
Consider a crude style rule basisΣ that is concrete (no polymorphism) and complete (each type has a rule).
Build the final type-graph∆, whose nodes are the concrete type symbols, and whose arcs are given by: for
eachξ, if ξ ← ζ1…ζn is the rule forξ, then thek’ th child ofξ is ζk. If a systemR is well typed acording
to Σ and a suitableB, then for every execution graphG of the system, there is a node-symbol-forgetting
homomorphismh : G→ ∆. Readers should convince themselves that this property fails for the imperative
discipline.

To conclude then, we have discussed type inference for TGRSs and shown that credible type systems can
be built using dataflow analysis and unification, even in the most general case where no particular nice
structural properties are assumed for the system, fulfilling the promise in the conclusion of Banach (1989).
We have also suggested that more powerful extensions of these systems can be contemplated. These ex-
tensions will be described elsewhere.

References

Banach R. (1989), Dataflow Analysis of Term Graph Rewriting Systems,in proc. PARLE-89, Odijk E.,
Rem M., Syre J-C.eds., Springer, LNCS366 55-72.

Banach R. (1991a), DACTL Rewriting is Categorical,in proc. SemaGraph-91, University of Nijmegen
Dept. of Informatics Technical Report91-25 part II 339-357. Also seein: Term Graph Rewriting:
Theory and Practice, John Wiley, 1992,to appear.

Banach R. (1991b), Term Graph Rewriting and Garbage Collection à la Grothendieck.Submitted to TCS.

Banach R. (1991c), MONSTR: Term Graph Rewriting for Parallel Machines,in proc. SemaGraph-91,
University of Nijmegen Dept. of Informatics Technical Report91-25 part II 251-260. Also seein:
Term Graph Rewriting: Theory and Practice, John Wiley, 1992,to appear.

Banach R. (1992), MONSTR,in preparation.

Barendregt H.P. (1984), The Lambda Calculus. Its Syntax and Semantics, North-Holland.

Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway J.R., Plasmeijer M.J., Sleep M.R.
(1987), Term Graph Rewriting,in proc. PARLE-87, de Bakker J.W., Nijman A.J., Treleaven P.C.
eds., Springer, LNCS259 141-158.

Farmer W.M., Watro R.J. (1990), Redex Capturing in Term Graph Rewriting, Int. Jour. Found. Comp.
Sci.1 369-386, andin proc. RTA-91, R.V. Booked., Springer, LNCS488 13-24.

Girard J-Y., Taylor P., Lafont Y. (1989), Proofs and Types, Cambridge Tracts in Theoretical Computer
Science 7, CUP.

Glauert J.R.W., Kennaway J.R., Sleep M.R., Somner G.W. (1988a), Final Specification of DACTL, In-
ternal Report SYS-C88-11, School of Information Systems, University of East Anglia, Norwich,
U.K.

Glauert J.R.W., Hammond K., Kennaway J.R., Papdopoulos G.A., Sleep M.R. (1988b), DACTL: Some
Introductory Papers, School of Information Systems, University of East Anglia, Norwich, U.K.

Hankin C. (1991), Static Analysis of Term Graph Rewriting Systems,in proc. PARLE-91, Aarts E.H.L.,
van Leeuwen J., Rem M.eds., Springer, LNCS506 367-384.

Hindley R. (1969), The Principal Type-Scheme of an Object in Combinatory Logic, Trans. Amer. Math.
Soc.146 29-60.

Huet G. (1990), Logical Foundations of Functional Programming, Addison-Wesley.

Kennaway J.R., Klop J-W., Sleep M.R., de Vries F-J. (1991), Transfinite Reductions in Orthogonal
Term Rewrite Systems,in proc. RTA-91, R.V. Booked., Springer, LNCS488 1-12, and Report CS-
R9041, CWI Amsterdam.

Milner R. (1978), A Theory of Type Polymorphism in Programming, Jour. Comp. Sys. Sci.17 348-375.

Milner R., Tofte M. (1991), Co-induction in Relational Semantics, Theor. Comp. Sci.87 209-220.

Peyton-Jones S.L. (1987), The Implementation of Functional Programming Languages, Prentice-Hall.

Tofte M. (1990), Type Inference for Polymorphic References, Inf. and Comp.89 1-34.

(1969), Milner (1978)), whose use of unification inspired our use of it here. The main difference between
ours and the H-M system is of course the absence of structural induction and its replacement by dataflow
analysis. This global analysis feature is somewhat reminiscent of the Milner-Tofte (M-T) type system for

ML with assignments1 (Milner and Tofte (1991), Tofte (1990)), though we have not used co-induction in
the explicit way that they do. Moreover for us, even the patterns occurring in rules, which are the templates
for the objects we want to type i.e. the execution graphs, can be cyclic, and fail to be freely generated by
recursion. This is of course fundamental and is the main impetus for bringing in the dataflow analysis.

Turning now to the types themselves, the types in our system fail to have anything but a trivial structure,
unlike the H-M case where there are typically formation rules such as

(it might indeed have been more honest to call our system sort inference rather than type inference). How-
ever this is something we can emulate easily enough. Let us take an H-M style language of typesTL given
by the syntax

α ∈ TL = b | v | α1 → α2 | α1 × α2

whereb represents base types (Int, Bool …) andv represents variables. Let be a Gödelisation ofTL
that maps eachα ∈ TL to its “Gödel number”α in Zc. With a suitable reinterpretation of the unification
steps in algorithm 5.3 involving the Gödel number coding of unification inTL, algorithm 5.3 will do duty
as a correctness checker/type inferer for the new scheme; the occurs check maintaining the termination
properties of 5.3. We have thus another separation of concerns, the separation of unification inTL from
other aspects of our system. Let us briefly look at how this emulation works. There are two basic styles
we can use, the functional and the applicative. The functional style is similar to what we are used to al-

ready. Say we wish to apply an operatorFα × β → γ to operandsAα andBβ, giving (Fα × β → γ(Aα, Bβ))γ.

We can emulate this H-M situation by having {Fγ, Aα, Bβ} ⊆ B, and a rule (F, γ) ← α, β ∈ Σ.
On the other hand, the applicative style introduces special purpose application symbolsAppn (of arity

{1…n}) to represent the explicit application of an operator to its arguments. With the previousFα × β → γ,

Aα, Bβ, our little example becomes (App3(Fα × β → γ, Aα, Bβ))γ. Our emulation now requires

{ Fα × β → γ, Aα, Bβ, App3γ} ⊆ B, and (App3, γ) ← α × β → γ, α, β ∈ Σ. Note that in this
case we really would need to overload theApp3 symbol, since we would have to assume that there were

other operators such asGα′ × β′ → γ′ of type different fromF, which would also use theApp3 combinator.
This in turn would require us to at least use the finegrained version of dataflow analysis to have a non-
trivial system. In fact all the rules of the system would be instantiations of

(Appn, vn) ← v1 × v2 × … × vn–1 → vn, v1, v2 … vn–1

wheren is a meta-variable and thevi’s are variables ofTL (note that any non-ground instantiation of the
above is non-linear modulo Gödel numbering). In such a case a strategy for for typechecking that just en-
forced the consistency condition on the children of anAppn node and infered the type of the parent, rather
than concentrating on the parent-child type relationship, would work more simply. Modifying algorithm
5.3 to do this is not too hard.

