
Predicting Skill from Gameplay Input to a

First-Person Shooter

David Buckley, Ke Chen and Joshua Knowles

School of Computer Science

University of Manchester, UK

david.buckley@cs.man.ac.uk; ke.chen@manchester.ac.uk; j.knowles@manchester.ac.uk

Abstract—One way to make video games more attractive to
a wider audience is to make them adaptive to players. The
preferences and skills of players can be determined in a variety
of ways, but should be done as unobtrusively as possible to keep
the player immersed. This paper explores how gameplay input
recorded in a first-person shooter can predict a player’s ability.
As these features were able to model a player’s skill with 76%
accuracy, without the use of game-specific features, we believe
their use would be transferable across similar games within the
genre.

I. INTRODUCTION

One of the challenges of video game design is catering

for an audience with different styles of play [1]. The unpre-

dictability of player preferences and increased costs of game

production have discouraged larger publishers from venturing

into new territory [2]. In response to this, the emerging field of

player modelling seeks to learn player preferences through the

use of existing techniques such as neural networks or genetic

algorithms [3].

Models of player preferences provide the developer with

valuable feedback, allowing them to adjust their game man-

ually, or dynamically adapt it after release. For instance,

particularly challenging sections in a game can be identified

[4], or the game could be altered in real-time to optimise a

particular emotion [5]. Further examples of research in the

field of adaptivity can be found in the survey by Lopes and

Bidarra [6].

One common form of adaptivity found in video games is

Dynamic Difficulty Adjustment (DDA) [7], in which the game

accommodates for the differences in players’ abilities and

skills by adjusting the difficulty settings. Successful examples

of this can be found both in academia [8], [9] and the industry

[10]. However, before adaptation, the game must have some

method to work out how competent the player is and how well

they are currently doing. This concept is known as a challenge

function [7].

In order to work out a player’s current state, some video

game companies have taken to instrumenting their games to

construct player models [11]. Game events, such as player

deaths, are recorded unobtrusively in log files that can be

mined for features. The events that make up this log file

are described in the field of Human Computer Interaction as

high-level or low-level [12]. High-level events such as player

deaths are composed of lower-level events; damage taken and

health restored. In a first-person shooter, player movement

around their environment is composed of more frequent key

and mouse movement events.

While high-level game events like player jumps or deaths

have been explored previously [13], a player’s direct input

has received less attention. Previous work has successfully

clustered players by their playing style [14]. For a 2-D arcade

game Snakeotron, the features corresponding to player input

were considered very important. In the same study, player

behaviour in a second game, Rogue Trooper, clustered around

movement and firing which are both composed of low-level

input events.

Therefore, for the purposes of modelling a challenge func-

tion, this research proposes that features derived from low-

level events, the player input, can be used to construct a model

of the player’s skill. First-person shooter (FPS) games require

continuous interaction with the player and the real-time nature

of this input can provide a snapshot of the player. Moreover,

the fast-paced nature of their gameplay and input from both

mouse and keyboard offers a good use case for exploring

hardware input.

In single-player games, this model could be used for the

purposes of DDA, determining how well players are doing at a

particular instant [8]. Its use would also apply to other dynamic

contexts, including tailoring tutorials towards less experienced

players. Within multi-player games, it can be extended to

matchmaking, where players are partnered with opponents of

a similar skill. By quickly determining the level of experience

a player has, they can be matched against a comparable player

without having to play many games.

In order to test the theory that skill can be modelled from

player input data, 34 participants with varying degrees of

experience played an FPS. A selection of low-level events were

recorded during play, and, after each game, players were asked

to answer questionnaires about their experience. The choice of

data and questions has been described in Section II.

Random forests were used to construct models from this

data. A previous study on player modelling [11] explored a

variety of techniques suitable for this task, including multilayer

perceptrons, common in this domain [13], and support vector

machines. The choice of model and reasoning behind it has

been outlined in further detail in Section III.

Results, presented in Section IV, show that players can be

classified by skill with 76% accuracy after only a minute of



play.

II. DATA COLLECTION

The experimental method is described in this section, in-

cluding the reasoning behind the data collected.

