
Randomized Algorithms

COMP36111: Advanced Algorithms I

Part 3b: Randomized algorithms - a brief
introduction

Howard Barringer

Room KB2.20: email: howard.barringer@manchester.ac.uk

December 2010

Randomized Algorithms

Outline

Randomized Algorithms
Basic Ideas
Monte Carlo algorithms

Simple numerical integration
A graph problem

Las Vegas algorithms
Randomized Quicksort
From MC to LV
Queens of Las Vegas

Further Reading

Randomized Algorithms

To start ...

• Randomised algorithms employ some form of random element
in an attempt to obtain improved performance (over worst
case performance of deterministic algorithms)

• Sometimes, improvement can be dramatic, from intractable to
tractable

• Some loss in reliability of results can occur

• Different runs may produce different results, reliability may be
improved by running several times

We will consider two types of randomized algorithms:

Monte Carlo

Las Vegas

Randomized Algorithms

To start ...

• Randomised algorithms employ some form of random element
in an attempt to obtain improved performance (over worst
case performance of deterministic algorithms)

• Sometimes, improvement can be dramatic, from intractable to
tractable

• Some loss in reliability of results can occur

• Different runs may produce different results, reliability may be
improved by running several times

We will consider two types of randomized algorithms:

Monte Carlo

Las Vegas

Randomized Algorithms

Do you remember Buffon’s Needle?

An 18th century approach to approximating π.

Drop N needles of unit length
randomly (with uniform distri-
bution) over a floor.

Width of floor boards is 2
units.

Some will fall across the
boards — the red ones,
some will not — the blue ones.

The ratio red
N tends to 1

π as the N tends to ∞ .

Randomized Algorithms

Do you remember Buffon’s Needle?

An 18th century approach to approximating π.

Drop N needles of unit length
randomly (with uniform distri-
bution) over a floor.

Width of floor boards is 2
units.

Some will fall across the
boards — the red ones,
some will not — the blue ones.

The ratio red
N tends to 1

π as the N tends to ∞ .

Randomized Algorithms

Do you remember Buffon’s Needle?

An 18th century approach to approximating π.

Drop N needles of unit length
randomly (with uniform distri-
bution) over a floor.

Width of floor boards is 2
units.

Some will fall across the
boards — the red ones,
some will not — the blue ones.

The ratio red
N tends to 1

π as the N tends to ∞ .

Randomized Algorithms

Do you remember Buffon’s Needle?

An 18th century approach to approximating π.

Drop N needles of unit length
randomly (with uniform distri-
bution) over a floor.

Width of floor boards is 2
units.

Some will fall across the
boards — the red ones,
some will not — the blue ones.

The ratio red
N tends to 1

π as the N tends to ∞ .

Randomized Algorithms

Outline

Randomized Algorithms
Basic Ideas
Monte Carlo algorithms

Simple numerical integration
A graph problem

Las Vegas algorithms
Randomized Quicksort
From MC to LV
Queens of Las Vegas

Further Reading

Randomized Algorithms

Monte Carlo algorithms – characteristics

These are randomized algorithms which may pro-
duce incorrect results with some small probability,
but whose execution time is deterministic .

If such an algorithm is run multiple times with in-
dependent random choices each time , the failure
probability can be made arbitrarily small — at the
cost of the running time .

Randomized Algorithms

Monte Carlo numerical integration

y

10
x

y = f(x)

1

Given: for x ∈ 0..1 that f (x) ∈ 0..1

Randomly pick N points in the 0-1
square.

Count the number k of points (x , y)
st. y ≤ f (x) .

The ratio
k

N

will approximate∫ 1

0

f (x)dx

Randomized Algorithms

Monte Carlo numerical integration

y

10
x

y = f(x)

1

Given: for x ∈ 0..1 that f (x) ∈ 0..1

Randomly pick N points in the 0-1
square.

Count the number k of points (x , y)
st. y ≤ f (x) .

The ratio
k

N

will approximate∫ 1

0

f (x)dx

Randomized Algorithms

Monte Carlo numerical integration

y

10
x

y = f(x)

1

Given: for x ∈ 0..1 that f (x) ∈ 0..1

Randomly pick N points in the 0-1
square.

Count the number k of points (x , y)
st. y ≤ f (x) .

