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Abstract. Refinement is reviewed, highlighting in particular the distinction be-
tween its use as a specification constructor at a high level, and its use as an imple-
mentation mechanism at a low level. Some of its shortcomings as specification
constructor at high levels of abstraction are pointed out, and these are used to mo-
tivate the adoption of retrenchment for certain high level development steps. Basic
properties of retrenchment are described, including a justification of the operation
proof obligation, simple examples, its use in requirements engineering and model
evolution, and simulation properties. The interaction of retrenchment with refine-
ment notions of correctness is overviewed, as is a range of other technical issues.
Two case study scenarios are presented. One is a simple digital redesign control
theory problem, the other is an overview of the application of retrenchment to the
Mondex Purse development.
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1   Introduction

One of the most startling things about the present state of the interaction between for-
mal methods of software development and the practice of software development, par-
ticularly as it applies to the formal development of software that controls real physi-
cal apparatus, is the mutual incomprehension that persists between researchers and
practitioners. One of the worst aspects of this, is the perceived inadequacy of refine-
ment techniques in the face of the demands of real applications, a deficiency simul-
taneously denied by many researchers and held as selfevident by practitioners.1 The
main motivation for the subject of this paper, retrenchment, is to help to assuage this
dissonance. Retrenchment, which was first introduced in [Banach and Poppleton
(1998)], in the specific context of the B-Method [Abrial (1996), Wordsworth (1996),
Lano and Haughton (1996), Sekerinski and Sere (1998)], is a more liberal formal
technique, based on the main ideas of refinement, and is intended so that some pairs
of models which cannot be related within a development by refinement alone, can

1. Many private conversations with members of both communities, not to mention reactions of
numerous anonymous referees of varying backgrounds, have convinced us of the truth of this.
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nevertheless be included within a formal development by its help. The reasons why
one might want to include such pairs of models within a single development can be
varied; we touch on some of these later.

This paper presents the retrenchment concept from scratch in a simple transition sys-
tem framework.2 It starts by observing that over the years, refinement has been used
not only as a method of implementation which guarantees properties captured in a
specification, but also as a method of introducing structure and detail into a system
development. When this detail addresses requirements, it can have the effect of
clouding the distinction between specification and implementation because the ‘real’
specification is not in fact the most abstract model in the development. Of course in
many of the formal methodologies that have been developed for expressing refine-
ment and calculating with it, see for example [Back (1981), Back (1988), Back and
von Wright (1989), von Wright (1994), Morris (1987), Morgan (1994), Back and von
Wright (1998)], these questions of emphasis are not always at the fore.

Various refinement notions also appear in more applications oriented specification
notations, such as Z or VDM [Spivey (1993), Hayes (1993), Jones (1990), Jones and
Shaw (1990), Woodcock and Davies (1996)]. Not all of these are compatible, in the
sense that a development step which is a refinement according to one notion, may not
be one according to another; see [de Roever and Engelhardt (1998), Derrick and
Boiten (2001)] for some relevant discussion. But a development step that fails to be
a refinement on such a ‘legal technicality’ may well be a perfectly reasonable one
from a systems engineering point of view. Such situations give rise to the need for a
richer formal development notion, one that is capable of capturing such steps and
bringing them into the formal fold.  Retrenchment is a contribution to this need.

In this paper we start in Section 2 by discussing the various roles played by refine-
ment in the development process. We distinguish particularly refinement as specifi-
cation constructor from refinement as implementation tool, noting that the distinction
is often subtly blurred and that abstract models are often reverse engineered from
more concrete ones. We illustrate our ideas with an example and pause to define var-
ious simulation theoretic notions. In Section 3 we continue the small example to il-
lustrate some of the problems that can arise during development steps if we adhere
strictly to the formal definition of refinement as sole method of passing from more
abstract to more concrete models. Aspects of size, and management concerns also
rear their head in this regard. Having presented our motivations, Section 4 defines
retrenchment itself, justifying the key proof obligation, recasting the running exam-
ple via retrenchment, introducing output retrenchment, discussing how retrenchment
relates to other work in the literature that addresses the limitations imposed by the
‘refinement straitjacket’, and considering how retrenchment as defined, also address-
es wider issues of requirements engineering and model evolution. Section 5 revisits
simulation in the context of retrenchment, explaining how it has to be approached in
a different manner to refinement simulation. Section 6 records some simple default
relationships between retrenchment and refinement. In Section 7, we outline how re-
trenchment ought to interact with the large number of notions of correctness that are
to be found in the refinement literature. Section 8 outlines a selection of other tech-
nical issues regarding retrenchment and indicates their relevance; of particular note

2. These days, latest developments are indicated on the [Retrenchment Homepage].
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is the Tower Pattern, a structure that resonates in a number of places in the paper. In
Section 9 we consider case study scenarios as they apply to ‘real engineering’ situa-
tions. After some general discussion of the relationship between applied mathemat-
ics and the formal schemes usually found in formal program development frame-
works, we discuss a simple continuous-discrete control theory problem in detail. We
then overview the way that retrenchment can contribute towards giving a more com-
plete treatment of the Mondex Purse. This was a critical development, undertaken
using Z refinement, which resides entirely in the discrete domain, but which never-
theless dealt with a number of modelling issues in a less than ideal way due to the
exigencies of the Z refinement.  Section 10 concludes.

2   Refinement, and Requirements

Back in the days of [Wirth (1971), Dijkstra (1972), Hoare (1972)], life was simpler,
in that it was clear what was intended by refinement. It was a process whereby a piece
of abstract program (in some context) could be replaced by a piece of more concrete
program (in the same context), without the observer being any the wiser. The argu-
ment went, that given appropriate sufficient conditions, it could be proved that the ob-
server would be none the wiser, so convenient sets of sufficient conditions got adopt-
ed as particular paradigms for refinement.

After some time, almost imperceptibly, life got more complicated. The process of
refinement in the preceding sense, typically involves the incorporation/adoption of
lower level detail into the lower level model. Indeed, one of the much vaunted
strengths of the refinement technique is its ability to delay the consideration of lower
level detail in the development process. However, the more general question then
arises, as to what extent this lower level detail forms part of the original requirements
of the system, and thus, to what extent the original abstract model deserves to be
called a specification of it. For if the lower level detail indeed addresses system re-
quirements, then the abstract model cannot have been a complete specification (as-
suming that the purpose of a specification is to express a system model that captures
all the requirements, at the highest possible level of abstraction).

The practice of refinement thus became muddied by a lack of clarity as to what the
relationship between requirements and the abstract model was supposed to be; the
more so as research was heavily concentrated on the technicalities of formal specifi-
cation, to the detriment of requirements considerations. Indeed even in many text-
book-scale examples of refinement, the more abstract models are sometimes reverse
engineered from the more concrete ones (perhaps subconsciously), by a process of
forgetting the kind of detail that experience has taught us can be elegantly reintro-
duced via the mechanisms that refinement puts at our disposal.3

Going by the authors’ personal experience, it is disturbing how quickly one gets se-
duced into this mode of thinking. Upon starting work with formal refinement, when
everything is still new, the selection of what detail is to be expressed at the abstract
level can often seem jarring when considered against what one might ‘naturally’ take
to be the most abstract aspects of the system. But this feeling passes surprisingly
quickly. Before one knows it, one has fallen into the comfortable habit of choosing

3. A number of refinement theorists have confirmed this to us.
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just the ‘right’ aspects of the system to include at the abstract level; a choice made so
that the remaining ones ‘magically’ yield to the refinement technique. Soon this
practice is second nature, and one has forgotten that there ever was any discomfort.

2.1   Different Uses of Refinement

Let us examine this issue in a little more detail via examples. We start by outlining
the framework in which we will work. We will want to discuss relationships between
an abstract system Abs and a concrete one Conc; in general these will just be two
adjacent systems in a development hierarchy. At the abstract level, there will be a set
of operation names OpsA, with typical element OpA. (Note that the ‘A’ subscript is
a meta level tag, suppressed when innapropriate.) The operations will work on a state
space U, having typical element u. For an OpA ∈ OpsA, there are also input and out-
put spaces IOpA

and OOpA
with typical elements i, o respectively (the anticipated sub-

scripts on i and o to indicate the relevant OpA are routinely suppressed). Primes, in-
dices etc. will be used to distinguish different elements of the same space. Initial
states are defined as those that satisfy the property InitA(u′). In this paper, we work
in a transition system framework. So an operation OpA will be defined by its transi-
tion or step relation, written stpOpA

(u, i, u′, o), consisting of steps u -(i, OpA, o)-› u′,
where u and u′ are the before- and after- states, and i and o are the input and output
values. An execution fragment of the Abs system is a finite or infinite sequence of
contiguous steps, written [ u0 -(i0, OpA,0, o1)-› u1 -(i1, OpA,1, o2)-› u2 … ], and drawn
from the collection of abstract step relations ∪{stpOpA

| OpA ∈ OpsA}. An execu-
tion fragment such that InitA(u0) holds is called an execution sequence. An abstract
state u is reachable, iff it is the last state of some execution sequence.

At the concrete level we have a similar setup. The operation names are OpC ∈ OpsC.
States are v ∈ V, inputs j ∈ J, outputs p ∈ P. Initial states satisfy InitC(v′). Transitions
are v -(j, OpC, p)-› v′, which are elements of the step relation stpOpC

(v, j, v′, p).

In keeping with the overwhelming majority of applications, in this paper we stay
within a forward simulation formulation of refinement. (See [de Roever and Engel-
hardt (1998), Derrick and Boiten (2001)] for surveys of refinement from both forward
and backward simulation perspectives, and under various notions of correctness.) To
this end, we assume there is a bijection between abstract and concrete operation
names, which defines which concrete operation refines which abstract one. For sim-
plicity we will assume this bijection is an identity and so OpA is identified with OpC.

In this simple framework, refinement is primarily expressed by a retrieve relation be-
tween abstract and concrete states G(u, v) — frequently this is a function from con-
crete to abstract. It has to satisfy two properties, the initialisation and operation proof
obligations (POs) respectively.  The initial states must satisfy:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (2.1)

and for every corresponding operation pair OpA and OpC, the abstract and concrete
step relations must satisfy:

G(u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, i, o • stpOpA
(u, i, u′, o) ∧ G(u′, v′) ∧ InOp(i, j) ∧ OutOp(o, p)) (2.2)
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where InOp is a relation that describes how inputs for OpA and OpC relate to each oth-
er, and OutOp is a relation that describes how outputs relate. Until further notice, all
InOp and OutOp relations will be identities.

