
Shared-Variable Concurrency, Continuous Behaviour
and Healthiness for Critical Cyberphysical Systems

Richard Banach1? and Huibiao Zhu2??

1School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

Email: banach@cs.man.ac.uk
2Shanghai Key Laboratory of Trustworthy Computing

MOE International Joint Laboratory of Trustworthy Software
International Research Center of Trustworthy Software
East China Normal University, Shanghai 200062, China

Email: hbzhu@sei.ecnu.edu.cn

Abstract. In the effort to develop critical cyberphysical systems, existing com-
puting formalisms are extended to include continuous behaviour. This may hap-
pen in a way that neglects elements necessary for correct continuous properties
and correct physical properties. A simple language is taken to illustrate this. Is-
sues and risks latent in this kind of approach are identified and discussed under
the umbrella of ‘healthiness conditions’. Modifications to the language in the light
of the conditions discussed are described. An example air conditioning system is
used to illustrate the concepts presented, and is developed both in the original
language and in the modified version.

1 Introduction

With the massive proliferation in computing systems that interact with the real world,
spurred by the tumbling costs of processors, memory and sensor/actuator equipment,
the need for reliable methods to construct such systems has never been greater, espe-
cially since so many of these systems have high consequence aspects if they fail to be-
have as intended. In the light of this drive, systematic methodologies from the discrete
formalisms world are being adapted to incorporate the needs of the physical behaviours
that are now intrinsic to these systems. While this is entirely appropriate as a broad
objective, in reality, many such initiatives may turn out skewed in the execution, in that
a great emphasis is placed on the discrete aspects of such an extended formalism, to
the neglect of needs coming from the continuous aspects, especially regarding the more
subtle of these pertaining to continuous behaviour, and to credible physical properties.
The interplay between these worlds can also fail to get the attention it requires. The
balance of emphasis perceptible in typical texts in this area such as [1, 2] gives a good
indication of this situation.
? The work reported here was done while Richard Banach was a visiting researcher at E.C.N.U.

The support of E.C.N.U. is gratefully acknowledged.
?? Huibiao Zhu is supported by National Natural Science Foundation of China (Grant

No.61361136002) and Shanghai Collaborative Innovation Center of Trustworthy Software for
Internet of Things (ZF1213).

In this paper we intend to address this perceived imbalance by examining an exam-
ple language for concurrent discrete update and critically analysing the consequences
that follow when continuous update facilities are added in a relatively naı̈ve way. We
describe this critical analysis as bringing some ‘healthiness considerations’ into play,
by analogy with the terminology used in UTP [3]. Having brought these out, we show
how to modify our original language to better take them into account within the syntax
(where possible). We discuss how remaining points need to be addressed semantically.
It is worth saying that our language is one that we would not necessarily use seriously
for such applications, but actually, its very lack of obvious suitability serves to better
highlight the points we make.

We illustrate the above by developing a simple case study concerning the steady
state operation of an air conditioning system, this being a system where there is enough
a priori physical behaviour to exemplify some of what we discuss abstractly. We give a
development in the original language, and a revised version in the revised language.

The rest of the paper is as follows. In Section 2 we present our initial language, and
our initial attempt at adding continuous behaviour, specified using differential equations
(DEs). Discussing the semantics of this, even relatively informally, leads to a substan-
tial detour regarding the possibilities available when DEs are involved. In Section 3 we
give our initial AC system development. In Section 4 we turn to the healthiness con-
siderations, enlarging the earlier semantic discussion to include further issues. Section
5 then modifies the initial language syntactically, where possible. Section 6 redevelops
the AC system. Section 7 considers some related approaches. Section 8 concludes.

2 An Initial Concurrent Language

Here is the syntax of our initial language. It is a fairly conventional concurrent shared
variable language, allowing delays of a specified number of time units.

Declarations:
Decl ::= [x : T [= x0] ;]∗

Discrete behaviours:
Db ::= x := e | {xs := es} | @b |#r

Constructs:
P0 ::= Db

Programs:
Pr0 ::= P0 | Name | [Name =] Decl ; Pr0 | Pr0 ; Pr0

| if b then Pr0 else Pr0 fi | while b do Pr0 od | Pr0 ‖ Pr0
As well as this syntax, we use parentheses in the usual way. In connection with this
definition we note the following:

(1) All variables used have to be declared with their types in a declaration block
Decl in whose scope (defined as usual) their uses occur.

(2) The discrete variable assignment, x := e, is atomic, so that no action can inter-
leave the reading the variables of e and writing the result to x. The vacuous assignment
is written skip. Each variable has to be assigned an initial value (in terms of constants

and already assigned variables) before it can be used. Initialisation is optionally taken
care of during declaration.

(3) The simultaneous assignment {xs := es} merely defines a package of several
atomic updates, which are effected at the same instant.

(4) The discrete event-guard, @b, is enabled when the guard b holds; otherwise it is
disabled and waits; b is a Boolean condition. #r represents a delay of r time units.

