Consider a crude style rule basithat is concrete (no polymorphism) and complete (each type has a rule).
Build the final type-graph, whose nodes are the concrete type symbols, and whose arcs are given by: fi
eachg, if § — {4...¢, Is the rule fog, then thek'th child ofg is {i. If a systenR is well typed acording

to and a suitabl®, then for every execution graghof the system, there is a node-symbobéiting
homomorphisnih: G - A. Readers should convince themselves that this property fails for the imperative
discipline.

To conclude then, we have discussed type inference for TGRSs and shown that credible type systems
be built using datédw analysis and undation, even in the most general case where no particular nice
structural properties are assumed for the system, fulfilling the promise in the conclusion of Banach (198
We have also suggested that more powerful extensions of these systems can be contemplated. Thes
tensions will be described elsewhere.

References

Banach R. (1989), Dataflow Analysis adrin Graph Rewriting Systems, proc. ARLE-89, Odijk E.,
Rem M., Syre J-Ceds, SpringerLNCS36655-72.

Banach R. (1991a), DACTL Rewriting is Categorigalproc. SemaGraph-91, University of Nijmegen
Dept. of Informatics &chnical Repor®1-25part Il 339-357. Also sei@: Term Graph Rewriting:
Theory and Practice, Johniy, 1992 ,to appear

Banach R. (1991b), efm Graph Rewriting and Garbage Collection a la Grothendi&ghkmitted to TCS

Banach R. (1991c), MONSTRefim Graph Rewriting for Parallel Machines proc. SemaGraph-91,

University of Nijmegen Dept. of Informatice®hnical Repor®1-25part Il 251-260. Also see:
Term Graph Rewriting: Theory and Practice, Johleyy1992,to appear

Banach R. (1992), MONSTH preparation
Barendregt H.R1984), The Lambda Calculus. Its Syntax and Semantics, North-Holland.

Barendregt H.P van Eekelen M.C.J.D., Glauert J.R.\iKennaway J.R., Plasmeijer M.J., Sleep M.R.
(1987), Brm Graph Rewritingin proc. ARLE-87, de Bakker J.WNijman A.J., Teleaven F.
eds, SpringerLNCS259141-158.

Farmer WM., Watro R.J. (1990), Redex Capturing erifi Graph Rewriting, Int. JaufFound. Comp.
Sci. 1 369-386, andh proc. HA-91, R.\V. Booked, Springer LNCS48813-24.

Girard J-Y, Taylor R, Lafont Y (1989), Proofs andypes, Cambridgera@cts in Theoretical Computer
Science 7, CUP

Glauert J.R.W Kennaway J.R., Sleep M.R., Somner GY888a), Final Specification of DACTL, In-
ternal Report SYS-C881] School of Information Systems, University of East Anglia, Norwich,
U.K.

Glauert J.R.WW Hammond K., Kennaway J.R., Papdopoulos G.A., Sleep M.R. (1988b), DACTL: Some
Introductory Papers, School of Information Systems, University of East Anglia, Norwich, U.K.

Hankin C. (1991), Static Analysis oéiin Graph Rewriting Systems,proc. ARLE-91, Aarts E.H.L.,
van Leeuwen J., Rem Mds, Springer LNCS506 367-384.

Hindley R. (1969), The Principalype-Scheme of an Object in Combinatory Logi@nk. AmerMath.
Soc.14629-60.

Huet G. (1990), Logical Foundations of Functional Programming, Addissiey/

Kennaway J.R., Klop J-W Sleep M.R., denés F-J. (1991), ransfinite Reductions in Orthogonal
Term Rewrite System®) proc. RIA-91, R.V. Booked, SpringerLNCS4881-12, and Report CS-
R9041, CWI Amsterdam.

Milner R. (1978), A Theory ofylpe Polymorphism in Programming, JoGomp. Sys. Scil7 348-375.
Milner R., Tofte M. (1991), Co-induction in Relational Semantics, Th€omp. Sci87 209-220.
Peyton-Jones S.L. (1987), The Implementation of Functional Programming Languages, Prentice-Hall.
Tofte M. (1990), Ype Inference for Polymorphic References, Inf. and C@ag-34.

(1969), Milner (1978)), whose use of unification inspired our use of it here. The ni@iardie between
ours and the H-M system is of course the absence of structural induction and its replacement by dataf
analysis. This global analysis feature is somewhat reminiscent of the-Vilfter(M-T) type system for

ML with assignment%(Milner and Dfte (1991), bfte (1990)), though we have not used co-induction in

the explicit way that they do. Moreover for us, even the patterns occurring in rules, which are the templat
for the objects we want to type i.e. the execution graphs, can be cyclic, and fail to be freely generated
recursion. This is of course fundamental and is the main impetus for bringing in the dataflow analysis.

Turning now to the types themselves, the types in our system fail to have anything but a trivial structut
unlike the H-M case where there are typically formation rules such as

o isatype [isatype o isatype P isatype
a x[3 is atype o - B isatype

(it might indeed have been more honest to call our system sort inference rather than type inference). He
ever this is something we can emulate easily enough. Let us take an H-M style languag& bfgyyees
by the syntax

aOTL=b]|v]|a; - 0p|ag%xap

whereb represents base typdst(Bool ...) andv represents variables. Lieflbe a Gddelisation ofL

that maps eaah O TL to its “Godel numberTaDin Z8. With a suitable reinterpretation of the unification
steps in algorithm 5.3 involving the Gédel number coding of unificatidih jralgorithm 5.3 will do duty

as a correctness checker/type inferer for the new scheme; the occurs check maintaining the termina
properties of 5.3. Whave thus another separation of concerns, the separation of unificatiofram

other aspects of our system. Let us briefly look at how this emulation works. There are two basic sty!
we can use, the functional and the applicative. The functional style is similar to what we are used to .

ready Say we wish to apply an operabst* P - Y to operand#&® andBP, giving % * P ~ (A%, BP))Y.
We can emulate this H-M situation by havirl{:p{D, Aled BHBE} 0B, and a rulek, YO ~ &0 BOO .
On the other hand, the applicative style introduces special purpose application Sipmyo(®f arity
{1...n}) to represent the explicit application of an operator to gsiments. Wh the previoug? B-y,
A% BP, our little example become&gp3(F® * P ~ ¥, A9 BPF))Y. Our emulation now requires

{Fl@xB - v A0 BT App3¥3 0B, and App3,) « B x B — yOj [[BO0 £. Note that in this
case we really would need to overload Apgp3 symbol, since we would have to assume that there were

other operators such & *PB -V of type diferent fromF, which would also use thpp3 combinatar
This in turn would require us to at least use the finegrained version of dataflow analysis to have a nc
trivial system. In fact all the rules of the system would be instantiations of

(Appn, W0 « g X Vo X ... XV - Vo V0 V0. V10

wheren is a meta-variable and thigs are variables ofL (note that any non-ground instantiation of the

above is non-linear modulo Gédel numbering). In such a case a strategy for for typechecking that just
forced the consistency condition on the children ohapon node and infered the type of the parent, rather
than concentrating on the parent-child type relationship, would work more siivplyifying algorithm

5.3 to do this is not too hard.

