
Translating CPS with Shared-Variable
Concurrency in SpaceEx

Ran Li1, Huibiao Zhu1(B), and Richard Banach2

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn
2 Department of Computer Science, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

Abstract. Cyber-physical systems (CPS), combining continuous phys-
ical behavior and discrete control behavior, have been widely utilized in
recent years. However, the traditional modeling languages used to spec-
ify discrete systems are no longer applicable to CPS, since CPS subsume
the combination of the cyber and the physical. To address this, a mod-
eling language for CPS based on shared variables is proposed. In this
paper, we present an implementation of this language in SpaceEx. Thus,
a bridge between our language and hybrid automata is established.

Keywords: Cyber-physical System (CPS) · Hybrid Automata · SpaceEx.

1 Introduction

Cyber-physical systems (CPS) [5] are dynamical systems composed of discrete
behaviors of the cyber and continuous behaviors of the physical. In CPS, com-
puter programs can influence physical behaviors, and vice versa. The interde-
pendency and integration between the cyber and the physical is useful in many
fields, such as aerospace, automotive, healthcare and manufacturing [2].

However, the complexity of this combination can complicate the design of sys-
tems. Therefore, it is of primary importance to propose specification languages
for CPS. For instance, Hybrid CSP (HCSP) [8] is an extension of Communicat-
ing Sequential Processes (CSP) by introducing differential equations in hybrid
systems. He et al. presented a hybrid relational modeling language (HRML)
in [4], where a signal-based interaction mechanism is adopted to synchronize
activities of hybrid systems. In contrast, we proposed a language whose parallel
mechanism in CPS is based on shared variables, [1]. We provided its denota-
tional semantics and algebraic semantics in [6], and developed its proof system
in [7]. Based on our previous work [1,6], in this paper, we connect the language
with hybrid automata in SpaceEx. Through this transformation, we can build
a bridge between our language and hybrid automata in SpaceEx, so that CPS
specified by our language can be verified in SpaceEx.

This work was partially supported by the National Natural Science Foundation of
China (Grant Nos. 61872145, 62032024).

2 R. Li et al.

The remainder of this paper is as follows. In Section 2, we introduce the model
checker SpaceEx and recall the syntax of our modeling language. In Section 3,
the translation from the language to models in SpaceEx is given. Finally, we
conclude our work and discuss some future work in Section 4.

2 Background

In this section, we first briefly introduce the model checker SpaceEx. Moreover,
we recall the syntax of our modeling language to describe CPS.

2.1 SpaceEx

SpaceEx [3] is a verification platform for hybrid systems. A model in SpaceEx
contains one or several components. There are two kinds of components: Base
Component (a single hybrid automaton) and Network Component (a par-
allel composition of several hybrid automata).

To be specific, in a base component, a vertex is called a location. A location
is associated with an invariant and a flow. The automaton remains in the cur-
rent location while the invariant is satisfied. A flow contains a set of differential
equations that describe the evolution of continuous variables in this location.
The edges between locations are called transitions. By defining transitions, the
system can jump between locations. A transition can be associated with a syn-
chronization label, a guard and an assignment. If the guard of this transition is
satisfied, the related assignment can take effect and thus changes the values of
variables instantaneously. The synchronization label is used to implement syn-
chronization between different automata. By connecting base components via
their variables and labels, a network component constructs a parallel composi-
tion of base components.

2.2 Syntax of Our Modeling Language

The syntax of our language is summarized in Table 1. This language was pro-
posed in our previous work [1] and we elaborated it by detailing the guard
conditions of the continuous behaviors in [6]. Here, x is a discrete variable, e is
a discrete or continuous expression, v is a continuous variable and b stands for
a Boolean condition.
Discrete Behavior. This language contains two kinds of discrete behaviors,
i.e., discrete assignment x := e and discrete event guard @gd.

– x := e is a discrete assignment, which is an atomic action. It evaluates the
expression e and assigns the value to the discrete variable x.

– @gd is a discrete event guard. It can be triggered when the discrete guard gd
is satisfied. Otherwise, it waits until gd is triggered by the environment. Here,
the environment consists of the other programs in the parallel composition.

Translating and Verifying CPS with Shared-Variable Concurrency 3

Table 1. Syntax of Our Modeling Language

Process P,Q ::= Db (Discrete behavior)

| Cb (Continuous behavior)

| P ;Q (Sequential Composition)

| if b then P else Q (Conditional Construct)

| while b do P (Iteration Construct)

| P ‖ Q (Parallel Composition)

Discrete behavior Db ::= x := e | @gd

Continuous behavior Cb ::= R(v, v̇) until g

Guard Condition g ::= gd | gc | gd ∨ gc | gd ∧ gc

Discrete Guard gd ::= true | x = e | x < e | x > e | gd ∨ gd | gd ∧ gd | ¬gd

Continuous Guard gc ::= true | v = e | v < e | v > e | gc ∨ gc | gc ∧ gc | ¬gc

Continuous Behavior. We employ differential relations to describe continuous
behaviors in our language.