A. Red Eclipse

The gameplay within the FPS genre is typically fast and

relies on quick reflexes and skilful use of input devices. For

players on the computer, these are the mouse, used for aiming,

and the keyboard, typically used for movement. The richness

of the data provided by two input devices and their use in-game

offer a good example for exploring player input. Moreover,

the use of multiplayer games within this experiment removes

dependencies on storylines and any effects they may have on

the player.

Red Eclipse1 is a free and open-source, multiplayer FPS

built on the Cube Engine 22. It draws on similar themes

as the popular Quake, and is largely representative of the

FPS genre, offering several different modes and considerable

customisability. Its open-source licence also allows us to

instrument the game for the purpose of this experiment.

Modification of Red Eclipse was performed on the client,

potentially allowing players to download an instrumented

version of the game and connect to existing servers. Events,

such as key presses and releases, were logged to a text file

when registered with the engine. Logs were output to a text

file, extending on the game engine’s existing logging system.

Some of the game mechanics and rules of Red Eclipse

are unique or uncommon among other FPS games. One such

game mechanic is an advanced movement system, with which

players can perform double-jumps and run along walls. While

uncommon, this did not subtract from the experience, and was

only used by a few of the more experienced players. The rules

also included a weapon limit so that the player could only carry

up to three weapons at a time. This weapon limit, alongside

unlimited ammo, decreased the complexity of the game for

newer players.

In addition, these game mechanics and rules can be cus-

tomised by the user, allowing us to configure the game for the

experiment. The settings specified included the game mode,

time limit, difficulty and game level, known as a map.

B. Experimental Setup

Data collection ran over a two week period, and was done

in-house in order to ensure the quality of the data collected.

During this time, 212 games were played by 34 participants

who completed an average of 6 games each, with one player

completing as many as 22 games.

Before taking part in the experiment, every participant was

asked to sign a consent form, read a tutorial and complete a

short, demographic questionnaire. The tutorial was provided to

the player to ensure everyone started the game with a minimum

level of knowledge. It explained the basic controls used in FPS

1http://www.redeclipse.net
2http://cubeengine.com

games, the weapons found in Red Eclipse, and some of the

key game mechanics such as health regeneration. The player

was given as long as they needed to read through this before

starting the experiment. They were then allowed to play as

many games as they wished, filling in a questionnaire about

their experience after each.

Two of the game’s parameters - the length of game and the

game mode - were fixed throughout the experiment. The first

of these, the game time, was set to three minutes. Choosing a

shorter game time made it easier for players to remember their

experience [15] and for the questions asked to more accurately

reflect the state of the whole game. The second parameter was

set to ‘deathmatch’, a standard game mode in which players

fight individually to earn points through killing each other.

This game mode is one of the most common in FPS games

and its simplicity controlled the learning required by players.

The enemy difficulty and map were then selected randomly

between each game. Six different difficulties and eight maps

were available to choose from. These allowed the player to

experience a variety of games while retaining the simplicity

of the experiment. The maps chosen, for instance, were limited

so the player might have the opportunity to become familiar

with some levels, while still including a range of environments,

including simple terrains, complex building structures or wide,

spacious arenas.

C. Player Feedback

For the purpose of player modelling, a measure of the

player’s emotion was taken through the use of questionnaires.

While objective and quantifiable measurements of a player’s

emotions is preferred for prediction, use of physiological data

is still an emerging field [16] and equipment is expensive.

Therefore, self-assessment is a typical form of capture for

player experience [3], [17], as in this study.

A separate questionnaire was used to collect simple demo-

graphic information about participants. From this, the majority

of people who took part were male, with three female par-

ticipants who played 12 games out of the total 212. There

was, however, an even split of players 18 to 25 years old and

those 26 and older. Participants were also asked about their

playing habits in this questionnaire, in particular the hours

spent a week playing games and the number of FPS games

played. The first category, the hours, was split up into four

categories to determine how often players spent playing games

on a regular basis. Participants were also asked how many

first-person shooters they had played previously to use as a

quantifiable measure of player experience. While they were

asked to select one of five categories as best as they could, no

participants selected the option ‘None’. The other categories

were:

• 1 or 2

• 2 - 5

• 5 - 10

• More than 10

For each of the games played, the player was asked four

questions corresponding to fun, frustration, challenge and map



complexity, each on a five-point Likert scale. The first three of

these were chosen due to previous success in predicting them

[13]. The last was selected for use as preliminary research into

map design, exploring the connections between experience

and map layout. Predictability, while showing a measure of

success in the previous research, did not apply to the non-

linear nature of the maps.

