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Abstract: A version of generalised term graph rewriting is presented in which redirections are interpreted transitively
shown that the new semantics enjoy enhanced properties regarding ease of implementation on distributed machi
pared with conventional semantics because of the Church-Rosser properties of transitive redirections. Furthermo
good properties of orthogonal systems are largely retained.
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1.0 Introduction

In term graph rewriting [4,7], the basic mechanism of
update is redirection; all in-arcs of a nodex are made to
point to some other nodey. If x andy happen to be the
same, the model specifies a null action. This imposes the
burden of an identity test on implementations, which is
mild enough for a single processor serial implementation,
but becomes burdensome in a distributed environment.
Furthermore, when there are multiple redirections, all
redirections are performed simultaneously; for example if
x is to be redirected toy, andy to z, the original in-arcs ofx
end up aty, and the original in-arcs ofy end up atz. The
in-arcs ofz also remain atz assuming thatz was not itself
redirected.

In this paper we describe a different operational semantics
for redirections which obviates the problems that distrib-
uted implementations have, and which moreover preserves
most of the nice properties of the original semantics. Redi-
rections are interpretedtransitively, i.e. if x is to be redi-
rected toy, then the in-arcs ofx end up wherever the in-
arcs ofy end up. In the preceding example, all the original
in-arcs ofx, y, z, end up atz. This raises the question of
what to do about cycles of redirections. To cope with these
we introduce special purpose⊥-nodes, with suitable prop-
erties.

2.0 Transitive Term Graph Rewriting

We assume given an alphabet of symbolsS, and two fur-
ther distinguished symbols,Any and⊥.

Definition 2.1 A graphG is a triple (NG, σG, αG) where

(1) NG is a set of nodes.
(2) σG : NG → S ∪ {⊥}, is the labelling function.
(3) αG : NG → NG* sends each node to its sequence of

children.

And such that⊥-labelled nodes have no children (i.e.
σG(x) = ⊥ ⇒ αG(x) = []).

Definition 2.2 A patternP is a triple (NP, σP, αP) where

(1) NP is a set of nodes.
(2) σP : NP → S ∪ {Any}, is the labelling function.
(3) αP : NP → NP* sends each node to its sequence of

children.

And such thatAny-labelled nodes have no children (i.e.
σG(x) = Any ⇒ αG(x) = []).
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Definition 2.3 A matchingh : P → G of a patternP to a
graphG is a node maph : NP → NG such that for allx ∈
NP such thatσP(x) ≠ Any andσG(h(x)) ≠ ⊥

(1) σP(h(x)) = σG(x).
(2) length(αG(h(x))) = length(αP(x)) and for all

k ∈ indices(αP(x)), h(αP(x)[k]) = αG(h(x))[k].

A matching isproper iff h–1{ x ∈ NG | σ(x) = ⊥} consists
only of Any-labelled nodes ofP.

Definition 2.4 A ruleD = (L ⊆ P, Red) is a triple where

(1) P is a pattern.
(2) L is a subpattern ofP containing at least all the

Any-labelled nodes ofP linearly, (i.e. each
Any-labelled node has exactly one parent inL).

(3) Red⊆ L × P is the (set theoretic) graph of a partial
function such that (a, b), (c, d) ∈ Red⇒ [ σ(a) = σ(c)
⇒ a = c andσ(a) ≠ Any ].

Thus a ruleD is given by the inclusion of the left subpat-
ternL into the full pattern ofD, and by the setRed, which
specifies the redirections of which we spoke before.

A rule D = (L ⊆ P, Red) is applied to a graphG, by first
finding a proper matchingg : L → G (called the redex).
Then in our version of rewriting, there are three phases:
contractum building which produces graphG′, ⊥-analysis,
and finally redirection which produces the result of the
rewriteH.

Contractum building glues a copy ofP – L into G atg(L),
in such a way that there is a proper matchingg′ : P → G′
that extendsg in the obvious way. Formally (writing
∪+ for disjoint union), we have:

Definition 2.5G′ is given by

(1) NG′ = NG ∪+ (NP – NL).
(2) σG′(x) = σG(x) if x ∈ NG,

σP(x) otherwise.
(3) αG′(x)[k] = αG(x)[k] if { x, αG(x)[k]} ⊆ NG,

αP(x)[k] if { x, αP(x)[k]} ⊆ (NP – NL),
y if x ∈ NP andg(αP(x)[k]) = y.

⊥-analysis consists of the following. Let

Red′ = {(x, y) | for some (a, b) ∈ Red, g′(a) = x, g′(b) = y}

View Red′ as a relation onNG′, writing Red′+, Red′∗ for its
transitive, reflexive transitive closures.