(5) Program constructs are familiar. if b then P else Q fi is the conditional, and
while b do P is iteration. P ; Q is sequential composition. Shared-variable concur-
rency is expressed via P ‖ Q, where P and Q can contain the behaviours outlined.

Semantically, if we momentarily disregard the delay #r, everything is quite conven-
tional and we do not need to repeat the details. A language like Pr0 expresses updates
to variables, which are related to each other via the usual syntactically derived causal-
ity relation, but there is no indication about how these updates might relate to the real
world. In practice, (real world counterparts of) the atomic updates are usually under-
stood to occur at isolated moments of real time, but there is no absolute necessity for
this, e.g. if we interpret according to the conventions of the duration calculus [4].1

When we now reconsider the delay #r, things change. We are obliged to take note
of real world time. Consequently we take the view that all (packages of) update execu-
tion instances have their own specific isolated points in time at which they execute.

The preceding sets the scene for introducing continuous variable update.

Continuous behaviours:
Cb ::= @g | [iv] D x = F (x,y, τ) until g

Constructs:
P1 ::= Db | Cb

Programs:
Pr1 ::= P1 | Name | [Name =] Decl ; Pr1 | Pr1 ; Pr1 | . . . etc.

Regarding the above we make the following further comments:
(6) Declarations may now include continuous variables as well as discrete variables.
(7) The command @g waits for its guard g to be satisfied. It is like @b except that g

may now contain continuous variables.
(8) The differential equation (DE) command [iv] D x = F (x,y, τ) until g first

guards the entry point of executing the DE until the initial conditions on the variables
of the DE system (expressed in [iv]) are satisfied (execution is delayed if they are not).
Once [iv] is satisfied, the current values of the variables being updated define the DE’s
initial values, and the behaviour specified by the DE continues (D denotes the time
derivative), until the preempting guard g is satisfied or the DE itself becomes infeasible.
The preempting guard g is a Boolean condition, like @g.

Semantically, the leeway we had in interpreting pure discrete events, evaporates
when we add differential equations. At least it does so if we want a credible correspon-
dence with the real world. While pure discrete event formalisms may, quite sensibly, be
studied axiomatically, this is never the case for DEs.

1 In this paper we wish to sidestep the race conditions that arise when two (packages of) updates
which read each others’ left hand side variables execute at exactly the same moment.

In conventional pure and applied mathematics, the ingredients of differential equa-
tions are always first interpreted with respect to a semantic domain that is stipulated in
advance (albeit often implicitly in the case of applied mathematics). Different choices
of such semantic domains are justified on grounds of the differing generality that they
permit in the properties of the functions that are deemed to solve those differential equa-
tions, see e.g. [5]. Accordingly, to embed behaviours defined by differential equations
into our language in a sound way, we must first pay some attention to matters of opera-
tional semantics for the whole language. We base our treatment here on fairly standard
interpretations of state based discrete constructs and of DE systems.

Working bottom-up, the fundamental concept is the state σ, a mapping from each
variable v to a value in its type: v 7→ σ(v). We also need clocks, written generically
as τ . A clock is a continuous real variable whose time derivative is fixed at 1. The
phrase ‘a clock is started’ means that a fresh clock, initialised to 0, starts to run from
the beginning of the semantic interpretation of some non-atomic construct of interest.

The Db part of the language is unsurprising. The discrete atomic variable assign-
ment, x := e, sends the state σ to σ[σ(e)/x], which is identical to σ, except at x, which
becomes σ(e). Similarly for packaged atomic updates.

For @b, if b is true in the current state, then the program completes successfully.
Otherwise a clock is started, and runs as long as it takes for the environment to make b
true, at which point the program completes.

For #r, if r ≤ 0, then the program completes successfully. Otherwise a clock is
started, and runs for r > 0 time units, at which point the program completes.

For the continuous behaviours, for @g, since g may contain continuous variables,
the true-set of g must be closed. With this proviso, if g is true in the current state, then
the program completes successfully. Otherwise a clock is started, and runs as long as it
takes for the environment to make g true, at which point the program completes.

For the DE forms, we first mention some generalities.
If we write a general first order differential equation as Φ(v,Dv, t) = 0, where v

is some tuple of real variables, Dv is a corresponding tuple of real variables intended
to denote the derivatives of v, and Φ is an arbitrary real-valued function, then nothing
can be said about whether any sensible interpretation of such an equation exists. See
e.g. [5], or any other rigorous text on DEs, for a wealth of counterexamples that bear
this out. Accordingly, rigorous results on differential equations that cover a reasonably
wide spectrum of cases, are confined to DE forms that fit a restricted syntactic shape
and satisfy specific semantic properties. The best known such class covers first order
families that can be written in the form:

D x = F (x, τ) or D x = F (x,y, τ)

Here, the left hand form refers to a closed system of variables x, whereas the right hand
form also permits the presence of additional external controls y. As well this syntactic
shape, conditions have to be demanded on the vector of funtions F and on the entry
conditions of the behaviour to be defined by these definitions.