One aspect of H-M and M-T systems definitely missing from ours is the necessity to deal with bound va
ables and non-trivial environments created by static scoping constructs detlk ag{n €) and lambda
abstractions. The absence of these features, attributable to the “flatness” of TiGRISsiafsome con-
siderable simplification.

In case the reader by now thinks that the crude discipline has no merits not amply exceeded by the imj
ative discipline, we point out orfimal property not shared by its imperative brother or his fancier cousins.

1. The author is indebted to Kris Rose for bringing the Miliadte work to his attention, and he intends to
explore the connection between the techniques used here and those of the M-T system elsewhere.

Let us start with the crude discipline and BtB) be given by X, O {Int — Int, Int}, B; O {IncUp,
Plust, CountC}) where €4, By) refer to the other parts of the system. Sincel R(Inc), Inc'’ p% Inc

whencelnc’YP is an SDLPTI typing. Similarlfount’C. We see also that if there were a monomorphic
type rule forC, it would have to b€ -~ Int because of the instance of the ge@oynt'4, Plus) in the

contractum oP. FromPlus'™ andint < Int, Int we deduce tha : AnyInt andl : 1", The former is
consistent with th€ ~ Int we discovered above and tells us that any node matched to the particular im
plicit nodea in a redex for our rule must be of tyjm if the system is to be SDLPTI-typeable. The latter

spells trouble. Frormt — Int, Int and1'™ we deduce tha&(1) = {1...2}. But this is nonsense sintel

has no children iR andl is an explicit node. This means that any system including our rule is not SDLPTI-
typeable using the crude discipline and giverB). We therefore see that the crude discipline is very se-
vere in restricting the arities of similarly typed symbols to be the same.

Now let us examine the same example using the simple imperative discipline andBeb¢ ¢4 U

{(Plus, Int) — Int, Int, (1, Int) }, By O {Inc'™ Count®, Plus'™, 1'"Y}). Note that since the types of
child nodes now depend on the parent type and parent symbol rather than just the parent type alone,

previous problem does not arise and we can even safelyri@Vein B. On the down side, we have to
put more into the basis because of the weaker constraints enforced. Much as before, we carrconclude

¢’ Count’© anda : Any™, and can consistently postulate the type rutes (nt) — C, (Inc, Int) —
C, (Count, C) « Int, (Count’, C) « Int.

So the imperative discipline allows much more natural looking rules to be well typed. One can see t
similarity with imperative languages, where operators are endowed with a result type and sequence of
erand types, and type checking proceeds by matching the type at a point in the program against the t
demanded for a child at the relevant position of its parent (as in Pascal); or more generally some inferel
is done (as in Ada).

Note also that the presentation of type rulesSa&% — ;...{,, 0 S x Z® -, Z* apparently allows over-
loading by permitting

(S &9 « {y.-.¢n and § &Y ~ 1. &y (with &5 #EY)

to coexist inx. This is true, but useless in the context of this paper since the first thing that algorithm 5.
does is to attempt to unify the types of all occurrencesinfstep [5] so at most one of the above rules
would ever be used.olexploit potential overloading we need to re-engineer the dataflow analysis with &
go-faster superchged version, capable of discriminatingfeient occurrences of the same node symbol
in some way A more finegrained version of dataflow analysis can do this but is beyond the scope of th
paper (In actual fact it would inevitably go slower rather than fgster

The main reason we used the more relational presentation for rul8sx Z&. - Z* rather than the func-
tionalS - Z® ~ Z*, is the uniformity of presentation of the crude and imperative disciplines it allows.
(We note that a fully relation& x Z° x Z* for the rule basis, an8 x Z° for the axiom basis could have

been contemplated.) Presenting crude rules in the foym.{Z® - Z* would clearly not have worked.

As it is, (very nearly) the same theory will do for both disciplines, useful for comparison and for savin
space. This also neatly illustrates the nice separation of concerns achieved by making the inference en
of the type discipline (dataflow analysis), independent of the correctness checker (unification). Either
both components may be traded up for a more powerful model relatively indepenékttyiefully ob-

serve that the first thing that the design of dicieht implementation of either discipline would do, would

be to jam the loops implicit in dataflow analysis and unification, wrecking this independence.)

Now for some more general remarks. As with most useful type systems, typability of systems in the d
namic sense of 4.1.2 or 4.2.2 is undecidable (it is easy to reduce the halting problem to it); thus the SDLF
algorithm provides an intentionally based approximation to typabilibe algorithm reminds us of some

features of other type systems. Prominent among these is the Hindley-Milner (H-M) system (Hindle

Proof. If the SDLPTI algorithnsUCCEELs, then we know we have a correct typing provided we can be
sure that the extra condition implicit in 4.5.(2) for non-linear rules holds, namely %(@)[i;] = ¥ =
Z(&)[ko] for kq # ko, then any node of typgehas children of identical type at kg andk,’'th positions.

From the properties of dataflow analysis and the SDLPTI algorithm we kisoemarked previousighat
if (P, €) is some arc of an execution grapf then for allG;j with j > 1, iGi,Gj(p) is of the same type @s

aneri,Gj (c) is of the same type as So to check the property required, we need only check it at the points

at which contractum nodesare instantiated as nodes of execution graphs. But at all such points we hav
the structure of the rule governing the rewrite to help us, because it gives direct information about the ct
dren ofx and hence about the children of the instantiation df such a child is explicit, its symbol can

be read dffrom the rule and its type determined (being the SDLPTI type), thus giving the type of the chilc
of the instantiation. This corresponds to case (1) above. If the child is implicit hpwevaust refer to

the setok(o(x)ac). This may contain many symbols, but if it happens to be a type singleton, we can like

wise determine the type of the child of the instantiation. This corresponds to case (2) above. Thus un
the given hypotheses, the uniformity of the types of the children across the relevant set of positions o

gives us the equality we need for the extra conditien.