Let x ~ y iff ∃ z ∈ NG′ • x Red′∗ zandy Red′∗ z. Then ~ is
clearly an equivalence relation becauseRed is a partial
function onP (hence so isRed′ onG′ by 2.4.(3)). We write
[x] to represent the equivalence class containingx as usual.
Further, we will write [x]° iff ∃ y ∈ [x] • y Red′+ y (i.e. we
write [x]° to indicate that [x] contains a non-trivialRed′-
cycle). We write [x]- otherwise.

Assuming rules are finite, it is an easy lemma to show th

∀ [x]- • ∃! y- ∈ [x]- • ∀ x ∈ [x]- • x Red′∗ y-

(i.e. each [x]- equivalence class is a tree inNG′ and has a
unique rooty-). When the context makes the class [z]-

clear, we will use the- notation to refer to this root element
without further comment.

Redirection now performs the redirections specified in
Red′ transitively, building new⊥-nodes to catch theRed′
cycles.

Definition 2.6H is given by

(1) NH = NG′ ∪+ B whereB = {[x]° | x ∈ NG′}.
(2) σH(x) = σG′(x) if x ∈ NG′,

⊥ if x ∈ B.
(3) αH(x)[k] = y- ∈ NG′ if αG′(x)[k] = y andy ∈ [y-]-,

[y]° ∈ B if αG′(x)[k] = y andy ∈ [y]°,
αG′(x)[k] otherwise.

Below we give an example of this semantics on the infa
mous circular-I rewrite. Using DACTL-like syntax [4], the
rule isI[a:Any] => a, which means that anI-labelled node
is to be redirected to its only child. Applied to the circular
graphx:I[x], conventional redirection semantics yields an
unchanged result, while ours gives the rewrite in Fig. 1,
wherebot:⊥ is a⊥-node introduced becausex Red′ x.

x : I[ • ] ⇒ bot : ⊥x : I[ • ]

Fig. 1.
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As a further example consider the ruler:F[a:S[b:Any]] –>
r:=a, a:=b (whereP – L is empty and the redirections are
(r, a), (a, b)), on the cyclic graphx:F[y:S[x]]. Conven-
tional semantics yields self loops onF andS, while ours
gives Fig. 2.

Note that we have said nothing about garbage collection,
nor about whether left hand sides of rules (theL subpat-
terns) need be rooted; these are somewhat orthogonal
issues, to which we will allude below as required.

Here is a larger example.

f:F[s:S[a:Any t:T[b:Any c:Any]] u:U[t v:V]]
–> x:X[a y:Y], f:=u, u:=v, t:=s, s:=a

(HereP – L is the nodesx andy, and the redirections are
written using assignment notation.) Applied to the graph
in Fig. 3, we get the result illustrated.

3.0 Implementation

As mentioned above, adherence to non-transitive redirec-
tion semantics demands determining precisely the left and
right nodes of each redirection in order to ensure that
when they coincide, nothing (untoward) is done by the
implementation. Things get worse when there are many
agents rewriting the graph concurrently, as the left and
right nodes (x, y) of a redirection need to be locked by the
agent doing the rewrite so that another agent does not
inadvertently causex andy to be identified, while the first
is treating them as distinct.

Things get even worse still in a distributed implementation
with the graph scattered over several processors, as an

agent may have only imperfect information about the ide
tity of a node, having access to perhaps only an indirectio
to the node it is really interested in; necessitating distrib
uted locking with all its attendant overheads and difficul
ties, to ensure a correct implementation.

With transitive redirection semantics though, the situatio
regarding all of the above becomes much happier. Let u
fix on a specific implementation model in which nodes ar
represented bypackets, residing atlocations in a data
store, where each packet contains the node symbol and
sequence of pointers leading (perhaps via a sequence o
indirections) to the locations of packets representing the
chldren of the node in question.

x : F[ • ]

y : S[ • ]

⇒
bot : ⊥

x : F[ • ]

y : S[ • ]

Fig. 2.

R[ • ]

F[ • • ]

S[ • • ] U[ • • ]

T[ • • ] V

⇓

R[ • ]

F[ • • ]

S[ • • ] U[ • • ]

T[ • • ] V
bot : ⊥

Fig. 3.

X[ • • ]

Y
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Let us further assume that we are working under the
umbrella of a notion of garbage in which the left hand
nodex of any redirection (x, y) can be garbaged unlessx is
itself the right hand side of some other redirection (w, x);
such notions of garbage arise quite naturally in many
applications.