For simplicity, we assume that the vector of functions F is defined on a closed
rectangular region, where for each x component index iwe have a Cartesian component
xi ∈ [xiL . . . xiU], and for each y component index j we have a Cartesian component

yj ∈ [yjL . . . yjU], and where the time dependence of F has been normalised to a clock
τ ∈ [0 . . . τf], with τf maximal, which starts when the DE system starts.

For each xi component, xiL is either −∞ or a finite real number, and xiU is either
+∞ or a finite real number, and if both are finite, then xiL < xiU . Similarly for the
yj components. We denote this region by XY × T , where XY refers to all the x,y
components, and T refers to clock time. We write X for just the x components and Y
for just the y components, so that XY = X × Y .

To guarantee existence of a solution the vector F must satisfy a Lipschitz condition:

∃K •K ∈ R∧∀x1,y1,x2,y2, τ • (x1,y1) ∈ XY ∧ (x2,y2) ∈ XY ∧ τ ∈ T ⇒
||F (x1,y1, τ)− F (x2,y2, τ)||∞ ≤ K||(x1,y1)− (x2,y2)||∞

Here, we have used the supremum norm || · ||∞ since it composes best under logical
operations. For finite dimensional systems, any norm is just as good; see [6, 7]. Addi-
tionally, we require that F is continuous in time for all y(τ) ∈ Y .

With the above in place, if x0 is an initial value for x such that x0 ∈ X , then the
standard theory for existence and uniqueness of solutions to DE systems guarantees
us a solution x(τ) for τ ∈ [0 . . . τx0], where τx0 ≤ τf , with x(τ) differentiable in
the interval [0 . . . τx0] and satisfying the DE system, and such that we have ∀τ • τ ∈
[0 . . . τx0]⇒ x(τ) ∈ X . See [5] for details.

Let us abbreviate [iv] D x = F (x,y, τ) until g, to [iv]DE until g below. For
soundness, we assume all the properties above regarding F hold, but it is impractical
to include in the syntax all the data needed to establish them. Even including such data
would still leave the problem of proving the properties needed — not trivial in general.
So our view is that the presence of F in the language construct is accompanied, behind
the scenes, by the needed data, together with proofs that the requisite properties hold.

Along with the properties of F , we need to know that on entry to DE , the iv prop-
erties hold. This means that [x0 ∈ X ∧ P (x0)], where P (x0) denotes any properties
needed beyond the domain requirement x0 ∈ X . The semantics of iv is as for any
other guard. If iv holds, then the guard succeeds immediately, and execution of DE
commences. If iv fails, then the process pauses, a clock is started, and it runs until the
environment makes iv true, at which point the guard succeeds.

Assuming the guard has succeeded, a fresh clock is started to monitor the progress
of the solution to DE — this clock is the one that is referred to as τ in the expression
F (x,y, τ). We are guaranteed that the solution exists for some period of time.2

There remains the preemption guard g. As for @g, for the preemption moment to be
well defined, we demand that the true-set of g is closed. If during the period [0 . . . τx0]
for which we have a solution, g becomes true, execution of the solution is stopped
and the execution of the whole construct [iv]DE until g succeeds. If during the period
[0 . . . τx0], g never becomes true, then as in other cases, the execution of [iv]DE until g
stops once τx0 is reached. This completes the operational semantics of the DE construct.

Thus far we have covered the semantics of individual constructs in terms of their
individual durations. DEs, positive delays, and unsatisfied guards have all acquired non-

2 The period of time during which the solution exists may be very short indeed. If x0 is right at
the boundary of X and F is directed towards the exterior of XY , then τx0 may equal 0, and
the initial value may be all that there is. This makes the DE execution equivalent to skip.

zero durations. Non-positive delays and immediately satisfied guards are instantaneous,
but since they do not change the state, we can allow them to complete immediately.

Atomic updates do change the state though. And to ensure that (packages of) atomic
changes of state take place at isolated points in time, to execute an update, we start a
clock which runs for a finite, unspecified, (but typically short) time, during which a
non-clashing time point is chosen and the update is done. Non-clashing means that the
update is separated from time points specifying other semantic events.

The remaining outer level constructors offer few surprises. Sequential composition,
P1 ; P2, starts by executing P1, and if it terminates after a finite time, then P2 is started.
The conditional if b then P1 else P2 fi is familiar. Depending on the (instantaneous)
truth value of b, the execution of either P1 or P2 is started, and the other is forgotten. For
iteration, while b do P , if b is false, the construct terminates. If b is true, the execution
of P is started. If it completes in finite time, the whole process is repeated. The parallel
construct P1 ‖ P2 denotes programs P1 and P2 running concurrently.

With the above, we can describe the runs of a program, having characteristics that
are consistent with the physical picture we would want in a formalism that includes
DEs, by giving, for each variable, a function of time that gives its value at each moment.
For discrete variables, such a function is piecewise constant, being constant on left-
closed right-open intervals, with an atomic update at tα say, taking the left-limit value
at tα to the actual value at tα. For continuous updates running till τg , we remove the
final value of an interval [0 . . . τg], getting a left-closed right-open interval again, and
interpreting the guard g as the left-limit value at τg .

