiple runs.




References

Algorithmics: Theory and Practice, G. Brassard and P. Bratley.
Prentice-Hall. 1988. Introductory chapter on the topic.

Randomized Algorithms, R. Motwani and P. Raghavan. Cambridge
University Press, 1995. Very good and detailed development of the
subject.

Algorithms in Java, R. Sedgewick, Addison Wesley. Chapter on

random number generators.




Classification of probabilistic algorithms

There is a variety of behaviours associated with probabilistic
algorithms:

e Algorithms which always return a result, but the result may
not always be correct. We attempt to minimise the probability
of an incorrect result, and using the random element, multiple
runs of the algorithm will reduce the probability of incorrect

results.

These are sometimes called Monte Carlo algorithms.
Terminology has not been fixed, and varies with author.

Algorithms that never return an incorrect result, but may not
produce results at all on some runs. Again, we wish to minimise
the probability of no result, and, because of the random
element, multiple runs will reduce the probability of no result.

These are sometimes called Las Vegas algorithms.




Classification (cont.)

e Algorithms which always return a result and the correct result,
but where a random element increases the efficiency, by
avoiding or reducing the probability of worst-case behaviour.
Usetul for algorithms which have a poor worst-case behaviour

but a good average-case behaviour.

These are sometimes called Sherwood algorithms, ¢f. Robin
Hood!

Numerical approximation algorithms. Here the random
element allows us to get approximate numerical results, often
much faster than direct methods, and multiple runs will

provide increasing approximation.




Random numbers

The random element required by probabilistic algorithms is
provided by a random number generator. Of course, these do not
generate numbers ‘at random’ (only a truly random process, eg

radioactive decay, could do this!).

Random number generators

Random number generators have been devised to generate
sequences of numbers which behave as though they were random,
in that they pass various ‘tests of randomness’. Such sequences are
sometimes called ‘pseudo-random’.

A variety of methods have been proposed. These all generate
numbers in a specific range, and require an initial element, called
the seed, to begin the generation. Each number in the sequence is
computed from its predecessor.




These methods have several disadvantages: Because numbers are
generated from predecessors, if a number re-occurs, then the
sequence cycles repeatedly. It is intended that different choices
generate different pseudo-random sequences, but if a choice
coincides with an entry in any sequence it will generated the

remainder of this sequence.

The analysis of the randomness and reliability of these

pseudo-random sequences is, in general, very difficult.




Example: Middle squares method

Consider 4-digit numbers.

Repeat the following: Square the number and take the middle 4
digits of the square.

For example, begin with 1234, square is 1522756. Take 5227 as
next entry, square is 27321529. Next number is 3215.

Sequence is 1234, 5227, 3215, 3362, 3030, 1809, 2728....

This is not a reliable method: for some seeds it will repeat itself

fairly quickly, and the selection of numbers may not be very

uniform in the interval. Zeros tend to propagate.




Linear congruence methods

Linear congruence methods are widely used. They require the
choice of two numbers m (which is the divisor for the congruence),

and b (which allows us to generate new instances).

Then for any seed a, we generate the next number in the sequence
as
axXb+1 modm.

The choice of m and b is critical, m should be large and there are
rules for choosing a suitable b.

For example, take m = 1000, b = 921 and the seed a = 123, then

we generate the sequence:

123,284, 405, 6,527, 368, . . .

Again, the analysis of the randomness of these sequences is difficult.




Other methods have been used to generate random numbers,

including ‘additive congruence’ methods (see references).




Probabilistic algorithms: ‘Monte Carlo’ methods

Recall: The following behaviour we called Monte Carlo:

Algorithms which always return a result, but the result
may not always be correct. We attempt to minimise the
probability of an incorrect result, and using the random
element, multiple runs of the algorithm will reduce the
probability of incorrect results.

Majority element

An array A of N natural numbers has a majority element n, if the

number of occurrences of n in A is greater than N/2.

Question: How would you decide whether an array has a majority
element using a deterministic algorithm, and what is its

complexity?