The work on which this was based [13] used a 4-alternative

forced choice (4-AFC) approach in obtaining feedback. Using

this method, players offer a comparison between two games,

stating which elicited that emotion the most, or whether both

or neither elicited it the same amount. The differences between

rating and preference based reporting has been explored briefly

[18], finding that there are some inconsistencies due to ‘order-

of-play’ effects found in rating questionnaires. However, de-

spite these, a Likert scale provided twice as many examples

for learning, and required only one game to be remembered

per questionnaire.

D. Captured Data

During each game, all mouse and key events produced by

the game were recorded in a log file. Alongside these data,

particular game events, such as player deaths and damage

dealt, were also logged. While not the focus of the research,

these higher-level events were used for comparison and a better

perspective of the games played. The resulting data files can

be found on the author’s website3.

E. Features

Statistical features were extracted from each game due to

the size of the log files, which could contain over 10,000

events. These features, the most interesting of which have

been described here, are more accessible to machine learning

algorithms. In addition, the game was split up into time

windows to explore the properties of different sections of the

game, and to find the smallest size section of gameplay that

could be used for prediction [19]. The window sizes presented

in this research were 5s, 10s, 60s and 180s, the full length of

the game.

1) General Features: Each of the events was placed into

a category such as mouse, key or damage dealt, and features

were extracted from each group to describe the distribution of

events. The most notable were:

• Number of events

• Measure of distance from centre of screen

• Mean time between events

2) Mouse Movement: By far the most frequent event

recorded in the log file is that of mouse movement, taking

up around three quarters of the total events. However, as this

data is analogue, it is also the most unpredictable. Each event

generated by mouse movement records the displacement of the

mouse in the x and y directions, referred to here as δx and δy.

These were compiled to work out the absolute positions of the

mouse for each event, x and y. Using these four values, the

3http://www.cs.man.ac.uk/∼buckled8/automatic.html

following features were constructed in order to best describe

the movement of the mouse over the time window:

• The average x and y position

• The maximum and minimum x and y positions

• The standard deviation of x and y

• The largest δx and δy value

• The average δx and δy value

• The sum of the absolute values of δx and δy

3) Button Presses: After the mouse, the second form of

player input into the game is from button presses, both presses

and releases. For the purpose of this study, this includes both

key and mouse button data, as the two are only distinguishable

by an ID to the game engine. These events allow the player to

perform actions in Red Eclipse such as moving or firing their

weapon. Logging this data can therefore provide a low-level

view of what the player is doing.

In addition to the number of key press events in the time

window, we also extracted the following features:

• Key that was pressed the most

• Most keys pressed at one time

• Time spent holding forward key

• Time spent holding backward key

• Time spent holding left key

• Time spent holding right key.

III. SKILL MODELLING

A. Definition of Skill

The skill of a player is particularly important in multiplayer

games as it, more often than not, determines the winner of

a game. For players to enjoy a game, they should typically

be matched against players of a similar skill level, thereby

increasing competition. Measurements to calculate or compare

skill levels can be used to accomplish this.

Some measures of skill are already widely used in games.

StarCraft, the national e-sport of South Korea, makes use of

actions per minute (apm) to judge a player, with professional

players capable of over 300apm. In first-person shooters,

accuracy and kill-to-death ratio are popular metrics. However,

while common, these can depend on the game type or the

opponents.

Hit accuracy, the number of times a player hits an enemy

divided by the total number of shots, is a common way of mea-

suring a player’s skill. An experienced player is likely to be

more apt at aiming the mouse and therefore hitting opponents.

However, this measure is highly dependent on the type of

weapons used. Within Red Eclipse, nine different weapons are

available, all designed to provide unique mechanics. Players

might have differing preferences, and therefore, while style

might be predicted from hit accuracy, an accurate measure of

skill may not. The second measure mentioned, kill-to-death

ratio, has been explored briefly in this research.

