
J
�
ournal of ProgrammingLanguages5

�
,� 1997,201–231

A study of two graph rewriting formalisms:
Interaction Nets and MONSTR

R. Banach1 and� G.A. Papadopoulos2
�

1 Departmentof Computer Science, University of Manchester, Manchester, M13 9PL, UK
banach@cs.man.ac.uk
2 Departmentof Computer Science, University of Cyprus,CY-1678,Nicosia, Cyprus
george@turing.cs.ucy.ac.cy

Two superficially similar graph rewriting formalisms,Interaction Netsand MONSTR,are studied. Interaction Nets
comefrom multiplicative LinearLogic and featureundirectedgraphedges,while MONSTR arosefrom the desire
to implement generalizedterm graph rewriting efficiently on a distributed architecture and utilizes directedgraph
arcs. Both formalisms feature ruleswith small left-handsidesconsisting of two main graph nodes.A translation of
InteractionNetsinto MONSTR is describedfor bothtypedand untypednets,while theimpossibilityof theopposite
translation restson the fact that net rewriting is always Church–Rosserwhile MONSTR rewriting is not. Some
extensionsto the net formalism suggestedby the relationship with MONSTR are discussed,aswell assomerelated
implementationissues.

Keywords: Graph
�

rewriting, MONSTR, InteractionNets

Many differentkindsof graphhave beenstudiedover the years, andinevitably, people have invented a
large number of ways of rewriting them, yielding a vastnumber of dif ferent models of computation. In
t
�
hispaperwestudytherelationship betweentwo modelsthatbearasuperficial resemblance,but thatwere
ins
�

piredby very differentmotivations: InteractionNetsandMONSTR.
Interaction
�

Nets(Lafont1990, Lafont1991)evolved from themultiplicativefragmentof LinearLogic
(From
	

the vast literatureon that subject,seethe work by Girard (1987),Troelstra (1992),Girard et al.
(1995).)
	

The basic idea is that a multiplicative proof objectconsists of inferencesteps. The object is
represented by a graph,in which the individual inferencesteps, combining a numberof hypotheses to
form a conclusion,arerepresentedby agentnodesfor which theadjacentedgesrepresent thehypotheses
and
 conclusions. The special nature of a conclusion singlesit out, making it principa� l. The dynamics
of� proof objects is enshrined in the notion of elimination of cuts, wherebythe two conclusionsmeeting
in a cut areeliminatedby transforming the proof object in the vicinity of the cut. In the world of the
representing graphs, two agentsjoinedby aconnection whichisprincipalfor both of themis theanalogue
o� f thecut, and its elimination isarewrite rule for such graphs. Thisgivesriseto theInteraction Netmodel
of� graphrewriting.

MONSTR

(Banach1993)originatedfrom thedesireto implementthegeneralizedtermgraphrewriting
l
�
anguageDactl (Glauertet al. 1988, Glauertet al. 1990)on a distributedparallel machine, the Flagship
machine� (Watson et al. 1988).Thedemandsof (even an imperfectlyadheredto notionof) serializability

0963–9306c
�

1997Chapman & Hall

202 R.Banach andG.A.Papadopoulos

fo
�

r Dactl executionsnecessitatedcurtailing the expressive power of Dactl rulesrather drastically. It was
vi� tal for the Flagship machine that the computationalmodel encompassed a reasonable notion of state,
d
�
espite thepredominantly declarativeprogrammingmodels that it wasprimarily intended for. TheMON-

STR
�

computational model as it eventually emerged, thereforepermittedeachrule to include at most one
uni� t of updatable state per rewrite, apart from theroot of the rewrite itself, giving two key nodeson the
left-handside of eachrule. Thesimilarity to InteractionNetsisclear.

Thattwo modelsof computationemergingfromsuchdiversebackgroundsshouldbothsettleontheidea
t
�
hat left-handsidesof graphrewrite rules should consist of two main nodesis intriguing,andis themain
s� pur for this paper. Anothermotive for the work describedhereis the question of whether the efficiency
cons� iderationsthatmotivatedMONSTRtranslatewell into theworld of InteractionNets, whose primary
mot� ivationswerealways muchmoreabstract. To be moreprecise, both formalismssharesomecommon
vie� wsregardingwhatconstitutesa‘good’ computationalmodelfor distributedsystems: they bothsupport
locality
�

of computation(interactionbetweentwo redex nodesduring their rewriting is clearly a local
acti
 vity), likewise rewriting which is asynchronousandfreefrom excessive locking; andthey bothenjoy
formal semantics. Furthermore, while more traditional term(and/or graph) rewriting systems arerather
abs
 tract in the sense that the way rewrite rules are formulatedputs moreemphasis on the ‘l ogic’ behind
th
�

e reduction sequencesand lesson more operational aspects like implementing execution strategies,
MONS

TR differsin usingexplicit annotationscapableof also expressingthese. Finally, both formalisms
can� play the role of being intermediate compiler target languagesand can be used as implementation
model� sfor higher-level (linearor otherwise)programminglanguages. Thus, aproperstudyof Interaction
Nets
�

and aconcretetermgraph rewriting systemmodel like MONSTRwhich bridgesthegap betweenthe
t
�
wo isbeneficialboth in theoryandin practice.In particular, wecanreasonabouttheratherunusualsyntax
o� f Interaction Netsin termsof amore traditional (‘directional’) syntaxemployedby termgraph rewriting
s� ystems. We canalso study the runtimebehaviour andpropertiesof rewrite rule systemsgeneratedfor
InteractionNetsandexploit themin producingmoreefficientimplementationswith respectto locality of
comput� ation,garbagecollection,etc. Nor should weunderestimatethefactthatsinceMONSTR isabasic
e� xecution modelfor reduction machines(Watson et al. 1988),thetranslation route from Interaction Nets
to
�

MONSTRpresentedin thispaperis effectively aparallel(distributed)realizationof theInteractionNet
formalis
�

m.
The
�

rest of thepaperis organizedasfollows. Thefollowing sectiondescribesMONSTRandsomeof
i
�
ts moreimportant properties. Section 2 doesthe same for Interaction Nets, following the treatmentof
Banach(1995).Thetwo models arebroughttogether in section 3 which describesa translation of typed
InteractionNetsinto MONSTR. Section4 shows how untypedInteractionNetsmay also be translated.
Sectio
�

n 5 presents the translation to equivalent MONSTRrule systemsof someconcreteInteraction Nets
e� xamplesandcomparesthemapping framework with othersimilar ones. It also discussessomepractical
ramifications relatedto efficient implementation. Section 6 discussessome generalizations of the net
model based on MONSTR’s properties. Section 7 offers concluding remarksand related and further
w� ork, including why a corresponding modification of MONSTR emulating theproperties of Interaction
Nets
�

is not appropriatein thepresent work.

1 MONSTR
Un
�

like most typical graph rewriting formalisms such asthe ones developed by Barendregt et al., Ehrig
et� al. and Sleepet al. (see collectionsof relevant papersin, for example,Ehrig et al. (1991),Sleepet al.

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 203

(1993),
	

TCS (1993)),MONSTR wasdesignedwith the repercussionsof efficient distributed implementa-
t
�
ion uppermost in mind. Thismeanttuning theexpressivenessof thebasic atomic actionsof themodelto
th
�

e capabilities of a typicaldistributedarchitecture,soasnot to overtaxthesynchronization propertiesof
t
�
he latter unduly – something whichwould leadto adramatic lossof performanceasa result of having to
im
�

plement a lot of distributedlocking.

1.1 MONSTR rewrites
Thefundamentalobjectsof MONSTR areterm

�
graphs. A term graphisadirectedgraphwherethenodes

are
 labelledwith symbols, assumedof fixed arity, and eachnodehasa sequenceof out-arcsto its child
nodes� . Thenodesand arcsof termgraphsaremarked to control rewriting strategy, aswe will see below.
The
�

termgraphthat represents the instantaneousstate of thecomputation is modified by theapplication
of� somerule. Letuslookat a rule in action, to see whathappensduring a rewr ite:

F
�

Cons! a b" # s$:Var %'&)(#
*
G
+ ,

a" -/. b
0 132

s$: 465 S7 UCCEED;

First the left-handside (the part before 8)9)
:

is matched. F is the root nodeandhastwo children,
th
�

e Consnode,and the Var node. The Consnodehastwo unlabelled children; such undefined nodes
maymatch anything. Note that the pattern is shallow; this is fundamental to MONSTR aslarge patterns
demand
�

large-scale locking to ensureatomicity.
Once
;

a matchis located,which must be at an active (< -marked) nodeof the graph,the nodeson the
right-handside are built into the redex area.Thusa once-suspended(#-marked)G

+
nodeis constructed,

wi� th arcsto the existing left-handsidenodesreferredto by a" and
 b
0

(s
	

o these nodesbecomesharedeven
if they werenot previously). Also the arc to b

0
is anotification arc (= -marked). Theothernew nodeis the

acti
 veSUC
7

CEEDnode.�
The notation >)? indicates that the root is to be redirected to the nodeimmediately following the@)A , i� .e. G

+
. Also theVar nodeis to beredirectedto SUC

7
CEEDby

B
thenotation s$: C S

7
UCCEED. During

redirection,all in-arcsto therespective redirectionsubjects(i.e. F and
 Var)
:

are replacedby in-arcsto the
respective targets(i.e.G

+
and
 SUC

7
CEED).

:
Redirection is thefundamental notion of update in term graph

reD writing, being a graph-orientedversion of substitution.
The final tasks of a MONSTRrewrite are to makethe root inactive (idle, written visibly asεE when�

necessary); and to activate specified left-handside nodes(which causes them to be marked active if
otherwis� e unmarked). In theconcretesyntax,this is accomplishedby mentioningtherelevantnodeson
th
�

eright-handsideof therule,with a F marking,e.g.b
0

ab
 ove.Weillustratetheaction of therule described
abo
 ve in Fig. 1. In Fig. 1, note how the in-arcsof F now point to G

+
after
 redirection,andthose of Var

poiG nt to SUC
7

CEED. In therewrite illustratedhere,we areassuming that the left-handsidenodesF and

Conshad

H
no furtherin-arcs, andthusbecameinaccessibleandweregarbagecollected.

The aboveassumed that there was a rule which matched, and that the explicitly matched argumentsof
t
�
he root of the redex (i.e. those arguments whose symbol needsto be inspected for pattern matching to
s� ucceed,Consand
 Var in our example), are idle. If any of the explicitly matched arguments of the root
is
�

not idle thensuspeI nsion occurs� , in which the root of the redex becomessuspendedon as many of its
e� xplicitly matchedargumentsashappento be non-idle;i.e. theroot nodeacquiresthatmany suspension
markings� , andeachof therelevantout-arcsbecomesanotificationarc (i.e. J -marked).

If no rule canmatch regardless of themarkings, thennotification occurs� , in which theroot becomes
idle, and for all its notification in-arcs,the K -marking is removed, andthenumberof suspensions(#s) in

204 R.Banach andG.A.Papadopoulos

*F[• •]

Cons[• •]

Data Nil

Var
L
#Q[•]

^ #G[• •]

Data
M

*Nil *SUCCEED

#Q[•]
^^⇒

Figure1: MONSTRrewrite.

t
�
heparentnode’smarking is decremented (with #0

N OQP
).
:

In thismannersubcomputationscansignaltheir
compl� etion to their parents(andsuspendedrewritescantherebybereawakened).

1.2 MONSTR syntactic restrictions and runtime properties
To make the aboveideasinto a computational model suited to distributedmachines,a number of restric-
t
�
ionsare imposed on the syntactic structure of systems so that some useful runtime properties can be
rigorously demonstrated. We point out the main onesnow rather informally, referring the readerto Ba-
nach(1996a),Banach(1997a)for a thoroughstudy (in thecontext of theformalsemanticsof MONSTR)
of� why these areappropriateandwhattheir consequencesare.