The ratio
k

N

will approximate∫ 1

0

f (x)dx

Randomized Algorithms

Randomized integration algorithm

i n t e g r a t e (f ,N) =
{ k = 0

f o r i = 1 to N do
{ x = random (0 , 1)

y = random (0 , 1)
i f y =< f (x) then k += 1}

return k/N −−− as a r e a l ! }

Repeated runs of this can be used to give increased accuracy of
the result.

Randomized Algorithms

Randomized integration algorithm

i n t e g r a t e (f ,N) =
{ k = 0

f o r i = 1 to N do
{ x = random (0 , 1)

y = random (0 , 1)
i f y =< f (x) then k += 1}

return k/N −−− as a r e a l ! }

Repeated runs of this can be used to give increased accuracy of
the result.

Randomized Algorithms

Another random approach for integration

As an alternative for
∫ b
a f (x)dx , estimate the average height of

the curve through random sampling of x ∈ a..b , then multiply by
the integration range b − a .

a l t I n t e g r a t e (f , N, a , b) =
sum = 0
f o r i = 1 to N do
{ x = random (0 , 1) ∗ (b−a) + a

sum = sum + f (x) }
return (sum/N) ∗ (b−a)

Again, a deterministic sampling generally converges faster ...

Randomized Algorithms

Another random approach for integration

As an alternative for
∫ b
a f (x)dx , estimate the average height of

the curve through random sampling of x ∈ a..b , then multiply by
the integration range b − a .

a l t I n t e g r a t e (f , N, a , b) =
sum = 0
f o r i = 1 to N do
{ x = random (0 , 1) ∗ (b−a) + a

sum = sum + f (x) }
return (sum/N) ∗ (b−a)

Again, a deterministic sampling generally converges faster ...

Randomized Algorithms

But ...

Deterministic sampling algorithms can be fooled through bad
sampling.

sampling points 10
x

1
y

Which won’t occur with the randomized version...

Randomized Algorithms

Note, though ...

In general, the above techniques do not provide fast convergence.

For simple integrals, standard approximation methods, such as
Simpson’s or the Trapezium method, are better.

For multiple integrals in higher dimensions, randomized methods
can be effective.

Randomized Algorithms

Minimum cut of a graph - unweighted
Given a graph G = (V ,E) , a cut in G is a set of edges C ⊆ E
whose removal from G results in a graph with two or more distinct
components.
A minimum cut of G is a cut in G of minimum cardinality.

Two possible minimum cuts

A

D

C

B

A B

C

D E

A B

C

D E

E

Randomized Algorithms

A simple randomized algorithm for min-cut

The idea: given a graph G = (V ,E) , we randomly contract edges
until two vertices remain, then the set of edges between the two
vertices is a cut in G .

Repeat the following steps until only two vertices re-
main.
• choose an edge uniformly at random

• merge the vertices at the end points of the edge

• remove any self loop so introduced

Will this algorithm find a min cut?

Randomized Algorithms

A simple randomized algorithm for min-cut

The idea: given a graph G = (V ,E) , we randomly contract edges
until two vertices remain, then the set of edges between the two
vertices is a cut in G .

Repeat the following steps until only two vertices re-
main.
• choose an edge uniformly at random

• merge the vertices at the end points of the edge

• remove any self loop so introduced

Will this algorithm find a min cut?

Randomized Algorithms

Random min-cut example

contract this edge

to give

contract this edge
to give

to give
finally, contract this edge

D

B

D

AC

E

D

AC

BEBED

AC

A B

C

E

Randomized Algorithms

Random min-cut example - different choices

next, contract this edge
to give

finally, contract this edge

contract this edge

to give

to give

A

CD

AB

CD

AB

E

AB

ED

C

ED

C

B

E

Randomized Algorithms

Random min-cut example - analysis

Given a graph with n vertices.

Let C denote a particular min-cut of size k .

Let εi denote the event of not picking an edge of C on the ith step.

Pr(
⋂n−2

i=1 εi) ≥
∏n−2

i=1

(
1− 2

n−i+1

)
= 2

n(n−1) .

Thus, probability of finding a particular min-cut is ≥ 2
n2 .

We could repeat this algorithm n2

2 times, using independent
random choices — the probability that the min-cut is not found in
any of n2

2 repetitions reduces to become < 1
e .

Further repetition will reduce the probability further.