We consider a simple example. The abstract system state is a multiset mset of natural
numbers, and there are two operations put and get to respectively add an element to
mset and extract an (arbitrary) element from mset. The transition relations for these
are thus:

mset -(n, putA)-› mset+{n}  ; mset+{n} -(getA, n)-› mset (2.3)

As usual, we can refine the multiset to a sequence mseq, with put and get becoming
obvious list manipulation operations (where @ is ‘append’ and :: is ‘cons’):

mseq -(n, putC)-› mseq@[n]  ; n::mseq -(getC, n)-› mseq (2.4)

The retrieve relation for these is:

G(mset, mseq) ≡  (mrng(mseq) = mset) (2.5)

where mrng returns the multiset range of a sequence.  It is immediate that:

InitA(∅)   and InitC([]) (2.6)

provide a suitable initialisation, and that the POs (2.1) and (2.2) hold.

This example, though tiny, has a noteworthy feature. The concrete system is fair in
that elements putC’ed earlier, are inevitably getC’ed earlier; indeed in any execution
of the concrete system, the sequence of elements output via getC is unfailingly a pre-
fix of the sequence of elements input via putC, a property not shared by the abstract
system. Is fairness, or the prefix property, a requirement of this system? We didn’t
say, and the two possible answers bring different interpretations to our minuscule de-
velopment.

If fairness is not a requirement, then the refinement is an example of a refinement of
the traditional kind, in which (2.3) is indeed the specification and (2.4) is (a step to-
wards) an implementation, a black box activity. If it is, then (2.3) could not have been
the complete specification since it does not guarantee fairness, and the refinement is
merely a step along the way to it. This is a glass box activity, as we would need to
make clear to the customer the differing properties of the two models and what role
the relationship between them was playing.

We note in passing that in (2.4), the fairness requirement is not being addressed di-
rectly within the model, but emerges as a consequence of the properties of the func-
tional description. Indeed if the prefix property were a specific requirement, then
(2.4) would precisely capture it as queues are categorical for total orders with the giv-
en two operations. However if mere fairness were required (i.e. that every put’ed el-
ement was eventually get’ed sometime), then (2.4) is an instance of implementation
bias, since total orders are sufficient but not necessary for mere fairness. To avoid
implementation bias, or to express fairness at the abstract level, one would have to
step outside the framework we have set up, and resort to temporal logic of one kind
or another [Manna and Pnueli (1992), Lamport (1994), Schneider (1997)].

One could address the fairness requirement to a degree, yet still avoid embroiling the
system description in temporal logic (disregarding whether or not this would be
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wise), by refining (2.3) in a more complex way. For the sake of the following exam-
ple only, we will allow the concrete system in the refinement to contain additional,
hidden, operations, making it a refinement of the action system or superposition re-
finement kind [Back and Kurki-Suonio (1983), Francez and Forman (1990), Katz
(1993), Back and Sere (1996)].  It will also prove useful in making a point below.

Specifically, we will put elements into bins using a coarse grained timestamp, and get
them from the oldest nonempty bin. To assist in this there will be a hidden operation
tick that increments a natural valued state variable tickvar (we suppress the rest of the
state for clarity):

tickvar -(tickC)-› tickvar+1 (2.7)

and the rest of the state itself will be a multiset-of-naturals valued map bins on the
naturals, with the two visible operations given by (using <+ for relational override):

(bins, tickvar) -(n, putC)-› (bins <+ {tickvar |→ (bins(tickvar)+{n})}, tickvar)

({0…k–1}×∅ ∪ {k |→ abin+{n}} ∪ {k+1 |→ bins(k+1)} … , tickvar)

-(getC, n)-›

({0…k–1}×∅ ∪ {k |→ abin} ∪ {k+1 |→ bins(k+1)} … , tickvar) (2.8)

The corresponding retrieve relation will be:

G(mset, (bins, tickvar)) ≡  (∑ k∈NAT bins(k) = mset) (2.9)

and the rest can be imagined. Of course this system also displays some implementa-
tion bias with respect to a simple fairness requirement, but arguably a bit less than the
queue system above. Since there are aspects of the system that we view as not central
to the way the fairness requirement is addressed (eg. the details of tickC, and the way
the distribution of invocations of tickC relates to real world time), we could reasona-
bly regard this refinement as a grey box activity, partly transparent and partly opaque.
Of course there will also be a refinement of this system to the queue system (aug-
mented by a hidden tick operation whose definition would skip on the state), which
we leave to the reader. Summarising, refinement can be used in a variety of ways to
address requirements, and the same calculation may be viewed in different lights de-
pending on aspects which are frequently not enunciated clearly.

2.2   Black, Grey, and Glass Boxes

The culmination of the preceding line of thought is that refinement has quietly be-
come (aside from its original purpose), a specification constructor, enabling more ap-
propriate specifications to be built from preliminary models that do not in themselves
capture all of the requirements of the desired system. There is of course no harm at
all in this provided one is honest about what is going on. Indeed in the Specware sys-
tem [Srinivas and Jullig (1995), Waldinger et al. (1998)], refinement is elevated to a
first class specification constructor along with disjoint sum and colimit, inclusion,
and parametric instantiation (to mention just the more obvious ones, see also eg. [Eh-
rig and Mahr (1985), Ehrig and Mahr (1990), Ehrig and Grosse-Rhode (1994), Fia-
deiro and Maibaum (1997)]). In another context one can mention the EXT operator
of LOTOS refinement as manifestly addressing the specification constructor task
[van Eijk et al. (1989), Brinksma et al. (1987), Brinksma (1988)].
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The crucial point is thus to be clear about which model in a refinement hierarchy is

the one that is supposed to capture all the requirements, and that thus can serve as a

contract between specifier and implementer. We will call this the contracted model.4

Models above this one in the hierarchy are merely useful preliminaries, and in mov-

ing towards the contracted model, refinement is being used as a constructor to enable

the gradual accommodation of individual requirements into the contracted model;

this is a glass box, or at a least grey box process — the activity of constructing the

contracted model should be a transparent one, its details open to inspection by all in-

terested parties, in order to convince all concerned that the right system is being con-

structed. Models below the contracted model in the hierarchy represent implemen-

tation steps, and in refining the contracted model, refinement is being used as a means

of achieving implementability on some target system, an essentially black box activ-

ity. Since the users’ perspective is already captured within the contracted model, how

this is turned by the implementer into a running system, need not concern them. Thus

these lower level models may enjoy further properties as a result of their more con-

crete nature, but these properties do not form part of the requirements. (A near ideal

incarnation of the black box view of refinement is embodied in the Perfect Developer

tool [Crocker (2004)], in which refinement is invoked automatically. Other tools

which create implementations by using code generators can be understood as doing

essentially the same thing.)

One issue sharply distinguishes the use of refinement in a glass or grey box manner

above the contracted model, from its black box use below the contracted model. Be-

low the contracted model I/O signatures must remain unchanged —InOp and OutOp

must be identity relations— otherwise how are users to be fooled into believing they

are using the abstract model when they are in fact using the concrete one?5 Above

the contracted model there is no such restriction since we are being open about the

refinements being done, and InOp and OutOp may be nontrivial relations.

2.3   Simulation Properties

We will now look at some simulation theoretic aspects of refinement, primarily to

provide a contrast with the corresponding situation for retrenchment in Section 5.

Suppose we have a refinement given by operation names OpsA = OpsC, retrieve re-

lation G, and InOp, OutOp relations for each Op ∈ Ops.

4. For the sake of being able to discuss a simple scenario, we assume that there is a contracted
model in the development. Realistic developments may have a more involved structure. For
example, the Event B methodology [RODIN (2004), Abrial (2003), Abrial et al. (2005), Abrial
(2007)] can be seen as an advanced case of system construction by refinement, in which struc-
ture is added via a(n often long) sequence of refinements, typically of the superposition kind.
The difference between Event B refinements and traditional superposition refinements is that
the new events added during refinement are not regarded as hidden, but address genuine system
requirements. In this case the contracted model has to be seen as the last of the models, the
one from which the code is generated.
5. It may of course be the case that below the contracted model different representations of in-
puts and outputs may be of use, but the requisite transformations must be performed privately,
not at the public interface of the operation.  See also the discussion in Section 4.4.
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Definition 2.1 With the usual notations, let u -(i, OpA, o)-› u′ be an abstract step and
v -(j, OpC, p)-› v′ a concrete step. Then the abstract step simulates the concrete step
iff we have:

G(u, v) ∧ InOp(i, j) ∧ G(u′, v′) ∧ OutOp(o, p) (2.10)

Since the relation (2.10) is symetrical between abstract and concrete, we can just as
easily say that the concrete step simulates the abstract step. In general, the two steps
are said to be in simulation.

Definition 2.2 Suppose that S = [ u0 -(i0, OpA,0, o1)-› u1 -(i1, OpA,1, o2)-› u2 … ]
and T = [ v0 -(j0, OpC,0, p1)-› v1 -(j1, OpC,1, p2)-› v2 … ] are abstract and concrete
execution sequences of equal length, either finite or countably infinite, and with the
operation names matching for each operation index r. Then S is a stepwise simula-
tion of T  iff (2.10) holds for each corresponding pair of steps of S and T.

Stepwise simulation plays a pivotal role in relating properties of two systems related
by refinement (as we have introduced it). We review briefly here some other familiar
facts regarding simulation in refinement.

Proposition 2.3 Let Conc refine Abs. Then every concrete execution sequence T
has a stepwise simulation S.

Proof. This is a trivial induction, with (2.1) providing a base case, and (2.2) the in-
ductive step, constructing S = [ u0 -(i0, OpA,0, o1)-› u1 -(i1, OpA,1, o2)-› u2 … ] from
T  as required, with S  and T  of equal length and operation names matching.