Under these asumptions the non-transitive redirection
model has an implementation that can be discerned from
section 6 of [2]. The transitive model of rewriting however
enjoys a particularly simple implementation as follows.

Packet_Rewrite : Packet_store → Packet_Store ;

Pattern_Match:
Find a suitable redex to rewrite. (Note that because the
matching for a rewrite is required to be proper, no⊥-node
ever needs to have its symbol pattern-matched for a suc-
cessful rewrite, and attempts by the implementation to
match⊥-nodes may be allowed to fail quietly. This is not
to say that⊥-nodes cannot appear matched toAny-nodes
in the redex. See below.)

Contractum_Building:
Allocate fresh packets for all nodes inP – L, giving each
the symbol of the node it represents and a sequence of
pointers to the representatives of its children.

Redirection:
For each redirection (x, y) ∈ Red′, overwrite the packet
representing nodex, by an indirection packet (Ind packet)
pointing to the packet representing nodey.

End(Packet_Rewrite).

For the second example above we get the packet store
transformation in Fig. 4.

Proposition 3.1Packet_Rewrite provides a correct
implementation of the transitive term graph rewriting
model (up to garbage).

The proof rests on the facts that: (a), since LHS’s of all
redirections are garbage in the transitive model, it is safe to
overwrite their packet representatives; (b), the semantics
of an indirection are to redirect all incoming pointers to
the target of the indirection, or if the target is itself an indi-
rection, toits target, and so on. If the rewrite specifies a
cycle of redirections, a cycle ofInds is created, corre-

sponding to a⊥-node [–]° in B in the formal model; other-
wise the chain ofInds ends at the representative of the
uniquey- element of the appropriate class [–]- of the
model.

We further note that with non-transitive redirection sema
tics, given a set of redirection pairsRed′, the order in
which they are done is critical. Eg. ifRed′ = {(x, y), (y, z)},
(and all ofx, y, zhave in-arcs), then we get different results
according to whether we do the redirections singly (eith
sequential order giving a result in agreement with the tra
sitive model1), or simultaneously (giving the conventional
result for a pair of redirections done non-transitively).
Larger aggregates of redirections give a greater variety 
possible answers.

Transitive redirection semantics suffers no such problem
as in the example above, all in-arcs ofx, y, zend up atz, no
matter what the order or granularity of performing the
redirections. This Church-Rosser property of transitive
redirections can be incisively exploited by concurrent
implementations in reducing the redex-locking burden o
packet rewriting.

Specifically, for each redirection (x, y), a packet rewrite
needs to accessx’s packet, but only needs a pointer to (per
haps only an indirection chain leading to)y’s packet. Ify is
matched to anAny node of the rule, such a pointer is
present in some non-Any matched packet of the redex (by
the linearity requirement), and so the packet rewrite nee

1.  Note that if we do (y, z) first, the redirection (x, y) becomes
(x, z) since all references toy become references toz.

x : F

y : S

⇒

Fig. 4.

x : Ind

y : Ind
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not ascertain the precise location or nature ofy at all to
correctly perform the redirection (x, y).

Indeedy may be a⊥-node, or even the left node of a redi-
rection (y, z) of some other packet rewrite that matchesy to
a non-Any node; and provided the non-Any matched
nodes of the two rewrites are distinct, they may be done in
any order, or simultaneously, getting in every case the
same result. We may even have thatz= x if z is matched to
anAny node of the second rewrite. Since all left nodes of
redirections are non-Any matched we can easily prove:

Proposition 3.2Packet_Rewrite provides a correctcon-
current implementation of the transitive term graph rewrit-
ing model (up to garbage), if eachPacket_Rewrite action
locks only the non-Any matched packets of the redex.

The above can be exploited by implementations of MON-
STR [2], an extended term graph rewriting formalism
intended for execution on parallel machines using a packet
rewriting strategy similar to that which we have described.
MONSTR rules feature small, rooted left hand sides, with
a function symbol labelling the root, and with the function
having at most a single child labelled with a stateholder
symbol; other children of the root may be labelled with
constructors. (Unlike functions and stateholders, construc-
tors may not occur as left nodes of redirections.) And all
these nodes mentioned, may further have additionalAny-
labelled children.

Since constructors may not be redirected (and thus may be
concurrently inspected by other rewrites without harm), a
concurrent implementation of MONSTR needs to lock
only the function and its stateholder child during a rewrite
in order to ensure correctness, if the rules are interpreted
according to transitive semantics.