By choosing an element at random and testing to see if it is a
majority element we get a probabilistic algorithm:

Majority(A,N) =
{ i = random(0..N-1)
x = A[i}
k=20
j from O to N-1 do
{if A[j] = x then k = k+1}
return (k > N/2) }

Here, random (0. .N-1) is a uniform random selection of integers
between 0 and N-1.

11



Notice that this algorithm returns true exactly when it has selected
a majority element, but that it may return false even if there is a

majority element.

However, if there is a majority element, then the probability of
returning false is less than 1/2, since a majority element occupies

more than half the array.

We call such an algorithm true-biased, and 1/2-correct.

Because of the random element, repeatedly running this algorithm
will increase our confidence in the result: If it ever returns true,
then there is a majority element. If after M runs every result is

false, the probability of having a majority element is less than
1/2M




Matrix multiplication

Here is another example of a Monte Carlo algorithm:

Recall that the standard way of multiplying N x N matrices A and
B to get result C'is

Cli,k} = > Ali,j] x B[j,]

je{1,...,N}

This is O(N?). Strassen’s algorithm is an O(N?®1) variation of
this. Further algorithms of increasing complication and
computational overheads have been proposed with complexities

down to O(N?%37).




Here is a Monte Carlo method of testing whether a matrix C' is the
product of A and B with complexity O(n?).

MatrixMultiply(A,B,C,N) =
{ newarray X[1...N] %» a 1-dimensional array
for i from 1 to N do
{ X[i] = random(-1,1) } % randomly fill X
return { A(BX) = CX } }

Here random(-1,1) selects -1 or 1 randomly, and A(BX) is
computed as A times BX.

This algorithm is O(N?). Why?

It returns true whenever AB = (. We can show that it returns false
with probability at least 1/2 when AB # C. Again, multiple runs
of this algorithm will therefore increase the reliability of the result.




Other examples of the Monte Carlo method

The Monte Carlo technique has been used to provide probabilistic
algorithms for a range of applications including:

e Testing the primality of numbers (Rabin, M.O. Probabilistic

algorithm for primality testing, 1980). Deterministic primality

testing is computationally difficult, but believed not to be
NP-complete.

e Deciding set equality.

e Applications in cryptography.




Probabilistic algorithms: ‘Las Vegas' methods

Recall that ‘Las Vegas’ algorithms were described as:

Algorithms that never return an incorrect result, but may
not produce results at all on some runs. Again, we wish to
minimise the probability of no result, and, because of the

random element, multiple runs will reduce the probability

of no result.

Las Vegas algorithms may produce tractable computations for

tasks for which deterministic algorithms are intractable even on
average. However, we cannot guarantee a result and there is no
upper bound on the time for a result to appear, but the expected

time may in fact be small.




Typically, Las Vegas algorithms are used to explore a space of

states some of which are the successful states we seek. Las Vegas
algorithms use some random choices to move about the space,
rather than computing at each state a new state to move to. This
is likely to be successful if the proportion of successful states in the
state-space is fairly high, and will lead to an improved efficiency if
the computations of next states are difficult or if systematic

exploration is not necessary.

However, some random choices of next state reach states where no
further moves will lead to a successful state. But we can, of course,
run the algorithm again and different choices will be made.




An example of a Las Vegas algorithm

The Eight Queens Problem is a well known algorithmic task, where
we are asked to place eight queens on a chess board with no queen
attacking another. A queen attacks other pieces in the same row,

same column and along its diagonals.

One solution (of many):




Algorithmic approaches

The classic solution is via backtracking. Place the first queen in the
top-left corner. Now with some non-attacking queens in place,
place a queen in the next row, if it attacks previous queens move it
across the row, square by square. If there is no suitable position in
this row then move the queen in the immediately previous row on
one space if possible. If neither row leads to a required

arrangement, move the queen in the previous row by one space, etc.

In fact this returns a solution after examining only 114 of the 2,057

states.




Here is a Las Vegas solution to the problem:

Suppose that k£ rows (0 < k < 8) have been successfully occupied

(initially £ = 0). If kK = 8 then stop with success. If not then we
wish to occupy row k£ + 1. Calculate all the possible positions on
this row ie those which are not attacked by already placed queens.
If there are no such places, then fail. Otherwise choose one such

place at random, increment k, and repeat.