In order to create a measurement of player skill, players

were asked how many hours of games they currently played

per week and how many first-person shooters they had pre-

viously played. Both of these seek to remove subjectivity,



the first used to determine how much time people invest

into games, the second to measure their previous experience.

However, it was found in this study that sometimes players

with a lot of experience had not played recently. It was

therefore considered useful to examine both metrics, Hours

and FPSs Played.

B. Previous Modelling Techniques

A variety of machine learning techniques have already been

used for the purpose of player modelling, one study examining

the performance of several [11]. This study, also working

towards predicting player behaviour, had some success in

prediction, and showed that some techniques were more suited

than others. Most notably, multilayer perceptrons (MLPs),

decision trees and support vector machines (SVMs) performed

well. The first of these, MLPs, are a popular choice for

prediction in games [13], [20]. However, they are relatively

slow to train, requiring genetic algorithms to optimise, and the

resulting network is harder to interpret. SVMs are also difficult

to optimise, requiring adjustment for each data set and, with

regards to this previous research [11], its performance was

notably worse than that of the other methods. The performance

and flexibility of the third technique, decision trees, led us to

explore random forests.

C. Random Forests

Random forests [21], an ensemble method constructed from

decision trees, can provide state-of-the-art performance, and

have most notably been used in Microsoft’s Kinect [22]. They

are fast and effective, performing well on high-dimensional

data. In addition, decision trees have a white box property in

that the constructed models can be understood. Contrasting

with the black box property of an SVM, random forests

therefore have a ‘grey box’ property. The features used in the

random forest models can be ranked by their utility, providing

an opportunity to analyse the features used.

In this task, where each game session was split into smaller

time windows, the number of features grew rapidly. As such,

random forests were suitable to our data set, able to cope

with the size and even present the most interesting features.

Moreover, random forests can model both classification and

regression problems, allowing for flexibility during analysis.

In order to train a random forest, a data set and corre-

sponding labels are provided to learn from. For our research,

this data set consisted of all features taken from a particular

window for a subset of games. For example, the features

extracted from the first ten seconds of the game. These

windows could also be combined and passed as training data,

for instance the second and fourth ten second windows. The

labels then corresponded to either information about each

game, such as the points scored, or the player of the game,

such as their age.

As mentioned, a random forest is an ensemble method,

and, therefore, is made up of many decision trees, each of

which sees a different view of the data. For classification,

each decision tree votes for a particular class and that with

the majority vote is taken. Regression can also be done by

averaging the resulting class for each model. To achieve these

differing views for each model, each decision tree is trained

on a subset of data, randomly selected with replacement.

The model behind a random forest, the decision tree, is

constructed by recursively splitting the training data into

separate classes. At each node in the tree, the split is made on

the feature that produces the most information gain. As such,

the final nodes in an ideal tree will each only contain instances

of a single class. A new example can then be classified by

following the correct branches down the tree.

One other feature of the models used in a random forest is

that not all features are used at once. During node creation,

a subset of features are chosen to calculate the split. This

furthers variation of features used and thereby the performance

of models, increasing the overall performance.

Once constructed from player data, random forest models

can be used for predicting information about the game or

player. This could be categorical data like that supplied in the

questionnaires, or the result of a game, such as the player’s

final score. The random forest can be constructed for either

case; classification or regression.

IV. RESULTS

In this section the results from data analysis and motivations

for exploring each of the areas are presented.

A. Experimental Setting

The first step of analysis was to consider how well the

most coarse data sets could model each of the labels provided

by the players’ feedback. This put each of the tasks in

perspective. In order to accomplish this, classification models

were constructed from the largest window sizes, 180s and

60s. Two labels were omitted from these tests due to large

imbalance in the sample: previous experience of Red Eclipse,

of which only two participants had any, and gender, as there

were only 3 female participants that took part out of 34.

Each random forest in this experiment was trained using 500

decision trees and the number of features selected randomly

for each tree was left as the default. This was calculated as

the square root of the total number of features available. The

models were then tested using 5-fold cross validation, each

test repeated a further 5 times and averaged in order to ensure

a meaningful result. In line with this, all accuracies shown are

testing errors.