The above theorem has slightlyfdiient implications depending on whether &er a givenWEc(ZV) is

concrete or not. If it is concrete, then it clearly tells us the type of the relevant children of (instantiatior
of) x explicitly. On the other hand, if it is a type variable, then it merely tells us thagtasssbleto type

the system consistenthyithout ofering us an explicit type for the children in question. In such a case (as
in others in which the SDLPTI type of some symbols are type variables) the type structure we started w
is too weak to fully type the system. Only a less general unifier would concretely type the system, and f
that we need some more axioms and/or some more rules. In any event, the success of the SDLPTI a
rithm assures us that such a consistent extension of the type structure exists.

Note that the power of the above result for dealing with genuine non-linear polymorphism comes from tt
dependence @ onx. This in turn only has any real force when condition (2) is never needed, i.e. wher

all relevant children of contractum nodes labelled by symbols oféypee explicit, freeing the depen-
dence oB uponx from O, (a(x)) which for a fixed symbai(x), does not depend on the nodbat happens

to bear that symbol. Contrast this with the linear case Wgo€x)) does not have to be a type singleton

and can thus contain severafeiently typedR(-) sets, this being the chief means by which polymorphism
is achieved within our TGR framework.

6 Discussion and Conclusions

We have defined TGRSs, dataflow analysis, type structures, and we have shown how the properties of d
flow analysis are suited to doing type inference of the kind required by our particular brand of type theot
Some points are worthy of further discussion, ss letk at an example and compare the present frame-
work to conventional ones.

Example 6.1 We’'ll continue our slightly half-hearted example introduced previgesiystrained as we
inevitably are by not having given a complete system. Again we’ll refer ®ghewn in section 2. Now

our definitions for correctness made no mention of the typing of rules. This was deliberate, since the
mantics of the variabl&ny nodes in a pattern (by which we mean the attributes of the execution grapt
nodes that they will match) are entirely dependent on the rest of the system, and trying to assign type:
them cannot be contemplated until the existence of a correct typing for the whole system has been es
lished. In this sense, talking of the typing=of contingent on such a global typing. Assuming such, the
dataflow analysis of example 3.3 and the properties of the unification algorithm 5.3 allow us to infer certa
things about symbols and germ instances occurii®g in

accomplished by steps [1] — [5], which build the equivalence claspgsidl perform the unification with
the axiom basis.

It remains to unify the resulting type labelling of symbols with the rule Basihis is accomplished by
the loop [8i] — [12i]. D enforce conformance Bowe have to check relationships between type symbols
at parent and child ends of all potential arcs of execution graphs. All such arcs are instances of germs

can be constructed from thg(©) sets. So Ieék, TZ) be such a germ where the symbols bear the type

symbols appropriate to theh'iteration of the algorithm. & O ZV there is nothing to check. Otherwise
if &0 ZCand(S &) is defined, then arities must match, ang(8, &)[k] O Z, then if O Z° too, thenf
must =3(S &)[k] (elseraiLure). If3(S &)[k] O z€ butZ O ZV, thenl must be instantiated &S, &)[K].
There may be several such competing instantiation& &ising from other germsJg, TZ) . Any one

such instantiation will do, since if they all agree (i.e. all wish to &ntapthe sam@&°® O Z°) then there is
no conflict, while if they disagre€alL ure is invevitable at the-1'th iteration. This explains the form of
the else branch of [10i].

So the loop progressively instantiates type variables, only when needed, until terminssiomume. |t
clearly generates a most general unificatiol @fith t-S9, hence a most general unification & with

(2, B). Thus tsfis a correct typing oR. ©

It goes without saying that the above algorithm, is not one that would be implemented as given, being cc

structed primarily for readabilityMany aspects can be optimised to produce a practical algorithm, but
these issues are outside the scope of this paper

As promised, we will strengthen theorem 5.4 to enable the SDLPTI algorithfedctwefly generate cor-
rect typings in certain non-linear cases. The problem with non-linearity is Kgat K and=(S, £°)[kq]

= ¥ =5(S &9[ky] then if a graph node s of type&® then itsk; andky’th children must be of the same
type, 8, say even if that type is diérent to the typed, say of thek; andky’'th children ofy, wherey is

also of typeg®. Since dataflow analysis and hence the SDLPTI algorithm works on each germ (and pe
force each germ instance) independertkigy are unable to distinguish this case from the case where the
k1'th child ofx is of typef,, thek,'th child ofx is of typef,, thek;'th child ofy is of typeB4, and theky’'th

child ofy is of typeB,. The latter is a non-typing of the graph containiragndy according to 4.5.

However if we can be sure that every node of t§pereated during a rewrite haskgsandk,'th children

of equal type at the moment of creation, then we can use the SDLPTI algorithm to check that the syst
is correctly typed. This is because the SDLPTI algorithm ensures that the fungtignk rg n(-) pre-

serve type, so if the children are of equal type at the point the parent is created, then they remain of ec
type subsequentlyespite redirection. Clearly this is an observation outside the remit of the standar
SDLPTI algorithm.

Theorem 5.5 LetS, Z, R and g, B) be as before, but supposg B) is non-linear For&® O z° and
¢ 02" let Wee(ZY) be the set of indicea/se(C") = {k | Z(S £9)[K = ¢}. Suppose for all§ £°) andZ¥
such tha& (S &°) is defined and non-linear aWtc(ZV) is a non-singleton, and for ala contractum node

of the patterrP of a ruleD of R, with a(x) = Sand&® the SDLPTI type o8, there is @ O Z (depending
on bothx andWEC(ZV)), such that for ak [WEC(ZV), either

(1) Thek'th child ofx is an explicit nodgy, and6 is the SDLPTI type ofi(y), or

(2) Thek'th child ofx is an implicit node, and)k(o(x)EC)T = {6} (i.e. a singleton SDLPTI type).

Then the output of the SDLPTI algorithm is a correct typing of the system.

0 0 0
[6] Let t-S° be given b)&é 0tS - § @ 0t-s0 Let p0 be given byTZ p S - 770 p0 S7@,
Let poS be the symmetric closure p? and write {S‘E]O for a typical component. Let@-?((—)

sets be given bVZ O t-Ok(§) o T'O(Z) O t-O?((§O(E)).