This is an example of a Monte Carlo algorithm.

Randomized Algorithms

Random min-cut example - analysis

Given a graph with n vertices.

Let C denote a particular min-cut of size k .

Let εi denote the event of not picking an edge of C on the ith step.

Pr(
⋂n−2

i=1 εi) ≥
∏n−2

i=1

(
1− 2

n−i+1

)
= 2

n(n−1) .

Thus, probability of finding a particular min-cut is ≥ 2
n2 .

We could repeat this algorithm n2

2 times, using independent
random choices — the probability that the min-cut is not found in
any of n2

2 repetitions reduces to become < 1
e .

Further repetition will reduce the probability further.

This is an example of a Monte Carlo algorithm.

Randomized Algorithms

An improved randomized min-cut algorithm
The above randomized min-cut algorithm can be used to contract
a graph of, say, n nodes down to one with t nodes.

Importantly, any min-cut K survives with probability Ω((t
n)2) .

This inspires an improved min-cut algorithm (Karger and Stein,
1996) which

• first performs two independent contractions to give two graphs H1

and H2 , each with d1 + n√
2
e nodes — this bound ensures the

min-cut survives with probability ≥ 1
2

• then recursively computes the min-cuts of H1 and H2

• and selects the smaller of the two min-cuts.

It can be shown that this improved algorithm runs in O(n2logn)
time, using n2 space.

Furthermore, it will find a min-cut with probability Ω(1
logn

) .

Randomized Algorithms

An improved randomized min-cut algorithm
The above randomized min-cut algorithm can be used to contract
a graph of, say, n nodes down to one with t nodes.

Importantly, any min-cut K survives with probability Ω((t
n)2) .

This inspires an improved min-cut algorithm (Karger and Stein,
1996) which

• first performs two independent contractions to give two graphs H1

and H2 , each with d1 + n√
2
e nodes — this bound ensures the

min-cut survives with probability ≥ 1
2

• then recursively computes the min-cuts of H1 and H2

• and selects the smaller of the two min-cuts.

It can be shown that this improved algorithm runs in O(n2logn)
time, using n2 space.

Furthermore, it will find a min-cut with probability Ω(1
logn

) .

Randomized Algorithms

Outline

Randomized Algorithms
Basic Ideas
Monte Carlo algorithms

Simple numerical integration
A graph problem

Las Vegas algorithms
Randomized Quicksort
From MC to LV
Queens of Las Vegas

Further Reading

Randomized Algorithms

Las Vegas algorithms – characteristics

These are randomized algorithms which never
produce incorrect results, but whose execution
time may vary from one run to another .

Random choices made within the algorithm are
used to establish an expected running time for the
algorithm that is, essentially, independent of the
input.

Some literature distinguishes:

• randomized algorithms that always return the correct result —
Sherwood

• from those that if they return a result, it is always correct, but
may not return a result — Las Vegas

Randomized Algorithms

Las Vegas algorithms – characteristics

These are randomized algorithms which never
produce incorrect results, but whose execution
time may vary from one run to another .

Random choices made within the algorithm are
used to establish an expected running time for the
algorithm that is, essentially, independent of the
input.

Some literature distinguishes:

• randomized algorithms that always return the correct result —
Sherwood

• from those that if they return a result, it is always correct, but
may not return a result — Las Vegas

Randomized Algorithms

A randomized Quicksort algorithm

For an input of size n , Quicksort has:

• a worst case time behaviour of O(n2) , but

• an average case time behaviour of O(nlogn)

The difficulty is determining the pivot point — very uneven splits
can be obtained.

Interestingly, O(nlogn) behaviour can be achieved.

Randomized Algorithms

Randomized Quicksort

Given a set S of n numbers.

1. If | S |≤ 1 , output the elements of S and stop.

2. Choose a pivot element y uniformly at random from S .

3. Determine the set S1 of elements ≤ y , and the set S2 of
elements > y .

4. Recursively apply to S1 , output the pivot element y , then
recursively apply to S2 .

Randomized Algorithms

Informal analysis

Randomized quicksort has expected time (averaged over all choices
of pivots) of O(nlogn) .
Assume we sort the set and divide into four parts, the middle two
contain the best pivots.
Each is larger than at least 1

4 of the elements and smaller than at
least 1

4 of the elements.
Choosing an element from the middle two means we split at most
2log2n times.
A random choice will only choose from these middle parts half the
time, but this is good enough to give an average call depth of
2(2log2n) .
And hence the expected time of O(nlogn) .