One aspect of H-M and M-T systems definitely missing from ours is the necessity to deal with bound vari-
ables and non-trivial environments created by static scoping constructs such as (let x = e in e′) and lambda
abstractions. The absence of these features, attributable to the “flatness” of TGRSs affords us some con-
siderable simplification.

In case the reader by now thinks that the crude discipline has no merits not amply exceeded by the imper-
ative discipline, we point out onefinal property not shared by its imperative brother or his fancier cousins.

1. The author is indebted to Kris Rose for bringing the Milner-Tofte work to his attention, and he intends to
explore the connection between the techniques used here and those of the M-T system elsewhere.

α is a type β is a type
α × β is a type

α is a type β is a type
α → β is a type

Let us start with the crude discipline and let (Σ, B) be given by (Σ1 ∪ { Int ← Int, Int}, B1 ∪ { IncUp,

PlusInt, CountC}) where (Σ1, B1) refer to the other parts of the system. SinceInc′ ∈ R(Inc), Inc′ ρ0
s Inc

whenceInc′Up is an SDLPTI typing. SimilarlyCount′C. We see also that if there were a monomorphic
type rule forC, it would have to beC ← Int because of the instance of the germ (Count′1, Plus) in the

contractum ofP. FromPlusInt andInt ← Int, Int we deduce thata : AnyInt andl : 1Int. The former is
consistent with theC ← Int we discovered above and tells us that any node matched to the particular im-
plicit nodea in a redex for our rule must be of typeInt if the system is to be SDLPTI-typeable. The latter

spells trouble. FromInt ← Int, Int and1Int we deduce thatA(1) = {1…2}. But this is nonsense sincel : 1
has no children inP andl is an explicit node. This means that any system including our rule is not SDLPTI-
typeable using the crude discipline and given (Σ, B). We therefore see that the crude discipline is very se-
vere in restricting the arities of similarly typed symbols to be the same.

Now let us examine the same example using the simple imperative discipline and let (Σ, B) be (Σ1 ∪

{(Plus, Int) ← Int, Int, (1, Int) ← }, B1 ∪ { IncInt, CountC, PlusInt, 1Int}). Note that since the types of
child nodes now depend on the parent type and parent symbol rather than just the parent type alone, the

previous problem does not arise and we can even safely haveIncInt in B. On the down side, we have to
put more into the basis because of the weaker constraints enforced. Much as before, we can concludeIn-

c′Int, Count′C anda : AnyInt, and can consistently postulate the type rules (Inc, Int) ← C, (Inc′, Int) ←
C, (Count, C) ← Int, (Count′, C) ← Int.

So the imperative discipline allows much more natural looking rules to be well typed. One can see the
similarity with imperative languages, where operators are endowed with a result type and sequence of op-
erand types, and type checking proceeds by matching the type at a point in the program against the type
demanded for a child at the relevant position of its parent (as in Pascal); or more generally some inference
is done (as in Ada).

Note also that the presentation of type rules as (S, ξc) ← ζ1…ζn ∈ S × Zc → Z* apparently allows over-
loading by permitting

(S, ξc
1) ← ζ1…ζn and (S, ξc

2) ← ζ′1… ζ′n (with ξc
1 ≠ ξc

2)

to coexist inΣ. This is true, but useless in the context of this paper since the first thing that algorithm 5.3
does is to attempt to unify the types of all occurrences ofS in step [5] so at most one of the above rules
would ever be used. To exploit potential overloading we need to re-engineer the dataflow analysis with a
go-faster supercharged version, capable of discriminating different occurrences of the same node symbol
in some way. A more finegrained version of dataflow analysis can do this but is beyond the scope of this
paper. (In actual fact it would inevitably go slower rather than faster.)

The main reason we used the more relational presentation for rules, i.e.S × Zc → Z* rather than the func-

tional S → Zc → Z*, is the uniformity of presentation of the crude and imperative disciplines it allows.

(We note that a fully relationalS × Zc × Z* for the rule basis, andS × Zc for the axiom basis could have

been contemplated.) Presenting crude rules in the form {•} → Zc → Z* would clearly not have worked.
As it is, (very nearly) the same theory will do for both disciplines, useful for comparison and for saving
space. This also neatly illustrates the nice separation of concerns achieved by making the inference engine
of the type discipline (dataflow analysis), independent of the correctness checker (unification). Either or
both components may be traded up for a more powerful model relatively independently. (We ruefully ob-
serve that the first thing that the design of an efficient implementation of either discipline would do, would
be to jam the loops implicit in dataflow analysis and unification, wrecking this independence.)

Now for some more general remarks. As with most useful type systems, typability of systems in the dy-
namic sense of 4.1.2 or 4.2.2 is undecidable (it is easy to reduce the halting problem to it); thus the SDLPTI
algorithm provides an intentionally based approximation to typability. The algorithm reminds us of some
features of other type systems. Prominent among these is the Hindley-Milner (H-M) system (Hindley

Proof. If the SDLPTI algorithmSUCCEEDs, then we know we have a correct typing provided we can be

sure that the extra condition implicit in 4.5.(2) for non-linear rules holds, namely that ifΣ(ξ)[k1] = ζv =
Σ(ξ)[k2] for k1 ≠ k2, then any node of typeξ has children of identical type at itsk1 andk2’ th positions.

From the properties of dataflow analysis and the SDLPTI algorithm we know, as remarked previously, that
if (pk, c) is some arc of an execution graphGi, then for allGj with j > i, iGi,Gj(p) is of the same type asp,

andrGi,Gj(c) is of the same type as c. So to check the property required, we need only check it at the points

at which contractum nodesx are instantiated as nodes of execution graphs. But at all such points we have
the structure of the rule governing the rewrite to help us, because it gives direct information about the chil-
dren ofx and hence about the children of the instantiation ofx. If such a child is explicit, its symbol can
be read off from the rule and its type determined (being the SDLPTI type), thus giving the type of the child
of the instantiation. This corresponds to case (1) above. If the child is implicit however, we must refer to

the setOk(σ(x)ξc
). This may contain many symbols, but if it happens to be a type singleton, we can like-

wise determine the type of the child of the instantiation. This corresponds to case (2) above. Thus under
the given hypotheses, the uniformity of the types of the children across the relevant set of positions ofx

gives us the equality we need for the extra condition.

The above theorem has slightly different implications depending on whether theθ for a givenWξc(ζv) is
concrete or not. If it is concrete, then it clearly tells us the type of the relevant children of (instantiations
of) x explicitly. On the other hand, if it is a type variable, then it merely tells us that it ispossible to type
the system consistently, without offering us an explicit type for the children in question. In such a case (as
in others in which the SDLPTI type of some symbols are type variables) the type structure we started with
is too weak to fully type the system. Only a less general unifier would concretely type the system, and for
that we need some more axioms and/or some more rules. In any event, the success of the SDLPTI algo-
rithm assures us that such a consistent extension of the type structure exists.