R All
S

nodesrespectthe arities of their symbols(within rules; andby meansof a simple induction,
with� in all execution graphs).

T The
�

alphabetof symbols isdividedinto f
U
unctions,� coV nstructors and
 sI tateholders. Functionslabel

rootD nodesof left-handsidesof rules(but not subrootnodes), and function symbols must always
ha
H

ve at least onedef
W

ault rule wh� ich hasno explicitly matched arguments, enabling such a rule
al
 ways to rewrite at runtime, regardlessof its arguments. Constructors and stateholders canlabel
s� ubrootnodesof left-handsidesof rules(but not the root nodes). Functionsandstateholders(but
not constructors) canlabel left-handside nodesof redirections, and all redirectionsmust specify
an
 explicit function or stateholderas left-handsidenode(oneof which must be theroot). Thusno
attem
 pt is evermadeto redirecta constructor at runtime.

X The patternmatchingrequirementsof eachredex dependsolely on the symbol at the root (and
s� o can be delegatedto simple hardware). More specifically, eachfunction symbol hasa fixed
matching template,one level deep, which specifieswhich of the root’s childrenneedto have their
s� ymbolsinspectedto matchanon-default rulefor thefunction.Furthermore,asinglefixed position
wi� thin this template can be designated for matching stateholders; the other positions may only
match constructors. (Thisexplainsthe MONSTR acronym: it standsfor a Maxi
 mum of O

Y
neN
Z

on-�
root ST

[
at
 eholder per Re� write.) No pointer equality testing is permitted except for the matched

co� nstructors(and for somespecialbuilt-insof whichwewill haveno needin this paper).

\ Al l nodesin rulesareba
]

lanced,� i.e. they have exactly asmany suspension markingsasthey have
notification out-arcs. (By asimple induction,all nodesin all execution graphsarebalancedtoo.)

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 205

^ Al
S

l nodesin rulesareeither sI tate saturated (i
	

.e. if they have oneor morenotification in-arcsand
are
 idle, thenthey must bestateholders), or designated for acti_ vation.

` An
S

y redirection whose right-handside nodeis idle andnot activatedmust bea stateholder. (As a
cons� equenceof thisand thepreviouspoint, all nodesin all execution graphsarestate saturated.)

a In all rules, the left-handside nodeof a redirection should not be activated unless it is also the
right-handside of someother redirection. (In practice thisenablestheconvenientrepresentation of
rewriting by packetstoremanipulations, and particularly the representation of most redirectionsby
packG etoverwriting.)

By convention,rewriting alwaysstartswith a single active nodelabelledINITIAL; and MONSTR pro-
vi� desa rule selection policy which permits non-default rules to be selected beforedefault ruleswhen
either� would match(; is the sequential rule selector in concrete syntax). Note that we have said noth-
i
�
ng very specific aboutgarbagecollection. The generalideais that active and Roo

b
t-labelled nodesare

l
�
ive, and liveness is propagated down normalarcsand up notification arcs; see Banach(1996a),Banach
(1997a)
	

for a moreprecise discussion. Theimplicit mark-scanstrategy that such a schemeembodiescan
be
B

considerablysimplifiedwhenwerestrict to a linearsubset (seebelow).

2 Interaction Nets
Interaction Nets wereinvented for describing fine-grainedcomputationsgraphically. Their theorybuilds
o� n prior work in multiplicativeLinearLogic that givesthe Interaction Net model particularly transparent
propertG ies regardingconfluence,andto a lesser extentnormalization. We use theformulation of Banach
(1995)
	

asit ismoreconvenient for thetranslation thatwe subsequently give.
InteractionNetscanbeviewedasbipartitegraphswherethetwo nodekindsareagen_ t nodesandpo� rt

nodes. Eachagentbearsa syI mbol,� which determinesthe numberof port� edgesincidenton it, andthe
at
 tributesof those edges. These port edgeattributesare: the port edge’s name; whether it is principa� l
or� a_ uxilia ry ; and the port edge’s typ

�
e. Thetypescomein complementary pairs (αc d ,� αc e),

:
for αc dra

�
wn

fro
�

m a suitable type alphabet. Exactly one of an agent’s ports is principal, and the restareauxiliary.
F
f

inally, we have theall-important port invariant which states thatat most two portedgesmaybeincident
on� a port node,and that they must beof complementary types, say αc g and
 αc h . Figure 2 illustratesthe
situ� ation and alsointroducesthe notion of port� connection,� which we will use as requiredbelow. Note
th
�

at we indicateprincipal port edgesusing anarrowhead, while auxiliary port edgesare unadorned. Also
we� will suppresssomeof thedetail to avoid clutter in future.Wewill say thataportconnection consisting
of� two principal port edgesis a principal port connection. An Interaction Net rewrite rule has, on the
left-hand side, two agents joined by a principal port connection, and with all their auxiliary ports free
(i
	

.e.not connectedto otherport edges). Theright-handside is an arbitrary Interaction Net with the same
e� xternal interfaceasthe left-hand side, which is to saythat part of the rule’s data is a bijective mapping
bet
B

weenthe freeportedgesof theleft-handsideand right-handsidenets, which preservesthe types. The
o� nly exceptions to the bijective law areshoI r t cir cuits,� wheretwo free port nodesof the left-handside
with� complementary types are allowed to be identified in the right-hand side. Figure 3 shows a picture
of� a rule. Thenumberson the interfaceport edgesdefinethe aforementionedbijection betweenleft- and
riD ght-handsides. Theblobslabelled (2:β i , 9� :β j) a

:
nd (3:γk l , 4� :γk m)

:
are the short circuits in anobvious

notation. Any fresh port nodesintroducedin the right-handside, i.e. port nodesnot belonging to the

206 R.Banach andG.A.Papadopoulos

•A
n

B
t:αo – u:p α+q

principal port edgerauxiliary port edge

port typerport namer

port connectionragent node

port noder
agent symbol

F
s

igure2: P
t

ort connectionin an InteractionNet.

e:u αv +w

x:αv –

5

6

7

3
2

1

4

88 9

d:
x

γy +w

b:
z

β+w
a:{ β–

c:| γy –
f:
}

µ~ –

w:� λ
�

+w

z:β–y:� ν� –

7

6

1

10

k:
�

β– l:λ
�

+w

m:µ~ – n:λ
�

–

o:� λ
�

+w

p:� ν� –

•

•

(2:β+, 9:w β–)

(3:γy –, 4:γy +)w
⇒

F

C

T

H

Figure3: Interaction Net rewrite rule.

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 207

⇒�

1=2

3
�

4

5

6

7

8

9

F

C

B G
�

D

•

•

•

•

•

•

•
•

•

•

•

•

••

G
� H

B

D

T

9=1

7

3=4
�

8

6
10

Figure4: The action of an Interaction Net rewrite rule.

interface,will be called internal ports in future (port node10 in Fig. 3). The operational semantics
o� f such a rule startsby finding a matching of the left-hand side of the rule in the net being rewritten.
Thenthe matchedsubnetis removed, andreplacedwith a copy of the right-handside of the rule. It is
eas� y to seethat the type preserving bijective law with short circuits of type-matchedpairs, meansthat
the
�

port invariant is preserved by rewrites. Figure4 shows a rewrite accordingto the rule introduced
pG reviously. The principal/auxiliary distinction on ports, and the fact that rules must feature a principal
connect� ion, leadsto the study of deadlock

W
prevention for

�
InteractionNets. A deadlockis wherethere

is
�

a cycle of agents, eachof whose principal port edgesconnectswith anauxiliary port edgeof thenext
agent
 . Obviously in such a situation, noneof the agents involved canever rewrite. A rich theorycanbe
de
�

velopedto ensurethatsuchsituationscannotarise, but this is not neededin the present paper:see the
cited� referencesfor details.

W
�

e end this brief exposition of InteractionNets with some further observations. Since eachagent
has
H

only oneprincipal port, it caninteract with at most oneother agent, the oneconnected to the said
priG ncipal port, andthenonly if thatagent’s corresponding port is itself principal. This meansthatapart
from
�

auxiliary portnodesthatthey might havein common,any two distinct redexesin an arbitrarynetare
non-o� verlapping,andprovidedfor eachpossible pair of agentson theleft-handside thereis exactly one
ruD le, InteractionNetrewriting isChurch–Rosser. If moreover, theright-handsidesof rulesaresmallerthan
th
�

eir left-hand sides (asis the case,for example, for the Interaction Net version of LLM cut elimination),
th
�

enInteraction Net rewriting isalso terminating.
The
�

form of rules, and the oneprincipal port restriction for agents, combine to imply the following
s� tructurefor the life history of a port node:it is createdduring somerewrite. Perhapsthe two port edges

208 R.Banach andG.A.Papadopoulos

in
�

cident on it areauxiliary. While an incident port edge is auxiliary, it may be replacedby another port
edge,� or short circuited, as its owning agentinteracts along some differentport connection. Oncean
au
 xiliary port edge is replacedby a principal port edge, however, the port edge is committed. It canno
longer
�

be replaced,exceptif the otherincidentedgealso becomesprincipal, and the whole connection
becomes
B

the redex of a rewrite, at which point the connection, and the pair of connected agents are
garbaged.� For any givenport, the wholeof theaboveis notcompulsory, and theportmayundergo only a
s� ubsequenceof theindicatedtransformations, but thestructureof thatsubsequencemust alwaysfit within
t
�
he indicatedpattern. This factcanbeusefully exploited by implementations, aswewill see below.

3
�

From Interaction Nets to MONSTR
Themost striking thingaboutInteraction Nets from an implementationpoint of view isthat theportedges
are
 unoriented. (We disregardthearrowheadsof theprincipal port edgesfor this purpose.) Usually, im-
plG ementing an unorientededgein aconcretedatastructurerequiresapair of oppositely orientedpointers.
W
�

ith this in mind, if concurrentupdateof the datastructureby many rewriting processes is envisaged,
then
�

unorientededgescanimply disaster in performance,sinceonehasto avoid raceconditionsarising
from
�

two agents competing to update the sameedgefrom opposite ends. This caninvolve all the over-
heads
H

of locking andperhapsof deadlock avoidance.By contrast, MONSTR, with a close eye kepton
implementation
�

matters, featuresonly directedarcs, avoiding theproblemsindicatedabove.
Thesimilar shapeof left-hand sidesin thetwo models is striking. Theobviousthing that wewould like

t
�
o do is to relate the two agents connectedby a principal andundirectedport connection in theleft-hand
s� ideof anetrule, to thefunction andstateholderconnectedby adirectedarcin acorrespondingMONSTR
rule– fortunately it ispossibleto do thisif oneexploitstheorientednessof theInteraction Nettypesystem
to
�

provide an orientation for the principal port connection. Indeedit is possible to go further. Noticing
that
�

theagentsof an InteractionNetcomputationareinspectedandreplacedexactlyonceeach(sinceeach
agent
 participatesin exactly oneinteraction), enablesusto representsomeagents by constructors rather
than
�

themoregeneralstateholders.
S
�

omewhatarbitrarily, we choose to encodeagents with principal ports of positive typeby MONSTR
function nodes, andthose with principal portsof negative typeby MONSTR constructor nodes. Further,
we� encodeportnodesby stateholderslabelled with thesymbolPort. (Wereally doneedstateholdershere,
as
 thePort nodesrepresent synchronization points.) To start with, all port edgesare represented by arcs
from
�

theagentnodesto port nodes, andall port connectionsarerepresentedby a pair of in-arcsof a Po
�

rt
node� – in a representation of an Interaction Net that is rather obvious. For a principal connection, we
ha
H

veto turn the inward-pointing pair of arcsinto asinglearc; furthermore,wehaveto do this in amanner
whi� ch respects theindependenceof thetwo portedges. Fortunately, thetypical life history of a portedge
sketch� edin theprevioussection helps, asboth edgesare following similar trainsof activity.