[7] Let i =0.
[8i] Repeat
Q)] i:=1+1

[10i] If for any<t, T¢ O t-S'1we havet O z€ands contains a rule foBandé such
thatA(S.€) # A(S), or there isak O A(S €) such tha& (S, &)[k] = 6 O z%and
T Ot-074S) with 6€ 27 0 2¢
Then FAIL and exit
Else Define a substitutioH by
For all §, T¢0t-S"1 Do
If ¢02ZY,¢&0Z°ands contains a rule foBandg such that there is a
kO A(S.£) such thaf® 0 t-0'"7 S
Then 1'(Q) = 6° whered® is any suclk
For all remainingd 0 Z",1(6) =6

[11i] Let t-S' be given b>8E 0ts1 . §I(E) 0t-S'. Letpi be given byTZ pi_1 s - T'I(Z) pi §I(E).
Let pl. be the symmetric closure pf and write ¥]' for a typical component. Let@k(-)

sets be given by 0 -0 () - '@ t-Of, (§i(z)).
[12i] Until I'=1d,

[13] Letf be the final value fdar Output tS' andsucceen
As a matter of teminologyf the SDLPTI algorithmBUCCEEDs on some system, then for ev&y S, if
S 0 t-Sfwhere ts'is the set output by the algorithm, we éalheSDLPTI type of S

Theorem 5.4 LetS, Z, R, (Z, B) be given as before with andR finite and membership & and &, B)
recursively decidable. Supposg B) is linear

(1) The SDLPTI algorithm terminates and eitS&CCEELs OrFAILS.

(2) Ifit SUCCEEDs, therR is correctly typed by, B) and a suitable typing of any execution graph may
be given by typing each nodef the graph by the SDLPTI type ofx).

Proof Because andR are finite and all the substitutions mentioned have finite support, all the individual
steps of the algorithm are finitely computable. show that there are a finite number of iterations of steps
[9i] — [12i] we note that each iteration except the last retypes a finite non-zero number of symbols dec
rated with variables, to symbols decorated with constants. Since no symbol decorated with a constan
ever retyped, and there are only a finite number of symbols involved to start with, the loop must termina
The only exit points of the algorithm are wheBWCCEELs oOrFAILS, so we have (1).

We note that by 3.2.(R), thui) relations are reflexively and transitively closed, so their symmetric closures
are indeed equivalence relations.

As to the output when the algorith@CCEELs, we need only show that the three conditions of theorem
5.2 hold with respect to the set of t-symbo&?ﬁf t-created by the algorithm.

To satisfy 5.2.(3), we must ensure that all members Bf-anset have the same type. Similatdysatisfy
5.2.(1), we must ensure any symbol typed by the axiom Bakas the same type irsf: Both tasks are

Theorem 5.2 Supposed, B) is linear Suppose all symbols Biare decorated with a type, yielding a set
of t-symbols tS. For each t-symbol, IeR(—) andO,(-) sets of t-symbols be given that satisfy the hypoth-

eses of theorem 3.2 (where we ignore the type decorations for the purposes of 3.2). Suppose also for
S Ot-S,

(1) If B(S is defined, theB(S) =&,

(2) If Z(S &) is defined, the®\(S) = A(S &), and for eactk 0 A(S, &) such tha& (S, &)[K] = 6 O Z€, for
all TC 0 OSY), T =6,

3) R(§) is a type singleton.

Then g, B) correctly typedsk when each execution graph nods typed byo Wherecr(x)e isin t-S.

Proof. LetG; be an execution graph ard] G;. Map all nodes to type symbols as suggested. Then (1)
implies (1) of 4.2.1. By theorem 3.2 yifs thek'th child ofx, theno(y) [O (a(x)), and thus (2) trivially
guarantees (2) of 4.2.1 becaukeR) is linear So the map is indeed a typing@t Theorem 3.2 also
guarantees that for glb i, o(rGi'Gj(x)) 0 R(a(x)), hence (3) ensures that we have a correct typing of the

system.©

We have suggested that for dataflow analysis, sui()eandO,(—) sets may be obtained by iteration.

We now present an algorithm for determining suitable sets of t-symBalertwhich the conditions of
theorem 5.2 hold.

Algorithm 5.3 (The SDLPTI algorithm)

[1] Decorate eacB [S with a fresh type variable fro@’ which does not occur . Call the
resulting set of t-symbolsS-

[2] Let t-R(-) and tO,(-) sets be given by
TOtRS) - S, TCOt-SandTORS
T OtoYS) « & T Ot-SandT 00K
[3] Definep on tS by
TpS - TOtRES)
and letpg be the symmetric closure pf Thenpgis an equivalence relation.rité [§] for the
component op containings.

[4] For each §] let
(S = [S] 0 {T¢ |B(T) = € andT®" O[] for somed” 0 2}

[5] Unify each §]§ . That is
If any SE]B is not acceptabl@hen FAIL and exit

Else Define a substitutiot? by
For all [§]B Do

If [S]§ contains a concrete type symigél

Then ForallZ 0ZY n [S]§, let192) = 6°

Else Choose som@' 0 [S]§ and forallz O zV n [S]§, let19Q) =8V
For all remainingd O 2", 19(6) =6

T(a()[K]) = sZ(T(X))K]).
We say that is aconcrete typing of G iff t(G) O Z°.

Definition 4.1.2 Let typings be given for all execution graphs and let the following hold for all executions
of R. If G;, Gj are in some execution with< j, andt;, 7; are the given typings, then for allJ G;

Ti(¥) =Tj(ig;,G(0) =Tj(rg;,Gi(¥)

Then we say theR is correctly typed by &, B). If all such typings are concrete, we say fRas con-
cretely correctly typed by , B).

4.2 A Simple Imperative Type Discipline

Let Q beS the node symbol alphabet, and let some T&R&nd some type theor¥,(B) be considered
fixed.

Definition 4.2.1 LetGbe a graph and let: G - Z be a map from the nodes®to type symbols. Then
Tis atyping of G iff for all x [G,

(1) If B(o(x)) is defined, them(x) = B(o(x)).

(2) If Z(o(x), t1(x)) is defined, theA(o(x), T(X)) = A(a(x)) = A(X) and there is a(k-dependent) substitu-
tion s, such that for alk O A(x),

T(a([K]) = s¢(2(a(x), T(x))[K]).

We say that is aconcrete typing of G iff t(G) O Z°.

Definition 4.2.2 Let typings be given for all execution graphs and let the following hold for all executions
of R. If G;, Gj are in some execution with< j, andt;, 7; are the given typings, then for allJ G;

Ti(¥) =Tj(ig;,G(0) =Tj(rg;,Gi(¥)

Then we say theR is correctly typed by &, B). If all such typings are concrete, we say fRas con-
cretely correctly typed by , B).

5 The SDLPTI Algorithm

SDLPTI stands for Simple Dataflow Linear Polymorphypd Inference. Simple and linear because those
are the only types of dataflow analysis and polymorphism respectively that we are concerned with. Act
ally we will see a little later that we can extend the applicability of the algorithm to certain non-linear case
as well.