Note that the power of the above result for dealing with genuine non-linear polymorphism comes from the
dependence ofθ onx. This in turn only has any real force when condition (2) is never needed, i.e. when

all relevant children of contractum nodes labelled by symbols of typeξc are explicit, freeing the depen-
dence ofθ upon x from Ok(σ(x)) which for a fixed symbolσ(x), does not depend on the node x that happens
to bear that symbol. Contrast this with the linear case where Ok(σ(x)) does not have to be a type singleton
and can thus contain several differently typedR(–) sets, this being the chief means by which polymorphism
is achieved within our TGR framework.

6 Discussion and Conclusions

We have defined TGRSs, dataflow analysis, type structures, and we have shown how the properties of data-
flow analysis are suited to doing type inference of the kind required by our particular brand of type theory.
Some points are worthy of further discussion, so let’s look at an example and compare the present frame-
work to conventional ones.

Example 6.1 We’ll continue our slightly half-hearted example introduced previously, constrained as we
inevitably are by not having given a complete system. Again we’ll refer to theP shown in section 2. Now
our definitions for correctness made no mention of the typing of rules. This was deliberate, since the se-
mantics of the variableAny nodes in a pattern (by which we mean the attributes of the execution graph
nodes that they will match) are entirely dependent on the rest of the system, and trying to assign types to
them cannot be contemplated until the existence of a correct typing for the whole system has been estab-
lished. In this sense, talking of the typing ofP is contingent on such a global typing. Assuming such, the
dataflow analysis of example 3.3 and the properties of the unification algorithm 5.3 allow us to infer certain
things about symbols and germ instances occuring inP.

accomplished by steps [1] – [5], which build the equivalence classes ofρs and perform the unification with
the axiom basis.

It remains to unify the resulting type labelling of symbols with the rule basisΣ. This is accomplished by
the loop [8i] – [12i]. To enforce conformance toΣ we have to check relationships between type symbols
at parent and child ends of all potential arcs of execution graphs. All such arcs are instances of germs that

can be constructed from the Ok(–) sets. So let (Sξ
k, Tζ) be such a germ where the symbols bear the type

symbols appropriate to the i’th iteration of the algorithm. If ξ ∈ Zv there is nothing to check. Otherwise

if ξ ∈ Zc and Σ(S, ξ) is defined, then arities must match, and ifΣ(S, ξ)[k] ∈ Zc, then ifζ ∈ Zc too, thenζ
must =Σ(S, ξ)[k] (elseFAIL ure). IfΣ(S, ξ)[k] ∈ Zc butζ ∈ Zv, thenζ must be instantiated to Σ(S, ξ)[k].

There may be several such competing instantiations forζ arising from other germs (Uχ
l, Tζ) . Any one

such instantiation will do, since if they all agree (i.e. all wish to mapζ to the sameθc ∈ Zc) then there is
no conflict, while if they disagree,FAIL ure is invevitable at thei+1’th iteration. This explains the form of
the else branch of [10i].

So the loop progressively instantiates type variables, only when needed, until termination orFAIL ure. It

clearly generates a most general unification of Σ with t-S0, hence a most general unification of t-S with

(Σ, B). Thus t-Sf is a correct typing of R.

It goes without saying that the above algorithm, is not one that would be implemented as given, being con-
structed primarily for readability. Many aspects can be optimised to produce a practical algorithm, but
these issues are outside the scope of this paper.

As promised, we will strengthen theorem 5.4 to enable the SDLPTI algorithm to effectively generate cor-

rect typings in certain non-linear cases. The problem with non-linearity is that ifk1 ≠ k2 andΣ(S, ξc)[k1]

= ζv = Σ(S, ξc)[k2] then if a graph nodex is of typeξc then itsk1 andk2’ th children must be of the same
type,θ1 say, even if that type is different to the type,θ2 say, of thek1 andk2’ th children ofy, wherey is

also of typeξc. Since dataflow analysis and hence the SDLPTI algorithm works on each germ (and per-
force each germ instance) independently, they are unable to distinguish this case from the case where the
k1’ th child ofx is of type θ1, thek2’ th child ofx is of typeθ2, thek1’ th child ofy is of typeθ1, and thek2’ th
child of y is of typeθ2. The latter is a non-typing of the graph containingx and y according to 4.5.

However, if we can be sure that every node of typeξc created during a rewrite has itsk1 andk2’ th children
of equal type at the moment of creation, then we can use the SDLPTI algorithm to check that the system
is correctly typed. This is because the SDLPTI algorithm ensures that the functionsiG,H(–), rG,H(–) pre-
serve type, so if the children are of equal type at the point the parent is created, then they remain of equal
type subsequently, despite redirection. Clearly this is an observation outside the remit of the standard
SDLPTI algorithm.

Theorem 5.5 Let S, Z, R and (Σ, B) be as before, but suppose (Σ, B) is non-linear. Forξc ∈ Zc and

ζv ∈ Zv, let Wξc(ζv) be the set of indicesWξc(ζv) = { k | Σ(S, ξc)[k] = ζv}. Suppose for all (S, ξc) andζv

such thatΣ(S, ξc) is defined and non-linear andWξc(ζv) is a non-singleton, and for allx a contractum node

of the patternP of a ruleD of R, with σ(x) = S andξc the SDLPTI type ofS, there is aθ ∈ Z (depending

on bothx andWξc(ζv)), such that for allk ∈ Wξc(ζv), either

(1) Thek’ th child ofx is an explicit nodeyk, andθ is the SDLPTI type ofσ(yk), or

(2) Thek’ th child ofx is an implicit node, andOk(σ(x)ξc
)τ = {θ} (i.e. a singleton SDLPTI type).

Then the output of the SDLPTI algorithm is a correct typing of the system.

[6] Let t-S0 be given bySξ ∈ t-S ⇔ SI0(ξ) ∈ t-S0. Letρ0 be given byTζ ρ Sξ ⇔ TI0(ζ) ρ0 SI0(ξ).

Let ρ0
s be the symmetric closure ofρ0 and write [Sξ]0 for a typical component. Let t-O0

k(–)

sets be given byTζ ∈ t-Ok(S
ξ) ⇔ TI0(ζ) ∈ t-O0

k (SI0(ξ)).

[7] Let i = 0.

[8i] Repeat

[9i] i := i + 1

[10i] If for anySξ, Tζ ∈ t-Si−1 we have ξ ∈ Zc and Σ contains a rule forS andξ such

 thatA(S, ξ) ≠ A(S), or there is ak ∈ A(S, ξ) such thatΣ(S, ξ)[k] = θc ∈ Zc and

Tζ ∈ t-Oi−1
k (Sξ) with θc ≠ ζ ∈ Zc

Then FAIL and exit

Else Define a substitutionIi by

For all Sξ, Tζ ∈ t-Si−1 Do

If ζ ∈ Zv, ξ ∈ Zc andΣ contains a rule forS andξ such that there is a

 k∈ A(S, ξ) such thatTζ ∈ t-Oi−1
k (Sξ)

Then Ii(ζ) = θc whereθc is any suchξ
For all remainingθ ∈ Zv , Ii(θ) = θ

[11i] Let t-Si be given bySξ ∈ t-Si−1 ⇔ SIi(ξ) ∈ t-Si. Letρi be given byTζ ρi−1 Sξ ⇔ TIi(ζ) ρi SIi(ξ).