At the point that a function nodeis created, it is created active. It matchesits child. If this is a
cons� tructorrepresentingan agent,aMONSTRrewrite representingan InteractionNetrewrite takesplace.
If not, and the function seesonly a Port node,it suspendswaiting to be notified of a changeof state.
C
�

onversely, theconstructor representing thenegativetypeagentiscreatedalongwith anadditionalAssign
function whose job is to redirect the constructor’s principal port nodeto the constructor itself, thereby
making� theconstructorvisible to any waiting functionnode,should thereindeedbeonetherenow or at
s� omepoint in the future.Specifically, theA

�
ssign acti
 vatestheconstructor, which thennotifiesany parent

su� spended on it. In fact it is clearthat with the desiredbehaviour of the A
�

ssign funct
�

ion, the original arc

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 209

from
�

theconstructor to thePo
�

rt node� becomessuperfluous, and canbedispensed with. It is easy to see
th
�

attheprotocol worksasrequired, and in particularthat it allowsauxiliary port edgerepresentativesto be
replacedD atwill. (Obviously, if aprincipalportconnectionisbeingcreatedall at oncewithin theright-hand
s� ide of some rule ratherthandynamically, thenthe protocolcanbe optimizedaway.) The replacement
of� agents andof their port edgesworks by garbagecollection. In a rewrite, the nodesrepresenting the
right-handside of therule arecreatedandconnectedto therelevantPort nodes; meanwhile the left-hand
s� ideagentnodesloseall live referencesandthusbecomegarbaged.

W
�

e now give thetranslation formally. Thereadermaybeslightly concernedthatwe do notalso define
formal
�

ly thelanguagewearetranslating into. Thiswould,however, requiresomesubstantial work which,
in
�

additionto makingthepaperunacceptablylong,wouldprobablyalso sidetrackusfrom themain,rather
practical,G pacewe haveset.

First we write down a generic Interaction Net rule DIN :

LHS:
�

Agents: F
�

,� with auxiliary ports f
�

1 : αc 1������� f i� : αc i
� �������

f n
�

: αc n� �
C,� with auxiliary portsc� 1 : β1�������ci� : βi

� �� � �
cm� : βm¡ ¢

where� £ is either ¤ or� ¥ in eachcase.

RHS: Agents: E1 ¦�¦�¦ Ei §�§�§Er,� with principalportsq¨ 1 : δ
©
1ª¬«�«�«qi¨ : δ

©
i
� �®�®�®

qr¨ : δ
©
r ¯

an
 d with auxiliary portsq¨ 11 : δ
©
1°1 ±�±�± q¨ 1 j

²
1 : δ
©
1³ j² 1 ´�´�´ q¨ 1t1 : δ

©
1µt1 (of

	
E1) ...

qi¨ 1 : δ
©
i
� ¶
1 ·�·�· qi¨ ji

² : δ
©
i
� ¸
ji
² ¹�¹�¹ q¨ 1ti : δ

©
i
� º
ti (of
	

Ei
»

)
:

...
qr¨ 1 : δ

©
r¼ ½1 ¾�¾�¾ qr¨ jr

² : δ
©
r¼ ¿ jr² À�À�À q¨ 1tr : δ

©
r¼ Átr (of
	

Er
»

)
:

Internal
�

ports: pÂ 1 Ã�Ã�Ã piÂ Ä�Ä�Ä psÂ
Sh
�

ort circuits: Å xÆ 1 : γk 1 ÇÉÈ yÊ 1 : γk 1 ËÍÌÏÎ�Î�ÎÑÐxiÆ : γk i� ÒÉÓ yiÊ : γk i� ÔÍÕ×Ö�Ö�ÖÑØ xuÆ : γk uÙ ÚÉÛ yuÊ : γk uÙ ÜÍÝ

where� in theabovethereis an onto mapping

θ
Þ

: ß q¨ 1 à�à�à qr¨ á)âäã q¨ 11 å � å � åqr¨ tr æèçêé xÆ 1 ë � ë � ëyuÊ ìîíðï f
�

1 ñ�ñ�ñ f n
� òèóäô

c� 1 õ � õ � õcm� öè÷êø pÂ 1 ù � ù � ùpsÂ ú
where� θ

Þ û 1 is 1 ü 1 on ý f
�

1 þ� þ�þ f n
� ÿ����

c� 1 � � � � �cm� � ,� andeachθ
Þ � 1 	 piÂ
 is of cardinality 2. (This just expressesthe

portG invariant for theright-handside.)
In
�

the MONSTRtranslation, bol
�

d i
�
temswill correspondto symbols or parts of symbols mappedfrom

t
�
he componentsof theabovegeneric rule,while ita

�
lic item
�

swill stand for constantsof the translation. In
general,� weusefontchangeto identify piecesthatcorrespondin theInteractionNetsandMONSTR rules.
The
�

MONSTRruleD
�

M th
�

at translatestheaboverule is:

FF
�
F CCC � c� 1c� 1c� 1 ����� ci�ci�ci� ����� cm�cm�cm� � f

�
1f
�

1f
�

1 ����� f i� f i� f i� �����
f n
�
f n
�
f n
� �������

OK
� �

pÂ 1pÂ 1pÂ 1:Po
�

rt �� � � !� piÂpiÂpiÂ :Po
�

rt "�#�#�#�" psÂpsÂpsÂ :Po
�

rt $
e% 1e% 1e% 1:m¡ 1E

»
1E1E

»
1 &q¨ 1q¨ 1q¨ 1q¨ 11q¨ 11q¨ 11 '�'�' q¨ 1 j

²
1q¨ 1 j
²
1q¨ 1 j
²
1 (� (� (q¨ 1t1q¨ 1t1q¨ 1t1) + * � , � , � , � *

ei%ei%ei% :mi¡ EiEiEi
» -

qi¨qi¨qi¨ qi1qi¨ 1qi¨ 1 .�.�. qi¨ ji
²qi¨ ji
²qi¨ ji
² /�/�/ qi¨ tiqi¨ tiqi¨ ti 021�3�3�341

er%er%er% :mr¡ ErErEr
» 5

qr¨qr¨qr¨ qr1qr¨ 1qr¨ 1 6�6�6 qr¨ jr
²qr¨ jr
²qr¨ jr
² 7�7�7 qr¨ trqr¨ trqr¨ tr 829

wher: e if qi¨qi¨qi¨ :δ
©
i
� ;

(i.e.
	

EiEi
»
Ei is anagentof positive typeprincipalport, andthusEiEi

»
Ei is a function symbol),

th
�

enµi<µi<µi< =?> ,�

210 R.Banach andG.A.Papadopoulos

els@ eif qi¨qi¨qi¨ : δ
©
i
� A

(i.e.
	

Ei
»
EiEi
»

i
�
sanagentof negativetypeprincipalport, andthusEi

»
EiEi
»

i
�
saconstructor symbol),

th
�

enµi< B εEµi< C εEµi< D εE ,� qi¨q¨ i�qi¨ i
�
sabsent from theargumentsof Ei

»
EiEi
»

,� andwe also have

E Assign Fqi¨q¨ i�qi¨ eiei%ei% G
fi

H A
�

ssign IxÆ 1xÆ 1xÆ 1yÊ 1yÊ 1yÊ 1J2K�L�L�L4KM Assign NxiÆxiÆxiÆ yiyiÊyiÊ O+P�Q�Q�Q�PR Assign SxuÆxuÆxuÆ yuyuÊyuÊ T ;
where� in theabove, themapθ

Þ
is
�

interpretedassyntacticidentity, i.e.if θ
Þ U

q¨ 4V�W c� 9Xq¨ 4
Y Z�[

c� 9Xq¨ 4\ ^]c� 9 s
X

ay, thenq¨ 4q¨ 4
Y

q¨ 4 is identical
to
�

c� 9Xc� 9Xc� 9,
X

giving theconnectednessof thecorrespondingtermgraphaccordingto thesyntacticconventionsof
MONSTR

.
In
�

addition weneedthe following suite of rules:

Assign _ v` :Port aacb�d�e OK
� f

v` : gih a" ;

Assign j v a` k�l^m #Assign n oqp v a` r ;
F
�
FF
� s

pÂ :Po
�

rt f 1f
�

1f
�

1 t�t�t f i� f i� f i� u�u�u
f n
�
f n
�
f n
� v�w�x

#
*
F
�
FF
� y z

p fÂ 1f
�

1f
�

1 {� {�{ f i� f i� f i� |�|�|
f n
�
f n
�
f n
� }

;

F
�
FF
� ~

p fÂ 1f
�

1f
�

1 �� ��� f i� f i� f i� �����
f n
�
f n
�
f n
� ���^�

#
*
F
�
FF
� � ���

p fÂ 1f
�

1f
�

1 �� ��� f i� f i� f i� �����
f n
�
f n
�
f n
� �

;

Hereis the translation of thespecificexamplewe hadpreviously:

F
� �

C � c� 7� c� 8� c� 9X � f
�

1 f
�

2
�

f
�

3
�

f
�

4
Y

f
�

6
� �������

OK
� �

pÂ 10:Po
�

rt �
e% 1:T
� �

f
�

1 c� 7� pÂ 10�2�2� A� ssign � f� 6
�

e% 1�+
e% 2: ¡ H ¢ pÂ 10c� 8� £2¤¥ Assign ¦ c� 9X f

�
2§+̈ª© Assign « f� 3

�
f
�

4¬ ;
In
�

Fig. 5 we show what happensin the application of this rule to the translation of the net we treated
earlier� , afterall theAssigns� havedonetheirwork. (We notethatif multiple redirectionswereavailablein
MONS

TR – as they are in Dactl, of which MONSTR is a sublanguage– thentheA
�

ssigns� would not be
neces� sary; we could matcha largerpatternanddo all therequiredredirectionsperformedby theA

�
ssigns�

in
�

onefell swoop,moduloconsiderationsof locality, of course.)

4 Untyped Interaction Nets
It turns out that muchof the theoryof Interaction Nets canbe carried throughwithout the presenceof
a
 type system such aswe exploitedabove (seeBanach(1995)). This is because the principal/auxiliary
propertG y of ports is alreadya kindof crudebut effective typesystem. It is thereforeinteresting to seeif a
reasD onable translation canbeconcocted withoutthesimplifying influenceof orientedness. In thissection
we� show that onecan;in factwe describetwo schemes, thesecondof which builds on propertiesof the
first.

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 211

Figure5: Application of MONSTRrule.

4.1 The first translation

Th
�

emainnovelty, of course,is that Interaction Net rulesarenow truly symmetrical in the two agents that
occur� on theleft-handside. Thereforeneithercanbedeemedto be‘in charge’ of therewrite aspreviously,
and
 wemust lookfor amoresymmetricalsolution. Oneway is to allow theportnodeof theprincipal port
co� nnection itself to takecontrol. WereplacethesimplePo

�
rt node� at thecentreof aportconnection of the

preG vioustranslation by agadgetconsisting of aRew function nodewith two Port nodechildren,asshown
in Fig. 6. Thegadgetisconnectedto thetwo respectiveagentnodes, eitherusing an Assign function when
t
�
he port in question is a principal port, or by a conventionalport edgecoming from theagentwhenthe
pG ort is auxiliary. One of eachis shown in the figure. The basicideais that Assign redirects therelevant
ch� ild of Rew t

�
o anagentnode,causing onenotification to Rew, a� nd when Rew hasbeennotified twice,

it has two agent childrenand socanmodel the relevant Interaction Net rewrite. We leave it to readersto
co� nvincethemselvesthat the gadget works properly, i.e. that it controls rewrites in a suitable way, even
i
�
n the presenceof short circuits (which arenow undirectedof course). In effect, thegadgetis a kind of
compos� ableconcurrentdatastructure,in today’s terminology.