Notice there is no backtracking: if at any point we cannot place a

queen, we fail.

However, we can repeat the run, and because of the random
element, we will get a possibly different arrangement.

Question: Is this any better than the deterministic backtracking?

Answer: Surprisingly, YES!




It can be calculated that the probability of success of this random
placement is 0.1293... This may seem low, but it means that a
solution is obtained 1 time out of 8 simply by guessing! The
expected number of states explored is approximately 56, compared
to 114 for the deterministic backtracking solution.

The reason for this, is that the solutions of the problem seem to be

in some sense ‘unsystematic’ or ‘random’ arrangements.

In fact we can do better, by combining random placement and

some backtracking, first fixing some queens at random, and then
completing the arrangement by backtracking. If two are placed in
the first two rows at random then the expect number of states
explored to find a solution is only 29!




Applications of Las Vegas algorithms

The Las Vegas technique has been used to provide probabilistic
algorithms for a range of applications including:

e Efficient factorization of integers.

e Breaking symmetry in networks of processes.




Probabilistic algorithms: ‘Sherwood’ methods

Recall that we described ‘Sherwood’ algorithms as:

Algorithms which always return a result and the correct

result, but where a random element increases the efficiency,

by avoiding or reducing the probability of worst-case

behaviour. This is useful for algorithms which have a poor
worst-case behaviour but a good average-case behaviour,
and in particular can be used where embedding an
algorithm in an application may lead to increased

worst-case behaviour.




An example: Quicksort

Quicksort is a sorting algorithm with worst case behaviour O(N?)

but average case behaviour of O(N x log(N)).

The problem is that we cannot guarantee very uneven splits of the
list by choosing pivots. Indeed, systematic choice of pivots (eg the
first element), can lead, in certain applications (eg when almost
sorted lists tend to be supplied), to worst-case behaviour. This is
undesirable!

Can we do better?

It turns out that the O(N log(/N)) behaviour is achievable even if
the lists are split 1/4:3/4. The key observation is that there are at
least N/2 pivots in the list with this property! This is not
immediately obvious - we need to remove the pivot from the list to
be sorted, and also take care over where items equal to the pivot
are placed.




How do we find suitable pivots?

We select at random. We can do this by modifying the quicksort
algorithm to choose a random pivot, or, if modifying the algorithm

is not feasible (eg it is too complicated or we don’t have the source

code), then use stochastic preconditioning, i.e. randomly shuffle the
input before supplying it to the algorithm (which will have a

deterministic choice of pivot).

These ‘Sherwood’ techniques are useful in searching, selection,
median finding, sorting, hashing and more generally, where
worst-case behaviours and average-case behaviours differ and
worst-case behaviours arise from systematic choice which

randomisation can avoid.




Probabilistic algorithms: Numerical approximation methods

Probabilistic techniques can be used to solve numerical problems
by giving approximations to the result. Repeated runs give
increased accuracy of the result.

Example: Numerical integration

Consider calculating the integral

/01 f(x)dx.

This is the area under the curve f. Suppose that we know that for
r€[0...1], 0 < f(z) < 1. Then the following probabilistic

technique approximates the solution:




integrate(f,N) =
{k=0
for 1 from 1 to N do
{ x = random(0..1)
y = random(O0..1)
if y =< £f(x) then k = k+1 }
return k/N }

That is, we select points in the (0,1)-square at random and test

whether or not they are below the curve. The result is the
proportion of those below the curve.

Another probabilistic method is to choose points at random on the
r-axis, calculate the value f(x) and take the average of all of these.




These methods usually do not provide a fast convergence to results
and, for simple integrals, standard approximation methods

(Trapezium method, or Simpson’s method) are better. However:

e Occasionally, functions may perform badly on a systematic
method, especially if they have multiple periodicities.

e For multiple integrals in higher dimensions, probabilistic

techniques can prove useful.

Many other numerical problems in calculus, in estimating sizes of
large sets, in linear algebra etc have probabilistic solutions (see the

references for details).