3 Example: An Air Conditioning System

We illustrate how the language Pr1 works via a simplified air conditioning example.
Although failures in AC systems are typically not critical, the kind of modelling needed,
and the issues to be taken into account regarding the modelling, are common to systems
of much higher consequence, making the simple example useful.

The AC system is controlled by a User . The user can switch it on or off, using the
boolean runAC . The user can also increase or decrease the target temperature by setting
booleans tempUp and tempDown . Since Pr1 does not have pure events as primitives,
the AC system reacts on the rising edges of tempUp and tempDown , resetting these
values itself (whereas it reacts to both the rising and falling edges of runAC).

Here then is the User program. In the following, we assume available a function
rnd, that returns a random non-negative integer value. Note that runAC , tempUp and
tempDown are not declared here since they need to be declared in an outer scope.

User =
while true
do #(rnd) ; runAC := true ; cnt : N = rnd ;

while cnt > 0
do #(rnd) ; if rnd % 2 then tempUp := true else tempDown := true fi
od ;
runAC := false

od

The above models the nondeterministic behaviour of the user by using random waits
between user events, and random counts of temperature modification commands. This
is evidently a bit clumsy, but is adequate for purposes of illustration.

The AC apparatus consists of a room unit and an external unit. It operates on a
Carnot cycle, in which a compressible fluid (passed between the two units via insulated
piping) is alternately compressed and expanded. The fluid is compressed in the external
unit to raise its temperature higher than the surroundings, where it is cooled by forced
ventilation to (close to) the temperature of the surroundings. The fluid is then expanded,
cooling it, so that, in the room unit, it is cooler than the room, and forced ventilation
with the room’s air warms it again, thus cooling the room. The cycle runs continuously.
The inefficient thermodynamics of the Carnot cycle means this process cannot work
without a constant input of energy, making AC systems expensive to run.

Our simplified model of AC operation depends on a number of temperature vari-
ables, reflecting the structure of the Carnot cycle: θS is the room temperature set by the
user; θR is the current room temperature; θX is the temperature of the external unit’s
surroundings; θFH is the temperature of the fluid when compressed; θFL is the temper-
ature of the fluid when expanded. All of these are real valued.

When an AC system is started, each part will be at the temperature of its own sur-
roundings, and there will be a transient phase during which the AC system reaches its
operating conditions. For simplicity we ignore this, and our model starts in a state in
which all components are initialised to their operating conditions. Consequently θFH ,
θFL and θX are assumed constant, so do not require their own dynamical equations.

For simplicity we further assume that θFH is independent of other quantities, and
that θFL is lower than θFH by an amount proportional to θFH0 − θX0. We also assume
that when operating, the AC system cools the room air according to a linear law.

ACapparatus =
θS : N ∩ [SL . . . SH] = θS0 ; θR : R ∩ [RL . . . RH] = θR0 ;
[θX : R ∩ [XL . . . XH] = θX0 ;
θFH : R = θFH0 ; θFL : R = θFL0 = θFH0 −KX(θFH0 − θX0) ;]

while true
do @(runAC = true) ;

while runAC = true ∧ θR > θS
do [θR ∈ [RL . . . RH]]

D θR = −KR(θR − θFL) until
(θR = θS ∨ tempUp = true ∨ tempDown = true ∨ runAC = false) ;
if tempUp = true
then {tempUp, θS := false,min(θS + 1, SH)}
elsif tempDown = true
then {tempDown, θS := false,max(θS − 1, SL)}
elsif θR = θS
then @(θR = θS + 1)
else skip
fi ;

od ;
@(θR ≥ θS + 1)

od

Putting User and ACapparatus together gives us the complete system.

ACsystem =
runAC : B = false ; tempUp : B = false ; tempDown : B = false ;
(User || ACapparatus)

Note that in the above, while runAC works as a toggle, tempUp and tempDown are reset
by the apparatus. Finally, we recognise that for a sensibly behaved system, we would
need a considerable number of relations to hold between all the constants that implicitly
define the static structure of the system.

4 Healthiness Considerations

At this point we step back from the detailed discussion of the example to cover a num-
ber of general considerations that arise when physical systems interact with computing
formalisms.

[1] Allowing all variables of interest to be considered as functions of time yields a
convenient uniformity between isolated discrete updates and continuous updates. Treat-
ing the two kinds in different ways can lead to a certain amount of technical awkward-
ness, at the very least.

[2] When variables are functions of time, values at individual points in time have
no physical significance. Only values aggregated over an interval of time make sense
physically, and for these to be well defined, the functions of time in question have to be
well behaved enough (e.g. ‘continuous’, although ‘integrable’ would actually suffice).

[3] In dealing with CPS systems we must take into account the consequences of
using differential equations. In a sense we have already fallen into covering this quite
extensively in discussing the semantics of our prototypical language in Section 2. The
existence of solutions to arbitrary DEs cannot be taken for granted without the imposi-
tion of appropriate sufficient conditions. An easy way to ensure this is to impose strict
syntactic restrictions on the permitted DEs, e.g. by insisting that they are linear.