Following on from these results, two labels, FPSs Played

and Hours, were found to be of particular interest. These are

both representative of the players’ experience and both showed

some level of prediction. The two labels also have slightly

different interpretations of skill. The first, FPSs Played, pro-

vides a representation of a players’ entire gaming history and

indicates experience specific to first-person shooters. Hours,

on the other hand, is a snapshot of each players’ most recent

gaming experince, regardless of genre. A high Hours with low

FPSs Played, for instance, may indicate preference towards a

different genre.



TABLE I
TEST ACCURACY (%) OF RANDOM FOREST MODELS FOR DIFFERENT

LABELS GIVEN FEATURES EXTRACTED FROM THE WHOLE GAME (180S)
AND SECTIONS OF THE GAME (60S). LABELS ARE SPLIT INTO

‘OBJECTIVE’ AND ‘SUBJECTIVE’. THE BASELINE IS PROVIDED AS A

MINIMUM EXPECTED PERFORMANCE. ‘#’ REPRESENTS THE NUMBER OF

CLASSES FOR EACH LABEL. STANDARD DEVIATIONS PRESENTED IN

BRACKETS.

Label # Base
180s 60s
All 1 2 3 All

Map 8 15.6
55.6 35.9 38.4 48.7 50.1
(3.28) (3.28) (2.50) (3.85) (3.24)

Difficulty 6 18.9
26.5 18.2 24.7 30.4 27.3
(3.03) (2.53) (2.48) (3.13) (4.06)

Hours 4 33.0
62.6 49.2 57.0 63.0 57.2
(2.98) (2.14) (2.81) (2.96) (3.55)

FPSs 4 42.5
49.2 54.4 44.9 54.8 54.1
(2.72) (2.64) (2.58) (3.63) (2.47)

Fun 5 46.2
39.4 38.4 39.7 41.9 42.7
(2.66) (.639) (1.67) (1.28) (.261)

Frustration 5 38.2
41.3 34.8 32.9 45.1 43.6
(3.17) (2.62) (2.45) (2.43) (2.79)

Challenge 5 32.1
31.7 40.6 28.3 46.1 36.0
(3.95) (2.38) (1.71) (2.56) (3.36)

Complexity 5 31.1
29.3 25.5 35.7 31.5 34.8
(3.13) (2.78) (2.23) (2.86) (3.61)

In order to explore these two labels, models were con-

structed using subsets of the available data. Features corre-

sponding to player input, player input features, were examined

first, demonstrating that skill could be predicted using only

player input. Then concept drift was explored by training the

models on only the first games for each player. The third step

was to make use of the more fine data sets, training with

smaller windows to determine how quickly a players’ skill

could be predicted.

Finally, we exploited the regression available in random

forests by attempting to predict more common metrics of skill

such as points scored or the kill-to-death ratio.

B. All Labels

From player responses to questionnaires, a subset of cat-

egorical labels were selected. These were then used to train

random forests, for the larger window sizes 180s and 60s,

listed in Table I. For the latter, which only covered a third

of the game, the performance of different windows has been

presented. The labels have also been separated into two

categories, ‘objective’ and ‘subjective’ to differentiate between

the information about the game and player and the player’s

reported preferences. The baseline and number of categories

have also been shown for each of the labels. As in [11], the

baseline is equivalent to guessing the majority class for each

label to account for unbalanced data, and is used here as a

minimum expected performance.

C. Classifying Skill

Once trained, a random forest is capable of reporting the

importance of each feature used by the decision trees. This

allowed us to rank the features used for predicting both Hours

and FPSs Played and understand which had the most impact.

Fig. 1. Comparison of classifiers trained on different combinations of features
for 60s window sizes. Baseline shown as a dashed line.

The top five features for FPSs Played, in order of importance,

were:

1) Time spent holding backwards key.

2) Time spent holding forwards key.

3) Time spent holding left key.

4) Total mouse distance moved in the x direction.

5) Damage dealt over the game.

The top five features for Hours, were:

1) Number of kills.

2) Damage received over the game.

3) Number of kills by weapon two.

4) Points scored.

5) Total dominations of killers.