From now on, we will restrict our attention to the simple imperative type discipline. Results for the crud

type discipline are easily recovered by simply forcing the value of the partial fuB¢8dgf) to be inde-
pendent of§ and then discarding In fact for the algorithm below all one need do is to delete the short
underlined passages in step [10i] and the algorithm becomes correct for the crude type disagplise. W
sume that, Z, R and g, B) are fixed as before. &\Also insist thab andR are finite and that there are

at least recursive algorithms for deciding membershiparid &, B). Finiteness of andR is suficient

if theorem 3.2 is to serve as the basis for an iterative algorithm for deter®yfijgandR(-) sets, and a

finite number o0, (—) andR(-) sets is sticient to ensure termination of algorithm 5.3 beldie assume
henceforth that a suitable collection@f(—) andR(-) sets have been given for the sysitout we dort
care whether they were obtained using the algorithm suggested by 3.2 or by some other magic.

Definition 5.1 LetQ be a set of t-symbols. Th@i ={0| 0 Q}. We say tha@ andQ' areacceptable
iff Q' contains at most one type constante $syQ andQ' aretype singletonsiff Q' is a singleton.

of graph nodes are invariants of rewriting (particularly of redirection). The proof of this though, is no long
er something that can be swept under the carpet as happens for TRSs. Given that we must irrevocably
context freedom in the passage to the graph world, this is about the best that we could hope for

The type theories we will construct are about the simplest that one could imagine under these circumsta
es. They resemble to some degree the phenomena found in conventional imperative languages like Pé
or Ada. The locality of the meaning of types is certainly reminiscent, but the type inference and paramet
polymorphism aspects of our schemes are more general. The rest of this subsection sets up the gel
framework within which both of the type disciplines that we will develop fit. The following two subsec-
tions specialise this to the specific disciplines in question.

N.B. Due to pressure of space, and also for reasons of technical convenience, little motivatory mater
will occur among the definitions and theorems of this section and the next. On a first reading, readers n
find it more convenient to briefly skim the definitions in the rest of this section and then skip to the discu
sion in section 6, where the salient properties of our type system are highlighted and compared to thos
conventional systems. The informal impression gained thereby should help to make the structure and
tailed content of the intervening technical material more accessible and digestible.

We assume we have an alpha#é&tof type constantsand a disjoint alphab@&"’ of type variables Z =

Z¢0 zVY. We will use letters from the middle of the Greek alphabet as meta-variables standing for membe
of either alphabet. If we want to emphasise membership of &tharz¥, we will superscript in the ap-
propriate wayeg.&¢ is in Z€.

Definition 4.1 A rule basisX is a partial functiof) x Z¢ —. Z* whereQ is a set to be specified latdf

> (w, &9 is defined (foro O Q), then (f, £°), Z(w, &£°)) is called aype rule for w and&. We write such

a rule using the notaticmEC < 51“'5”, or (, &%) ~ &;...&, if we wish to be less cluttered, whefe. &,

is the value oE(w, £°). A type rule fow andé® is linear iff Z(w, £) contains no more than one occurence
of any&¥ 0 Z¥. A rule basis idinear iff all its type rules are linearThearity of a type rule, written

A(w, &%) is the domain oE(w, £9), i.e. the set of indices &@(w, £). No confusion will arise from this yet
other arity concept.

Definition 4.2 Anaxiom basisB, is a partial functio's — Z°. WhenB(S) is defined, i€® = B(S), we

say thas’ is atyped symbol(ort-symbol). More generallywe will also consider t-symbo§ for any
60Z.

Definition 4.3 A type structure (Z, B) for a given sef2 fixed for the type discipline being considered,
consists of a rule basis and an axiom basis. The structimeasiff the rule basis is.

Definition 4.4 A substitution sis a maZ - Z which is the identity oZ, i.e.s0[Z¥ - Z] O {Id 4c}.

4.1 A Crude Type Discipline

Let Q be the one-point set]. Then sinceQ x Z¢ 0ZC, it is preferable to drop all mention @f We can
therefore write a type rule a&°(Z(£%)) or ast® — &,...£,, instead of using the more elaborate forms.

Now let some TGR®, and some type structurg, B) be considered fixed, and BtandZ be the appro-
priate alphabets.

Definition 4.1.1 LetGbe a graph and let: G - Z be a map from the nodes®to type symbols. Then
T is atyping of G iff for all x O G,

(1) If B(o(x)) is defined, them(x) = B(o(x)).

(2) If £(t(x)) is defined, the’A(t(x)) = A(0(X)) = A(X) and there is a(r-dependent) substituticsy such
that for allk O A(X),

T=o0(w). LetS=0o(u) andg'((pk, ©)) = (U, V) as before. Nowa(v) O O;(a(w)) = Oi(T) by hypothesis,
anda(v) = o(c) becausg' is an extendedhatching By (3),0,(T) = Qi(o(w)) = O,(a(q)) T Oy(a(p)) =
Oy(o(u)) = O(9), the penultimate step becawgsés an extended matching. Tha&) = o(c) O Oy(o(u))
as required for (a). Since there are no redirections in the contractum building ghgse,ig; g'; S0 (b1)

holds trivially.

Redirection Phase. Clearly there is nothing to prove for the non-redirected@ycgsmce they are just
injective copies undeig;, g;, 4, of arcs ofG'j so (a) holds for them. L&t JG'; be a redirected node, i.e.

one whose incident arcs are to be redirectgd 1@'; becausex y) = (g'(a), g'(b)) where &, b) is a redi-
rection of the rule governing the rewrite. By 2.2433 explicit. LetS=0(a) soS=0(X). Supposé is
explicit anda(b) = T. Then by (2);T U R(S) and sao(y) U R(o(X)). Henceo(rg; g;,4(X) U R(0(X)) as
required for (b1). Suppose alternativelys implicit. Then there is an arg(b) in the left subpatterh

of the rule such thaty, b) is an instance off{, —) say Sinceg' is an extended matching, there is an arc
(t, y) O G with g'((q;, b)) = ¢, y) soa(t) = T and thus by hypothesiy) [1 O;(T) ando(b) O O|(T). By
(4),0/(T) U R(S) which giveso(y) U R (o(X)) ando(rg;, g;,.1(X)) U R(0(x)) as before. Thus (b1) holds for
an arbitrary redirection.

We need to show that (a) holds for the redirected arcs. Consider eg,axgcl(l G'; wherexis redirected.
We know thao(X) U O(a(w)). But alsoo(rg; G, 1(X) U R(A(x)). NowR(a(X)) U Oy(a(w)) by (Q).