– R(v, v̇) until g defines continuous behaviors. It denotes that the continu-
ous variable v evolves as the differential relation R(v, v̇) specifies until the
guard condition g is met. Four kinds of guard condition g are allowed in our
language, including discrete guard gd, continuous guard gc, mixed guards
gd ∧ gc and gd ∨ gc.

Composition. Further, a process can be comprised of the above commands in
the following way.

– P ;Q is sequential composition. The processes P and Q execute sequentially.
– if b then P else Q is a conditional construct. If the Boolean condition b is

true, then the process P will be performed. Otherwise, Q is executed.
– while b do P is an iteration construct. The process P is executed repeatedly

each time the Boolean condition b is true.
– P ‖ Q is parallel composition. It represents that the processes P and Q run

in parallel, and the parallel mechanism is based on shared variables.

3 Translation in SpaceEx

In this section, we convert our language to the form of hybrid automata in
SpaceEx. We explain how to define variables. Then, we present the detailed
transformation of basic commands and compound constructs in turn.

3.1 Variables

As the foundation of the translation, we first describe how to define variables in
SpaceEx and introduce some vital variables that we used in our transformation.

Discrete Variables and Continuous Variables. There are only continuous
variables (local or global) and constants in SpaceEx. Thus, to define discrete
variables of our language in SpaceEx, we can consider them as a special kind of
continuous variables whose derivative is always 0.

4 R. Li et al.

Crucial Variables. In our transformation, a global clock variable needs to be
defined, so that it captures the real-time feature of CPS. Therefore, we define a
continuous variable t which is controlled by a Clock automaton that simulates
the real time clock. Moreover, we define tert as a local discrete variable controlled
by the respective independent automaton. The terminal value of tert stands for
the time when the program terminates.

3.2 Discrete behavior

For discrete behaviors, there are two statements in our language, including dis-
crete assignment x := e and discrete event guard @gd.

Discrete Assignment. As introduced in Subsection 2.1, the edges of the graph
can allow the system to jump between locations [3]. It can change values of vari-
ables with the assignment. Hence, we can simply realize the discrete assignment
by adding the corresponding assignment statement to the edge.

Discrete Event Guard. For discrete event guard, it can be triggered by the
program itself or by the environment. In this formalization, we apply a synchro-
nization label change to let the program observe the environment’s action. Note
that the observation through the label change means that the program can per-
ceive all changes on shared variables, no matter whether this change can really
trigger gd. To formalize the behavior of @gd, we set the following four locations.

– init: It is the initial location of @gd. One special point is that we set all initial
states as instantaneous in our model. According to the initial data state, the
automaton of @gd moves from the init location to the term location or the
wait location.

– term: When the discrete guard gd is triggered, the program runs to the
terminate location term. As mentioned before, the trigger action can be
done by the program itself (i.e., gd is satisfied at the init location) or by the
environment (i.e., the environment changes the corresponding variables and
triggers gd).

– wait: This location represents that gd has not been triggered and the pro-
gram is waiting for the environment. If the initial state cannot activate gd,
the automaton jumps from the init location to the wait location. The au-
tomaton stays stuck in this location until the environment changes the vari-
ables in gd, and then reaches the im location.

– im: We introduce this intermediate location to determine whether the newly
changed value by the environment can trigger gd. If gd is satisfied, the pro-
gram moves to the term location. Otherwise, it returns to the wait location
and waits for the environment again.

Example 1. We take @x > 1 as an example to illustrate the detailed formal-
ization of @gd, and Fig. 1(a) presents its automaton in SpaceEx.

Translating and Verifying CPS with Shared-Variable Concurrency 5

Here, x is the shared variable controlled by the environment. It can be
changed by the environment and these changes can be perceived by @gd. As
introduced in Subsection 3.1, t is a global continuous variable which represents
the global clock. tert is a local discrete variable and it records when @x > 1
terminates. For @gd, it moves from the init location to the term location, if
gd is satisfied (i.e., x > 1) at the beginning. If the current data state cannot
meet gd (i.e., x 6 1), the process jumps to the wait location where the process
waits for the environment to change x. Once the environment changes x, the
environment automaton synchronizes with the @x > 1 automaton through the
change label. Consequently, the automaton reaches at the im location. Further,
it moves to the term location if the current value of x meets x > 1. Otherwise,
the automaton returns to the wait location.