Randomized Algorithms

From Monte Carlo to Las Vegas!

Since (our) Las Vegas algorithms are Monte Carlo ones with an
error probability of zero, we can construct Las Vegas ones from
Monte Carlo.

input of

Algorithm

Monte Carlo Solution

Checker Correct

Incorrect, rerun

t(n)T(n)

size n

If the success probability is p(n) , what’s the expected run time?

Randomized Algorithms

Analysis ...

Let the number of iterations be denoted by the random variable X .

Independent choices are made on each iteration and X is said to
be geometrically distributed.

Given success probability p(n) , the expectation E [X] is:

1

p(n)

.

Hence, the expected run-time of the Las Vegas algorithm is:

T (n) + t(n)

p(n)

.

Randomized Algorithms

Eight queens problem — another Las Vegas example
Place 8 queens on a chess board so that no one attacks another.

Remember: a queen attacks other pieces on the same
row, same column and same diagonals.

A possible solution:

Randomized Algorithms

Backtracking algorithm

Place first queen in top-left corner.

Assume now the situation with some non-attacking queens in
place.

If < 8 queens on board, place a queen in the next row — if it
attacks a queen, move along the row one square at a time. If no
position is possible, move the queen in the immediately preceeding
row on one square. If no position is suitable, move the queen in
the next row back, etc..

This algorthm actually returns a solution after examining 114 of
the 2057 possible states.

Randomized Algorithms

A Las Vegas approach – non-backtracking

Assume that k rows, 0 ≤ k ≤ 8 , are successfully occupied by queens.

If k = 8 then stop with success.
Otherwise, proceed to occupy row k + 1 .

Calculate all positions on this row not attacked by existing queens.
If there are none, then fail.
Otherwise, pick one at random , and continue to next row.

Note, there is no backtracking, the algorithm simply fails if a queen can’t
be placed.

BUT this can be repeated, and will consider a probably different
placement.

Amazingly, this is better than the backtracking algorithm.

Randomized Algorithms

A Las Vegas approach – non-backtracking

Assume that k rows, 0 ≤ k ≤ 8 , are successfully occupied by queens.

If k = 8 then stop with success.
Otherwise, proceed to occupy row k + 1 .

Calculate all positions on this row not attacked by existing queens.
If there are none, then fail.
Otherwise, pick one at random , and continue to next row.

Note, there is no backtracking, the algorithm simply fails if a queen can’t
be placed.

BUT this can be repeated, and will consider a probably different
placement.

Amazingly, this is better than the backtracking algorithm.

Randomized Algorithms

Random eight queens — cont.

The probability of success for the random placement is 0.1293 . . . ,
i.e. approximately 1 in 8 times, just by guessing.

The expected number of states explored can be calculated to be
around 56 , compared with 114 for the deterministic algorithm.

Further improvements can be made by combining random
placement with some backtracking, first fixing some queens at
random and then completing the arrangement via backtracking.

When the first two rows are occupied at random, then the expected
number of states explored to find a solution becomes just 29.

Randomized Algorithms

Outline

Randomized Algorithms
Basic Ideas
Monte Carlo algorithms

Simple numerical integration
A graph problem

Las Vegas algorithms
Randomized Quicksort
From MC to LV
Queens of Las Vegas

Further Reading

Randomized Algorithms

Further Reading on randomized algorithms

• Algorithmics: Theory and Practice. G. Brassard and P. Bratley,
Prentice-Hall, 1988.

Introductory chapter on the topic.

• Randomized Algorithms. R. Motwani and P. Raghavan, Cambridge
University Press, 1995.

An excellent comprehensive account of the topic. A very good
source book on approaches to using randomization in algorithms.

• A new approach to the minimum cut problem. D. Karger and C.
Stein, Journal of the ACM, Vo. 43, No. 4, July 1006, pp 601-640.

Only for the very brave — a briefer and slightly easier account of
this algorithm is contained in Chapter 10, section 10.2, pages
289–295, of Motwani and Raghavan’s above book.

	Randomized Algorithms
	Basic Ideas
	Monte Carlo algorithms
	Las Vegas algorithms
	Further Reading