Soa(rg;,Gi4+1(¥) U Om(a(w)) and (a) holds for the redirected arc<Gpf;. ©

Example 3.3 We have not presented a complete rule system in the pictures that illustrated rewriting ar
germ instances above, so strictly speaking wet cave an example of dataflow analysis. Nevertheless
we can draw certain conclusions about@)é-) andR(-) sets of any system that includes the one rule that

we did give. For instance, refering to the patfeitflustrated above, we must ha@eunt’ O O4(Inc’),
Plus OO0 O1(Count’), O;(Count) 0 O4(Plus), 1 0 O4(Plus), and alsdnc’ [J R(Inc), Count’ O R(Count).
In addition, if rather thafroot, r') 0 Redwe had hadroot, a) [l Red then we would have ha (Count)
0 R(Inc) instead ofnc’ [R(Inc). What other relationships hold between symbo}§;-) sets andr(-)
sets depends of course on what other rules are present in the system.

The above theorem can serve as a specification for an algorithm to determine suit&ijtg,s@t6-), if

the system is finite. The basic strategy is iteration until a least fixed point is reached using the conditic
(R), (O, (1) —(4) as consistenmonditionsthat drive variousymbolsinto membership of the various

R(-) or Oy(-) sets. See Banach (1992), Hankin (1991) for details. The analysis evidently provides a sg

estimate of the sets of germ instances that actually occur during executions. In section 5, we will use
properties of thd&’(—-) andOy(-) sets as the basic driving engine for type inference once we have deter

mined what types are to be in the present context.

4 Simple Type Theories For TGRSs

What should we mean by types for TGRSs? This is not a trivial question since type systems for conve
tional rewriting systems i.e. TRSs or the lambda calculus, are connected with issues such as strong 1
malisation. Since not even all TRSs (let alone TGRSs) have the strong normalisation property and sir
for those that do, the connection with type theories is built on precisely the cornerstone of structural indc
tion over terms that we are forced to abandon, we must look for some weaker framework.

Since TGRSs are so general, it is not possible to demand the property that the type of an execution gr
(whateverthat might be) is an invariant of rewriting. This is the crucial (and suprisisglgom stated)
subject reduction property of most type systems for TRSs that enables the strong normalisation result:
go through. Wh its abandonment, the way is open to construct a more local concept of type, and for tt
particular notions of type that we will develop beldlae invariant we will end up with, is that the types

An arc {0, ¢) of a graplG is aninstanceof a germ §, T) iff o(p) =S o(c) =T andl =k. Itis an instance
of (S, -) iff o(p) =S andl =k. These concepts may also be applied to arcs in patterns, provided we accej
that arcs in which the child node is implicit may be instances only of implicit germs. For instance:

root: Inc[,]
Instance oflpc,, Count)

and of (ncq, -) c : Count
[\]‘ ~_ Instance of County, -)

a: Any

Let a fixed system be given. Our aim is to be able to estimate what germ instances actually occur dur
the rewriting of a system. Speaking loos@he do this by estimating what symbols may occur at given
child positions of any symbol and also what symbols a given symbol may get redirected to. This is do
by an induction over the structure of executions.

Theorem 3.2 Assume a fixed system given. Suppose foBallS, k [0 A(S) there are sets of symbols
R(S), O(S) such that the following hold.

(R) SOR(S and for allT O R(S), R(T) O R(S).
(O For allT 0 O(S), R(T) 0 O(S.

Suppose also that for all rulasd| : L — P, root, Red in the system we have (2)(4) below
(1) Let (py, ©) be an instance of¢, T) in P wherep andc are both explicit. Them O O(S).

(2) Let (a, b) be inRedsuch that andb are both explicit witto(a) = Sanda(b) =T. ThenT O R(S).

(3) Let (py, ©) be an instance o, —) in P, and ¢, ¢) be an instance off(, -) in L, wherec is implicit
andp is a contractum node. Th&T) O O(S).

(4) Let (a b) be inRedsuch thab is implicit. Let {4, b) be an instance off(, -) in L and leta(a) = S
ThenQy(T) O R(S).

Then for every execution gra, if x [G; with a(x) =S
(@) If (% y) is an arc of5; with a(y) =T, thenT LO\(S),

(b) If Gjis some execution graph occurring later t&ain the execution anQ;i,Gj (X) =zwitho(2) =T,
thenT O R(S).
Proof. The proofis by induction over the structure of executionswilVshow that the contractum build-

ing and redirection phases of a rewrite, both preserve properties (a) and the one-step version of (b), (I
i.e. whereG; is the successor &; in the execution; (b) then follows by induction and (R).

Base Case. The initial graph has no arcs so (a) holds trivially; and there is nothing to prove for (b1) sir
no rewrite created the initial graph.

Inductive Step. Suppose the hypotheses holGgor. G;.

Contractum building Phase. L@t be the graph after contractum building. Clearly (a) holds by hypoth-
esis forig; ;(Gj) so we need only consider the new arcs added during the buildingy,hgthe such an

arc and let it be the image under the extendatthingg’ : P - G'; (whereP is the pattern of the rule
governing the rewrite) of an ang(c) in P. Nowc is either explicit or implicit. If explicit, therpg, ©) is

an instance of som&y T) and by (1);T 0 O(S). Sincey' is an extenderhatchingo(u) = Sando(v) =T
soa(v) O O (a(u)). Alternatively c is implicit. Since there must be a path of length at least one from the
root of the left subpattern t c has an explicit parent in the left subpattern of the rule. Supposgi§

the relevant arc. Sinag is an extendedhatching g'((q;, ©)) = (w, v) wherew U ig; &;(9(L)). Let

Definition 2.8 An initial graph is one consisting of an isolated node with empty ,datyelled by the
symbolinitial.

Definition 2.9 A systemis a set of ruleR. Anexecutionof R is a sequence of graptGg| G ...] of

maximal length such that

(1) Ggisinitial,

(2) For alli = 0 such that+l is an index, there is a rul2 J R andx U G; such tha@; is the pre-graph
andG;4, the post-graph of a rewrite & atx according tdD.

Note that the above definition does not address garbage collection or reduction, $éteadmye fairness

or other issues of concern in concurrency thEoHSGRSs may be enhanced with notions that would shed
light on these things (see eg. Glauert et al. (1988a, b), Banach (1991c, 1992)) but to do so here would ¢
ter the exposition needlessly

Definition 2.10 Any graph that occurs in @xecutiorof some system is axecution graphof that sys-
tem.

Definition 2.11 LetG; be an execution graph a@l, be its successor in an execution. Ggtbe the
corresponding graph after contractum building. The functigns;, rg; - ig,Gi+1 6,6 +1 are defined
as follows:

(1) g gjis the natural injection of nodes Gfto nodes of5';.