[4] Physics is relentlessly eager. In conventional discrete system formalisms, as-
suming that the discrete events in question are intended to correspond with real world
events, the precise details of the correspondence with moments of time is seldom crit-
ical (other than for explicitly timed systems), and more than one interpretation is per-
missible, provided the causal order of events remains the same. As soon as physical
behaviour enters the scene though, this choice disappears. If one physical behaviour
stops, another must take over immediately, as the universe does not ‘go on hold’ until
some new favourable state of affairs arises.

[5] Point [4] places quite strong restrictions on the semantics of languages intended
for the integrated descriptions of computing and physical behaviour, since many of the
options available for discrete systems simply disappear. Although it is perfectly possible
to design languages that ignore this consideration and integrate continuous behaviour
and discrete behaviour in an arbitrary fashion, even though they may be perfectly con-
sistent mathematically, unless they take due consideration of the requirements of the
physical world, they are irrelevant for the description of real world systems.

[6] Points [4] and [5] boil down to a requirement that decriptions of physical be-
haviour must be guaranteed to be total over time. Languages intended for CPS and
critical systems should not permit gaps in time during which the behaviour of some
physical component is undefined.

[7] The requirements of the last few points can be addressed by having separate
formalisms for the discrete and continuous behaviours of the whole system and having
a well thought out framework for their interworking. However, in cases of multiple
cooperating formalisms, it is always the cracks between the formalisms that make the
most hospitable hiding places for bugs, so particular vigilance is needed to prevent that.

[8] The impact of the preceding points may be partly addressed by careful syntactic
design — we demonstrate this to a degree in Section 5. However, most aspects are firmly
rooted in the semantics. In this regard, a language framework that puts such semantic
criteria to the fore is highly beneficial. The semantic character of most of the issues
discussed implies that an approach restricted to syntactic aspects can only achieve a
very limited amount.

[9] The implications of the heavily semantic nature of most of the issues discussed
above further implies the necessity of having runtime abortion as an ingredient of the
operational semantics of any language suitable for the purposes we contemplate. Al-
though this is seldom an issue per se for practical languages, which must include fa-
cilities for division, hence for division by zero at runtime, it is nevertheless perfectly
possible to contemplate languages in which all primitive expression building opera-
tions are total, and hence to dispense with runtime abortion, even if such languages are
of largely theoretical interest.

The overwhelmingly semantic nature of the preceding discussion motivates our re-
ferring to the matters raised as ‘healthiness conditions’. (The nomenclature is borrowed
from UTP [3], where appropriate structural conditions that play a similar role are bap-
tised thus.) Checking that the necessary conditions hold for a given system, compels
checking that the relevant criteria, formulated as suits the language in question, hold
for the system at runtime (for the entire duration of the execution). Depending on the
language and how it is structured, this may turn out to be more convenient or less con-
venient.

5 An Improved Concurrent Language

Taking on board the discussion in Section 4, we redesign our language as follows.

Decl ::= [x : T [= x0] ;]∗

Db ::= x := e | {xs := es} | @b |#r
Pr0 ::= Db | Decl ; Pr0 | Pr0 ; Pr0

| if b then Pr0 else Pr0 fi| while b do Pr0 od | Pr0 ‖ Pr0
CbE ::= [iv] D x = F (x,y, τ) until g | obey Rstr until g

Pr2 ::= CbE | Pr2 ; Pr2
| if b then Pr2 else Pr2 fi| while b do Pr2 od | Pr2 ‖ Pr2

PrSys ::= Name | [Name =] Decl ; PrSys | Pr0 | Pr2 | PrSys ‖ PrSys

In the above grammar, the healthiness considerations that can be addressed via the syn-
tax have been incorporated. Thus, there is a visible separation between the previous
discrete program design Pr0 (which remains unchanged), and the provisions made for
describing physical behaviour Pr2, which have been restructured.

Specifically, there are now no facilities for Pr2 processes to wait. Furthermore,
they can only be combined with discrete processes at top level, precluding their sudden
appearance part way through a system run. This also means that they must be declared
at top level, reflected in the design of the PrSys syntax.

Note the additional obey clause for physical behaviour. This permits relatively
loosely defined behaviour to be specified in cases where more prescriptive behavour via
a DE is not desired or is impossible due to lack of knowledge, etc. This replaces use
of waiting clauses in the earlier grammar. Note that DE behaviour and obey behaviour
are the only permitted ways of describing continuous behaviour at the bottom level.

Although we have ensured that Pr2 processes cannot wait for syntactic reasons, we
have to ensure that they can’t wait for semantic reasons either. Thus we must stipulate
what happens in the DE and obey cases when one or other of their syntactic compo-
nents fails. Taking the DE case first, if iv does not evaluate to true,3 then the whole
top level PrSys process must abort, that is to say, execution terminates abruptly in a
failing state. If F fails to satisfy the conditions for existence of a DE solution, then
the top level PrSys process aborts. If g does not evaluate to true at some moment in
the DE solution, in case that the duration of the DE solution τf is finite, then when
τf is reached, the top level PrSys process aborts. Turning to the obey case, if Rstr
does not evaluate to true in a left closed right open time interval starting from the mo-
ment the obey construct is encountered (or amounts to skip at that moment), then top
level PrSys process aborts. If g does not evaluate to true at some moment during the
true interval of Rstr, in case that the duration of the true interval of Rstr, say τf , is
finite, then when τf is reached, the top level PrSys process aborts.