Again in the context of a refinement from Abs to Conc, let us define separately rela-
tions on states and transition labels via:

ΘS(u, v) ≡ G(u, v)

ΘL((i, OpA, o), (j, OpC, p)) ≡ InOp(i, j) ∧ OutOp(o, p) (2.11)

Definition 2.4 In the context of (2.11), the Abs transition system strongly simulates
the Conc transition system iff:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ ΘS(u′, v′)) (2.12)

and for all reachable concrete states v:

ΘS(u, v) ∧ v -(j, OpC, p)-› v′ ⇒  (∃ u′, i , o • u -(i, OpA, o)-› u′ ∧
ΘL((i, OpA, o), (j, OpC, p)) ∧ ΘS(u′, v′)) (2.13)

Of course this is nothing but a trivial restatement of (2.1) and (2.2), but expressed in
an automata-theoretic style.  Obviously:

Proposition 2.5 Let Conc refine Abs. Then there is a strong simulation of Conc

by Abs.

Proceeding further, an interesting perspective on refinement is adapted from logic
[van Dalen (1997), Andrews (1986), Hodges (1993)]. A theory T2 in a formal lan-
guage L2 ⊃ L1 is a conservative extension of a theory T1 in language L1, whenever
every L1-theorem in T2 is already a theorem in T1 (that every L1-theorem in T1 is al-
ready a theorem in T2 is normally immediate). We call an extension semiconserva-
tive if the reverse implication need not necessarily hold. We make an analogy be-



9

tween derivations in logical systems and sequences of execution steps in a transition
system, according to the correspondence:

formula —  state

axiom —  initial state

rule of inference of T1 (T2) —  operation of Abs (Conc)

inference step —  execution step

(provable) theory —  (accessible) set of states (2.14)

In the context of refinement, the analogy of a semiconservative extension is the abil-
ity to provide for each execution sequence of the concrete system starting from v0 and
finishing at vf, an execution sequence of the abstract system starting from u0 and fin-
ishing at uf, such that:

G(u0, v0) ∧ G(uf, vf) ∧ Ins(is, js) ∧ Outs(os, ps) (2.15)

holds, where Ins and Outs are suitable relations on the input and output sequences as
a whole. This is a finite simulation property. The analogy is with the semiconserva-
tive rather than the conservative property because the rules of inference, normally
identical in the two logical theories being considered, have as analogues the opera-
tions, which are normally not identical in the abstract and concrete transition systems.

Proposition 2.6 Let Conc refine Abs. Then Conc is a semiconservative extension
of Abs.

The proof is a simple corollary of Proposition 2.3.

What we have called the semiconservative extension property is often introduced as
an abstract definition of refinement. In this general context, unequal length abstract
and concrete execution sequences, where the operation names need not match up
(and the concrete system may possess operations, potentially hidden, not present in
the abstract one), also play a part. See eg. [Abadi and Lamport (1991), Lamport
(1989)]. The notion also forms the approach to refinement espoused in the ASM for-
malism. See eg. [Börger (1999), Börger (1995a), Börger and Schulte (1998), Börger
and Schulte (2000), Börger (1995b), Schellhorn (1999), Schellhorn (2001), Stärk et
al. (2001), Börger and Stärk (2003)]. In specific examples ad hoc techniques are of-
ten required.

3   Shortcomings of Refinement as Specification

Constructor

Having accepted that refinement is often used in a glass box manner to help build up
structure in the contracted model, in this section we will focus on how refinement can
sometimes sell system engineers short in their desire to start building specifications
at as high a level of abstraction as possible.

3.1   Some Technical Pitfalls

We return to the example of (2.3)-(2.4). Suppose for pragmatic reasons that the max-
imum size of the concrete sequence was limited to 10. Then we simply take the re-
striction of (2.4) to sequences with maximum length 10, thus:
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mseq -(n, putC)-› mseq@[n]  ; n::mseq -(getC, n)-› mseq ,

where length(mseq) ≤ 9 (3.1)

The system (3.1) with the retrieve relation (2.5) and obvious initialisations, is a re-
finement of (2.3), because its stp relation is a subrelation of that of (2.4) and (2.2) is
an implication from concrete to abstract steps only. This works because the transition
system on concrete sequences of unrestricted length is genuinely a conservative ex-
tension of the transition system on sequences of maximum length 10 (through an
identity retrieve relation).

However, suppose we wish to develop the system further, to make the operation putC
total on states.  We can do this by adjoining to (3.1) the transitions:

mseq -(n, putC)-› mseq ,   where length(mseq) = 10 (3.2)

In this case the retrieve relation (2.5) causes the refinement to break down, since if
G(mset, mseq) holds with length(mseq) = 10, then |mset | = 10, but after correspond-
ing steps of (2.3) and (3.2), we have length(mseq) = 10 while |mset | = 11.

We could attempt to recover a refinement in this case by altering the retrieve relation
to something like:

G(mset, mseq) ≡    mrng(mseq) = mset ,  if length(mseq) ≤ 9

mrng(mseq) ⊆ mset ,  if length(mseq) = 10 (3.3)

but then the concrete and abstract get operations would break the refinement in the
length(mseq) = 10 case (unless we contemplated changing the abstract get operation).

Going further, we can aspire to make the operation getC total on states too, to give
users feedback in situations where transitions of (3.1) don’t exist:

[] -(getC, EMPTY)-› [] (3.4)

Here refinement breaks down again since there is no abstract transition that corre-
sponds to (3.4) at all. Moreover the alteration of the I/O signature implied by (3.4)
could only ever be contemplated above the contracted model, and is in any case a lit-
tle unusual for an InOp relation (since there is no abstract output corresponding to
EMPTY), spelling more trouble for refinement.

Since refinement is faring badly with respect to minimal attempts to amplify the de-
sign to take into account of reasonable boundary considerations, we may as well do
a proper job on these aspects. So we introduce two new concrete states Uflow and
Oflow to represent the underflow and overflow situations. Now the transitions of putC
and getC are given by (3.1) together with:

mseq -(n, putC, FULL)-› Oflow ,  where length(mseq) = 10  ;

mseq -(getC, EMPTY)-› Uflow ,  where length(mseq) = 0 (3.5)

To recover the system once it lands in one of these states we introduce a resetC oper-
ation with transitions:

Oflow -(resetC, OK)-› []  , Uflow -(resetC, OK)-› [] (3.6)

Since we intend the resetC operation to be only used in response to a situation previ-
ously signalled by a FULL or EMPTY output, we do not make it total on the states of
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the system, (and given the feedback to the user via the FULL and EMPTY, we do not
demand totality for putC and getC in the Uflow or Oflow states either). Clearly the
system consisting of (3.1), (3.5), (3.6) will not be a refinement of the abstract (2.3).

Given our theme of arriving at a contracted model and then refining it to implemen-
tation, since the above cannot be accomodated via refinement, it has to belong to the
above contracted model phases of development. However one can take another view.
We could redo the above in two stages: the first being the refinement of multisets to
finite sequences as noted, the second the imposition of the other alterations. The sec-
ond phase now become a post-refinement model change towards implementation, a
different paradigm to our running one. Since both routes arrive at the same final mod-
el, they ought somehow to be compatible. Looking ahead a little, this will eventually
prove to be the case, via the Tower Pattern, to be introduced in Section 8.

3.2   Aspects of Scale

Obviously the example just discussed is trivially small, and various adjustments
could be made in the already mentioned spirit of reverse engineering to get a refine-
ment if need be. But one of the more insidious aspects of the way that refinement
interacts with the system engineering process concerns system size. Potentially,
many things that are, for small systems, at best not at all noticeable or at worst only
minor irritations, can become for large systems, real impediments to progress. We
highlight two areas.

The first area concerns the glass box side, above the contracted model. Here the use-
fulness of a formal process for specification construction is closely related to how
many of the models that need to be considered in the construction of the system in
question are capable of being encompassed within the formal process: the fewer of
them that can be so encompassed, the less the development is assisted by formal un-
derpinnings.

Regarding this point we can see a marked difference between developments that are
purely within the discrete domain, and those which must take into account the phys-
ical world, with its laws expressed usually in terms of continuous mathematics.

In the discrete world, the mathematics permits direct manipulation of the entities in
play. At worst, one can often enumerate such things as sets and the relations between
them, and this makes the re-assembly of complex systems from more primitive com-
ponents (if not necessarily intuitively simpler ones) more feasible. Using refinement
to build up a complex system from components is thus a more straightforward pros-
pect in such situations, and the main problem that refinement must overcome in these
cases is the unnaturalness of system decomposition which it sometimes forces on de-
velopments, a phenomenon often alleviated to some degree according to the discus-
sion immediately preceding Section 2.1.

For developments that involve physical world models, but which ultimately have to
culminate in discrete computational systems, the prospects for using refinement
throughout the whole development process are much reduced. Typically there is an
abstraction gap that is not surmounted by conventional notions of refinement, be-
tween thinking and model building at the continuous level, and the corresponding ac-
tivity at the discrete level. The potential for formal techniques to assist in keeping the
whole development process mechanically checked (a criterion that gives a formal de-
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velopment process the maximum amount of verifiability, though at quite a price) is
thus much reduced, and this can limit the perceived applicability of formal techniques
in many engineering application areas.

The second area we highlight concerns the black box side, below the contracted mod-
el. Here, the complexity of operations for large systems can be such that the gap be-
tween the contracted model and the implementation itself is fairly small — the con-
tracted model becomes almost a restatement of the implementation in another lan-
guage. This is particularly noticeable when the implementation code contains a lot
of case analysis. Usually the bulk of such case analysis is attributable to system re-
quirements of various kinds, and thus, even if the case analysis is capable of being
introduced stepwise by refinement, it still all belongs in the contracted model. In
such cases, the contracted model becomes more difficult to read and to validate, and
the costs of producing both the contracted model and the implementation manually
and separately may become unacceptably high. (Probably the ideal solution to such
a predicament is to use a tool like the Perfect Developer to generate the implementa-
tion automatically at little cost from the contracted model, as indicated earlier.)

Of course there is no intrinsic harm in having contracted model and implementation
of comparable complexity —it is always useful to have more than one perspective on
a situation, as everyone who enjoys stereoscopic vision would agree— it’s just that it
is more profitable if the contracted model is visibly simpler. In the same vein, the
reverse engineering refered to earlier is not an entirely negative activity —the mental
gymnastics involved in doing it will always lead to a deeper understanding of the de-
sired system— it’s just that there may be more profitable ways of employing the men-
tal effort expended if the abstract model thus generated is far adrift of the system re-
quirements.