(2) GG = iGi,G'i :

(3) g Gisq IS the natural bijection of nodes@f; to nodes of5;,.

(4) rg;Gi+1) =ig;,G41(X unlesschas been redirected, i.e. it has had its incident arcs swung over to
point to some other node# ig; ;,1(X) UGj+ during the redirection phase, in which case
re,Gir1(®) =Y.

We defineig; ;,, as the compositioiy; g;,1° ig; g, and similarly forrg; ., 1, iG;,Gi4 'Gi,Gj+k €IC-

Thusig; g;.4(¥) is the copy ok in Gjn, Whilerg; g, (X) follows the redirection history ofand is the

node ofG; ., that copies ok have been redirected to.

This completes the description of the standard operational semantics of general term graph rewriting.
turns out that the model has an elegant universal reformulation, but it would take us too far out of our w
to go into the details of this. See Banach (1991a, b) for a fuller description.

3 Simple Dataflow Analysis

We shift our attention from execution graphs as such, to relations between symbols that estimate the
sible local structures occurring in them. In particular we are concerned with the occurrences of symbc
at parent and child ends of an arc of an execution graph and the redirection histories of nodes.

Definition 3.1 If S, TO S andk [A(S), then the object

r=GT
is called arexplicit k-germ. An object
rM=G")

is called animplicit k-germ.

1. TGRSs were initially invented with the objective of providing a model for graph reduction implementa-
tions of functional languages, parallel as well as serial.

Definition 2.6 (Redirection) LeD = (incl: L - P, root, Red be a rule with left subpattety G a graph,
g a matching ot. to G andG' the graph resulting from the construction of 2.4e &nstruct the gragh
given by

(1) Nu=Ng,

(2) op=o0g,

3)

ap{@ONIK = { {2,y)..} if(uyO Redfor. somey O P andu 0 g Xag({ (1, Y})[K)
ac({ (1, XK otherwise

e { {2y..} if (u,y) O Redfor-somey O Pandudg Yag{(2 N}IK)
az({ (2, NPHIK otherwise

ay({(1,%, (2,ny) ... (2, nNIK] =
{(2,y)...} if(u,y) ORedfor somey [P andu (] g’"l(aGr({ (1, ¥...DIK)
o0z({(1,%),(2,n7) ... 2,nYD[Kl otherwise

Definition 2.7 If D, Gandgare as in 2.4, 2.5hen arewrite of G atx according td is defined to
yield the grapiH. Gis said to be thpre-graph, andH thepost-graph of the rewrite.

In plain language, the grajgi glues copies of the contractum node® ainto G, ensuring that arcs are
introduced in such a way that the extended matayiing@ — G' exists. Another way of visualising the
same thing is to take disjoint copies®@fandP, and for all redex nodes to “pinch togetherk and its
primage undeg. This is similar to the formal construction. Likewise, the redirection phase locates the
images inG' of the redirection pairs &, and swings all arcs incident on the image of the LHS to point to
the image of the RHS. There is no ambiguity about redirection as the bH&'stinct redirections are
labelled with diferent symbols so their images under matching cannot coincide. The diagrams below pr¢
vide a small example of rewriting. The objects occuring there are named after their role in the above tt
ory. Note that the faint dotted arrows represent the redirections of the rule.

r':inc’[,]
root : Inc[,] root : Ii%] c' :)(gw]
C/Count[\]‘ ¢ : Count[]\‘ p : Plus \]‘
a: .1

a: Any Any
L P

x:i&] X : Root]y’:?] XIROO'[[K
y:inc[,] y:In:[/] z': Count[] y Inc| \]\i el

Z': Count'[-]

z: Counti/] z : Count[L] p': Plus '/]
z:Count[] p':Plus]
t " ¢

: : I:1
G b G 3 H t:3 I 1

Nodesx with o(x) = Any are calledmplicit, whereas others aexplicit. More generally we allow our-
selves to regard a graph as a pattern for which the number of implicit nodes is zero when convenient,
we never normally regard a pattern as a graph. Patterns and graphs are not normally deemed to have
unless we specifically say so or it is clear from context.

Definition 2.2 Arule D is a triple P, root, Redlwhere
(1) Pis a pattern known as the pattern of the rule.

(2) rootis an explicit node dP called theroot and all implicit nodes are accessible fromot Also if
o(roof) = S thenD is arule for S

(3) Redis a set of pairs (calletkdirectiong of nodes oP such that if X, y) [0 Red thenx is explicit,
and accessible fromoot Also if (x, y), (u, V) O Red then ifx=u theny =v, and ifx Z u, then
o(x) #0(u). For & y) 0 Red xis called thd.HS of the redirection whilg is theRHS.

The subpattern d? accessible from (and including) the root is calledeftesubpattern of the rule and
is usually denoted bl, while nodes oP not in the left subpattern are calleahtractum nodes. Thus
anotherslightly redundant way of writing a rulels= (incl : L — P, root, Red whereincl is the inclusion
of the left subpattern intB.

Definition 2.3 A matching or homomorphism of a pattePhwith rootrootsay to a grapt{or pattern)G
atanode (] Gisamaph: P - G such that

(1) h(root) =t
(2) If xOPis explicit, thero(x) = a(h(x)), A(xX) = A(h(x)), and for allk [T A(x), h(a(X)[K]) = a(h(x))[K].
Thus a matching is a type of graph homomphism in which implicit nodes may match anything but explic

nodes have to behave well. By dropping the condition (1) involving roots, this definition will dlse suf
for matching general patterns to graphs or other patterns, or for matching graphs to other graphs.

We now turn to the rewriting model itself. An informal summary and diagramatic example follow the for-
mal definitions below

Definition 2.4 (Contractum Building) Leb = (incl : L - P, root, Red be a rule with left subpattetn
and letG be a graph. Lej : L — G be a matching df to G at some node d&. Theng(L) is called the
redex We build first the grapl®' given by

(1) Ng' = (Ng & Np)/=which is the disjoint union dfig andNp factored by the equivalence relatrn
where= is the smallest equivalence relation such'ttatx) = (2, n) wheneveig(n) = x.
(2) oc({(@ ¥} = oc(x),
og({(2, n)}) = op(n),
oc({(1, ¥, (2,ny) ... (2, ny}) = a(X),
which is consistent becauges a matching.
(3) ac{(L, ¥NIK = {1, ag(X)[K])...} for kO A(x),
ag({(2, MHIK = {(2, ap(n)[K])...} for kT A(n),
ag{(2, X), (2,ny) ... (2,nY)HIK] = {(1, ag(X)[K]) ...} for k T A(x),

which is again consistent singes a matching. The. on the RHS of these cases indicates that the
k'th child of say a singleton equivalence class nod& odg. {(1,X)}, may not itself be a singleton.