Having defined the improved language, we can check over how it addresses the
healthiness conditions described earlier. Re. [1], we have already stipulated that all
variables depend on time in our description of the semantics, so [1] is covered. Re. [2],
this is again implicit in our semantics. Likewise, [3] is also covered by our relatively
detailed discussion of DEs. Re. [4], we have designed the syntax to prohibit explicit
lazy behaviour in the continuous domain, and this is backed up by the semantics which
disallows lazy behaviour arising from runtime conditions — this justification extends to
point [5], and this, combined with the fact that DE behaviour and obey behaviour are
the only permitted ways of describing continuous behaviour at the bottom level guar-
antee totality over time provided the behaviour described by the syntax is well defined
semantically, covering point [6]. Points [7] and [8] are things that can be achieved syn-
tactically, and our design does so. Point [9] indicates the necessity of having runtime
aborts in the semantics, this being forced by the eagerness of physical behaviour. The
need for this also arose in our remarks regarding point [6].

The heavy dependence on semantics of this discussion raises the question of how
we can be sure that any system that is written down defines a sensible behaviour. In

3 That is to say, it evaluates to false, or fails to evaluate at all.

purely discrete languages, there is a well trodden route from the syntactic structure of a
system description to verification conditions that confirm the absence of runtime errors.

The same approach extends to languages containing continuous update, such as
ours. The syntactic structure of such a language can be analysed to elicit all the de-
pendencies between different syntactic elements that can arise at runtime, and these
dependencies can be used to create template verification conditions. Given a specific
model, the generic template verification conditions can be instantiated to the elements
of the model to provide sufficient (although not necessarily necessary) conditions for
runtime well definedness. Still, it has to be conceded that such conditions can be more
challenging than in the discrete case because of the more subtle nature of aspects of
continuous mathematics.

Although we do not give a comprehensive account of the verification templates
for our (improved) language (it has, after all, been constructed just for illustrative pur-
poses), we can give an indication of a couple of them.

Thus, if the flow of control reaches an DE construct [iv]Dx = F (x,y, τ) until g
we need to know the initial value guard will succeed. We can ensure statically that this
will be the case if the DE construct occurs in a case analysis whose collection of guards
covers all values that could be generated.

Similarly, once a DE construct has been preempted by its preemption guard becom-
ing true, we need to ensure that there is a viable continuous successor behaviour for
the physical process to engage in. This is helped in our case by the syntax, and can be
supported by a proof that the truth of the preemption guard enables some syntactically
available successor option.

In the discrete part of the language, the success of an if statement can be assured
provided there is a default else clause to capture any exceptional cases. And so on.

Still, achieving full static assurance of freedom from runtime errors may require
fully simulating the system, which will usually be impractical. Much depends on the
language design. To help the process, languages may be designed in which all expres-
sion forming constructs are guaranteed to denote (e.g. in extremis by not having division
in the language). Such languages may help in the verified design of critical systems.

6 The Running Example, Improved

In the light of the preceding discussions, we return to our running example and restruc-
ture it for the improved language. For simplicity we will omit the bracketed constant
declarations that appeared in the earlier ACapparatus. We also keep the definition of
the User the same, as that conforms to the syntax of the improved language. Regarding
the ACapparatus, it requires some significant restructuring.

Firstly, the previous design mixed discrete and continuous update in a fairly uncrit-
ical manner. Thus the DE D θR = −KR(θR − θFL), describing the fluid behaviour,
is mixed with discrete updates to θS , done at the behest of the User. Worse, when the
DE is preempted, no physical behaviour is defined for the fluid — the ACapparatus just
hangs around waiting for the next opportunity to do some cooling. This is not really ac-
ceptable: the fluid does not stop being a physical system, subject to the laws of nature,

just because, with our focus on the ACapparatus design, we have no great interest in its
behaviour during a particular period.

Our restructured design separates the physical from the discrete aspects. The earlier
ACapparatus is split into an ACcontroller process, looking after the discrete updates,
and a ACfluid process, which describes the physical behaviour of the fluid.

Normally, the User would communicate with the ACcontroller, which would then
control the ACfluid, but we are a bit sloppy, and allow the User’s runAC variable to
also directly control the ACfluid, thus sharing the fluid control between the User and
the ACcontroller. The latter therefore just controls the θS value while runAC is true.

The ACfluid process, now constrained by the restricted syntax for physical pro-
cesses, describes the fluid’s properties at all times. At times when the DE behaviour
is not relevant, an obey clause defines default behaviour, amounting to θR remaining
within the expected range. The separation of control and fluid allows us to make the
fluid responsible for detecting temperature and to only initiate the DE behaviour when
the temperature is at least a degree above the set point θS . Of course this is rather un-
realistic, and a more credible (and detailed) design would involve sensors under the
control of the ACcontroller to manage this aspect.