3.3 Continous behavior

For the continuous behavior R(v, v̇) until g, we formalize the models according
to the types of the guard g, including gc, gd, gd ∨ gc and gd ∧ gc. Due to the
space limitations, we take R(v, v̇) until gd ∨ gc as an example.

g ≡ gd ∨ gc. If the guard condition is a hybrid one with the form of gd∨gc, the
program evolves until gd or gc is satisfied. As a result, we need to pay attention
not only to when the evolution of the program makes gc hold, but also to when
the behavior of the environment makes gd hold. Four locations (i.e., init, evolve,
im and term) are defined to portray this statement.

– init: It stands for the initial location. As mentioned before, we assume that
it is an instantaneous location and nothing needs to change at this location.

– evolve: Similar to the wait location in the @gd automaton, the evolve loca-
tion implies that neither gd nor gc is satisfied. When the automaton is in
the evolve location, it means that the continuous behavior is evolving as the
differential relation specifies.

– im: Considering that changes on gd from the environment need to be noticed,
we introduce this intermediate location in a similar way as before.

– term: Once gd or gc is satisfied, the automaton moves to this location which
indicates the continuous behavior terminates.

Example 2. v̇ = 1 until x > 1 ∨ v > 10 is employed as an example and the
corresponding model is given in Fig. 1(b).

If the initial state meets x > 1 or v > 10, the program terminates and
the automaton jumps from the init location to the term location. Otherwise,
it implies neither gd nor gc can be triggered. Then, the automaton reaches the
evolve location where the continuous variable v evolves as v̇ = 1. During this
evolution, as soon as v > 10 is satisfied, the automaton reaches the term location
and the terminal time tert is assigned to the current time point. Also, during
this period, once the environment changes x, the automaton runs into the im
location and checks whether the newly updated value of x caters to x > 1.

6 R. Li et al.

(a) Example 1. @(x > 1) (b) Example 2. v̇ = 1 until x > 1 ∨ v > 10

Fig. 1. Models of Examples in SpaceEx

3.4 Composition

Based on the models of discrete behaviors and continuous behaviors, we now
translate the composition of the above commands into models in SpaceEx.

For the sequential composition P ;Q, we can simply connect the two au-
tomata P and Q with a transition. This transition is from P ’s terminal location
to Q’s initial location, and it assigns P ’s terminal time to Q’s initial time.

As for the conditional construct if b then P else Q, we need to determine
whether to execute P or Q. If the Boolean condition b is true in the current state
(i.e., in the init location), then P is selected to execute. Otherwise, Q is executed.
We connect the init location to the initial location of the program (i.e., P or Q)
to be executed with a transition whose guard is b or ¬b.

For the iteration construct while b do P , if the Boolean condition b is
false at the very beginning (i.e., in the init location), the process terminates at
once without executing P . Consequently, the automaton moves from the init
location to the term location. If b is true, P will be executed repeatedly until b
is false. We accomplish it by adding a transition from P ’s terminal location to
P ’s initial location. After executing P several times, if b is false, the automaton
can jump out the loop and enter the term location.

For the parallel composition P ‖ Q, we can first construct automata for
parallel components (in their respective base components) and then connect
them as a whole parallel program (in the network component).

4 Conclusion and Future Work

In [6], we elaborated our language for cyber-physical systems, based on our
previous work [1]. In this paper, we transformed this language into automata in
SpaceEx [3]. Therefore, under the guidance of the conversion, any CPS specified
by our language can be modeled and verified in SpaceEx. In the future, the
automatic translation of our language to models in SpaceEx will be explored.

Translating and Verifying CPS with Shared-Variable Concurrency 7

References

1. Banach, R., Zhu, H.: Language evolution and healthiness for critical cyber-physical
systems. J. Softw. Evol. Process. 33(9) (2021)

2. Bu, L., Wang, J., Wu, Y., Li, X.: From bounded reachability analysis of linear hybrid
automata to verification of industrial CPS and iot. In: SETSS. Lecture Notes in
Computer Science, vol. 12154, pp. 10–43. Springer (2019)

3. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In:
CAV. Lecture Notes in Computer Science, vol. 6806, pp. 379–395. Springer (2011)

4. He, J., Li, Q.: A hybrid relational modelling language. In: Concurrency, Security,
and Puzzles. Lecture Notes in Computer Science, vol. 10160, pp. 124–143. Springer
(2017)

5. Lanotte, R., Merro, M., Tini, S.: A probabilistic calculus of cyber-physical systems.
Inf. Comput. 279, 104618 (2021)

6. Li, R., Zhu, H., Banach, R.: Denotational and algebraic semantics for cyber-physical
systems. In: ICECCS. pp. 123–132. IEEE (2022)

7. Li, R., Zhu, H., Banach, R.: A proof system for cyber-physical systems with shared-
variable concurrency. In: ICFEM. Springer (2022)

8. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Hybrid
Systems. Lecture Notes in Computer Science, vol. 1066, pp. 511–530. Springer (1995)

	 Translating CPS with Shared-Variable Concurrency in SpaceEx