Lemma 2.5 There is a matching : P - G’ that extendg : L —» G (allowing for obvious identification
of nodes modulo disjoint union etc.).

Proof. Defineg'(2,n) ={(2, n)...}. Itis clear thay’ has the appropriate propertie@.

1. The notation (1x) or (2,n) tags each element of the binary disjoint union with the tag 1 or 2 to unambig-
uously indicate its origin. Likewise {(X) ...} denotes the equivalence class containing)1,

Given these shortcomings of the graph world, what weapons can we use to overcome the lack of struct
induction and the complexity of matchings? The crude answer is that we must resort to induction over t
structure of executions instead of induction over the structure of graphs (since the lattérectastsn’

any sense useful to us), and having that, to dataflow analysis of the rule system (the validity of which
itself established by the former technique). In fact, the former technique is ndesendifrom what hap-
pens in the term world (where it leads to the subject reduction property), but in the term world, the trivialit
of several of the steps is such that they are passed over without mention, and the only issues of interest
remain can be dealt with by induction over terms. This is also related to the context freedom mention
previously A further issue related to this is rulewise modularityany term based systems have the prop-
erty that certain semantic attributes of a rule can be considered in isolation from those of the rest of 1
rules in the system, again reducing induction over executions to induction over terms. This is a pleasi
and desirable feature. Unfortunately context freedom and rulewise modularity are the main casualties
the passage to the graph world. There musbbescasualties of course, we cannot expect significant gen-
eralization without paying some price. The lesson for the graph world though, boils down to the fact th
we can no longer consider subsystems in isolation from one another as easily as we can in the term wc
The entire system must in principle be taken into account when considering even some seemingly lo
properties of some small part of it.

The structure of the rest of the paper is as follows. In Section 2 we define our TGRSs as a generalisa
of the model of Barendregt et al. (1987). The terminology is a little non-standard for convenience. Secti
3 deals with simple datafv analysis, showing how the structure of a rule system permits information
about dynamic occurrences of so-called germ instances in execution graphs to be infered s&sally
tion 4 considers the question of how types are to be defined for TGRSs, and comes up with a simple schi
that is refined into two specific type disciplines in subsections 4.1 and 4.2. These are called the crude t
discipline and the simple inperative type discipline respectiv@sction 5 shows the results of section 3
can be used to show the soundness of a unification-based type inference algorithm for the type discipli
introduced in section 4. Section 6 contains a discussion, suggests extensions, and concludes.

2 Term Graph Rewriting

We assume we are given an alph&bet{S T...} of node symbols We write {1...n} for the set of nat-
urals between 1 amdlinclusive. V¢ let {1...0} = O and letSegN be the set of all such subseta\bf
including.

Definition 2.1 A term graph (or justgraph) G is a triple {, o, a) where
(1) Nis a set of nodes,

(2) ois a map with signatufd - S,

(3) ais a map with signatud — N*.

Thuso maps a node to the node symbol that labels itpamdps each node to its sequence of successors.
We write A(X), thearity of a node, for the domain afXx), i.e. the member &eqN consisting of indices

of a(x). We also writex [I G instead of [1 N(G) etc. Lastly we subscrif¥, o, a with the name of the
graph in question whenever more than one graph is being discussed. A successor of a node determine
arc of the graph, and we will write such an argogsd), to indicate that the childis thek'th child of the

parentp, i.e. thatc = a(p)[K] for somek [0 A(p). The names are intended to be somewhat alliterdive:
for nodesg for symbolsa for arcs.

We will assume for the remainder of this paper that symbols Ineed drities, i.e. that there is a map
A:S - SeqN such that io(x) = S thenA(x) = A(S (the diferentA's should not cause confusion).

We will also assume there is a special node symhg] not normally considered to be $ and if any
nodes of a graph are labeled withy, we call such a graphpattern. We further assume that

o(xX)= Any O a(x)=¢ € = the empty sequence).

SIMPLE TYPE INFERENCE FOR TERM
GRAPH REWRITING SYSTEMS

R. Banach'

Computer Science Department, Manchester University
ManchesterM13 9PL, U.K.

Abstract

A methodology for polymorphic type inference for general term graph rewriting systems is
presented. This requires modified notions of type and of type inference due to the absence
of structural induction over graphs. Induction over terms is replaced by dataflow analysis.

1 Intr oduction

Term graphs are objects that locally look like terms, but globally have a general directed graph structu
Since their introduction in Barendregftal (1987), they have served the purpose of defining a rigorous
framework for graph reduction implementations of functional languages (Peyton-Jones (1987)). This w
the original intention. However the rewriting of term graphs defined in the operational semantics of tr
model, makes term graph rewriting systems (TGRSS) interesting models of computation in their own rigt
One can thus study all sorts of issues in the specific TGRS congpidally one might be interested in
how close TGRSs are to TRSs and this problem is examined in Barendregt et al. (1987), Farmer et
(1990), or Kennaway et al. (1991).

In this paper we examine a related issue, that of type inference. There are two ways that we could apprc
this question. The first is to look for conditions on TGRSs that ensure we recover the results that exist
TRSs of various kinds. This has the virtue of finding the best generalizations of known TRS results in tl
graph world but leaves the question of what type inference for general TGRSs might look like, unal
swered. The second approach addresses the latter question head on, and attempts to construct type th
for TGRSs directlywithout close reference to the TRS results. This is the approach we will.follow

Two main obstacles have to be overcome when we consider the graph world as opposed to the term wc
These are the collapse of structural induction, and the triviality of term matching compared with grar
matching. For terms, structural induction is the mainstay of most proofs of significant results, and it is ha
to see what to replace it with. A byproduct of structural induction is the fact that many results are conte
free in the sense thatlif is some property that holds for a set of tefirthen ifC[] is some contex(C[t]
satisfied1 for allt [0 T and context€[]. Such results frequently hold in TRSs related to the lambda cal-
culus (see Barendregt (1984), Girard et al. (1989), Huet (1990)).

For terms, we also have that if a rule matches some subterm, then apart from variable instantiations,
subterm is an exact copy of the rule LHS. This leads to a number of subtle properties that terms have c
pared with the more general term graphs, and is founded on the fact that terms are simply trees. In
more general graph world, we have to be more careful about the matching problem as matchings are
just isomorphisms with variable instantiation, and we have to confront the fact that important propertie
of a given rule are by no means required to hold for some arbitrary execution graph that its LHS m:
match.

1. Email: r banach@s. man. ac. uk