Let ρi
s be the symmetric closure ofρi and write [Sξ]i for a typical component. Let t-Oi

k(–)

sets be given byTζ ∈ t-Oi−1
k (Sξ) ⇔ TIi(ζ) ∈ t-Oi

k (SIi(ξ)).

[12i] Until Ii = IdZ

[13] Let f be the final value fori. Output t-Sf andSUCCEED.

As a matter of teminology, if the SDLPTI algorithmSUCCEEDs on some system, then for everyS∈ S, if

Sξ ∈ t-Sf where t-Sf is the set output by the algorithm, we callξ theSDLPTI type of S.

Theorem 5.4 LetS, Z, R, (Σ, B) be given as before withS andR finite and membership ofZ and (Σ, B)
recursively decidable. Suppose (Σ, B) is linear.

(1) The SDLPTI algorithm terminates and eitherSUCCEEDs orFAIL s.

(2) If it SUCCEEDs, thenR is correctly typed by (Σ, B) and a suitable typing of any execution graph may
be given by typing each nodex of the graph by the SDLPTI type ofσ(x).

Proof BecauseS andR are finite and all the substitutions mentioned have finite support, all the individual
steps of the algorithm are finitely computable. To show that there are a finite number of iterations of steps
[9i] – [12i] we note that each iteration except the last retypes a finite non-zero number of symbols deco-
rated with variables, to symbols decorated with constants. Since no symbol decorated with a constant is
ever retyped, and there are only a finite number of symbols involved to start with, the loop must terminate.
The only exit points of the algorithm are when itSUCCEEDs orFAIL s, so we have (1).

We note that by 3.2.(R), theρi relations are reflexively and transitively closed, so their symmetric closures
are indeed equivalence relations.

As to the output when the algorithmSUCCEEDs, we need only show that the three conditions of theorem

5.2 hold with respect to the set of t-symbols t-Sf , created by the algorithm.

To satisfy 5.2.(3), we must ensure that all members of anR(–) set have the same type. Similarly, to satisfy

5.2.(1), we must ensure any symbol typed by the axiom basisB, has the same type in t-Sf. Both tasks are

Theorem 5.2 Suppose (Σ, B) is linear. Suppose all symbols inS are decorated with a type, yielding a set
of t-symbols t-S. For each t-symbol, letR(–) andOk(–) sets of t-symbols be given that satisfy the hypoth-
eses of theorem 3.2 (where we ignore the type decorations for the purposes of 3.2). Suppose also for each

Sξ ∈ t-S,

(1) If B(S) is defined, thenB(S) = ξ,

(2) If Σ(S, ξ) is defined, thenA(S) = A(S, ξ), and for eachk ∈ A(S, ξ) such thatΣ(S, ξ)[k] = θc ∈ Zc, for

all Tζ ∈ Ok(S
ξ), ζ = θc,

(3) R(Sξ) is a type singleton.

Then (Σ, B) correctly typesR when each execution graph nodex is typed byθ whereσ(x)θ is in t-S.

Proof. LetGi be an execution graph andx ∈ Gi. Map all nodes to type symbols as suggested. Then (1)
implies (1) of 4.2.1. By theorem 3.2, if y is thek’ th child ofx, thenσ(y) ∈ Ok(σ(x)), and thus (2) trivially
guarantees (2) of 4.2.1 because (Σ, B) is linear. So the map is indeed a typing ofGi. Theorem 3.2 also
guarantees that for all j > i, σ(rGi,Gj(x)) ∈ R(σ(x)), hence (3) ensures that we have a correct typing of the

system.

We have suggested that for dataflow analysis, suitableR(–) andOk(–) sets may be obtained by iteration.
We now present an algorithm for determining suitable sets of t-symbols t-S for which the conditions of
theorem 5.2 hold.

Algorithm 5.3 (The SDLPTI algorithm)

[1] Decorate eachS∈ S with a fresh type variable fromZv which does not occur inΣ. Call the
resulting set of t-symbols t-S.

[2] Let t-R(–) and t-Ok(–) sets be given by

Tζ ∈ t-R(Sξ) ⇔ Sξ, Tζ ∈ t-S andT ∈ R(S)

Tζ ∈ t-Ok(S
ξ) ⇔ Sξ, Tζ ∈ t-S andT ∈ Ok(S)

[3] Defineρ on t-S by

Tζ ρ Sξ ⇔ Tζ ∈ t-R(Sξ)

and letρs be the symmetric closure ofρ. Thenρs is an equivalence relation. Write [Sξ] for the

component ofρs containingSξ.

[4] For each [Sξ] let

[Sξ]B = [Sξ] ∪ {Tζc
 | B(T) = ζc andTθv

∈ [Sξ] for someθv ∈ Zv}

[5] Unify each [Sξ]τ
B . That is

If any [Sξ]B is not acceptableThen FAIL and exit

Else Define a substitutionI0 by

For all [Sξ]B Do

If [Sξ]τ
B contains a concrete type symbolθc

Then For allζ ∈ Zv ∩ [Sξ]τ
B , let I0(ζ) = θc

Else Choose someθv ∈ [Sξ]τ
B and for allζ ∈ Zv ∩ [Sξ]τ

B , let I0(ζ) = θv

For all remainingθ ∈ Zv, I0(θ) = θ

τ(α(x)[k]) = sx(Σ(τ(x))[k]).

We say thatτ is aconcrete typing of G iff τ(G) ⊆ Zc.

Definition 4.1.2 Let typings be given for all execution graphs and let the following hold for all executions
of R. If Gi, Gj are in some execution with i < j, andτi, τj are the given typings, then for allx ∈ Gi

τi(x) = τj(iGi,Gj(x)) = τj(rGi,Gj(x))

Then we say thatR is correctly typed by (Σ, B). If all such typings are concrete, we say thatR is con-
cretely correctly typed by (Σ, B).

4.2 A Simple Imperative Type Discipline

Let Ω beS the node symbol alphabet, and let some TGRSR, and some type theory (Σ, B) be considered
fixed.

Definition 4.2.1 LetG be a graph and letτ : G → Z be a map from the nodes of G to type symbols. Then
τ is atyping of G iff for all x ∈ G,

(1) If B(σ(x)) is defined, thenτ(x) = B(σ(x)).

(2) If Σ(σ(x), τ(x)) is defined, thenA(σ(x), τ(x)) = A(σ(x)) = A(x) and there is a(nx-dependent) substitu-
tion sx such that for all k ∈ A(x),

τ(α(x)[k]) = sx(Σ(σ(x), τ(x))[k]).

We say thatτ is aconcrete typing of G iff τ(G) ⊆ Zc.

Definition 4.2.2 Let typings be given for all execution graphs and let the following hold for all executions
of R. If Gi, Gj are in some execution with i < j, andτi, τj are the given typings, then for allx ∈ Gi

τi(x) = τj(iGi,Gj(x)) = τj(rGi,Gj(x))

Then we say thatR is correctly typed by (Σ, B). If all such typings are concrete, we say thatR is con-
cretely correctly typed by (Σ, B).

5 The SDLPTI Algorithm

SDLPTI stands for Simple Dataflow Linear Polymorphic Type Inference. Simple and linear because those
are the only types of dataflow analysis and polymorphism respectively that we are concerned with. Actu-
ally we will see a little later that we can extend the applicability of the algorithm to certain non-linear cases
as well.