The use of player input features in the first label was of

interest, and led us to train models with only features taken

from the keyboard and mouse. The classification accuracies

for these models are shown in Fig. 1, with comparisons to a

model trained on all features and one trained without player

input features. The highest accuracy for both labels was at

62% in the final window.

The next stage of analysis was to explore concept drift of

skill, where players familiarise themselves with the game over

time. Models were therefore trained with and without the first

game for each player. Given the 34 participants, there were 34

games with which to train and test the smallest model. The

results are presented in Fig. 2 with baselines. The change in

baselines for each model is indicative of less skilled players

playing fewer games.

The bias that might have been caused by the most active

player, with 22 games, was considered. The first of these two

tests, Fig. 1, was trained and tested on the same data set

without this player. The results were very similar, but raised

the baseline accuracy to 47.4%.

Once we had examined the effect of player input data and

players’ first games, we turned to classifying smaller windows



Fig. 2. Comparison of classifiers trained on different games for each player
with all features for 60s window sizes. Baseline shown as a dashed line.

Fig. 3. Accuracy of classifiers trained by cumulating successive windows
for sizes 5s and 10s using all features. Baseline shown as a dashed line.

with more fine-grained data. Fig 3 compares models using two

different window sizes, at each window training the model

cumulatively with features from the previous windows.

D. Regression

While classification could be done for simple measures of a

player’s previous experience, we then turned to more common

measures of skill. As in [11], where completion time was

estimated, we made use of regression to predict points scored

and the kill-to-death ratio at the end of each game. For both

of these factors, we predicted the value for the game and the

mean for each player using only their input features collected

from cumulative 10s windows.

The relative absolute error (RAE), used here, is defined by

the sum of the differences between the prediction and actual

value divided by the sum of the differences between the mean

and the actual value. This allows us to compare performance

Fig. 4. Relative absolute error of models trained on player input data
for different continuous metrics of player skill using different 10s windows.
Baseline shown as a dashed line.

for labels with different measures. Fig. 4 shows that predicting

the player’s mean score outperforms the other categories, and

predicting the kill-to-death ratio for each game did not return

promising results. Random guessing, used for the baseline in

these experiments, returns a value of 1 for RAE.

V. DISCUSSION

Input to any application is likely to be very unpredictable,

particularly in a fast-paced game such as Red Eclipse. The

user may hit keys accidentally or idly trail the mouse. The

performance seen in Fig. 2 and Fig. 3 is therefore promising,

as, for certain cases, it is capable of predicting a player’s skill

better than guessing.

The claim that a player’s input can be used to predict their

skill has been reinforced in Fig. 1, in which the performance of

a model trained only on FPS Played out-performs that trained

with higher-level game features. Hours, however, performs

better with both sets of data. As game statistics such as player

points and kills can be found in this, it is understandable that

these increase performance of the model.

For visualisation of player input, Fig. 5 shows the difference

between a skilled player, red, and an unskilled player, blue.

Each line is a crude representation of their movement with

each of the four movement keys over time, the darkest part of

the line indicating the end of the game. The more experienced

player can be seen to use more complex keyboard input, while

the newer player makes less use of the input in a simpler

fashion, and does not hold the movement keys for as long.

Player skill was expected to increase between games, par-

ticularly from the first game. This should be especially true

of their input, while players familiarise themselves with the

game’s controls. In line with this, FPSs Played can be seen

to perform better for the first section of the first game, while

Hours, more reliant on game data, performs incredibly poorly

on the first game and strengthens over time, also seen in Fig.

3. From these observations, both labels could be employed in



Fig. 5. Comparison of keyboard input between two players of different skill

a game; Hours taking over after a time when players are more

likely to be comfortable with controls.

The imbalance in the data set and below average per-

formance for some experiments indicate that more rigorous

studies should be undertaken. These might explore a player’s

input over both the first few games and how it changes after

several games and the player becomes more familiar with the

controls and the game mechanics.

The windows in Fig. 3 are representative of different periods

in the game. Accuracy for models trained on the first few win-

dows of the game were as high as 70%, indicating that player

skill can be determined within the first 30 seconds of a new

player starting to play. This may be useful for automatically

accommodating for different skills in both single-player and

multiplayer FPS games.