3.3   Management Aspects

Aside from the purely technical points indicated above, we note that a further conse-
quence of size is that large developments are not undertaken in a vacuum. They hap-
pen in a context of customers, managers, financial and other stakeholders. Most of
these people are not preoccupied with technicalities, and take a different view of the
intricacies of refinement than do the technical experts. Within the scope of a realistic
development, situations such as the following can arise, all of which impede the suc-
cessful application of refinement in one way or another.

Firstly, the customer may not permit a change in the specification (in order to make
it refinable to the lower level models). The specification document serves several dif-
ferent purposes, including certification and validation, as well as formal develop-
ment. Often a change to the specification would be more costly than getting the for-
mal specialists to work around some perceived refinement limitation.

Secondly, real engineering applications never start from the blank sheet perspective
of textbook or research paper examples and methods. This can make a completely
purist approach to refinement unrealistic in practice.

Thirdly, a technical snag in a refinement development can show up when there is in-
sufficient time left to redo things properly within existing schedules, deadlines and
budgets. In a pure research environment the job would simply be considered unfin-
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ished and publication would be delayed. In an engineering environment, the job must
be completed despite the snag, and engineering compromises become necessary.

Fourthly, even when they are permitted, changes to specifications arising from fail-
ures of refinement can depend on the detailed design route chosen. If a single spec-
ification is targeted at multiple platforms, such changes can easily be incompatible
(eg. consider two concrete versions of the multiset example above —done in a total
correctness framework— featuring different bounds on mseq , say 10 and 20, and the
problem of defining a single abstraction properly refinable to both of them). In such
cases there may be no single abstract model that caters adequately for all the plat-
forms.

Fifthly, specifications are not only used to initiate refinements, but also serve as an
important means of communication between the various parties in a development.
The semiconservative extension structure forced by refinement, may not always or-
ganise the system’s requirements in a way that makes sense to domain experts. If it
does not, then the refinement will not communicate as effectively as it should.

The points highlighted just now and in the previous section, underline the usefulness
of having a wider gamut of formal techniques, capable of addressing concerns that
are vital either higher up the development hierarchy, or bite right at the bottom. Ev-
idently for small systems these phenomena do not arise in a serious way.

4   Retrenchment

Having set out our motivations at some length above, we now come to retrenchment
itself. The challenge in designing retrenchment was to come up with a notion that at
minimum was expressive enough to be able to describe the problematic scenarios in-
dicated above, while at the same time allowed as much meaningful contact with re-
finement theories as was practicable. Noting that the simulation based POs of typical
refinement theories provide a very natural way of understanding the relationship be-
tween two models, retrenchment was designed by asking what modifications to these
POs would address the stated goals. The approach fixed on, was to enrich the rela-
tionship between models from one described by POs involving a single nontrivial re-
lation (the retrieve relation G(u, v)), to one described by POs involving additional re-
lations: the within relation POp(i, j, u, v) and the concedes relation COp(u′, v′, o, p; i,
j, u, v). The former appears as a constraint in the antecedent, while the latter weakens
the consequent.

It is this latter weakening aspect that distinguishes retrenchment most strongly from
all previous embellishments of the refinement notion. More generally, the within and
concedes relations, and their intended purpose, characterise the retrenchment con-
cept, whatever formal framework it might be embedded in.

Note that the within relation P involves the inputs as well as the states. This allows
change of input representation and mixing of state and input information on the pre-
side of a transition. Likewise the concedes relation C involves the outputs and allows
change of output representation and mixing of state and output information on the
post- side of a transition. Moreover before-states and inputs may appear in C too (af-
ter the semicolon, which in this instance is just an alternative punctuation), allowing
a richer set of possibilities to be expressed by the concedes relation.
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4.1   Basic Concepts of Primitive Retrenchment

Now we elaborate retrenchment in our transition system framework. As before we
assume abstract and concrete operation name sets OpsA and OpsC. This time in-
stead of equality we assume merely an inclusion OpsA ⊆ OpsC so the concrete level
may contain additional operations. We point out that any such additional operations
are not regarded as hidden, as they were at the end of Section 2.1.

To stay close to refinement, retrenchment is characterised by two POs. The initiali-
sation PO is just as for refinement:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (4.1)

while the operation PO reads:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧ (G(u′, v′) ∨ COp(u′, v′, o, p; i, j, u, v))) (4.2)

Note that the latter only makes sense for those operation names Op, common to both
systems, and the subscripts on POp and COp indicate that each common Op can have
a different P and C.

The POs define retrenchment in our framework; which is in contrast with the situa-
tion for refinement where the corresponding statements are derived from more ab-
stract semantic or correctness considerations. We advance the following points in
support of this —ultimately heuristic— design for the retrenchment operation PO.

Let us re-examine refinement for a moment. In our transition system framework, the
refinement PO (2.2) has one purpose, i.e. to ensure that no concrete step does any-
thing that is not compatible with some abstract step. The rationale for this is that
(from a black box perspective) no user of the system should be able to notice that it
is not the abstract system doing the work. The ∀Conc-step∃Abs-step… structure of
(2.2) makes sure that all concrete steps toe the line.

Retrenchment does not have this duty. It recognises that the abstract and concrete
systems are incompatible in the strict sense that refinement demands, and seeks to il-
luminate the structure of the concrete system from the perspective of the abstract one
in a glass box manner.

Regarding the issues that such a PO ought to cover, firstly we ought to allow many-
many relationships between those abstract and concrete steps that are to be related.
Secondly, for ease of mechanisation, and for ease of comparison and integration with
refinement, it is useful to restrict to a standard shape of statement. Thirdly, incom-
patible models may contain parts that we do not need to relate, so we conjoin the
within relation P to the rest of the antecedent, delimiting the reach of the PO as re-
quired. Permitting the abstract and concrete before-states and the abstract and con-
crete inputs to occur, allows fine tuning of the before-configurations we wish to speak
about, above and beyond those identified by the retrieve relation G alone. Fourthly,
incompatible models may contain parts that we need to relate, despite the fact that
they do not strictly speaking re-establish the retrieve relation G, so we weaken the
consequent by disjoining the concedes relation C to the retrieve relation G. In C, we
permit not only the abstract and concrete after-states and outputs to occur, but also
the before-entities, for greater expressivity. Most importantly, the disjunction allows
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deviations from strictly ‘refinement-like’ behaviour to be expressed. The the form of
the operation PO (4.2) supports all of these things.

Of course the form (4.2) is not the only shape that satisfies all these criteria. Even if
we fix on an overall ∀–∃–… form for the PO, there are still two possibilities to con-
sider, namely ∀Abs-step∃Conc-step(G∨C) and ∀Conc-step∃Abs-step(G∨C). To il-
lustrate the advantages of the choice made, we discuss both of these in turn.

If we examine the ∀Abs-step∃Conc-step(G∨C) form, we must consider four things.
Firstly, this form resembles a refinement PO from concrete to abstract systems, espe-
cially so if the effect of P and C is to strengthen applicability criteria and weaken the
after-state criteria in the passage from abstract to concrete. Unfortunately, some of
the difficult modelling situations we have to consider, such as passing between con-
tinuous and discrete models, are no better addressed by the opposite of refinement
than by refinement itself, so no advantage is gained by this departure from the refine-
ment-like form. Secondly, the ∀Abs-step part forces us to say something about all
possible abstract steps. In practice there may be many of these that are irrelevant to
the more definitive concrete system (see Section 9.2 for an example); the necessity of
mentioning them, or specifically excluding them via the P clause, would bring an un-
welcome complication. Thirdly, this form does not make us say something about all
possible concrete steps, limiting its usefulness as a tool for the construction and de-
scription of the concrete system. And fourthly, in retrenchment, we do not have a
negative criterion that we must ensure the abstract system fulfils, as was the case for
concrete systems in refinement. All of these considerations mitigate against adopting
the ∀Abs-step∃Conc-step(G∨C) form.

So we turn to the ∀Conc-step∃Abs-step(G∨C) form. Here we consider three points.
Point 1: we are not required to say something about all abstract steps, which in view
of the remarks above is at least not detrimental. Point 2: we are required say some-
thing about all concrete steps, which helps to enhance the PO as a mechanism for the
construction and description of the concrete system, which we thus regard as benefi-
cial. In particular we must consider for any concrete step, whether it should be: (a)
excluded from consideration, because P is not valid there (or, to put it another way,
that we ought to ensure that P is constructed in such a way that for such steps this is
indeed the case); (b), included, but requires essential use of C to satisfy the PO; (c),
included, but does not require C. Point 3 follows on from (c). In realistic practical
cases, there may well be substantial subsets of the state and I/O spaces in which it is
sufficient for P and C to be trivial. In such places the truth of the refinement PO fol-
lows from the truth of the retrenchment PO (see comments following (4.8) below).
When this arises, we are justified in viewing retrenchment as being ‘like refinement
except round the edges’, i.e. like refinement for the majority of the state and I/O spac-
es, but not quite everywhere. In this regard, the fact that the retrenchment PO reduces
to the refinement PO (and not to something else, as it would with the preceding form),
is something we see as a real plus. The identity of the refinement and retrenchment
initialisation POs further enhances this view.