From now on, we will restrict our attention to the simple imperative type discipline. Results for the crude

type discipline are easily recovered by simply forcing the value of the partial functionΣ(S, ξc) to be inde-
pendent ofS, and then discardingS. In fact for the algorithm below all one need do is to delete the short
underlined passages in step [10i] and the algorithm becomes correct for the crude type discipline. We as-
sume thatS, Z, R and (Σ, B) are fixed as before. We also insist thatS andR are finite and that there are
at least recursive algorithms for deciding membership ofZ and (Σ, B). Finiteness ofS andR is sufficient
if theorem 3.2 is to serve as the basis for an iterative algorithm for determiningOk(–) andR(–) sets, and a
finite number ofOk(–) andR(–) sets is sufficient to ensure termination of algorithm 5.3 below. We assume
henceforth that a suitable collection ofOk(–) andR(–) sets have been given for the system R but we don’t
care whether they were obtained using the algorithm suggested by 3.2 or by some other magic.

Definition 5.1 LetQ be a set of t-symbols. ThenQτ = {θ | Sθ ∈ Q}. We say thatQ andQτ areacceptable

if f Qτ contains at most one type constant. We sayQ andQτ aretype singletons iff Qτ is a singleton.

of graph nodes are invariants of rewriting (particularly of redirection). The proof of this though, is no long-
er something that can be swept under the carpet as happens for TRSs. Given that we must irrevocably lose
context freedom in the passage to the graph world, this is about the best that we could hope for.

The type theories we will construct are about the simplest that one could imagine under these circumstanc-
es. They resemble to some degree the phenomena found in conventional imperative languages like Pascal
or Ada. The locality of the meaning of types is certainly reminiscent, but the type inference and parametric
polymorphism aspects of our schemes are more general. The rest of this subsection sets up the general
framework within which both of the type disciplines that we will develop fit. The following two subsec-
tions specialise this to the specific disciplines in question.

N.B. Due to pressure of space, and also for reasons of technical convenience, little motivatory material
will occur among the definitions and theorems of this section and the next. On a first reading, readers may
find it more convenient to briefly skim the definitions in the rest of this section and then skip to the discus-
sion in section 6, where the salient properties of our type system are highlighted and compared to those of
conventional systems. The informal impression gained thereby should help to make the structure and de-
tailed content of the intervening technical material more accessible and digestible.

We assume we have an alphabetZc of type constantsand a disjoint alphabetZv of type variables. Z =

Zc ∪ Zv. We will use letters from the middle of the Greek alphabet as meta-variables standing for members

of either alphabet. If we want to emphasise membership of eitherZc or Zv, we will superscript in the ap-

propriate way, eg.ξc is inZc.

Definition 4.1 A rule basisΣ is a partial functionΩ × Zc → Z* whereΩ is a set to be specified later. If

Σ(ω, ξc) is defined (forω ∈ Ω), then ((ω, ξc), Σ(ω, ξc)) is called atype rule for ω andξc. We write such

a rule using the notationωξc ← ξ1…ξn, or (ω, ξc) ← ξ1…ξn if we wish to be less cluttered, whereξ1…ξn

is the value ofΣ(ω, ξc). A type rule for ω andξc is linear iff Σ(ω, ξc) contains no more than one occurence

of anyξv ∈ Zv. A rule basis islinear iff all its type rules are linear. Thearity of a type rule, written

A(ω, ξc) is the domain ofΣ(ω, ξc), i.e. the set of indices ofΣ(ω, ξc). No confusion will arise from this yet
other arity concept.

Definition 4.2 An axiom basisB, is a partial functionS → Zc. WhenB(S) is defined, ifξc = B(S), we

say thatSξc
 is atyped symbol (or t-symbol). More generally, we will also consider t-symbolsSθ for any

θ ∈ Z.

Definition 4.3 A type structure (Σ, B) for a given setΩ fixed for the type discipline being considered,
consists of a rule basis and an axiom basis. The structure islinear if f the rule basis is.

Definition 4.4 A substitution s is a mapZ → Z which is the identity onZc, i.e.s ∈ [Zv → Z] ∪ {IdZc}.

4.1 A Crude Type Discipline

Let Ω be the one-point set {•}. Then sinceΩ × Zc ≅ Zc, it is preferable to drop all mention ofΩ. We can

therefore write a type rule as (ξc, Σ(ξc)) or asξc ← ξ1…ξn instead of using the more elaborate forms.

Now let some TGRSR, and some type structure (Σ, B) be considered fixed, and letS andZ be the appro-
priate alphabets.

Definition 4.1.1 LetG be a graph and letτ : G → Z be a map from the nodes of G to type symbols. Then
τ is atyping of G iff for all x ∈ G,

(1) If B(σ(x)) is defined, thenτ(x) = B(σ(x)).

(2) If Σ(τ(x)) is defined, thenA(τ(x)) = A(σ(x)) = A(x) and there is a(nx-dependent) substitutionsx such
that for all k ∈ A(x),

T = σ(w). Let S = σ(u) andg′((pk, c)) = (uk, v) as before. Nowσ(v) ∈ Ol(σ(w)) = Ol(T) by hypothesis,
andσ(v) = σ(c) becauseg′ is an extended matching. By (3),Ol(T) = Ol(σ(w)) = Ol(σ(q)) ⊆ Ok(σ(p)) =
Ok(σ(u)) = Ok(S), the penultimate step becauseg′ is an extended matching. Thusσ(v) = σ(c) ∈ Ok(σ(u))
as required for (a). Since there are no redirections in the contractum building phase,rGi,G′i = iGi,G′i so (b1)

holds trivially.

Redirection Phase. Clearly there is nothing to prove for the non-redirected arcs inGi+1 since they are just
injective copies under iG′i,Gi+1, of arcs ofG′i so (a) holds for them. Letx ∈G′i be a redirected node, i.e.

one whose incident arcs are to be redirected toy ∈ G′i because (x, y) = (g′(a), g′(b)) where (a, b) is a redi-
rection of the rule governing the rewrite. By 2.2.(3)a is explicit. LetS = σ(a) soS = σ(x). Supposeb is
explicit andσ(b) = T. Then by (2),T ∈ R(S) and soσ(y) ∈ R(σ(x)). Henceσ(rG′i,Gi+1(x)) ∈ R(σ(x)) as

required for (b1). Suppose alternatively b is implicit. Then there is an arc (ql, b) in the left subpatternL
of the rule such that (ql, b) is an instance of (Tl, −) say. Sinceg′ is an extended matching, there is an arc
(tl, y) ∈ G′i with g′((ql, b)) = (tl, y) soσ(t) = T and thus by hypothesisσ(y) ∈ Ol(T) andσ(b) ∈ Ol(T). By
(4),Ol(T) ⊆ R(S) which givesσ(y) ∈ R (σ(x)) andσ(rG′i,Gi+1(x)) ∈ R(σ(x)) as before. Thus (b1) holds for

an arbitrary redirection.