Interestingly, models trained on the end of the game also see

an increased performance. This effect is seen on all models,

including those only trained on player input features. One

possible explanation for this is that more experienced players,

aware of the end of the game, changed their style of play to

adjust to maximise their points.

While exploring more common measures of skill, presented

in Fig. 4, we were unable to predict the points or kill-to-death

ratios for each game with much accuracy. Models predicting

the mean for each player were more successful, however,

indicating either that the regression task was made easier

through averaging, or supporting the claim that an individual

player’s skill can be predicted from their input data.

Some preliminary research went into predicting player emo-

tion, presented in Table I. The results of this were very poor,

performing no better than guessing. Emotions like frustration

have been shown to be predictable for certain games [13], and

correlations were found with some notable features like kills

and deaths. There was a slight increase in performance for later

windows, however, which complies with Kahneman’s findings

that the memory of an event is strongly affected by the latter

parts of the experience [15]. Due to the noise in player input

and the fluctuation of their emotions, this may be possible in

the future with more fine-grained feedback from players.

Another predicted label of note is that of the current map.

An accuracy of 56% is notably high for an eight-class problem,

as seen in Table I. This, however, is explained by the nature

of the data. The points scored at the end of each game is

highly dependent on the current map, as evidenced by better

prediction in later windows. Such a relationship makes it easy

to predict the map played. Similarly, the difficulty of the map

could be predicted in a similar, but less reliable, fashion.

VI. CONCLUSIONS AND FUTURE WORK

Having recorded the in-game input from 34 players, we

successfully predicted their previous experience with 76%

accuracy for a four-class problem, as shown in Fig. 2. More-

over, similar performance can be achieved after only 20s of

gameplay. This means players can be classified by skill when

they first start playing a game, allowing us to either present a

tutorial or automatically set the difficulty as appropriate.

Matchmaking by skill may also be possible without requir-

ing players to play many games. Furthermore, the impact of

the input-based features is that external applications such as a

digital download service could be used to model its users more

closely. These techniques may also be generalisable to other

games in the genre. This would, however, require more game

modes, such as team-based play, and games with a different

pace, such as the more tactical Counter-Strike, to be explored.

One of the main drawbacks of this work is the fixed game

time. Longer games, which are typical in the multiplayer

scene, may cause discrepancies in training. If a model is

only required for the first 30s of gameplay, however, then this

method would be suitable.

Now that it has been shown that player input is a viable

predictor of player skill, further analysis is required in order

to uncover more patterns in play. As in other research [14],

unsupervised techniques could be used to cluster players

by their input. This could help prediction accuracy and aid

in more rigorous extraction of features. Patterns found in

combinations of key presses, for instance, is one avenue of

research.

The measure of skill used for learning a skill model should

also be explored. While a player-reported measure of skill

was used, other, more objective criteria, may provide a more

solid foundation for these models. In particular, these models

should be compared to long-term rankings such as the Elo

rating system [23].

One of the issues touched on here is that player feedback

of emotions is too coarse, even more so for a longer game.

The creation of new techniques for monitoring player emotions

continuously during a game session may allow player input to

be mapped to emotions.



Finally, these models were able to predict skill using input

to a mouse and keyboard. Other genres, such as role-playing

games, make very different use of these devices, while some,

such as flight simulators or consoles, make use of completely

different devices, such as joysticks and gamepads. It would,

therefore, be interesting to explore the success of predicting

skill on other devices.

ACKNOWLEDGEMENTS

The authors would like to thank all students and staff at the

University of Manchester that participated in the experiment,

particularly A. Apaolaza and N. Matentzoglu for the help they

provided to this project, and the Red Eclipse community for

their assistance during instrumentation. The authors would also

like to thank the anonymous reviewers for their constructive

and insightful comments.

This work was supported by the Engineering and Physical

Research Council [EP/I028099/1].

REFERENCES

[1] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit MUDs,”
The Journal of Virtual Environments, vol. 1, 1996.

[2] N. Brown. (2012, May) Free radical founder on leaving the
FPS behind. [Online]. Available: http://www.edge-online.com/features/
free-radicals-founder-leaving-game-industry-behind/

[3] G. N. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference learn-
ing for cognitive modeling: A case study on entertainment preferences,”
IEEE Trans. Syst., Man, Cybern., vol. 39, no. 6, pp. 1165–1175, 2009.