4.2   A Simple Example

We return to the example we left in Section 3.1, wherein refinement foundered and
show how it fits conveniently enough into the retrenchment framework.  We recall:

{putA, getA} = OpsA ⊆ OpsC = {putC, getC, resetC}
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U = M(NAT), IputA
 = NAT, OputA

 = ∅, IgetA
 = ∅, OgetA

 = NAT,

V = {ll ∈ seq(NAT) | length(ll) ≤ 10} ∪ {Uflow, Oflow},

JputC
 = NAT, PputC

 = {FULL}, JgetC
 = ∅, PgetC

 = NAT ∪ {EMPTY},

JresetC
 = ∅, PresetC

 = {OK} (4.3)

Reprising the transitions:

mset -(n, putA)-› mset+{n}

mset+{n} -(getA, n)-› mset (4.4)

and

mseq -(n, putC)-› mseq@[n] if length(mseq) ≤ 9

mseq -(n, putC, FULL)-› Oflow if length(mseq) = 10

n::mseq -(getC, n)-› mseq if length(mseq) ≤ 9

mseq -(getC, EMPTY)-› Uflow if length(mseq) = 0

Oflow -(resetC, OK)-› []

Uflow -(resetC, OK)-› [] (4.5)

The retrieve relation will be the original and transparent:

G(mset, mseq) ≡  (mrng(mseq) = mset) (4.6)

with the two values Uflow, Oflow being outside the range of G. The initialisations are
once more:

InitA(∅)   and InitC([]) (4.7)

It remains to give the within and concedes relations for putC, getC.  These are:

Pput(i, j, mset, mseq) ≡  (i = j ∧ mseq ∉ {Uflow, Oflow})

Cput(mset′, mseq′, o, p; i, j, mset, mseq) ≡
(p = FULL ∧ mseq′ = Oflow ∧ length(mseq) = 10 ∧ mset′ = mset+{i})

Pget(i, j, mset, mseq) ≡  (mseq ∉ {Uflow, Oflow} ∧ length(mseq) ≠ 0)

Cget(mset′, mseq′, o, p; i, j, mset, mseq) ≡ false (4.8)

We remark first of all that these are by no means unique. For instance we could omit
the terms mseq ∉ {Uflow, Oflow} from Pput and Pget as they are are a consequence of
the truth of G, which is assumed to hold anytime either of Pput or Pget is employed in
the retrenchment PO. Likewise we could omit various of the clauses from Cput with-
out destroying the truth of the PO. Retaining all these clauses however is more in-
formative from a design description point of view. Note also that if we strengthened
Pput with the clause length(mseq) ≤ 9 then we could have reduced Cput to false: we
would have excluded from consideration the part of putC that behaves badly, at the
cost of having diminished the scope of the relationship between the models that we
had described. Since the concession trivialises in such a case, and the consequent of
the retrenchment PO is no longer nontrivially disjunctive, we are justified in regard-
ing the retrenchment as having reduced to a form of refinement. In fact it would have
reduced to an instance of conditional refinement (described for example in [Broy and
Stølen (2001)]) for putC. This illustrates our contention above that retrenchment is
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usefully imagined as being ‘like refinement except round the edges’. Note the differ-
ent behaviour of the retrenchment PO at the points that getC and putC are about to
behave badly. When length(mseq) = 10, both concrete and abstract put operations
have something to do; the concedes relation describes the incompatibilities that en-
sue. However when length(mseq) = 0, the abstract get operation has no step; all that
the retrenchment PO can do is to exclude those situations from consideration. One
cannot expect the retrenchment PO to speak about parts of either system that have no
counterpart in the other one.

The previous point emphasises that what does not fall within the scope of the re-
trenchment PO can be just as important as what does, and requires equal vigilance
when retrenchment is used. In other words, a retrenchment must be thoroughly val-
idated in the context of the relevant application domain. The discussion of glass box-
es in Section 2.2, and the (a)-(c) taxonomy hinted at at the end of Section 4.1, all al-
lude to the same thing. In particular, scrutiny of the domains and ranges of the vari-
ous relations that make up a particular retrenchment constitutes the bare minimum
that such a validation activity should consider.

4.3   Output Retrenchment

In the preceding example, how are the outputs of getA and getC related for steps that
re-establish the retrieve relation? They are equal, but nothing in (4.8) gives any hint
about this. The shortcoming is easy enough to fix. We can replace the concedes re-
lation Cget of (4.8) by:

Cget(mset′, mseq′, o, p; i, j, mset, mseq) ≡  (o = p) (4.9)

We see that the inclusiveness of the disjunction in (4.2) allows both disjuncts to be
true, and thus allows C to cover the salient facts about the outputs in the cases when
both steps complete normally. In general, if all that is needed is some container for
holding relevant facts about the development step being performed, then C will act as
a suitable one, and the earlier primitive form of retrenchment is sufficient. However
it is often useful to separate the normally completing cases from the others. This aris-
es when considering theoretical matters, and also when considering tool support for
retrenchment. For this purpose we introduce the output relation OOp(o, p; u′, v′, i, j,
u, v) which will be conjoined to G(u′, v′) in the PO, generating the output form of re-
trenchment. As in C, the semicolon merely separates the most salient variables from
others that are permitted, which in the case of O are o and p only since G(u′, v′) is
there to speak for the after-states, (though u′, v′ can also occur in O if complex joint
properties of outputs and states need to be expressed).  The POs become:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (4.10)

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

COp(u′, v′, o, p; i, j, u, v))) (4.11)

Now instead of putting (o = p) in the Cget as in (4.9), we can put it in Oget to arrive at
a cleaner account of the development step in the example.

Note that there is no essential difference in expressivity between (4.2) and (4.11) if
one configures the primitive retrenchment concession in the form Cprim ≡ ((G′ ⇒
OOp) ∧ (¬G′ ⇒ etc)). However (4.11) is much more convenient when the separation
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of cases is desirable. Note further that the discussion following (4.2) justifying the
shape of the PO applies unchanged for output retrenchment.

4.4   Previous Work

The authors are certainly not the first ones to raise concerns about the restrictiveness
of refinement, and a number of extant works are related to the ideas in this paper. For
instance, an early mention of the de facto reverse engineering of abstract levels from
concrete ones is [Swartout and Balzer (1982)], while our distinguishing the world
above the contracted model from the one below is related to the ‘open-closed princi-
ple’ of [Meyer (1988)].

The use of additional predicates during the refinement process appears in the assump-
tion/commitment approach to formal development; see eg. [de Roever et al. (2001)].
The rely/guarantee method of [Jones (1983)] is a specific model of this. It also uses
two predicates per operation, except that the consequent is conjunctive not disjunc-
tive as in retrenchment. More directly comparable is the work on clean termination
[Coleman and Hughes (1979), Blikle (1981)], dealing with the discrepancy between
finite hardware oriented semantic domains and infinite idealised ones using proof
theoretic techniques. This addresses one of the issues that makes retrenchment use-
ful. Related to these papers is the thesis of Neilson [Neilson (1990)], which tackles
the same problem by observing that the infinite idealised domains usually arise as
convenient limits of the finite ones, and thus the idealised version of refinement arises
as the limit of a finite version. This line of investigation leads to the notion of accept-
ably inadequate designs, and an interchange in the order of two quantifiers takes us
from idealised refinement to finite refinement. Around the same time [Owe (1985),
Owe (1993)] proposed program development using partial functions and a particular-
ly convenient logic, prompted by finiteness and definedness considerations. Related
to this approach is a body of work on partiality in algebraic specification eg. [Broy
and Wirsing (1982), Broy and Wirsing (1983), Kamin and Archer (1984), Broy
(1986), Goguen and Meseguer (1992)].

Shifting focus a little, retrenchment’s ability to mix I/O and state between levels of
abstraction, and specifically to change I/O representation, was anticipated in a refine-
ment context in [Hayes and Sanders (1995)]. Of course this only makes sense when
refinement is being used in a glass box manner; below the contracted model one must
forbid change of I/O representation, which would otherwise be observable. More re-
cently [Boiten and Derrick (1998a), Stepney, Cooper and Woodcock (1998),
Mikhajlova and Sekerinski (1997), Derrick and Boiten (2001)] also discuss I/O re-
finement, designed to incorporate changes of I/O representation, while [Boiten and
Derrick (1998b)] discuss grey box refinement, voicing concerns related to ours.

The notion of observability itself has received more attention within the context of
refinement in recent years, partly as a reaction to some of the issues raised here, noted
also by others, partly in the search for greater flexibility. This allows more general
refinements than we have (for expository convenience) admitted in this paper. The
results of such refinements are processed through the observation machinery, and this
determines the extent to which the phenomena playing a part in the refinement
(states, I/O, or transitions) are to be regarded as corresponding to one another. See
[Liskov and Wing (1994), Wehrheim (2003), Derrick and Boiten (2003), Clark et al.
(2004)] for a small selection of relevant work. Such developments can admit more
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intimate contacts between refinements and retrenchments, which however lie beyond
the scope of this paper.

The need to occasionally violate a previously postulated retrieve relation, beyond
simply coping with the dissonance between finite and infinite domains, has been ad-
dressed in a couple of works. In [Liu (1997)], the concept of evolution addresses this
by demanding that the pre- and post- conditions of the abstract specification in a de-
velopment step be semantically equivalent to subformulae of those at the more con-
crete level. Unfortunately since ((P∧Q)∨(P∧¬Q)) is equivalent to P for any Q, the
‘is a subformula of something equivalent to’ property enables us to go from any Q to
any P uncritically, tending to rob the evolution notion of semantic bite. Of course the
same can be said to apply to retrenchment if one makes the within and concedes re-
lations strong enough. However in retrenchment, because these relations form part
of the definition of the retrenchment step, in making these clauses strong, one is being
explicit about just how extreme the relationship between the models is. And besides,
in retrenchment there is a PO to discharge, which offers some scrutiny of the process.

By contrast, in [Smith (2000), Smith and Fidge (2000)], building on the work of [Ma-
hony (1992)], the concept of realisation approaches a similar challenge by effectively
permitting the substitution of variables in a specification by fresh ones satisfying new
properties. Compared to retrenchment, realisation wins a little and loses a little. It
wins, since one can discover the fate of any property Π satisfied by the original spec-
ification, simply by applying the substitution to Π. It also loses however, since the
substitution effectively conjoins fresh properties, losing the disjunctive character of
the retrenchment PO. Moreover, being a syntactic mechanism, it implies that both
old and new specifications are statements in the same language, and thus must have
models within the same family of domains, limiting expressivity to some extent. Re-
trenchment, being rooted in the semantic arena, does not have the limitation indicated
—see Section 9.2 for an example where the abstract and concrete domains are quite
different— but the price for this is that tracking properties between the models be-
comes entirely nontrivial.

4.5   Retrenchment, Functional Requirements, Model Evolution

Thus far, retrenchment has been presented as a technique for addressing the problems
of ‘almost-refinement’, which was its original aim. As with any theoretical structure
though, one can forget its origins, and just dispassionately ask what purposes it might
lend itself to. That there might be interesting answers to this other than the original
one, is hinted at by the fact that retrenchment is couched in logical terms via its prin-
cipal PO, whereas the phrase ‘almost-refinement’ has overtones of nearness and far-
ness that lie beyond the reach of a first order statement like (4.2) or (4.11). So if re-
trenchment can address ‘near-refinement’ it should also be able to address ‘nowhere-
near-refinement’.