We need to show that (a) holds for the redirected arcs. Consider an arc (wm, x) ∈ G′i wherex is redirected.
We know thatσ(x) ∈ Om(σ(w)). But alsoσ(rG′i,Gi+1(x)) ∈ R(σ(x)). Now R(σ(x)) ⊆ Om(σ(w)) by (Ok).

Soσ(rG′i,Gi+1(x)) ∈ Om(σ(w)) and (a) holds for the redirected arcs ofGi+1.

Example 3.3 We have not presented a complete rule system in the pictures that illustrated rewriting and
germ instances above, so strictly speaking we can’t give an example of dataflow analysis. Nevertheless
we can draw certain conclusions about theOk(−) andR(−) sets of any system that includes the one rule that
we did give. For instance, refering to the patternP illustrated above, we must haveCount′ ∈ O1(Inc′),
Plus ∈ O1(Count′), O1(Count) ⊆ O1(Plus), 1 ∈ O1(Plus), and alsoInc′ ∈ R(Inc), Count′ ∈ R(Count).
In addition, if rather than(root, r′) ∈ Red we had had(root, a) ∈ Red, then we would have hadO1(Count)
⊆ R(Inc) instead ofInc′ ∈ R(Inc). What other relationships hold between symbols,Ok(−) sets andR(−)
sets depends of course on what other rules are present in the system.

The above theorem can serve as a specification for an algorithm to determine suitable setsR(−), Ok(−), if
the system is finite. The basic strategy is iteration until a least fixed point is reached using the conditions
(R), (Ok), (1) – (4) as consistencyconditions that drive varioussymbols into membership of the various
R(−) or Ok(−) sets. See Banach (1992), Hankin (1991) for details. The analysis evidently provides a safe
estimate of the sets of germ instances that actually occur during executions. In section 5, we will use the
properties of theR(−) andOk(−) sets as the basic driving engine for type inference once we have deter-
mined what types are to be in the present context.

4 Simple Type Theories For TGRSs

What should we mean by types for TGRSs? This is not a trivial question since type systems for conven-
tional rewriting systems i.e. TRSs or the lambda calculus, are connected with issues such as strong nor-
malisation. Since not even all TRSs (let alone TGRSs) have the strong normalisation property and since
for those that do, the connection with type theories is built on precisely the cornerstone of structural induc-
tion over terms that we are forced to abandon, we must look for some weaker framework.

Since TGRSs are so general, it is not possible to demand the property that the type of an execution graph
(whateverthat might be) is an invariant of rewriting. This is the crucial (and suprisingly, seldom stated)
subject reduction property of most type systems for TRSs that enables the strong normalisation results to
go through. With its abandonment, the way is open to construct a more local concept of type, and for the
particular notions of type that we will develop below, the invariant we will end up with, is that the types

An arc (pl, c) of a graphG is aninstance of a germ (Sk, T) iff σ(p) = S, σ(c) = T andl = k. It is an instance
of (Sk, −) iff σ(p) = S andl = k. These concepts may also be applied to arcs in patterns, provided we accept
that arcs in which the child node is implicit may be instances only of implicit germs. For instance:

Let a fixed system be given. Our aim is to be able to estimate what germ instances actually occur during
the rewriting of a system. Speaking loosely, we do this by estimating what symbols may occur at given
child positions of any symbol and also what symbols a given symbol may get redirected to. This is done
by an induction over the structure of executions.

Theorem 3.2 Assume a fixed system given. Suppose for allS∈ S, k ∈ A(S) there are sets of symbols
R(S), Ok(S) such that the following hold.

(R) S∈ R(S) and for allT ∈ R(S), R(T) ⊆ R(S).

(Ok) For allT ∈ Ok(S), R(T) ⊆ Ok(S).

Suppose also that for all rules (incl : L → P, root, Red) in the system we have (1)− (4) below.

(1) Let (pk, c) be an instance of (Sk, T) in P wherep and c are both explicit. ThenT ∈ Ok(S).

(2) Let (a, b) be inRed such thata andb are both explicit withσ(a) = S andσ(b) = T. ThenT ∈ R(S).

(3) Let (pk, c) be an instance of (Sk, −) in P, and (ql, c) be an instance of (Tl, −) in L, wherec is implicit
andp is a contractum node. ThenOl(T) ⊆ Ok(S).

(4) Let (a, b) be inRed such thatb is implicit. Let (vl, b) be an instance of (Tl, −) in L and letσ(a) = S.
ThenOl(T) ⊆ R(S).

Then for every execution graphGi, if x ∈ Gi with σ(x) = S

(a) If (xk, y) is an arc ofGi with σ(y) = T, thenT ∈Ok(S),

(b) If Gj is some execution graph occurring later thanGi in the execution andrGi,Gj(x) = z with σ(z) = T,

thenT ∈ R(S).

Proof. The proof is by induction over the structure of executions. We will show that the contractum build-
ing and redirection phases of a rewrite, both preserve properties (a) and the one-step version of (b), (b1),
i.e. whereGj is the successor ofGi in the execution; (b) then follows by induction and (R).

Base Case. The initial graph has no arcs so (a) holds trivially; and there is nothing to prove for (b1) since
no rewrite created the initial graph.

Inductive Step. Suppose the hypotheses hold forG0…Gi.

Contractum building Phase. LetG′i be the graph after contractum building. Clearly (a) holds by hypoth-
esis foriGi,G′i(Gi) so we need only consider the new arcs added during the building. Let (uk, v) be such an

arc and let it be the image under the extendedmatchingg′ : P → G′i (whereP is the pattern of the rule
governing the rewrite) of an arc (pk, c) in P. Nowc is either explicit or implicit. If explicit, then (pk, c) is
an instance of some (Sk, T) and by (1),T ∈ Ok(S). Sinceg′ is an extendedmatching, σ(u) = S and σ(v) = T
soσ(v) ∈ Ok(σ(u)). Alternatively, c is implicit. Since there must be a path of length at least one from the
root of the left subpattern to c, c has an explicit parent in the left subpattern of the rule. Suppose (ql, c) is
the relevant arc. Sinceg′ is an extendedmatching, g′((ql, c)) = (wl, v) wherew ∈ iGi,G′i(g(L)). Let

root : Inc[]

c : Count[]

a : Any

Instance of (Inc1, Count)
and of (Inc1, –)

Instance of (Count1, –)

Definition 2.8 An initial graph is one consisting of an isolated node with empty arity, labelled by the
symbolInitial.

Definition 2.9 A system is a set of rulesR. An execution of R is a sequence of graphs [G0, G1 …] of
maximal length such that

(1) G0 is initial,

(2) For all i ≥ 0 such thati+l is an index, there is a rule D ∈ R andx ∈ Gi such that Gi is the pre-graph
andGi+l the post-graph of a rewrite ofGi atx according to D.

Note that the above definition does not address garbage collection or reduction strategy, let alone fairness

or other issues of concern in concurrency theory1. TGRSs may be enhanced with notions that would shed
light on these things (see eg. Glauert et al. (1988a, b), Banach (1991c, 1992)) but to do so here would clut-
ter the exposition needlessly.

Definition 2.10 Any graph that occurs in an executionof some system is an execution graph of that sys-
tem.