[4] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (TRUE): a comprehen-
sive instrumentation solution for complex systems,” in Proc. SIGCHI

Conf. Human Factors Comput. Syst. (CHI’08), Florence, Italy, 2008,
pp. 443–452.

[5] G. N. Yannakakis and J. Hallam, “Real-time game adaptation for
optimizing player satisfaction,” IEEE Trans. Comput. Intell. AI Games,
vol. 1, pp. 121–133, Jun. 2009.

[6] R. Lopes and R. Bidarra, “Adaptivity challenges in games and simu-
lations: A survey,” IEEE Trans. Comput. Intell. AI Games, vol. 3, pp.
85–99, Jun. 2011.

[7] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: dy-
namic difficulty adjustment through level generation,” in Proc. Workshop
Procedural Content Generation Game., Monterey, CA, 2010, pp. 11:1–
11:4.

[8] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending
reinorcement learning to provide dynamic game balancing,” in Proc.

IJCAI Workshop Reasoning, Representation and Learning in Computer

Games, Jul. 2005, pp. 7–12.
[9] C. H. Tan, K. C. Tan, and A. Tay, “Dynamic game difficulty scaling using

adaptive behavior-based AI,” IEEE Trans. Comput. Intell. AI Games,
vol. 3, pp. 289–301, 2011.

[10] M. Booth, “The AI systems of left 4 dead,” in Keynote, Fifth Artificial In-
telligence and Interactive Digital Entertainment Conference (AIIDE’09),
Stanford, CA, Oct. 2009.

[11] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N. Yan-
nakakis, “Predicting player behaviour in Tomb Raider: Underworld,” in
Proc. IEEE Symp. Comput. Intell. Games (CIG’10), 2010, pp. 178–185.

[12] D. M. Hilbert and D. F. Redmiles, “Extracting usability information from
user interface events,” ACM Comput. Surv., vol. 32, no. 4, pp. 384–421,
Dec. 2000.

[13] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience for content creation,” IEEE Trans. Comput. Intell. AI Games,
vol. 2, pp. 54–67, Mar. 2010.

[14] J. Gow, R. Baumgarten, P. Cairns, S. Colton, and P. Miller, “Unsuper-
vised modeling of player style with LDA,” IEEE Trans. Comput. Intell.

AI Games, vol. 4, no. 3, pp. 152–166, 2012.

[15] D. Kahneman, “Choices, values and frames,” in Experienced Utility and

Objective Happiness: A Moment-Based Approach, D. Kahneman and
A. Tversky, Eds. New York, NY: Cambridge University Press, 2000,
ch. 37, pp. 673–692.

[16] F. Levillain, J. Orero, M. Rifqi, and B. Bouchon-Meunier, “Characteriz-
ing player’s experience from physiological signals using fuzzy decision
trees,” in Proc. IEEE Symp. Comput. Intell. Games (CIG’10), 2010, pp.
75–82.

[17] G. van Lankveld, P. Spronck, J. van den Herik, and A. Arntz, “Games as
personality profiling tools,” in Proc. IEEE Conf. Comput. Intell. Games

(CIG’11), Sep. 2011, pp. 197–202.
[18] G. N. Yannakakis and J. Hallam, “Ranking vs. preference: a comparative

study of self-reporting,” in Proc. Conf. Affect. Comput. Intell. Inter.

(ACII’11), Berlin, Heidelberg, 2011, pp. 437–446.
[19] N. Shaker, G. N. Yannakakis, and J. Togelius, “Feature analysis for

modeling game content quality,” in Proc. IEEE Conf. Comput. Intell.

Games (CIG’11), 2011, pp. 126–133.
[20] G. N. Yannakakis and J. Hallam, “Game and Player Feature Selection

for Entertainment Capture,” in CIG’07, 2007, pp. 244–251.
[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,

2001.
[22] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. IEEE Conf. Vis. Pattern Rec.

(CVPR’11). Washington, DC: IEEE Computer Society, 2011, pp. 1297–
1304.

[23] A. Elo, The Rating of Chessplayers, Past and Present. Arco, 1972.