If a system Abs and a system Conc have operations that we identify (by matching
their names for example), and there is a relation between their state spaces that we
can identify as a retrieve relation, then we can use the mechanics of the retrenchment
PO to express a provable relationship between the two models. This follows because
in extremis, we can make the within relation false —called the trivial retrench-
ment— obviating the need to prove anything at all. See Section 6. Of course, useful
retrenchments arise from nontrivial within and other relations.
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Such observations take retrenchment squarely into the fold of functional require-
ments engineering and model evolution. In this arena, retrenchment can express
properties involving steps of the two models, which though fairly general, still need
to be provable via the PO. Once such properties have been identified, they then au-
tomatically benefit from the properties of retrenchments in general. Thus retrench-
ment brings to the activities of requirements engineering and model evolution a de-
gree of mathematical rigour that can prove to be highly desirable. See for example
[Banach and Poppleton (2001), Banach and Poppleton (2003)]. Moreover there is no
hard boundary between the ‘near-refinement’ and ‘nowhere-near-refinement’ cases
— such a situation as the movement from continuous modelling to discrete modelling
is firmly intended as near-refinement, but its mathematical embodiment is rather clos-
er to nowhere-near-refinement.

Regardless of whether it is deployed to address near-refinements, or nowhere-near-
refinements, we reiterate that retrenchment must be performed with the active in-
volvement of the human developers, i.e. it must be properly validated in the applica-
tion context. Otherwise the potential for unrestrained model change that it permits,
is just as prone to take a development in unprofitable as in profitable directions. Fi-
nally, it is worth noting that the human judgement aspect plays a powerful role in re-
finement also.6 It’s just that the requisite understanding has, with experience, be-
come subsumed under ‘good practice’, enhancing the black box aspects of refine-
ment noted above.

5   Simulation and Retrenchment

In the context of retrenchment, simulation turns out to be a significantly different
phenomenon compared with the refinement situation which was illustrated in Section
2.3.  First we say what simulation for retrenchment is.

Definition 5.1 With the usual notations, let u -(i, OpA, o)-› u′ be an abstract step and
v -(j, OpC, p)-› v′ a concrete step. Then the abstract step simulates the concrete step
iff we have (for primitive retrenchment):

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ∧ stpOpA

(u, i, u′, o) ∧
(G(u′, v′) ∨ COp(u′, v′, o, p; i, j, u, v)) (5.1)

or for output retrenchment:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ∧ stpOpA

(u, i, u′, o) ∧
((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u′, v′, o, p; i, j, u, v)) (5.2)

As earlier for refinement, the relations (5.1) and (5.2) (for primitive and output re-
trenchment respectively) are symmetric, and the two steps are said to be in simula-
tion.

Since all the relations involved in the POs (4.2) or (4.11) are in principle partial, and
the consequents of these POs contain the concedes relation disjunctively while the
antecedents contain the within relation, the prospect for inductively deriving a step-

6. Consider a concrete system built out of two copies of an abstract system, and duplicating all
steps of the abstract system in both copies, in lockstep. Technically, this gives a nontrivial and
unimpeachable refinement, but no one would regard it as a useful one.
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wise simulation result like Proposition 2.3, that establishes (5.1) or (5.2) for each cor-

responding pair of steps, is gravely wounded. This blocks a standard route towards

the semiconservative extension property, and hence a mechanism for relating system

properties at the two levels.

One can overcome this to an extent by imposing additional restrictions on the two

systems in question. In [Banach and Poppleton (2000a)] there are some examples of

this approach worked out in a formulation of retrenchment for the B-Method. Al-

though such an approach can succeed technically, the generic character of the restric-

tions that are imposed tends to limit the usefulness of the results obtained, since they

tend to be insensitive to the ‘like refinement except round the edges’ character of

many practically relevant retrenchment scenarios. Thus the breakdown of the stand-

ard proof strategy for sequential compositions of retrenchment steps prompts a reap-

praisal of the role of simulation in retrenchment.

In retrenchment, the view of simulation as a symmetrical relation between Abs and

Conc steps is more appropriate than the asymmetrical one arising from the retrench-

ment POs (4.2) and (4.11). Since retrenchment is primarily aimed at making quanti-

tative the ways in which Abs and Conc fail to correspond cleanly to one another, it

is of equal interest to see how properties of Abs do or do not translate to Conc, as it

is to see how properties of Conc do or do not translate to Abs. Thus given a pair of

steps s in Abs and t in Conc which are in simulation, then s may or may not have a

step s′ that can follow it7 which is also simulable, and if there is such an s′ and it is

simulated by t′ say, there is no guarantee that any such t′ can be concatenated with t

to form an execution fragment. Similar remarks apply if one starts the argument with

t instead of s. And both arguments can be repeated in the reverse direction, consid-

ering predecessor steps of s and t. This variety of possibilities gives rise to a large

number of unconventional simulation scenarios.

7. i.e. [ s, s′ ] is an execution fragment.

{1} {1, 2}∅ {1…10}…

[1] [1, 2][ ] [1…10]…

{1…11}

Oflow

{5, 7}∅ …

[5, 7][ ] …

{5}

[5]

Fig. 1.  A punctuated simulation scenario.

{1}∅ {1…10}…

[1][ ] [1…10]…

{1…11}

[1..2..11] …

{3…11}

[3…11]

{1..2..11}

Oflow

…

Fig. 2.  Another punctuated simulation scenario.
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Example 5.2 Consider the example of Section 4.2, which admits the two scenarios
illustrated in Fig. 1 and Fig. 2. In Fig. 1 after initialisation, naturals from 1 to 10 are
added to mset and mseq. Upon attempting to add 11, whereas there is no problem at
the abstract level, the concrete level goes into the Oflow state. Next, the concrete sys-
tem invokes its resetC operation in order to reinitialise; this is the thick transition in
Fig. 1. This has no counterpart in the abstract system and the simulation breaks down
at this point. Once the concrete system has reinitialised it is once again simulable and
a simulation can be constructed as shown. Note that there is no connection between
the abstract system’s {1…11} state and the ∅ state which initiates the next portion
of the simulation; it is as if the abstract system had quantum tunnelled to its initial
state. This is because we decided to leave out of the abstract system any notion of
resetting, to keep its description small. One thing that the abstract system is not doing
in the gap between {1…11} and ∅, is stuttering [Abadi and Lamport (1991)].

In Fig. 2 after starting in like fashion with the abstract system again reaching
{1…11}, the abstract system this time getAs the element 2 from the multiset, leaving
{1..2..11}. One concrete sequence that corresponds to {1..2..11}, is [1..2..11], but
neither this, nor any other concrete sequence corresponding to {1..2..11} is connect-
ed in any way with any of the preceding concrete sequences, nor indeed with the
Oflow state, so this time there is a simulation hole that lies within the concrete system.

The cases in Example 5.2 show that while conventional inductive reasoning based on
an invariant cannot hope to control such situations, reasoning stategies more con-
sciously targeted at termination, and based on the decrease of a suitable well founded
variant, stand more chance on a case by case basis. This is an indication of the kind
of ad hoc reasoning mentioned above.

Generalised simulation scenarios of the kind just illustrated are called punctured sim-
ulations; some early results on punctured simulation appear in [Banach and Popple-
ton (1999a)] in the context of the B-Method. It turns out that the apparently rather
anarchic punctured simulation landscape enjoys a surprisingly rich algebraic theory.
See [Banach (2003)] for details.

Finally, it is fair to say that the simulation relation between two systems in a retrench-
ment captures the essence of what is being expressed by the retrenchment data (i.e.
the within, concedes and other relations). In [Banach and Cross (2004), Banach and
Bozzano (2006)], fault trees are mechanistically extracted from the simulation rela-
tion of a suitable retrenchment, designed to capture the difference between an ‘ideal’
and a ‘faulty’ version of a system. It is conjectured that other analyses can be applied
to the simulation relations of appropriate types of retrenchment, to give retrenchment
based accounts of many more system engineering situations, especially of the no-
where-near-refinement kind.

6   Retrenchment and Refinement Default Relationships

In this section we record some rather simple results on how retrenchment and refine-
ment touch on one another. These results are in a sense like fenceposts, at the periph-
ery of a territory in the interior of which interesting and practically useful retrench-
ments and refinements reside.

Proposition 6.1 With the usual notations, let G and {InOp, OutOp | Op ∈ Ops}, de-
fine a refinement from Abs to Conc. Then for any {POp, OOp, COp | Op ∈ Ops} such
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that for all Op ∈ Ops, POp ⇒ InOp and OutOp ⇒ OOp, G and {POp, OOp, COp | Op
∈ Ops} define a retrenchment from Abs to Conc, called a retrenchment-extension
of the refinement.

Proposition 6.2 With the usual notations, let G and {POp, OOp, COp | Op ∈ Ops}
define a retrenchment from Abs to Conc, such that for all Op ∈ Ops, POp ≡ (i = j),
OOp ≡ (o = p), and COp ≡ false.  Then the retrenchment reduces to a refinement.

Definition 6.3 With the usual notations, let G and {POp, OOp, COp | Op ∈ Ops} de-
fine a retrenchment from Abs to Conc, such that for all Op ∈ Ops, POp ≡ false and/
or COp ≡ true.  Then the retrenchment is called a trivial retrenchment.

Proposition 6.4 With the usual notations, let Abs and Conc be two systems with
OpsA ⊆ OpsC, let G be a retrieve relation between their state spaces, and let {POp(i,
j, u, v), OOp(o, p; u′, v′, i, j, u, v) | Op ∈ OpsA} be arbitrary relations in the variables
stated.  Let {PDef

Op, CDef
Op | Op ∈ OpsA} be given by:

PDef
Op(i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧

(∃ u′, o, v′, p • stpOpA
(u, i, u′, o) ∧ stpOpC

(v, j, v′, p))) (6.1)

CDef
Op(u′, v′, o, p; i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p) ∧

¬ (G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) (6.2)

Then G and {PDef
Op, OOp, CDef

Op | Op ∈ OpsA} define a retrenchment from Abs to
Conc, called the default retrenchment from Abs to Conc.