In fact implementations of MONSTR use such a locking
strategy, but in attempting to adhere to non-transitive
semantics, inevitably fail on certain rewrites (both in con-
structingInd loops, and in misinterpreting the right nodes
of redirections in certain cases). The interesting thing is
that such troublesome rewrites are never encountered in
systems of practical interest. In fact one can redefine the
operational semantics of MONSTR to include transitive
redirections (and other features) without harming the
behaviour of most useful programs, in such a manner that
a very reasonable Church-Rosser theorem holds for sys-
tems featuring at worst deterministic synchronisations [3].

4.0 Graph and Term Rewriting

Of particular interest among graph rewriting systems, ar
ones that look like implementations of term rewrite sys-
tems. Such systems feature rules such that: (a),P has at
least one and at most two root nodes (and one of the ro
is the (unique) root ofL); (b), there is exactly one redirec-
tion, of the root node ofL to the other root (ifP has two
roots), or to some subroot node ofL (if not); (c), the notion
of liveness/garbage that is used, pronounces live all nod
accessible from a distinguished root node of the graph
(modulo redirections of this root), and pronounces all
other nodes garbage. We will call such systems term em
lating graph rewriting systems (TEGRS) because their co
respondence with term rewrite systems has been widely
studied. See [6,8] and further references therein.

Since a TEGRS rewrite features only one redirection, th
only way that transitive semantics can give a result diffe
ent from non-transitive semantics is if for a redexg : L →
G, we haveg(root) = g(b) where {(root, b)} = Red, i.e. the
cyclic redex case where transitive semantics creates a⊥-
node, while non-transitive semantics gives an unchange
graph.

We formally define a graph rewrite system as a triple (G,
R, S), whereG is a set of graphs,R is a set of rules (with
G closed under rewriting byR), andS is a set of rewrite
sequences of members ofG by R. We writeS – to denote
the the setS with all rewrites of circular redexes taken out
of each element ofS (under either semantics). The follow
ing is then obvious.

Proposition 4.1 Let (G, R, S) be a TEGR system under
non-transitive semantics. Then (G, R, S –) is a TEGR sys-
tem under transitive semantics. Conversely, let (G, R, S)
be a TEGR system under transitive semantics withS = S –.
Then (G, R, S) is a TEGR system under non-transitive
semantics.

This shows that everything that can be achieved by non
transitive semantics, can also be achieved by transitive
semantics, if the latter pursues a⊥-avoiding strategy, so to
speak; and vice versa.

The main application of such graph rewriting is in the
emulation of term rewriting via unraveling, which takes a
rooted term graph to the term (tree) whose nodes are th
paths through the graph from the root, with labels inher-
Transitive Term Graph Rewriting 5 of 7
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ping, one can then show the following, which is a rather
trivial adaptation of theorem 6.10 of [8]. We quote it with-
out proof, or indeed without explaining the terminiology
used more precisely, relying on the reader’s intuition to
furnish a good feeling of what is being conveyed, and on
the cited reference for a complete development of the
required theory.

Theorem 4.2 Under any of the following conditions, the
unraveling mapping from an orthogonal transitive term
graph rewriting system (G, R, S), to a term rewriting sys-
tem is adequate.

(1) The TTGRS is finitary and acyclic, and the TRS is its
finitary unraveling.

(2) The TTGRS is finitary,S = S –, the TRS is its rational
unraveling, and the rule system is almost non-collapsing.

(3) The TTGRS is finitary, the TRS is its rational
unraveling, hypercollapsing terms are identified, and
graphs rooted at a circular redex are identified with the
results of rewriting such redexes.

5.0 Conclusions

We have presented a transitive variation of the conven-
tional semantics of multiple redirection, to get a new
model of generalised term graph rewriting. We have dem-
onstrated that the new model has dramatically improved
implementability properties for distributed environments
compared with non-transitive redirection. We have also
observed that the correspondence between term and graph
rewriting does not lose very much under the new seman-
tics. Finally we mention two related pieces of work which
arrive at essentially the same result as we do for the circu-
lar-I rewrite albeit from different directions. In [5] Cor-
radini gets the result by considering parallel rewriting
under the approximation topology ofCTΣ in which a⊥-
node is the graph counterpart of a limit of a series of term
rewriting computations each of which yield the term⊥.
And in [1], Ariola and Klop get the result by considering
term graph rewriting interpretations of sets of equations,
getting⊥ when there is a non well founded cycle of equa-
tions. The novelty of the present paper is that we obtain
this behaviour in a purely combinatorial setting, in which
the notion of update is intrinsically asymmetric and imper-

ative rather than equational; there is no recourse to any
specific notion of garbage including that appertaining to
the replacement of subterms; and no need for any notion
topology, making the theory applicable to rewriting in
which continuity notions are difficult to apply because th
graphs in question are too cyclic.
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