Definition 2.11 Let Gi be an execution graph and Gi+l be its successor in an execution. LetG′i be the
corresponding graph after contractum building. The functions iGi,G′i, rGi,G′i, iG′i,Gi+1, rG′i,Gi+1 are defined

as follows:

(1) iGi,G′i is the natural injection of nodes ofGi to nodes ofG′i.

(2) rGi,G′i = iGi,G′i .

(3) iG′i,Gi+1 is the natural bijection of nodes ofG′i to nodes ofGi+l.

(4) rG′i,Gi+1(x) = iG′i,Gi+1(x) unlessx has been redirected, i.e. it has had its incident arcs swung over to

point to some other node y≠ iG′i ,Gi+1(x) ∈Gi+l during the redirection phase, in which case

rG′i,Gi+1(x) = y.

We define iGi,Gi+1 as the compositioniG′i,Gi+1 iGi,G′i, and similarly forrGi,Gi+1, iGi,Gi+k, rGi,G′i+k etc.

ThusiGi,Gi+n(x) is the copy of x in Gi+n, while rGi,Gi+k(x) follows the redirection history of x and is the

node ofGi+n that copies ofx have been redirected to.

This completes the description of the standard operational semantics of general term graph rewriting. It
turns out that the model has an elegant universal reformulation, but it would take us too far out of our way
to go into the details of this. See Banach (1991a, b) for a fuller description.

3 Simple Dataflow Analysis

We shift our attention from execution graphs as such, to relations between symbols that estimate the pos-
sible local structures occurring in them. In particular we are concerned with the occurrences of symbols
at parent and child ends of an arc of an execution graph and the redirection histories of nodes.

Definition 3.1 If S, T∈ S and k ∈ A(S), then the object

Γ = (Sk, T)

is called anexplicit k-germ. An object

Γ′ = (Sk, −)

is called an implicit k-germ.

1. TGRSs were initially invented with the objective of providing a model for graph reduction implementa-
tions of functional languages, parallel as well as serial.

Definition 2.6 (Redirection) LetD = (incl : L → P, root, Red) be a rule with left subpattern L, G a graph,
g a matching ofL to G andG′ the graph resulting from the construction of 2.4. We construct the graphH
given by

(1) NH = NG′,

(2) σH = σG′,

(3) αH({(1 ,x)})[k] =

αH({ (2,n)})[k] =

αH({ (1, x), (2,n1) … (2,nm)})[k] =

Definition 2.7 If D, G and g are as in 2.4, 2.5,then arewrite of G atx according toD is defined to
yield the graphH. G is said to be thepre-graph, andH thepost-graph of the rewrite.

In plain language, the graphG′ glues copies of the contractum nodes ofP ontoG, ensuring that arcs are
introduced in such a way that the extended matchingg′ : P → G′ exists. Another way of visualising the
same thing is to take disjoint copies ofG and P, and for all redex nodes x, to “pinch together”x and its
primage under g. This is similar to the formal construction. Likewise, the redirection phase locates the
images inG′ of the redirection pairs ofD, and swings all arcs incident on the image of the LHS to point to
the image of the RHS. There is no ambiguity about redirection as the LHS’s of distinct redirections are
labelled with different symbols so their images under matching cannot coincide. The diagrams below pro-
vide a small example of rewriting. The objects occuring there are named after their role in the above the-
ory. Note that the faint dotted arrows represent the redirections of the rule.

{ αG′({ (1, x)})[k] otherwise

{ (2, y)…} if (u, y) ∈ Red for somey ∈ P andu ∈ g′−1(αG′({ (1, x)})[k])

{ { 〈2,y〉…} otherwise

 αG′({ 〈2,n〉})[k] if 〈u, y〉 ∉ Red for anyy ∈ G andu ∈ g′−1(αG′({ 〈2,n〉})[k]){ αG′({ (2, n)})[k] otherwise

{ (2, y)…} if (u, y) ∈ Red for somey ∈ P andu ∈ g′−1(αG′({ (2, n)})[k])

{ αG′({ (1, x), (2, n1) … (2, nm)})[k] otherwise

{ (2, y)…} if (u, y) ∈ Red for somey ∈ P andu ∈ g′−1(αG′({ (1, x)…})[k])

root : Inc[]

c : Count[]

a : Any

root : Inc[]

c : Count[]

a : Any
L P

p : Plus[]

l : 1

c′ : Count′[]

r′ : Inc′[]

G

y : Inc[]

z : Count[]

t : 3

x : Root[]

G′

y : Inc[]

z : Count[]

t : 3

p′ : Plus[]

l′ : 1

z′ : Count′[]

y′ : Inc′[]x : Root[]

y : Inc[]

z : Count[]

t : 3

p′ : Plus[]

l′ : 1

z′ : Count′[]

y′ : Inc′[]

x : Root[]

H

Nodesx with σ(x) = Any are called implicit , whereas others areexplicit. More generally we allow our-
selves to regard a graph as a pattern for which the number of implicit nodes is zero when convenient, but
we never normally regard a pattern as a graph. Patterns and graphs are not normally deemed to have roots
unless we specifically say so or it is clear from context.

Definition 2.2 A rule D is a triple (P, root, Red) where

(1) P is a pattern known as the pattern of the rule.

(2) root is an explicit node ofP called theroot and all implicit nodes are accessible fromroot. Also if
σ(root) = S, then D is arule for S.

(3) Red is a set of pairs (calledredirections) of nodes ofP such that if (x, y) ∈ Red, then x is explicit,
and accessible fromroot. Also if (x, y), (u, v) ∈ Red, then ifx = u theny = v, and ifx ≠ u, then
σ(x) ≠ σ(u). For (x, y) ∈ Red, x is called theLHS of the redirection whiley is theRHS.

The subpattern ofP accessible from (and including) the root is called theleft subpattern of the rule and
is usually denoted byL, while nodes of P not in the left subpattern are calledcontractum nodes. Thus
another, slightly redundant way of writing a rule isD = (incl : L → P, root, Red) whereincl is the inclusion
of the left subpattern intoP.

Definition 2.3 A matching or homomorphism of a patternP with root rootsay, to a graph(or pattern) G
at a nodet ∈ G is a maph : P → G such that

(1) h(root) = t

(2) If x ∈ P is explicit, thenσ(x) = σ(h(x)), A(x) = A(h(x)), and for allk ∈ A(x), h(α(x)[k]) = α(h(x))[k].

Thus a matching is a type of graph homomphism in which implicit nodes may match anything but explicit
nodes have to behave well. By dropping the condition (1) involving roots, this definition will also suffice
for matching general patterns to graphs or other patterns, or for matching graphs to other graphs.

We now turn to the rewriting model itself. An informal summary and diagramatic example follow the for-
mal definitions below.

Definition 2.4 (Contractum Building) LetD = (incl : L → P, root, Red) be a rule with left subpatternL
and let G be a graph. Letg : L → G be a matching ofL to G at some node of G. Then g(L) is called the
redex. We build first the graphG′ given by

(1) NG′ = (NG ∪+ NP)/≈ which is the disjoint union ofNG andNP factored by the equivalence relation≈,

where≈ is the smallest equivalence relation such that1 (1,x) ≈ (2,n) wheneverg(n) = x.

(2) σG′({(1, x)}) = σG(x),
σG′({(2, n)}) = σP(n),
σG′({(1, x), (2,n1) … (2, nm)}) = σG(x),
which is consistent because g is a matching.