ACcontroller =
while true
do @(runAC = true) ;

while runAC = true ∧ θR > θS
do @(tempUp = true ∨ tempDown = true ∨ runAC = false) ;

if tempUp = true
then {tempUp, θS := false,min(θS + 1, SH)}
elsif tempDown = true
then {tempDown, θS := false,max(θS − 1, SL)}
fi

od
od

ACfluid =
while true
do obey θR ∈ [RL . . . RH] until runAC = true ;

if θR ≥ θS + 1
then [θR ∈ [RL . . . RH]] D θR = −KR(θR − θFL)

until (θR = θS ∨ runAC = false)
else obey θR ∈ [RL . . . RH] until θR ≥ θS + 1 ∨ runAC = false
fi

od

Putting all three components together gives us the complete system.

ACsystem =
runAC : B = false ; tempUp : B = false ; tempDown : B = false ;
(User || (θS : N ∩ [SL . . . SH] = θS0 ; θR : R ∩ [RL . . . RH] = θR0 ;

ACcontroller || ACfluid))

7 Related Approaches

It is fair to say that the critical systems industry is rather conservative — advocating
radical new ways of doing things that do not enjoy the highest levels of trust risks major
disasters in the field. Even the newer standards in key fields, such as DO-178C (for
avionics [8]), ISO 26262 (for automotive systems [9]), IEC 62304 (for medical devices
[10]), or CENELEC EN 50128 (for railway systems [11]), are still heavily weighted
in favour of mandating specific testing strategies, and other practices heavily rooted
in traditional development techniques. Thus the entry of formal techniques into the
standardised critical systems development portfolio is rather cautious, despite the strong
evidence in niche quarters about the dependability that can be gained by appropriate use
of formal development, suitably integrated into the wider system engineering process.
This is as much because entrenched industrial practice cannot move as nimbly as one
might hope, even when the evidence for attempting to do so is relatively strong.

Here, we briefly comment on some approaches that compare with our exercise to
realign a candidate language for utility in the cyberphysical and critical systems arena.

In the cyberphysical systems area [12–14], we can point to the extensive survey [15],
which covers a wide spectrum of research into cyberphysical systems, and the tools
and techniques used in that sphere. As we might expect, despite the relative newness
of the cyberphysical systems area, formal approaches are somewhat overshadowed by
more traditional and simulation based techniques. Again, this is due to the fact that
cyberphysical systems still have to be built, and this falls back on traditional approaches.

The older survey [16] is more linguistically based and covers a large spectrum of
languages and tools for hybrid systems. One is struck by the typically low expressivity
in the continuous sphere of many of the systems discussed there, motivated, of course,
by the desire for decidability of the resulting languages and systems. For decidability
reasons, most of these are based on variations of the hybrid automaton concept [17–19].
In fact, for simple linear behaviours, e.g. Dx = K, with K constant, there is very little
difference between using a DE as just quoted, and using an expression x′ = x+K∆T
where ∆T is the duration of the behaviour.

Neverthless, many of the formalisms in these sources are focused on the single goal
of hybrid or continuous behaviour, to the exclusion of more general computing con-
cerns. This leads to the ‘bugs in between formalisms’ risk noted earlier, when multiple
formalisms need to be combined.

Closer to our perspective is the work of Platzer [20], supported by the KeyMaera
tool [21]. This supports the kind of modelling exemplified in this paper, with a strong
focus on verification. Alternatively there is the Hybrid Event-B formalism [22, 23]. This
is an extension of the pure discrete event formalism Event-B [24], building on the earlier
classical B-Method [25], (which is still actively used in critical applications in the urban
rail sector [26]). The extension is expressly designed to avoid the kind of traps regarding
continuous behaviour and verification that we illustrated earlier in this paper.

Thus far our discussion has avoided mentioning noise or randomness. This is le-
gitimate when the physical considerations imply that it is negligible. But if sources
of uncertainty are significant, then probabilistic techniques need to be taken on board.
These add nontrivial complication to the semantics of any language. An indication of
the issues that can arise can be found in [27, 28].

8 Conclusion

Motivated by the current dramatic proliferation in critical and cyberphysical systems,
especially in urbanised areas all over the world, in the preceding sections, we exam-
ined the problem of extending typical existing, more conventional formalisms for pro-
gramming, to allow them to incorporate the needed physical behaviour that is a vital
ingredient of these systems. Such integrated formalisms can come into their own if
we contemplate the integrated verification of critical cyberphysical systems, in which
we seek to avoid the possibilities of there being bugs that hide in the semantic cracks
between separate formalisms that are used to check separate parts of the behaviour.