The default retrenchment embodies the observation that ‘retrenchment is (more or
less) able to relate any pair of systems’. While true as far as it goes, such a statement
tends to disregard the fact —emphasised above— that retrenchment is useful only
when undertaken in a glass box manner. In this sense, retrenchment is analogous to
natural language. The fact that one can in principle babble incoherently, does not de-
tract from the usefulness of purposeful speech.

7   Notions of Correctness

Up to now, for clarity, we have remained in a partial correctness framework, which is
to say that the notion of retrenchment we have developed, has been an extrapolation
from a notion of refinement in which the relationship between abstract and concrete
operations has been characterised by the implication (2.2) and nothing more. Unfor-
tunately this approach admits a concrete model without any transitions at all, which
is unsatisfactory for a black box version of refinement. To address this, various no-
tions of total and general correctness have been developed in the refinement literature
over the years.

For instance [de Roever and Engelhardt (1998)] cover the most commonly encoun-
tered positions on the partial and total correctness frameworks from a contemporary
perspective. Earlier [Nelson (1989)] gave an accessible survey of a variety of ap-
proaches before detailing his own version of events. We also mention [Dijkstra and
Scholten (1990), Hehner (1993), Abrial (1996), Hoare and Jifeng (1998), Back and
von Wright (1998)] which describe program development methodologies of this gen-
re, and we recall that the more industrially targetted Z/VDM/RAISE techniques
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[Spivey (1993), Woodcock and Davies (1996), Derrick and Boiten (2001), Jones
(1990), Fitzgerald and Larsen (1998), Nielsen et al. (1989)] also have their perspec-
tives on these issues. Of course the preceding citations are by no means exhaustive.
Among other works which are relevant we mention [Doornbos (1994), Strulo (1996),
Derrick et al. (1996), Dunne et al. (1998), Dunne (2001a), Morris and Bunkenburg
(1998), Morris and Bunkenburg (2000), Miarka et al. (2000), Dunne (2001b)].

Given the proliferation of subtly different approaches, the question arises as to how
retrenchment ought to relate to them. For instance, ought there to be a separate ver-
sion of retrenchment for each individual formulation of refinement, or not? A
number of clues to help answer this question suggest themselves.

Firstly, and most importantly, in the context of refinement, correctness (of a more
concrete model) is exactly the opposite of abstraction, and any specific notion of re-
finement amounts to a precise definition of these two concepts. That there is more
than one such definition to choose from, simply attests to the fact that what is meant
by eg. abstraction in the informal human domain (even when focused on the kind of
system we deal with) can be rather hazy, and does not necessarily correspond to any
one of the precise definitions. So, since retrenchment is concerned with issues that
require a departure from refinement, there is no a priori need for retrenchment to re-
flect correctness notions in a way that is obviously recognisable from refinement, i.e.
correctness (in the above technical sense) is not an issue per se for retrenchment.
Pursuing this line of argument suggests that it is only when refinement and retrench-
ment need to interact, that the notion of correctness in force for refinement should im-
pact the retrenchment.

Secondly, one way or another, the various approaches to correctness in refinement
have in common an inclusion of a set of ‘good’ concrete transitions into appropriate
abstract transitions, the inclusion being mediated by a suitable retrieve relation or its
analogue. There are few if any disagreements about the properties of these good tran-
sitions among the various approaches, and this inclusion has as its retrenchment
counterpart the operation PO (4.2) or (4.11). The differences between the various ap-
proaches concern the less good transitions. These are typically transitions that do
not, in some sense, initiate or terminate properly, or that are not adequately enough
related to the good transitions in the other model of the refinement. Given its appli-
cation oriented remit, retrenchment ought to be focused predominantly on the impec-
cably behaved transitions, since it is those that will make up real systems. This in-
sight offers an Occam’s Razor for cutting through the proliferation of possibilities.

Thirdly, aside from the inclusion between the good transitions, notions of correctness
usually involve sets or predicates in the before-values associated with operations:
these typically have names such as applicability, termination, feasibility, etc. and
these figure in the POs of the specific theory.8 The good transitions are those which
satisfy all the relevant criteria pertaining to these sets or predicates, in contrast to any
remaining possibilities admitted by the theory. In being focused on the good transi-
tions, the transitions that a retrenchment speaks about ought thus to satisfy all the rel-
evant criteria too.

8. It is worth noting that for many theories, the detailed form of the POs inhibits straightfor-
ward simulation results such as Proposition 2.3.
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On the above basis, we can formulate a widely applicable general policy for how re-
trenchment interacts with a broad class of correctness notions.

Suppose that we have a model of computation endowed with a notion of correct re-
finement that can be expressed using a number of predicates θ1, θ2 … θn (aside from
the inclusion of the good transitions). For a given system we assume that these will
be predicates in the before-values. When a retrenchment between systems Abs and
Conc needs to interact with such refinements we stipulate that for each Op:

G(u, v) ∧ POp(i, j, u, v) ⇒ θA,1(u, i) ∧ … ∧ θA,n(u, i) ∧
θC,1(v, j) ∧ … ∧ θC,n(v, j) (7.1)

must hold, where θA,1 … θA,n and θC,1 … θC,n are the predicates for the abstract and
concrete system respectively. This says that those concrete transitions which satisfy
the antecedent of the retrenchment PO will automatically be in the domain of ‘good’
transitions (and analogously for the relevant abstract transitions). Experience has
shown that the principle (7.1) leads to clean interactions between retrenchment and
refinement, in particular in the case of the Z notion of correct refinement [Jeske
(2005)]. Note however that (7.1) differs from (and is intended to supersede) the ear-
lier approach to correctness in [Banach and Poppleton (1998)].

A side effect of the principle (7.1) is that it encourages (even if it cannot guarantee)
that the notion of simulation arising from a retrenchment (i.e. (5.1) or (5.2)), coin-
cides with the corresponding notion arising from the relevant notion of refinement.
Thus, if some particular instance of (5.1) or (5.2) for a pair of abstract/concrete steps
requires the validity of the concession in order to make (5.1) or (5.2) valid, then it is
likely that such a simulation instance does not coincide with a refinement simulation
instance. However it may be possible that such a retrenchment simulation instance
can be preceded by one or more retrenchment simulation instances in which the re-
trieve relation is re-established, to form a simulation between two fragments. For
these preceding instances, the truth of (7.1) makes it more likely that they also satisfy
the criteria for being refinement simulation instances.

8   Other Technical Issues for Retrenchment

Above we have discussed a few of the technical issues that arise with retrenchment,
and without going into a great deal of depth. In this section, we briefly indicate a se-
lection of other important issues that will be dealt with elsewhere. The list is by no
means exhaustive.

Composition Mechanisms Viewed purely as data structures, retrenchment is a rich-
er one than refinement since it contains G, POp, OOp, COp, whereas refinement has
only G, (supplemented by suitable InOp, OutOp relations where necessary). Thus one
can anticipate a wide variety of composition mechanisms for retrenchment, many of
which trivialise when restricted to the refinement case. The presence of the disjunc-
tion in the consequent of the retrenchment PO necessitates care in defining composi-
tion mechanisms in order to assure associativity. These issues are explored in [Ba-
nach et al. (2004)].

Stronger Compositions The presence of the disjunction in the retrenchment PO to-
gether with the distributive law used in extracting composition mechanisms, can eas-
ily lead to a rapid proliferation of unproductive cases in a composed C. Judicious
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strengthening of the output and concedes relations by information from the PO ante-
cedent can control these effects; however associativity is made more difficult thereby.
For vertical composition, these matters have been studied in some depth in [Banach
and Jeske (2002), Banach and Poppleton (2003)].

General Retrenchments In this paper we examined primitive and output retrench-
ments, but there is no reason to not consider other propositional shapes for the PO
consequent, nor indeed for its antecedent. General retrenchment is the study of these
more flexible retrenchment techniques, potentially more suited to specific application
areas where specific kinds of design information deserve to be singled out in the
propositional structure of the adopted PO. Some easy cases have been studied, eg.
sharp retrenchment, with consequent shape ((G ∨ C) ∧ V), [Banach and Poppleton
(1999b)]. The facts for sharp output retrenchment, with consequent shape (((G ∧ O)
∨ C) ∧ V) can easily be inferred. Associativity of composition for the POs in the gen-
eral case is the major technical challenge.

Retrenchment and Refinement Interworking, and the Tower Pattern In order to
gain the benefit of the strengths of both techniques (reasoning control in refinement,
expressive model evolution in retrenchment), a theory of their interworking is need-
ed. This considers firstly compositions of retrenchments and refinements, and allows
various system design problems to be formulated as algebraic ones; for example how
to translate a previously constructed refinement development through an evolution of
one of its models described via a retrenchment. Such problems have been studied in
[Banach (2000), Jeske and Banach (2002)], and most recently and comprehensively
in [Jeske (2005)]. The technical details can get surprisingly arduous, but they ulti-
mately lead to the Tower Pattern, a commuting rectangular grid of (horizontal) re-
trenchments and (vertical) refinements, in which any path between two points repre-
sents the same retrenchment. This is a very widely applicable scheme for using re-
trenchment to bridge between refinement developments of an evolving system
definition, or between refinement developments of the same system definition that
take differing levels of real world detail into account. The fact that the grid com-
mutes, yields compatible views of the same evolution step as being either: a high lev-
el design change compatibly propagated down through levels of refinement, or: a low
level change for implementability, propagated up through levels of refinement to the
highest level of abstraction. The mini development of Section 3.1 could be recast in
this way; see Section 9.3 for a more extensive example.

Behavioural and Temporal Properties In the face of the failure of the standard
simulation theoretic techniques for addressing behavioural properties that are en-
joyed by refinements, the raw simulation relation has to be studied in an ad hoc man-
ner. Once this is available, a rich theory of system properties under retrenchment can
be developed.  See [Banach (2003)].