(3) αG′({(1, x)})[k] = {(1, αG(x)[k])…} for k ∈ A(x),
αG′({(2, n)})[k] = {(2, αP(n)[k])…} for k ∈ A(n),
αG′({(1, x), (2,n1) … (2,nm)})[k] = {(1, αG(x)[k]) …} for k ∈ A(x),
which is again consistent sinceg is a matching. The… on the RHS of these cases indicates that the
k’ th child of say a singleton equivalence class node ofG′, eg. {(1,x)}, may not itself be a singleton.

Lemma 2.5 There is a matchingg′ : P → G′ that extendsg : L → G (allowing for obvious identification
of nodes modulo disjoint union etc.).

Proof. Defineg′(2, n) = {(2, n)…}. It is clear thatg′ has the appropriate properties.

1. The notation (1,x) or (2,n) tags each element of the binary disjoint union with the tag 1 or 2 to unambig-
uously indicate its origin. Likewise {(1,x) …} denotes the equivalence class containing (1,x).

Given these shortcomings of the graph world, what weapons can we use to overcome the lack of structural
induction and the complexity of matchings? The crude answer is that we must resort to induction over the
structure of executions instead of induction over the structure of graphs (since the latter doesn’t exist in
any sense useful to us), and having that, to dataflow analysis of the rule system (the validity of which is
itself established by the former technique). In fact, the former technique is not so different from what hap-
pens in the term world (where it leads to the subject reduction property), but in the term world, the triviality
of several of the steps is such that they are passed over without mention, and the only issues of interest that
remain can be dealt with by induction over terms. This is also related to the context freedom mentioned
previously. A further issue related to this is rulewise modularity. Many term based systems have the prop-
erty that certain semantic attributes of a rule can be considered in isolation from those of the rest of the
rules in the system, again reducing induction over executions to induction over terms. This is a pleasing
and desirable feature. Unfortunately context freedom and rulewise modularity are the main casualties of
the passage to the graph world. There must besomecasualties of course, we cannot expect significant gen-
eralization without paying some price. The lesson for the graph world though, boils down to the fact that
we can no longer consider subsystems in isolation from one another as easily as we can in the term world.
The entire system must in principle be taken into account when considering even some seemingly local
properties of some small part of it.

The structure of the rest of the paper is as follows. In Section 2 we define our TGRSs as a generalisation
of the model of Barendregt et al. (1987). The terminology is a little non-standard for convenience. Section
3 deals with simple dataflow analysis, showing how the structure of a rule system permits information
about dynamic occurrences of so-called germ instances in execution graphs to be infered statically. Sec-
tion 4 considers the question of how types are to be defined for TGRSs, and comes up with a simple scheme
that is refined into two specific type disciplines in subsections 4.1 and 4.2. These are called the crude type
discipline and the simple inperative type discipline respectively. Section 5 shows the results of section 3
can be used to show the soundness of a unification-based type inference algorithm for the type disciplines
introduced in section 4. Section 6 contains a discussion, suggests extensions, and concludes.

2 Term Graph Rewriting

We assume we are given an alphabetS = {S, T…} of node symbols. We write {1…n} for the set of nat-
urals between 1 andn inclusive. We let {1…0} = ∅ and letSeqN be the set of all such subsets ofN,
including∅.

Definition 2.1 A term graph (or justgraph) G is a triple (N, σ, α) where

(1) N is a set of nodes,

(2) σ is a map with signatureN → S,

(3) α is a map with signatureN → N*.

Thusσ maps a node to the node symbol that labels it, andα maps each node to its sequence of successors.
We writeA(x), the arity of a node, for the domain ofα(x), i.e. the member ofSeqN consisting of indices
of α(x). We also writex ∈ G instead ofx ∈ N(G) etc. Lastly we subscriptN, σ, α with the name of the
graph in question whenever more than one graph is being discussed. A successor of a node determines an
arc of the graph, and we will write such an arc as (pk, c), to indicate that the childc is the k’ th child of the
parentp, i.e. that c = α(p)[k] for somek ∈ A(p). The names are intended to be somewhat alliterative:N
for nodes,σ for symbols,α for arcs.

We will assume for the remainder of this paper that symbols have fixed arities, i.e. that there is a map
A : S → SeqN such that if σ(x) = S, thenA(x) = A(S) (the differentA’s should not cause confusion).

We will also assume there is a special node symbolAny, not normally considered to be inS, and if any
nodes of a graph are labeled withAny, we call such a graph apattern. We further assume that

σ(x) = Any ⇒ α(x) = ε (ε = the empty sequence).

SIMPLE TYPE INFERENCE FOR TERM
GRAPH REWRITING SYSTEMS

R. Banach1

Computer Science Department, Manchester University,

Manchester, M13 9PL, U.K.

Abstract

A methodology for polymorphic type inference for general term graph rewriting systems is
presented. This requires modified notions of type and of type inference due to the absence
of structural induction over graphs. Induction over terms is replaced by dataflow analysis.

1 Intr oduction

Term graphs are objects that locally look like terms, but globally have a general directed graph structure.
Since their introduction in Barendregtet al. (1987), they have served the purpose of defining a rigorous
framework for graph reduction implementations of functional languages (Peyton-Jones (1987)). This was
the original intention. However the rewriting of term graphs defined in the operational semantics of the
model, makes term graph rewriting systems (TGRSs) interesting models of computation in their own right.
One can thus study all sorts of issues in the specific TGRS context. Typically one might be interested in
how close TGRSs are to TRSs and this problem is examined in Barendregt et al. (1987), Farmer et al.
(1990), or Kennaway et al. (1991).

In this paper we examine a related issue, that of type inference. There are two ways that we could approach
this question. The first is to look for conditions on TGRSs that ensure we recover the results that exist for
TRSs of various kinds. This has the virtue of finding the best generalizations of known TRS results in the
graph world but leaves the question of what type inference for general TGRSs might look like, unan-
swered. The second approach addresses the latter question head on, and attempts to construct type theories
for TGRSs directly, without close reference to the TRS results. This is the approach we will follow.

Two main obstacles have to be overcome when we consider the graph world as opposed to the term world.
These are the collapse of structural induction, and the triviality of term matching compared with graph
matching. For terms, structural induction is the mainstay of most proofs of significant results, and it is hard
to see what to replace it with. A byproduct of structural induction is the fact that many results are context
free in the sense that ifΠ is some property that holds for a set of termsT, then ifC[] is some context,C[t]
satisfiesΠ for all t ∈ T and contextsC[]. Such results frequently hold in TRSs related to the lambda cal-
culus (see Barendregt (1984), Girard et al. (1989), Huet (1990)).

For terms, we also have that if a rule matches some subterm, then apart from variable instantiations, the
subterm is an exact copy of the rule LHS. This leads to a number of subtle properties that terms have com-
pared with the more general term graphs, and is founded on the fact that terms are simply trees. In the
more general graph world, we have to be more careful about the matching problem as matchings are not
just isomorphisms with variable instantiation, and we have to confront the fact that important properties
of a given rule are by no means required to hold for some arbitrary execution graph that its LHS may
match.

1. Email: rbanach@cs.man.ac.uk