F
f
or the schematic rule translatedin the previous section, but with the types now elided, we find the

follo
�

wing new translation. For eachagentsymbolX

we� will needtwo MONSTRsymbols,X
®

and
 Re
b

w X
®

,�
t
�
he formera constructor to be matchedby Re

b
w,� the latter a function incorporating Re

b
w’s memoryof the

firs
¯

t agentit matched.

Rew ° pÂ :Port a±³²̂ �́µ OK
� ¶

pÂ : ·?¸ a" ;

Rew ¹FF�F º f� 1f
�

1f
�

1 »�»�» f n
�
f n
�
f n
� ¼

c�c�c� ½c¾�¿�À Rew FF
�
F Ác�c�c f� 1f

�
1f
�

1 Â� Â�Â f n
�
f n
�
f n
� Ã

;

Rew Ä a b" Å�Æ^Ç ##Rew È ÉqÊ a" ËÍÌ b
0 Î

;

212 R.Banach andG.A.Papadopoulos

##Rew[• •]

p1:PortÏ p2:Port

agent-1Ð

agent-2Ð

*Assign[• •]

^ ^

Figure6: Rew function nodewith two Port nodechildren.

(Sim
	

ilarly Rew ÑC Òc� 1c� 1c� 1 Ó�Ó�Ó cm�cm�cm� Ô f� f� f� Õ�Ö�×ÙØ�Ø�Ø
. We do not give thesymmetrically pairedrules.)

Rew FFF Ú pÂ :Port f 1f
�

1f
�

1 Û�Û�Û f n
�
f n
�
f n
� Ü�Ý�Þ

#Rew FFF ß à p fÂ 1f
�

1f
�

1 á� á�á f n
�
f n
�
f n
� â

;

Rew FFF ãCCC äc� 1c� 1c� 1 å�å�å ci�ci�ci� æ�æ�æ cm�cm�cm� ç f
�

1f
�

1f
�

1 è�è�è f i� f i� f i� é�é�é
f n
�
f n
�
f n
� ê�ë�ì�í

OK
� î

rew1re¼ w1rew1:##Rew ï ð pÂ 1pÂ 1pÂ 1 ñ 1:Port ò pÂ 1pÂ 1pÂ 1 ó 2 : Port ô+õ�ö�ö�ö�õ
rewire¼ wirewi:##Rew ÷ ø piÂpiÂpiÂ ù 1:Port ú piÂpiÂpiÂ û 2:Port ü2ý�þ�þ�þ!ý
rewsre¼ wsrews:##Rew ÿ � psÂpsÂpsÂ � 1:Port

�
psÂpsÂpsÂ � 2 : Port

���
e% 1e% 1e% 1:E1E
»

1E1 �q¨ 11q¨ 11q¨ 11 �	�	� q¨ 1 j
²
1q¨ 1 j
²
1q¨ 1 j
²
1
 	
 �
q¨ 1t1q¨ 1t1q¨ 1t1 � � � �Assign �q¨ 1q¨ 1q¨ 1e% 1e% 1e% 1���	�	�����

ei%ei%ei% :EiEi
»
Ei �qi¨ 1qi¨ 1qi¨ 1 �	�	� qi¨ ji

²qi¨ ji
²qi¨ ji
² �	�	� qi¨ tiqi¨ tiqi¨ ti ����� Assign �qi¨q¨ i�qi¨ eiei%ei% �����	�����

er%er%er% :Er
»
ErEr
» �

qr¨ 1qr¨ 1qr¨ 1 	 � qr¨ jr
²qr¨ jr
²qr¨ jr
² !�!	! qr¨ trqr¨ trqr¨ tr "�#%$ A� ssign &qr¨qr¨qr¨ erer%er% '�() A

�
ssign *xÆ 1xÆ 1xÆ 1yÊ 1yÊ 1yÊ 1+�,�-	-	-.,�/ A� ssign 0xiÆxiÆxiÆ yiyiÊyiÊ 1�2	3�3	3.24 A

�
ssign 5xuÆxuÆxuÆ yuyuÊyuÊ 6 ;

where� thepreviousmappingθ
Þ

no� w becomesagenuinebijection

θ
Þ

: 7 q¨ 1 8	8	8 qr¨ 9;:=< q¨ 11 > 	 > 	 >qr¨ tr ?A@CB xÆ 1 D 	 D � DyuÊ EGFIH f
�

1 J 	 J � Jf n
� K;L=M

c� 1 N 	 N � Ncm� O;PCQ pÂ 1 R 1 S 	 S � SpsÂ T 2� UWV
in
�

terpretedas syntacticidentity in the MONSTRrule (this change being provoked by the replacement of
t
�
heoriginal internalPort nodesby gadgetshaving two suchPort nodes, of course).

Thekey rule in ourspecificexamplenow becomes:

Rew F XC Y c� 7� c� 8� c� 9X Z f
�

1 f
�

2 f
�

3
�

f
�

4 f
�

6
� []\;^`_

OK
� a

rew:##Rew b c pÂ 10d 1:Port e pÂ 10f 2:Port g�h
e% 1:T i f� 1 c� 7� pÂ 10j 1k�l�m Assign n f� 6

�
e% 1o�p

e% 2:H q c� 8� r�s�t Assign u pÂ 10v 2e% 2w�xy Assign z c� 9X f
�

2{�|�} Assign ~ f� 3
�

f
�

4� ;
Fig
f

ure 7 illustratesthe situation after the rewrite of the example using the rule above,but before all the
‘plumbing’ rewrites have completed. To economizeon spacein this figure,we abbreviate Assign to

�
Ass,�

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 213

*Rew

G T[• • •] H[•] B[• • •]

D

#Rew

9

*Ass

2

#Rew

1=2 1

#Rew

##Rew

77

10.1 10.2

#Rew

##Rew

*Ass

8

3 43 4

##Rew ##Rew*Ass

^^ ^

^

^^

^

^

^

^ ^^

Figure7: After rewriting.

and
 the variousport nodesto just numbers, with underlinednumbersstanding for the otherPort nodes
in
�

thegadgetsof therewrite’s interface.Thenotation1 � 2 indicatesthatPort nodes1 and
 2 were� short
ci� rcuited at somepreviouspoint andarenow onenode.

4.2 The second translation
The
�

secondtranslation is inspiredby thefirst rule for Re
b

w. This rule is neededto ensure theRe
b

w/
�

Po
�

rt/
�

Port gadget� works properly when two of them have beenshort circuited. Note that it behaves much
like the rule for Assign. This suggests that we model eachrewrite as the resolution of a short-circuit-
like competitionbetweenthe two principal port edgesinvolved in the principal connection. In such a
sc� heme, Rew functionsareallocatedperprincipal port edge,ratherthanper port nodeaspreviously, and
th
�

e Assigns� andadditionalPort nodesof thefirst translation becomesuperfluous. Theallocation of Rews�
perG principal port edgeeffectively createsthemlazily, sincewhena port nodeis first created,thereis no
needfor either incidentport edgeto beprincipal. Theprevioustranslation createsthe Rews� eagerly, and
th
�

us is lessefficient. We now needjust one Port nodeper port nodeasbefore. The rules for Rew are

214 R.Banach andG.A.Papadopoulos

Figure 8: The situation just after the rewrite.

unchanged,� but theright-handsidesof the Rew F rules are different. Hereis the key generic rule (other
rulesareunaltered).

Re
b

w FF
�
F �CCC �c� 1c� 1c� 1 ���	� ci�ci�ci� ���	� cm�cm�cm� � f

�
1f
�

1f
�

1 ���	� f i� f i� f i� ���	� f n
�
f n
�
f n
� �]�A���

OK
� �

pÂ 1pÂ 1pÂ 1:Port �	���	���
piÂpiÂpiÂ :Po
�

rt �	���	���
psÂpsÂpsÂ :Po
�

rt �
e% 1e% 1e% 1:E
»

1E1E
»

1 �q¨ 11q¨ 11q¨ 11 �	�	� q¨ 1 j
²
1q¨ 1 j
²
1q¨ 1 j
²
1 � 	 � � �q¨ 1t1q¨ 1t1q¨ 1t1 � � � � �Re

b
w �q¨ 1q¨ 1q¨ 1e% 1e% 1e% 1���	���	�.�

ei%ei%ei% :Ei
»
EiEi
» �

qi¨ 1qi¨ 1qi¨ 1 	 	 qi¨ ji
²qi¨ ji
²qi¨ ji
² ¡	¡	¡ qi¨ tiqi¨ tiqi¨ ti ¢�£�¤ Re

b
w ¥qi¨qi¨qi¨ eiei%ei% ¦�§�¨	¨�¨�§

er%er%er% :Er
»
ErEr
» ©

qr¨ 1qr¨ 1qr¨ 1 ª	ª�ª qr¨ jr
²qr¨ jr
²qr¨ jr
² «�«	« qr¨ trqr¨ trqr¨ tr ¬��® Re

b
w ¯qr¨q¨ rqr¨ erer%er% °�±² Assign ³xÆ 1xÆ 1xÆ 1yÊ 1yÊ 1yÊ 1́�µ�¶	¶	¶.µ�· Assign ¸xiÆxiÆxiÆ yiyiÊyiÊ ¹�º	»�»	».º¼ Assign ½xuÆxuÆxuÆ yuyuÊyuÊ ¾ ;

Themapping θ
Þ

is asin the typedcase. We quote themain rule of the running example in thesecond
tran
�

slation:

Re
b

w F
� ¿

C À c� 7� c� 8� c� 9X Á f
�

1 f
�

2
�

f
�

3
�

f
�

4
Y

f
�

6
� Â]Ã;Ä`Å

OK
� Æ

pÂ 10:Po
�

rt Ç
e% 1:T
� È

f
�

1 c� 7� pÂ 10É�ÊÌË Re
b

w Í f� 6
�

e% 1Î�Ï
e% 2:H Ð c� 8� Ñ�ÒÌÓ

Rew Ô pÂ 10e% 2Õ�Ö× Assign Ø c� 9X f
�

2Ù�ÚÜÛ Assign Ý f� 3
�

f
�

4Þ ;
A picture of the situation just after the rewrite and having completedthe Assigns� but not the Rews,�

appears
 in Fig. 8.

5
ß

Examples and comparison with similar work
In thissection weprovidetheMONSTR codefor anumberof concreteprogrammingexamples, covering
bot
B

h thecasesof typedanduntypednets; this codehasrunsuccessfully on theDactl interpreter((Glauert

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 215

⇒à
Append

Cons
á

+

–

w–

x+ u+

v+

Cons
á

w–

x+

Append
â

u+ v+

aã

Append

Nil

+

–

w–ä

v+

⇒

w–

v+å

Figure9: Visualrepresentationof Appendin Interaction Nets.

et� al. 1988, Glauertet al. 1990)). We also comparethe resulting MONSTRcodewith that produced
wh� enprogramswritten in othercomputational models, similar to Interaction Nets,arelikewisetranslated
t
�
o sets of MONSTR rewrite rules. This comparison furtherhighlights somefeaturesof MONSTR and
als
 o putseachinto a widerperspective.