Rather than being comprehensive, our approach in this paper has been to illustrate
the range of issues to be considered, by taking a somewhat prototypical shared variable
language for concurrent sequential programming, and extending it in a relatively naı̈ve
way to incorporate continuous behaviour. We then critically examined the consequences
of this, and identified a number of issues that are not always taken sufficient account of
when embarking on such an extension exercise. For want of a pithy name, we termed
these ‘healthiness considerations’, by analogy with the nomenclature used in UTP. This
done, we showed how the earlier naı̈ve syntax could be improved to partially address
some of these issues, the remainder being the responsibility of the semantics.

We illustrated our particular solution with a simplified air conditioning system, giv-
ing the core steady state behaviour in both the original and improved formulations.

It is important to emphasise that we do not claim that the details of our solution
(even in the case of our specific language) are unique. One could resolve the same
issues in a number of ways that differed in the low level detail. Nevertheless, the broad
sweep of the things needing to be considered would remain similar.

We also do not claim that our language (and its improved version) are to be partic-
ularly recommended for critical cyberphysical system development. In many ways, the
issues we have striven to highlight are brought our more clearly in a language which
one would rather not choose to use.

We can liken the urge to match the surface syntactic features of the language as
closely as possible to what is needed by the semantics of the physical considerations,
with the longstanding process whereby machine code was superseded by assembly lan-
guage, which was superseded by higher level languages, etc., in each case the desire
being to raise the level of abstraction in such a way as to preclude as many user level er-
rors as possible by making them syntactically illegal (or simply impossible to express),
and backing this up semantically.

It is to be hoped that the insights from an exercise like the one we have undertaken
can help to improve the broader awareness of the issues lurking under the bonnet when
formalisms for critical and cyberphysical systems are designed in future.

References

1. Alur, R.: Principles of Cyberphysical Systems. MIT Press (2015)
2. Lee, E., Shesha, S.: Introduction to Embedded Systems: A Cyberphysical Systems Ap-

proach. 2nd. edn. LeeShesha.org (2015)

3. Hoare, T., , He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
4. Zhou, C., Hoare, T., Ravn, A.: A Calculus of Durations. Inf. Proc. Lett. 40 (1991) 269–276
5. Walter, W.: Ordinary Differential Equations. Springer (1998)
6. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (1985)
7. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press (1991)
8. DO-178C: http://www.rtca.org.
9. ISO 26262: http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?

csnumber=54591.
10. IEC 62304: https://webstore.iec.ch/preview/info iec62304{ed1.0}en d.pdf.
11. CENELEC EN 50128: https://www.cenelec.eu/dyn/www/f?p=104:105.
12. Sztipanovits, J.: Model Integration and Cyber Physical Systems: A Semantics

Perspective. In Butler, Schulte, eds.: Proc. FM-11, Springer, LNCS 6664, p.1,
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf (2011) Invited talk, FM
2011, Limerick, Ireland.

13. Willems, J.: Open Dynamical Systems: Their Aims and their Origins. Ruberti Lecture, Rome
(2007) http://homes.esat.kuleuven.be/˜jwillems/Lectures/2007/Rubertilecture.pdf.

14. National Science and Technology Council: Trustworthy Cyberspace: Strategic plan for the
Federal Cybersecurity Research and Development Program (2011)
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed cybersecurity rd
strategic plan 2011.pdf.

15. Geisberger, E., Broy (eds.), M.: Living in a Networked World. Integrated Research Agenda
Cyber-Physical Systems (agendaCPS) (2015) http://www.acatech.de/fileadmin/user
upload/Baumstruktur nach Website/Acatech/root/de/Publikationen/Projektberichte/
acaetch STUDIE agendaCPS eng WEB.pdf.

16. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for
Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1 (2006)
1–193

17. Henzinger, T.: The Theory of Hybrid Automata. In: Proc. IEEE LICS-96, IEEE (1996)
278–292 Also http://mtc.epfl.ch/˜tah/ Publications/the theory of hybrid automata.pdf.

18. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P.H.: Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In: Proc. Workshop on
Theory of Hybrid Systems. Volume 736 of LNCS., Springer (1993) 209–229

19. Alur, R., Dill, D.: A Theory of Timed Automata. Theor. Comp. Sci. 126 (1994) 183–235
20. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer (2010)
21. Symbolaris: http://www.symbolaris.org.
22. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B I: Single Hybrid

Event-B Machines. Sci. Comp. Prog. 105 (2015) 92–123
23. Banach, R., Butler, M., Qin, S., Zhu, H.: Core Hybrid Event-B II: Multiple Cooperating

Hybrid Event-B Machines. Sci. Comp. Prog. (2017) to appear.
24. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press (2010)
25. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press

(1996)
26. Clearsy: http://www.clearsy.com/en/.
27. Zhu, H., Qin, S., He, J., Bowen, J.: PTSC: Probability, Time and Shared-Variable Concur-

rency. Innov. Syst. Softw. Eng. 5 (2009) 271–284
28. Zhu, H., Yang, F., He, J., Bowen, J., Sanders, J., Qin, S.: Linking Operational Semantics

and Algebraic Semantics for a Probabilistic Timed Shared-Variable Language. J. Log. Alg.
Prog. 81 (2012) 2–25