5.1 Typed examples

W
�

e startwith the typed version of the unavoidable Append. In order to make it easier for the readerto
unders� tand how the generic Interaction Nets to MONSTR translation presented in section 4 is used to
generat� etheMONSTR program,weshow below both the‘vi sual’ andtextual representation of Appendin
Int
�

eraction Nets. Thevisual representation is in Fig. 9. (Theconvention we adoptin thispaperis thatthe
priG ncipalportsof the ‘functions’ havea positivesign andthoseof the‘constructors’ havea negativeone;
t
�
he opposite convention would of course beequally valid providedit wereusedconsistently, and indeed

216 R.Banach andG.A.Papadopoulos

t
�
hat is the oneadopted in Lafont (1990),Lafont (1991).) The textual equivalent of Fig. 9 now follows,

where� thetypeof the principal port is shown first in thesymboldeclarations.

typ
�

e at" om,list

syI mbol Cons:list-;atomæ ,listç è
Nil:list
é ê
Append:l
�

ist ë ;listì í ,listç î
Cons[x Append(v,t)] ïñð Append[v,Cons(x,t)]
Nil
é òñó

Append[v,v]

It
�

should now beeasier for thereaderto understandhow thefollowingMONSTR rulesystemisderived.

A
�

ppendôConsõ x uÆ ö w v÷ øúùAû�ü OK
� ý

a" :Port þ
e% 1:Consÿ x aÆ ���
e% 2:
� �

A
�

ppend� u aÙ v���� A
�

ssign 	w e÷ 1
 ;
A
�

ppend�Ni
é

l w v������ OK
� �

� Assign �w v÷ � ;
Append� pÂ :Port w v����� #Append� � p w vÂ � ;
Append� p wÂ v �!�" #Append# $&% p w v' (;

A typicalMONSTRqueryinvolving theaboveprogramis shown below. (WerecallthatINITIAL denot
)

es
th
*

efirst pieceof graph to beattemptedfor reduction in aMONSTR/Dactlprogram.)

INIT
+

IAL ,.- p' :Po
/

rt 01 Append2 l3 1 p l' 24�5
l
3
1:Cons6 1Cons7 2 Ni

8
l 9:9�;

l
3
2:Cons< 3= Cons> 4 Ni

8
l ?:? ;

In the above rule for INITIAL,@ it is easy to see the two argumentsof AppendandA how the codeought
to
*

work. It is the optimization describedearlierof the following, wherethe right-hand side of the initial
graphB is constructed in thelongwindedway.

INIT
+

IAL C.D p' :Po
/

rt EF AppendG l3 1 p l' 2H�I
l
3
1:ConsJ 1 p' 11K�LNM Assign O p' 11ConsP 2 p' 12QRQ�ST Assign U p' 12Ni

8
l V�W

l
3
2:ConsX 3= p' 21Y�ZN[Assign \ p' 21Cons] 4 p' 22̂R^�_` Assign a p' 22Ni

8
l b�c

p' 11:Port d p' 12:Port e p' 21:Port f p' 22:Port;

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 217

DAppend

Diff

+

–

w–g

v+h

x+i

y–j ⇒

Diff

Open

x+

–

w–

y–j

v+h +

a

Open

Diff

+

–

x1–

y1+j

x+i

y–j ⇒

x+i

x1–

y1+j

y–j

Figure10: V
k

isualrepresentationof D
l

Append.m

No
n

te that, as Fig. 9 shows, the result of appending the two lists will appearin the second argument of
Append
o

.
Thenext programis a variant of Append,@ referredto as DAppend,@ which makes use of differencelists.

Aside from theobvioususefulness of oncemoredemonstrating themapping procedurefrom Interaction
Nets
n

to MONSTR which we have described, the example illustratessome featuresof Interaction Nets
relp ated more to concurrentlogic (Shapiro 1989)than to functionalprogramming. We discuss this issue
atA greaterlengthlater. As for thecase of ordinaryAppend

o
,@ we show both thevisual (in Fig. 10) andthe

t
*
extual representation of D

q
Append.

typ
r

e d
s

list
3

syt mbol Diff:d list
3 u

;listì v ,listç w
DAppend:dlist

3 x
;dì list
3 y

,dç list
3 z

Open:d
{

list
3 |

;listì } ,listç ~

218 R.Banach andG.A.Papadopoulos

Dif
q

f[x,y] ��� D
q

Append[Open(t,y),Diff(x,t)]
Dif
q

f[x,y] ��� Open[y
{

,x]

No
n

te the useof the auxiliary agent Open
{

t
*
o bypass the constraints imposedby Interaction Nets in the

format
�

ion of rules. Theequivalent MONSTR codefollows.

DA
q

ppend �Di
q

f f � y x� � w v� ������� OK
{ �

a� :Po
/

rt �
e� 1:Dif
q

f � a x� ���N� Ao ssign �w e� 1���
e� 2: � Op

{
en � v y� a� ;

DAppend � p' :Port w v�¡ .¢ #DAppend £ ¤ p w v' ¥ ;
DAppend ¦ p w' v§�¨�© #DAppend ª «¬ p w v' ® ;
Op
{

en ¯Diff ° y x� ± x² 1 y� 1³�´�µ�¶ OK
{ ·

¸ Assign ¹ x² 1 x² º�»¼ Assign ½ y y� 1¾ ;
Op
{

en ¿ p' :Port x1 y� 1À�Á�Â #Op
{

en Ã Ä p x' 1 y� 1Å ;
Op
{

en Æ p x' 1 y� 1Ç�È�É #
Ê
Op
{

en Ë Ì&Í p x' 1 y� 1Î ;
A
Ï

typicalqueryinvolvingD
q

AppendcoulÐ dbeformulatedasfollows(wedonotbotherwith theunoptimized
casÐ e this time). Asbefore,theexpectedresult will beproducedalongD

q
Append’ssecondargument.

INIT
+

IAL Ñ.Ò w� :Po
/

rt ÓÔ DA
q

ppend Õ a w� vÖ�×
a� :Diff Ø y� ConsÙ 1ConsÚ 2 y� Û:ÛRÛ�Ü
v� :Diff Ý zÞ Consß 3= zÞ à:à�á
y� :Port â zÞ :Port;

5.2 Untyped examples

In order to illustratevia the use of concreteexampleshow the untyped version of Interaction Netspro-
gramsB is translated to MONSTR by meansof themethodologydevelopedin section 5, we makeuseonce
moreã of Append

o
. Thereadercanreferagain to Fig.9, but theplusandminussignsonportsshould now be

ignored.TheequivalentMONSTR codeisgiven in Fig. 11;for brevity weuseonly thesecond(optimized)
vä ersion of thetranslationschemeasdescribedin section5.2.

W
å

e recall from section5 that the driving force in performingreductionsin untypedInteractionNets
is the Rew functionspecializedwith respect to eachprogram.In fact,all otherInteractionNetsagents,
sæ uch asAppend,@ ConsandA Nil

8
in the aboveexample,are‘constructors’ (in a way, one could envision all

pç orts in such agents to be of negative sign with the Rew portç s being of positive sign, thustriggering the
reductions). A typical querynow takesthe following rather longwindedform. (In case thereaderfindsit
hardto seethewoodfor thetrees, this is theappendingof [1], [2] to [3],[4] aspreviously. Theadvantages

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 219

Rew è pé :Port aêìëîíðï OK ñ pé :ò óõô aö ;
Rew ÷Appendøw vù cú ûìüîýÿþ Rew Append� c wú v� ;�
Re
�

w �C� ons� x u� � f
	
�����

Re
�

w Cons� f x
	

u� ;
Rew �Ni

�
l f ������� Rew Ni

�
l � f	 � ;�

Rew � a bö ���� ##Rew ! "$# a %�& b' ;
Rew Append(C� ons) x u� * w v+ ,�-�.0/ OK

1 2
a:ò Port 3
e1:Cons4 x a� 57698 Re

�
w :w e+ 1;7<

e2:A
=

ppend> a vö ?7@9A Re
�

w B u e2
C D

;

Rew AppendE pé :ò Port w vF�G�H #Rew AppendI J p wé vK ;�
Rew AppendL p wé vM�N�O #Rew AppendP Q$R p wé vS ;�
Rew C

�
onsTAppendUw v+ V x u� W�X�Y0Z OK

1 [
a:ò Port \
e1:Cons] x a� ^7_9` Re

�
w aw e+ 1b7c

e2:Appendd a vö e7f9g Rew h u e2i ;
Rew C

�
onsj pé :Port x ukml�n #Rew C

�
onso p p wé uq ;

Re
�

w C
�

onsr p x ué s�t�u #
v
Re
�

w Consw x�y p wé vz ;�
Re
�

w Ni
�

l {A= ppend|w v+ }~}������ OK �� A
=

ssign�w v� ;
Re
�

w Ni
�

l � pé :Port ����� #Rew Ni
�

l � � pé � ;�
Rew Ni

�
l � pé ����� #Rew Ni

�
l � ��� pé � ;�

F
�

igure11: Equivalent MONSTR code.

220 R.Banach andG.A.Papadopoulos

of� a typedover an untypedsystem areobvious.)

INIT
+

IAL ��� p� :Po
/

rt � a� :Po
/

rt �� Re

w ¡ a l� 1¢¤£¤¥ Re

w ¦ a A� ppend § p l� 2
¨ ©ª©¤«

¬ Re

w l3 1Cons® c¯ 11c¯ 1r° 1±ª±9²³ Re

w ´ l3 2¨ Consµ c¯ 31
=

c¯ 3= r° 1¶ª¶9·¸ Re

w ¹ c¯ 111º9»¼ Rew ½ c¯ 1r1Cons¾ c¯ 21c¯ 2r1¿ª¿9ÀÁ Rew Â c¯ 212Ã9ÄÆÅ Rew Ç c¯ 2r1 Ni
8

l È¤ÉÊ Rew Ë c¯ 31
=

3Ì9ÍÎ Rew Ï c¯ 3= r1ConsÐ c¯ 41c¯ 4r1ÑªÑ9ÒÓ Rew Ô c¯ 414Õ9ÖÆ× Rew Ø c¯ 4r1 Ni
8

l Ù¤Ú
l
3
1:Port Û l3 2:Port Ü

c¯ 11:Po
/

rt Ý c¯ 21:
¨

Po
/

rt Þ c¯ 31:
=

Po
/

rt ß c¯ 41:
à

Po
/

rt á
c¯ 1r° 1:Po

/
rt â c¯ 2¨ r° 1:Po

/
rt ã c¯ 3= r° 1:Po

/
rt ä c¯ 4à r° 1:Po

/
rt;

5.3 Discussion
Thereare many advantagesin mapping differentcomputational models andassociated languagesonto
MONSTR. Oneis that the latter providesacommonpoint of referencein comparingsuchmodelsamong
t
å
hemselvesaswell aswith MONSTR (Glauert et al. 1988). Another is that onecanreason aboutthe
beha
æ

viour of some modelor languageby transposing the discussion to the level of MONSTR where
th
å

e rewriting and interaction (in the general sense) betweenprocessesor agents becomes more explicit
(B
ç

anachetal. 1995, BanachandPapadopoulos1995b).Finally, MONSTR providesanatural implemen-
t
å
ation apparatus for a variety of such computationalmodels andlanguages(Banach1993, Banachand
P
è
apadopoulos1993, BanachandPapadopoulos1995a, BanachandPapadopoulos1995b, Watson et al.

1988).
In
é

the context of the present work, the mapping of Interaction Nets onto MONSTR serves, among
ot� hers, two purposes:

ê to
å

providean implementation apparatusfor Interaction Netsin adistributedenvironment via MON-
STR
ë

ì to
å

illustratehow Interaction Netgraphscanbe transformed into ‘ordinary’ rewrite-rule basedcode,
t
å
husmakingthe framework developedapplicableto a variety of otherInteraction Net based rewrit-
ing formalisms.

One
í

of MONSTR’s rather unusual featuresis the notion of non-rootredirection which is something
that
å

canbefall anoî verwritable node(asit is calledin theterminologyof termgraphrewriting systems)
many times. For instance,it is perfectlyacceptableto write a ruleperformingdest

ï
ruct iveassignment asð

fo
�

llows:

Assign ñ v� : VARò oló d val� ô neõ w val� öø÷úùüû OK
{ ý

v� : þ ÿ VAR
�
neõ w val� � ;

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 221

where� VARhas
�

beendeclaredasanO
{

VERWRITABLEnode� (likePo
/

rt in
�

theInteraction Netsto MONSTR
mapã ping presentedabove). We recall that the operations indicatedby the above rule (i.e. the rewriting
o� f the redex to OK

{
andð the redirection of the nodeVAR to

å
a new one whose child is the new value to

be
æ

assigned)aredoneasa single atomic action. We also recall thatoneof the fundamentaldifferences
between
æ

MONSTRandits predecessor (andin a way ‘superset’) Dactl, is that the latterallows arbitrary
numbersof such non-rootoverwrites to be performedatomically within the samerewrite. Thepower of
th
å

is mechanism, but alasalso the futility of trying to implement it efficiently on a realparallel and/or dis-
trib
å

utedenvironment,becomesapparentwhenonenoticesthatmultiple andatomic non-rootoverwrites
areð moreor less comparable to performing atomic unification in theCP-family of concurrentlogic lan-
guagesB (Shapiro 1989). (‘More or less’ meansthatunification is a two-way pattern matching operation,
asð opposedto theordinaryone-waymatchingemployedby graphrewrite-rulesystems, but it isalso done
once� per variable – the single assignmentproperty – whereasan overwritable MONSTR or Dactl node
can� be rewritten arbitrarily many times.) The CP-family is a very expressive languagemodel,which,
however, was never implemented efficiently andwassubsequently abandonedin favour of variants that
were� weakerbut easier to implement.

Ne
n

vertheless, allowing multiple non-rootoverwriting, even of only a single such node(per rewrite
rule), is a potentially puzzling feature bearing in mind that the graph rewriting formalism hasbeenused
t
å
raditionally asanimplementation framework for declarative (functional, logic) languages; andalthough
i
�
t doesnot prohibit us from reasoning rigorously aboutMONSTR (Banach1996a, Banach1997a, Ba-
nach� 1997b),onewould ideally like to have somegreater insight into this slightly exotic feature. This
i
�
s providedby diverse examples of its use. In the context of implementing concurrentlogic languages
viä a MONSTR (BanachandPapadopoulos1993),this featureenablesa convenientimplementation of the
commi¯ t operator� . A more interesting and naturalinterpretationof multiple non-rootoverwriting arises
when� it isusedin mappingobject-oriented andLinearLogic basedlanguages. In both cases, astateholder
pl� aysthe role of a channel. In BanachandPapadopoulos (1995b)it represents a set lf channel� through
which� objectsreceive methodinvocationsandtheguaranteedatomicityof thesingle stateholderredirec-
t
å
ion isused to implementmutual exclusion betweenconcurrentmethodinvocationsandthusachievedata
coherence.� In BanachandPapadopoulos(1995a),awork moreclosely related to thepresentone,a chan-
nel� playstheroleof a communicationmediumbetweenlinearagents. Linearityis achieved by a message
pos� ted to someagentbeing consumedby the latter, freeing the channelfor further use, a strategy that
can� beexpressed naturally in MONSTR by meansof sequencesof non-rootoverwrites. SinceInteraction
Nets
n

areso closeto LinearLogic, it is interesting to show how a concurrent LinearLogic Appendw� ould
b
æ
e implemented in MONSTRand compare it with the equivalent Interaction Netsversion discussedin

det
)

ail in section 6.1. Thesourcecodecould be something like whatfollows, using the (, &@ ,
 ,@ � ,@ � , !@)
fragmentof LinearLogic andadheringto a languagemodellike theonedevelopedin Tse (1994).

! L� 1 � L� 2¨ � O{ �Ao ppend� L� 1 � L� 2¨ � O{ ���� M� � L� 1 : M
� ���

M
� � � !#"

O
{

: @L
�

2
¨

&!
$ %

A & B 'M ()U * X + # , � - / .C 0O{ : 1U 2Z 3 5 4Append6 X 7 L2 8 Z 9:9;9:9

Note
n

that ‘@’ is a forwardoperatorwhich effectively replacesonechannelby another. Thebehaviour of

222 R.Banach andG.A.Papadopoulos

t
<
heaboveprogramcanquiteeasily bemadeclearby examining theequivalent MONSTR code:

Append= l3 1:ChannelFul l >Ni
8

l ? l3 2 oó @BADCFE GARB
G

AGE COLLECT HI Forward J o ló 2KML
l
3
1 :NPO ChannelEmpty;

AppendQ l3 1:ChannelFul l RConsS u xT UVU l3 2 oó WYXDZ[GARB
G

AGE COLLECT \] Se
^

nd _ oó Cons̀u cT : ChannelEmp
a

tybVbdce Ao ppendf x l² 2
¨

c¯ gdh
l
3
1: iPj ChannelEmp

a
ty;

A
o

ppendk l3 1:ChannelEmp
a

ty l2
¨

oó lnmpo #
Ê
A
o

ppendq r l3 1 l
3
2
¨

oó s ;
where� Send

^
is implementedas follows:

Se
^

nd t c¯ : ChannelEmpty messuwvpxzy GARB
G

AGE COLLECT {
c¯ : |~} ChannelFul l �mess� � ;

Se
^

nd � c¯ message�B�p� #Se
^

nd � � c¯ message� ;
and� Fo
�

rward is
�

verysimilar. Notetheserialnon-root overwritingof thestateholder representing achannel
by
æ

asuccessionof rewrites, in orderto modeltheconsumption of aresource(in thiscasemessagesposted
in
�

to a channel).
C
�

omparingthe above linear Append
o

with� the Interaction Netsversion of section 6.1, one cannotice
sæ omedifferences. In thecase of thelinearAppend

o
,@ thecommunication medium, a channel, is public and

a� numberof concurrentlyexecutingagentscanhave access to it in order to post partsof the list to be
appended.� Thusa stateholderrepresenting a channelexhibitsa rather‘non-monotonic’ behaviour in that
it
�

switchesbetweenanemptyand a full staterepeatedly. In thecase of theInteractionNetsAppend
o

, t@ he
communication� medium,i.e. a principalport, is privateto theagentsthatareinvolved in a rewrite. Thus,
th
�

e interaction of (precisely) two agents results in a once-only overwriting of the principal ports involved
by
æ

meansof theA
o

ssign pri� mitive, an effectively monotonic versionof Send
^

.
Further
�

, notethat the atomicity of the rewriting of the stateholderis of paramountimportancein the
lin
�

earAppend
o

becaus
æ

eof its publicnature.In thecase of theInteractionNetsAppend
o

th
�

is atomicity is of
les
�

ser importancesinceonly two agentshaveaccessto thestateholderrepresentingaport,andin factthey
cooperate� in overwriting it eitherdirectly (asin thecase of typednets) or indirectlyby meansof theRe

w

function (in the caseof untypednets).
Int
é

eraction Nets ports canbe viewed asa limited form of logic variable (allowing for instancecon-
catenation� of dif ferencelists in constant time) andthusInteractionNetscanbe seenasa deterministic
sæ ubset of concurrentlogic programming(Shapiro 1989).It would thusbeof someinterest to provide the
MONS
�

TR codefor a typicalconcurrentlogic append� sæ uchas

app� end �:� uT � x² �d� y� � z� � : � app� end � x² � y� � z� 1�¡ z� ¢¤£ uT ¥ z� 1¦ M §
app� end ¨:© ªM« y� ¬ z� : ® z� ¯ y� °

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 223

The
±

aboveprogramcould be implementedin MONSTR asfollows:

Append²Cons³ u xT ´ y z� µB¶p·¹¸ Appendº x y² z1:Var »M¼½ Uni f y ¾ z¿ ConsÀ u zT 1ÁÂ Á ;
AppendÃNi

8
l y zÄÆÅpÇzÈ Uni f y É z y¿ Ê ;

AppendË x² :Var y zÌBÍpÎ #AppendÏ Ð x y² zÑ ;
AppendÒANYANY ANYÓBÔDÕFÖ FAIL;

Not
n

e the use of the more elaborate mechanism for variable instantiation, doneby meansof invoking a
Unify function.

�
Notealso thatbecause theaboveprogramexhibits no linearity, thestoragefor thegraph

sæ tructuresthat arenot referencedin the right-handside of the rules cannotbe automatically reclaimed
sæ incethesestructuresmaywell bereferencedby otherprocesses. This is, of course, not thecasefor either
th
�

e linearor the Interaction NetsAppend.
TheunderlyingMONSTR implementation may take advantageof these properties to generate a more

ef× ficient runtime infrastructure. For instance,graphreduction languageimplementationsare typically
p� acketbased. A packetrepresenting some entity (redex and/or data values)comprisesa number of fields
with� useful informationsuchas thenumberof othernodespointingto this entity (used for garbagecol-
lectio
�

n but alsoloaddistribution), the number of requestsfor reducing the entity (if it is a redex) which
can� beusedto givehigherpriority for reduction to certain redexesover others, etc. In addition,in thecase
of� distributedimplementations, sharedsubexpressionsmayeither have to berecomputedlocally in each
p� rocessor or otherwisebearthepenalty of thetraffic generatedto distributetheresults. All theseand other
issuesaresimplified considerablydueto thenatureof InteractionNetsgraphswhosepropertiescarryover
t
�
o the correspondingMONSTR code.Thus, an ‘Interaction Nets MONSTR sublanguage’would be able
t
�
o take advantageof thoseproperties for thebenefit of theunderlying implementation.

T
±
o further clarify some of these points, we show how the MONSTR compiler environment(Banach

1993, Glauertet al. 1990, Watsonetal. 1988)could takeadvantageof theknowledgethat theMONSTR
code� generated originates from Interaction Net codeenjoying the usual properties, possibly coupledwith
kno
Ø

wledgederived from somestatic dataflow analysis. In particular, it is possible to enhancetheMON-
S
ë

TR codewith dir
Ù

ectiveswh� ich indicateto the compiler certainoptimizations that canbe performed.
C
�

onsider the (somewhat simplified) left-handside of the generalreduction rule for the case of typed
InteractionNetsin section4, namely:

FF
�
F ÚCCC Ûc¯ 1c¯ 1c¯ 1 Ü:Ü;Ü cm¯cm¯cm¯ Ý fÞ 1fÞ 1fÞ 1 ß:ß:ß f n

Þ
f n
Þ
f n
Þ àBápâ¹ã

OK
{ ä;å:å;å

;

TheMONSTRcompiler canderive the following variation enhancedwith suitabledirectives:

f
Þ
f
Þ
f
Þ æ

GARB
G

AGE ç :F�FF� èc¯c¯c f¯ 1f
Þ

1f
Þ

1 é: é;é f n
Þ
f n
Þ
f n
Þ êdë

c¯c¯c¯ ì GARB
G

AGE íïî PRE
/

EVALUATED ðïñ MO
�

VETO ò fÞ fÞ fÞ óõô :CCC öc¯ 1c¯ 1c¯ 1 ÷:÷:÷ cm¯cm¯cm¯ øù r° : ú GARB
G

AGE ûïü CLOSETO ý fÞ fÞ fÞ þ ÿ OK
{ �

f
Þ
f
Þ
f
Þ

: ��� r;
The ideahere is that due to the properties of interaction it can be known that the two redex nodes f

Þ
and� c¯ will� disappearafter the rewrite andno other agentinvolved in the InteractionNetsnetwork will
e× verattemptto access their valuesin thefuture.Thismeansthatthey canbegarbagecollected(hencethe

224 R.Banach andG.A.Papadopoulos

directi
)

veGARB
G

AGE)
�
but also thatit wouldprobably makesenseto movethec¯ node� to theprocessor where

f
Þ

l
�
ies(hencethedirectiveMO

�
VETO[f]).

�
Furthermore,sincef

Þ
will� never getaccessed,neitherwill r:° OK to

�
which� it getsredirected.Hencer° can� begarbagecollectedimmediately, i.e. it neednever becreated.Also
we� know thatoncethetwo Interaction Netsprimaryportsgetengagedin interaction,they arerepresented
by
æ

afunction andavalue.Thustheimplementation neednotreducethealreadyevaluatedargumentof the
function (hencethedirective PREEVALUATED).

�
In this way, the packet structureand codegenerated by

th
�

e compiler canbe simpler in terms of administrative information held in packetfields, loadbalancing
and� garbagecollection.

The
±

aboveanalysismaynotbepossible for MONSTR rulesgeneratedfrom translating othercomputa-
tio
�

nal models. For instance,recalling oneof the rulesfor a concurrent logic append, namely:

Append�Cons� u xT � y z� 	�
��� A
o

ppend� x y² z1 :Var ���
� Uni f y � z¿ Cons� u zT 1�� � ;

we� cannotbesure that theConss� tructurein theleft-handsideof therulecanbegarbagecollectedsinceit
maybe sharedby otheragents, or thatthis argumentis alreadya Cons(it

�
could still be anuninstantiated

v� ariable).

6
�

MONSTR and generalized Interaction Nets
In MONSTR, nothing prevents several function nodesfrom sharing the samestateholder (a feature we
havealreadyreferredto). Suchoverlappingredexeswill obviously leadto non-Church–Rosser properties
o� f rewriting in general; therefore, a naive translation of arbitrary MONSTRsystems to Interaction Nets
s� ystemswill be impossible. Instead,in this section we consider briefly how onemight generalize the
Interaction Nets model to take on boardsomeof the additionalexpressiveness of MONSTR. This helps
in makinga soundercomparison of thetwo systems.

As
�

we pointedout before,theuse-oncediscipline for agentsenables us to represent themasconstruc-
t
�
ors. Moreover, the main property of constructors, that they do not changeover time, is not used in the
Interaction

Netsmodel;agentsarenot only read-only, they areread-onî ce-only. To getsomething more,
we� needto generalizethe shape of the left-hand sidesof rules,or the principal/auxiliary port discipline
and� its influenceon rewriting,or the port invariant. We lookat these in order.

In

anabstractframework, thereisnoreasonnotto allow left-handsidesof rulesto beof amoregeneral
s� hapethanbefore. If onesimultaneously insists that redexesmust consist onî ly of� principal connections
as� before,and that these connectionsincludeal! l of� the principal port edgesof theagents involved,then
t
�
o go beyondwhatwe have already, we must permit agents to havemorethanoneprincipalport. But we
still� retainthe Church–Rosserproperty of rewriting since,providedwe always have exactly one rule for
each" possible left-hand side, all distinct redexes are still disjoint. (In the presence of multiple principal
port� s, theanalysis of deadlock prevention might bethoughtto becomemoreproblematic, but the theory
of� Banach(1993)showsthatthis isnotso if onedoesthingsthe rightway.) We gain someexpressiveness
th
�

ereby, avoiding theneedto breakrulesdown into small binary interactions. Figure12 illustratessuch a
rule for appendingdifferencelists, adaptedfrom theonepresented in section 6.1, but this time requiring
one� rewriterather thanLafont’s two to completetheappend.Wenote thatacompiler could automatically
break
#

such a rule down into binary interactionsif required. We note that in the above model, there is
still� no exploitation of the key properties of constructors. A generalization that does permit such an

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 225

D_append

D_list
D_list

D_list •
(c, d)

a

b c d e

a

b e

⇒

Figure12: A rule for appending differencelists.

e$ xploitation, insteadinsiststhat all agents re% moved from
&

a redex should have all of their principal ports
wi' thin principalconnectionsof theredex, but now allowsinspection but notremoval of otheragentsalong
auxiliary� connections. If these otheragentsthemselveshaveno(principa l por ts,) they behaveexactly like
cons� tructors, beingread-only. Figure13 showssucharule,wherethenotation isintendedto beinterpreted
as� follows. Agents on the left-hand side having principal ports will have all their principal ports within
pri� ncipal connectionsof the redex. These agents areto be removed during the rewrite. Agents of the
left-hand sidehaving no principal portsareconstructors. Theseareto remainbehind when otherleft-hand
s* ide agents areremoved. (They cannot, however, be shown on the right-handside of the rule sinceall
ag� entsof theright-handsideareinterpretedby acompiler asbeing specificationsof new agentsto bebuilt
duri
+

ng rewriting.) So it is intendedthat theconstructor C and� its interfacenodesd
,

,) e- ,) f
Þ

,) g. remain/ when
t
�
heagentsX

0
,) Y,) Z1 are� removed andreplacedin arewrite using Fig. 13. Thismodelisanicehalfway point

b
2
etweenthe original Interaction Netsmodel and MONSTR,incorporating some generalizations, yet still

retaining theChurch–Rosser property of rewriting,sinceapartfrom theimmutableconstructors, all pairs
of3 distinct redexes are still disjoint. To go beyondthis, we needto eitherrelax thecriterion that al! l th

�
e

removedagents’ principalportsfigurein theprincipalconnectionsof theredex, or relaxtheportinvariant.
W
4

e look at thesepossibilities now.
If weallow agentsin theredex to haveprincipalportsthatdonotconnectwith otheragentsof theredex,

t
�
henwepermit overlappingof redexesandnon-Church–Rosser behaviour. Figure14 showsarule for the
Get
G

operat3 ion of asimplebinarysemaphore.Clearly theFreeagent� canbecompetedfor alongbothof its
pri� ncipal ports, thusleading to potentially overlapping redexes, but theBus

5
y agent� canonly be released

from
&

theport leading to theGet
G

that
�

succeeded,asonewouldwish.
Thi
6

smodelapproachesMONSTR’soverlappingredexesbut with thecrucial differencethat thesharing
s* tructureis constrainedby thepresenceof the port invariant, i.e.sinceanagent’s repertory of port nodes
i
�
s fixedby its symbol, only a predeterminednumberof other agents mayattempt to interactwith it; for
F
�

ig.14,only two agentsmayever competefor thesemaphore.Emulating dynamically determinedsharing
i
�
n sucha framework isalmost impossiblewithoutcumbersomeencodingof listsof sharers. To overcome
t
�
his final hurdle, we must weakenthe port invariant to allow morethantwo port edgesto meetat a port
node.7 Thisallowsarbitrarycommunitiesof agentsto accumulateat a portnodep� ,) but raisesa numberof

226 R.Banach andG.A.Papadopoulos

X
8

Y Z
9

C
:

••

••

⇒;

a b

c

d
< e

f g

A

B

a=

b c>

d e
<

F
�

igure13: A generalization of the rule in Fig. 12.

Get

Free

OK
?

Busy

a a

b b
⇒

Figure14: A rule for the Get oper@ ation of a simple binary semaphore.

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 227

f
&
reshissues:

A W
B

hatnow is theallowedformof left-handsidefor rules?

C Is
D

theleft-handsidestill comprised of precisely binaryportconnections, or are largercollectionsof
agents� meetingat a nodepermittedon theleft-handside?

E Doesa port nodematch (some part of) a left-handside iff alF l its incidentport edgesare in the
matG ching from the rule, or is oneallowed to have someport edgesleft over? (In the latter case,
pres� umably theportnodein themiddleof sucha left-handsideedgecannotberegardedasgarbage
after� the rewrite.)

H Doesthe map from rule left-handside to redex have to be injective on port edgesor is it now
al� lowed to be many–one?(For binary port connectionsandagents having single principal ports,
compl� ementarytypesforceinjectivity of the portedgemapin a redex.)

A
�

variety of answersto thesequestions canbe contemplated. We will not discuss all the possibilities
e$ xhaustively, but content ourselveswith the following. Let usinsist that left-hand sidesstill consist of two
agent� sconnectedby aprincipal portconnection (with perhapssomeconstructorsasdiscussed above). Let
usI furtherassumethattherulesystemiscompletein providing a rule for eachpossible left-handsidethat
one3 canenvisage,and that surplus incident edgesof a redex’s principal connection’s port noderemain
behi
2

nd after the rewrite. Thenminor adaptationsof the translationswe describedabove will dealwith
s* uch a scenario,sinceagentscancompeteeagerlyto register their willingness to interactat a givenport
node;7 the first oneto arrive will besure of finding a cooperating partner assoonasthe secondonehas
t
�
urnedup. (Suitably interpreted,thisworksfor both typedanduntypedcases.)

On
J

the other hand,if onedoesnot assumerule completeness, and/or allows anunpredictablenumbers
of3 agentsto synchronizeat a portnodein orderto interact,thenonefacesa muchharderimplementation
probl� em, as agents canno longerbe allowed to ‘grab’ a port nodeeagerly. Similar issuesarise when
one3 wishesto take seriously the synchronization model inherentin process algebras(see Banachet al.
(1995)).
K

Thus, while in relaxingtheport invariant thereareuseful andtempting programmingmodelsthat
one3 canenvisage,therearemany variationswhich lookinnocentenoughattheabstractlevel, but aremuch
mG oreproblematic from an implementation viewpoint. We therefore feel that MONSTR’s commitment to
di
+

rectedarcsyieldsamuchmorereasonableframework whentruedynamicsharingandchoicearedesired
with' in computations.

7 Conclusions and related and further work
In this paper we have studiedthe relationship betweentwo graph rewriting formalisms, namely Lafont’s
InteractionNetsandBanach’sMONSTR. We havepresentedaconcretetranslationfrom InteractionNets
t
�
o MONSTR andwe have discussed in detail someimportant issuespertaining to the reverse mapping.
Thetwo formalismshaveevolved from ratherdif ferentperspectivesandfor differentreasons– Interaction
Net
L

s asa version of LinearLogic based on normalizedProof Nets andrather abstract, and MONSTR
as� a stripped-down version of a compiler target languagewith emphasis on ease of implementation on
di
+

stributed machines. Thusbeing ableto provideaconcretemappingframework from theformeronto the
latteryieldsa number of interesting possibilities.

228 R.Banach andG.A.Papadopoulos

M It
D

providesan ‘i mplementation apparatus’ for Interaction Nets via the compiler target language
MONS
�

TR – bearin mindherethat Interaction Nets exhibit a high degreeof parallelism which can
be
2

fully exploited by MONSTR.

N It illustrateshow InteractionNetbasedrulesystemscanbetransformedinto ‘ordinary’ graphrewrit-
ing rule basedcode, for execution using traditional rewriting formalisms and associatedarchitec-
tu
�

res(like MONSTR).

O It
D

offers a freshperspective on some of MONSTR’s featuresby liftin g their interpretation to the
le
�

vel of thecomputationalmodelbeingmapped(asin thecase of multiple non-rootoverwritesand
t
�
heratherunusualstateholderobject).

P It allows MONSTR to beusedasa point of referenceand comparisonbetweendifferentcomputa-
tio
�

nal models by exhibiting their similarities and differencesat the MONSTRlevel. Furthermore,
beari
2

ng in mind thatboth formalismsenjoy formalsemanticsand sharecommontargets (suchas a
sen* sitivity for easeof implementation on distributedmachines),a direct comparison of the seman-
t
�
icsof thetwo modelswould certainly beworth exploring.

Thi
Q

s papercomplementswork by the authors(andothers), justifying the view of generalizedterm graph
re/ writing, andMONSTR in particular, asagood‘generalizedcomputationalmodel’ ableto accommodate
t
�
he needsof computationalmodels often divergentin behaviour; needsthatrangefrom those associated
primarily� with reasoningandspecificationto thosemorerelatedto implementationissues. In Banachand
Papadopoulos(1993)we have shown how concurrentlogic languagescanbeimplemented in MONSTR.
In Glauertet al. (1988)this is donealso for eagerandlazyfunctionallanguagesin a moregeneralsetting
whi' ch is applicable to MONSTR as well. In Banachand Papadopoulos (1995a)we used MONSTR
t
�
o reason aboutpi-calculus and in BanachandPapadopoulos(1995b)we showedhow MONSTR canbe
usI edasanimplementation andspecification framework for concurrentobject-oriented languages. Finally,
B
R

anachandPapadopoulos(1995a)studiesthe possibility of using MONSTRto implementconcurrent
languagesbasedonLinearLogic but also discusses thedefinitionof a ‘linear’ MONSTRsublanguage.

In the spirit of the last point, one intriguing possibility that we have not pursued here, is the idea
of3 exploring therelationship betweenInteraction NetsandMONSTR in theotherdirection; i.e.using the
trans
�

lationfromInteractionNetsto MONSTRto inspire thedefinitionof asublanguageof MONSTRwith
s* ome of the special properties of Interaction Nets, particularly the Church–Rosser property. The latter
w' ould yield an unusual object, a non-trivial imperative languagewith the Church–Rosser property, yet
feat
&

uring arbitrary amounts of concurrency. (Obviously, theconcurrency arising from arbitrary numbers
of3 simultaneously active nodesis the thing thatmakessuch a system interesting. Any purely sequential
i
�
mperative languageis trivially Church–Rosser.) It turnsout that this is possible, but theproof is rather
lengthy, and would unduly distort the balanceof this moreimplementation oriented paper. We content
ours3 elveswith pointing out themain idea,andwill presentthefull theoryelsewhere(Banach1997b).

In the typedtranslation, at any particular moment, every stateholder (say S
^
)
S

in thegraph,hasat most
one3 parentwhich is a function node(say F

�
) f
S

or which S
^

occurs3 in F
�

’s stateholderposition,andsuchthat
t
�
he rule for F and� S

^
does
+

not just reactivateF’s matchednodes, or merely resuspendon thestateholder
S
^

a� waiting a suitable statechange. The latterkind of rulesdo not affect the structure of the graph apart
from
&

garbage,and so eachstateholdernodeeffectively hasat most onefunctionnodeparentfor which
t
�
he correspondingrewrite ‘doessomethinguseful’. We say thatsucha stateholderis at theapex of asat fe

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 229

criticalT cone (of
K

functionnodes). The intuition is that if the executionsof a system featureonly safe
cri� tical conesfor all thestateholderinstancesthatarise, thenthesystem hasthe Church–Rosser property,
d
+
espite the presence of overlapping redexesinvolving mutable stateholders. The intuition turnsout to be

s* ound,but giving a convincing proof involvesa lengthy excursion into thesomewhatdelicate technical
det
+

ailsof MONSTR theory, astheresult only holdsin themost satisfactory formundertransitivecoercing
operat3 ional semantics rather than the standardsemantics we used in this paper(see Banach(1997b),
Banach(1996b)).

In fact, thesafecriticalconeproperty holdsalso for thefirst untypedtranslation,b
U
ut not for thesecond.

Thedifferenceshowsupatthelevel of proofof theChurch–Rosser property. In thesafecriticalconecase,
th
�

eproof canbeaccomplished by tiling theChurch–Rosserdiamond with subcommuting squaresformed
by
2

interchanging individual steps, i.e. the usual strategy. For the system of the secondtranslation, this
does
+

notwork becausetherewritesresolving theracefor ‘ownership’ of aprincipalconnectionin dif ferent
w' ays do not subcommute. Fortunately, these rewrites themselves create further redexes for rules whose
right-hand/ sidesareidentical(cf. theright-handsidesfor Re

w Append[Cons VWVXV]

Y
and� Rew Cons[Append

ZWZWZ]
Y
).
S

In thisway theChurch–Rosser property is recovered.We eschew furtherdiscussionhere.
Fin
�

ally, we intend to further develop the concept of ‘ interaction’ within the MONSTR framework,
t
�
he aim being to explorerelationshipsbetweenMONSTR andother computationalapproachesbased on
t
�
he notionsof linearity andinteraction (Andreoli et al. 1993, Darlington et al. 1993, Kobayashi and
Y
[

onezawa1993, Tse 1994).

A
\

cknowledgements
The
Q

work reported herewasdonewhilethefirst authorwason leaveat theComputerScienceDepartment
of3 the University of Cyprus. The hospitality of that department,and the financialsupportof the Royal
Society
]

, aregratefullyacknowledged.

References
Andreoli, J-M., Ciancarini, P. andPareschi, R. (1993)Interaction abstractmachines, in Research Direc-

t^ ionsin Concurrent ObjectOrientedProgramming,) MIT Press, Cambridge,MA, pp.257–80.

Banach,R. (1993)MONSTR: termgraphrewriting for parallelmachines, in SleepM.R., PlasmeijerM.J.
and� van Eekelen M.C.J.D. (eds), Term GraphRewriting: Theory andPractice,) Wiley, New York,
pp.� 243–252.

B
R

anach,R. (1995)Thealgebraic theoryof interaction nets. TechnicalReportMUCS-95-7-2,Department
of3 ComputerScience,University of Manchester
(ht
K

tp://www.cs.man.ac.uk/csonly/cstechrep/Abstracts/ UMCS-95-7-2.html).

Banach,R. (1996a)MONSTR I – fundamental issuesandthedesign of MONSTR. J
_
ournal of Universal

Computer Science,) 2` (4),
K

164–216(http://www.iicm.edu/jucs).

B
R

anach,R. (1996b)Transitive termgraphrewriting. In
a

formation Processing Letters,) 60
b

,) 109–14.

Banach,R. (1997a)MONSTR II – suspending MONSTR semantics and independence.J
_
ournal of Uni-

verc sal Computer Science. http://www.icm.edu/jucs

230 R.Banach andG.A.Papadopoulos

B
R

anach,R. (1997b)MONSTR V – transitive coercingsemantics and the Church–Rosser property. Infor
a

-
matd ion andComputation,) submitted.

B
R

anach,R., Balazs, J. and Papadopoulos, G.A. (1995)A translation of the pi-calculus into MONSTR.
J
_
ournal of Universal Computer Science,) 1e (6),

K
339–98.(http://www.iicm.edu/jucs).

Banach,R. and Papadopoulos, G.A. (1993)Parallel termgraphrewriting andconcurrentlogic programs.
WPDP93,) Sofia,Bulgaria, 4–7May, pp.303–22.

Banach,R. and Papadopoulos, G.A. (1995a)Linearbehaviour of term graphrewriting programs. 10th
ACM Symposium on Applied Computing (SAC 95),) Nashville, TN, USA, 26–28February, ACM
P
f

ress, pp.157–63.

Banach,R. andPapadopoulos, G.A. (1995b)Term graphrewriting as a specificationand implementation
frame
&

work for concurrentobject orientedprogramming languages. Int
a

ernational Working Confer-
ence- on Programming Models for Massively Parallel Computers (MPPM 95),) Berlin, Germany,
9–12
g

October, IEEEPress, pp.151–8.

Darlington,J., Guo,Y. andKöhl3 er, M. (1993)Functionalprogramminglanguageswith logicalvariables:
a� linear logic view. 5t

h
h Symposium on Programming Languages Implementation and Logic Pro-

gr. amming (PLILP93),) Tallinn, Estonia, 25–27August. Lecture Notes in Computer Science 714
i

,)
S
]

pringer-Verlag,Berlin, pp.201–19.

Ehri
j

g, H., Kreowski, H-J. and Rozenberg, G. (eds) (1991) F
�
ourth International Workshop on Graph

Gr
k

ammars andtheir Applicationsto Computer Science,) Bremen,Germany, 5–9March1990.Lec-
t
�
ureNotes in ComputerScience532

l
,) Springer-Verlag,Berlin.

Gi
m

rard,J-Y. (1987)LinearLogic. T
n

heoretical Computer Science,) 50
l

,) 1–102.

Gi
m

rard, J-Y., Lafont, Y. and Regnier, L. (eds), (1995)Advancesin Linear Logic. LondonMathematical
Society
]

LectureNotesSeries222,) CambridgeUniversity Press, Cambridge.

Gl
m

auert, J.R.W., Hammond,K., Kennaway J.R. and Papadopoulos, G. A. (1988)Using Dactl to imple-
mentdeclarativelanguages.CONPAR88,) Manchester, UK, 12–16September, CambridgeUniversity
Press, Cambridge,pp.116–24.

Glauert,
m

J.R.W., Kennaway, J. R. andSleep,M.R. (1990)Dactl: an experimentalgraphrewriting lan-
guage,o in Ehrig H., Kreowski H-J., Rozenberg G. (eds.), Fourth International Workshopon Graph
Gr
k

ammars andtheir Applicationsto Computer Science,) Bremen,Germany, 5–9March1990.Lec-
t
�
ureNotes in ComputerScience532

l
,) Springer-Verlag,Berlin, pp.378–95.

Kobayashi, N. andYonezawa, A. (1993)ACL – a concurrentLinearLogic programming paradigm, In-
t
�
ernationalSymposium on Logic Programming(ISLP93),Vancouver, Canada,October, MIT Press,
C
�

ambridge,MA, pp.279–94.

Lafont, Y. (1990)Interaction Nets, in Se
p

venteenth ACM Symposium on Principles of Programming Lan-
gua. ges(POPL90),) SanFrancisco, CA, 17–19January, ACM Press, pp.95–108.

A study of two graph rewriting formalisms: Interaction Netsand MONSTR 231

Lafont,
q

Y. (1991) The paradigm of interaction. Working Paper. (file://lmd.univmrs.fr/pub/lafont/
paradi� gm1.ps.Z).

S
]

hapiro, E.Y. (1989)Thefamily of concurrentlogic programminglanguages. Computing Surveys,) 21
`

(3),
K

412–510.
r

S
]

leep,M.R., Plasmeijer, M. J. andvanEekelen, M.C.J.D. (eds) (1993)T
n
erm GraphRewriting: Theory

ands Practice. Wiley, New York.

TCS(1993)Special issueof selectedpapersof theInternationalWorkshoponComputingby GraphTrans-
formation,Bordeaux,France.Theoretical Computer Science,) 109(1–2).

K

Troelstra, A.S. (1992) Lectures on Linear Logic. CSLI Lecture Notes 29, ChicagoUniversity Press,
C
�

hicago.

Tse, C.S.C. (1994)Thedesign and implementation of an actor languagebased on LinearLogic. Thesis
Report, MIT.

W
B

atson, I., Woods, V., Watson,P., Banach,R., Greenberg, M. andSargeant, J. (1988)Flagship: aparallel
architecture� for declarativeprogramming,15th InternationalSymposiumon Computer Architecture,)
Hawaii, 30May–2June,ACM/IEEEPress, pp.124–30.