Coarse Grained Retrenchment In all retrenchments thus far, one abstract step has
been related to one concrete one. While this is a very useful perspective, it is not the
only one, any more than single step simulation is the only perspective on refinement.
An alternative perspective, in which several abstract steps can be related by retrench-
ment to several concrete ones, is liable to be even more interesting than in the refine-
ment case, as the greater flexibility of retrenchment can encompass more varied
coarse grained evolution of properties. The interaction between single step and mul-
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tiple step retrenchments promises to be a very fruitful area. See [Banach and Popple-
ton (2000b)].

9   Case Study Scenarios

In Section 4.2 we saw retrenchment applied to a simple example in the discrete do-
main. Such examples, though quite explicit, run the risk that through their small size,
they make only a feeble case for retrenchment, since with some easy to make adjust-
ments a refinement can often be recovered, as noted in Section 3.2. In this section
therefore, we discuss the prospects for applying retrenchment in more demanding sit-
uations. Section 9.1 presents some background for cases involving traditional ap-
plied mathematics. Section 9.2 presents the essence of a simple control redesign ex-
ample, showing that the retrenchment structure provides suitable containers for the
mathematical facts that describe the situation. By contrast, Section 9.3 sketches how
retrenchment can make a refinement based development of a purely discrete applica-
tion (the Mondex Purse) more complete, by better taking into account issues that are
awkward to handle properly with refinement.

9.1   Modelling the Real World

Today, the proliferation of embedded digital controllers in physical systems requiring
continuous mathematics for their description, continues to grow. Many such systems
have genuine safety connotations associated with their use (think of the millions of
lines of code in a modern car). This growth increases the scope for underpinning
such designs via formal techniques, in order to raise the level of dependability of the
overall application. However traditionally understood formal methods are often
poorly suited to the task. The trouble is, that continuous mathematics lies at quite a
distance from the discrete finitistic logic-based formalisms that formal methods rely
on. This is not to say that one cannot build models of portions of continuous mathe-
matics within logical and algebraic foundations — indeed the the classical construc-
tions of complexes via reals, rationals, integers, naturals à la Weierstrass and Cantor
can be seen as underpinnig this, and there are many contemporary research directions
that can also be understood as assisting such an objective at least as a side effect, eg.
formal topology [Sambin (1987), Sambin and Gebellato (1999)], computable reals
[Bajard et al. (2000)], computable analysis [Weihrauch (2000)], etc. However the
complexity of these undertakings denies their efficient adoption as a formal basis for
applied mathematics in engineering applications, quite aside from their focus on
foundational matters.

Still, the fact that continuous mathematics has been done with rigour for a century or
more is evidence that what has been done ought to be capable of being captured for-
mally. The relative paucity of published material in this area is more a question of
logicians’ and computer scientists’ ignorance of and/or distaste for the subject than
any issue of principle. In fact, basic aspects of analysis have been examined from the
mechanical theorem proving point of view [Harrison (1998), Fleuriot (2001)], and
this work shows that a formal approach is entirely feasible, but is no small job. A
different though comparable approach may be found in ‘computer algebra’ systems
such as Maple and Mathematica, with their more ad hoc foundations.

Aside from the complexity issue, is the scale issue. The sheer breadth of continuous
mathematics that may be needed in applications makes it clear that simply formalis-
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ing a large general purpose body of continuous mathematics that would serve as a
foundation for ‘all’ formal developments where such mathematics is required is an
unrealistic proposition. Equally unrealistic is reinventing the core continuous math-
ematics wheel formally as a precursor to the more specialised reasoning required in
every specific application.

Recently an intermediate position has become tenable, in which a core body of appli-
cable continuous mathematics has been constructed, starting from a corrected version
of the core PVS NASA libraries, verified from the ground up in the PVS theorem
proving environment [Lester (2003), Munoz and Lester (2005)] — PVS being a prov-
er built with efficiency for applications uppermost in mind. The scale of the extant
formal corpus (which required no less time to construct than indicated above) is such
that one could conceive making a moderate further investment of effort to build, in a
reasonable amount of time, sufficient specialised extensions to enable it to cover a de-
velopment such as that described in Section 9.2. This opens the door to doing fully
formal genuine engineering developments in the conventional applied mathematics
sphere.

Such a two stage approach is reminiscent of the way applied mathematics has been
built up over the centuries. Rather than rederiving everything from first principles
every time, it reaches a certain stage of maturity, turns the results obtained into alge-
bra, and uses the equations of that algebra as axioms for further work. Done in a con-
sistent way, a steadily increasing body of useful results could be accumulated, mak-
ing subsequent development gradually easier.

The suggested approach via axioms at a suitable level of abstraction, could be extend-
ed to incorporate the heuristic and semi-empirical reasoning that often forms an in-
dispensable part of real world engineering methodology. Suppose for example that
it is believed that within certain bounds of applicability, such and such an expression
can, by suitable choice of parameters, yield a function that is within such and such an
error margin of a solution to a particular complex system of equations. Then that be-
lief can be expressed as a rule of the formal development framework, and its use con-
trolled by the same reasoning technology that supports the rest of the formal devel-
opment. In fact this axiomatic approach is in many ways reminiscent of computer
algebra, aside from the fact that to certifiably underpin critical developments, the ax-
iomatics and reasoning would have to be open to scrutiny, rather than being hidden
inside a commercially protected binary object.

At the moment, to the extent that developments incorporating the passage from con-
tinuous to discrete mathematics are attempted at all using a formal approach, what
one sees is a little disconcerting. Typically some continuous mathematics appears,
describing the problem as it is usually presented theoretically. When this is done,
there comes a violent jolt. Suddenly one is in the world of discrete mathematics, and
a whole new set of criteria come into play. There is almost never any examination of
the conditions under which the discrete system provides an acceptable representation
of the continuous one, and what ‘acceptability’ means in the situation in question.
But obviously these questions are of some interest if the discrete model is to be relied
on. Results from mathematics which have investigated the reliability of discrete ap-
proximations to continuous situations have shown that there are useful general situa-
tions in which discrete approximations can be depended on. Such results are prime
candidates for inclusion in the formal justification of the appropriate development
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steps in real world applications where relevant. Evidently incorporating them into
strict refinement steps is too much to ask in general, and the greater flexibility of the
retrenchment formalism is much better suited to the task in hand, as we now show.

9.2   Continuous and Digital Control, and Retrenchment

Most applications of digital computers to physical problems involve control of a
physical plant. In such work the continuous component is time, and the problem is
to describe and control a one dimensional dynamics typically governed by differen-
tial equations relating derivatives of controlled variables to their values and the values
of external inputs etc. In addition to the typically smooth evolution of the system, it
may be subjected from time to time to certain discrete events which disrupt the oth-
erwise continuous behaviour. Over the years, a large amount of work has been di-
rected at taming the difficulties that arise in these so-called hybrid systems. See for
example [Alur and Pappas (2004), Maler and Pnueli (2003), Di Benedetto and San-
giovanni-Vincentelli (2001), Krogh and Lynch (2000), Vaandrager and van Schuppen
(1999), Hentzinger and Sastry (1998), Maler (1997), Alur, Henzinger and Sontag
(1996), Alur and Dill (1994)].

It turns out that the digital control paradigm is an ideal application for retrenchment.
The design of such a system often starts at the physical level, done using continuous
mathematics. Once the design of the continuous control has resulted in a system with
the desired behaviour, thought may be given to the discrete control version. See eg.
[Kuo (1992), Franklin et al. (1998)]. It is well known that the choice of discretisation
scheme can affect the relationship between continuous and discrete systems in a man-
ner which may be at times smooth, at times catastrophic. It is hopeless therefore to
try to address this design space using refinement; even if it were possible, so much
ingenuity would have to go into choosing the abstract model wisely in order than a
refinement relation might arise, that the point of ever having the abstract model would
largely disappear. More importantly, each change of discretisation scheme, would
entail the re-engineering of the abstract model for reasons similar to ones discussed
in Section 3.1. Needing to redo higher levels of abstraction in the light of decisions
that one can predict one will need to make later, and for which the delay is justifiable
on engineering grounds, is considered undesirable for a development methodology.
We will show that retrenchment does not suffer from this major drawback, allowing
the abstract model to remain unaltered while the concrete model is changed, which
permits the reuse of the abstract model in different implementation scenarios.

We consider a control redesign situation, kept simple to prevent the scale of the en-
terprise from overwhelming the remainder of the paper.9 The problem, posed in La-
place transform space as is common in engineering situations, is given by:

sxC(s) = ACxC(s) + BCrC(s) (9.1)

where xC(s) is the Laplace transform of the continuous system state, AC and BC are
constants, and rC(s) is the Laplace transform of a continuous external input signal.

Because retrenchment, as described in this paper, can only speak about single state
transitions, we have to address the control problem in the state space formulation.10

9. A similar but somewhat less primitive control redesign case study to this one is presented in
[Poppleton and Banach (2002)].
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Accordingly, in real time, the continuous system is described by the differential equa-
tion:

xC(t)
.

= ACxC(t) + BCrC(t) (9.2)

where xC(t)
.

is the time derivative of xC(t).

In fact the slight digression into Laplace transforms is instructive. The entry of La-
place transforms into the fray brings with it implicitly the extremely strong properties
of (at least piecewise) analyticity, and L2 analysis. Engineering mathematics be-
comes dust without such assumptions properly applied. The routine engineering ma-
nipulations between space or time domains on the one hand, and real or complex fre-
quency domains on the other become invalid unless informed by them. Recalling the
formalised approaches to analysis mentioned in Section 9.1, we therefore see that un-
less they were carried through as far as the Cauchy-Riemann equations and their con-
sequences, and the more well known facets of L2 analysis, they would not really sup-
port most engineering applications.

One possible discrete system corresponding to (9.2) is given by:

∆+TxD(k) = ADxD(k) + BDrD(k) (9.3)

where xD is the discrete system state, ∆+TxD(k) is its forward difference for sampling
period T, given by:

and AD and BD are constants, rD being the discrete external input signal. The solution
of (9.3) for the next state is immediate:

xD(k+1) = (1 + TAD)xD(k) + TBDrD(k) (9.5)

while the solution of (9.2) is standard, and for a period T to the future of a starting
point t = kT, is given by:

To obtain a simple comparison with the discrete case, we expand the exponentials
into their power series, and expand rC(kT + τ) using Taylor’s Theorem before inte-
grating term by term.  Keeping only terms up to O(T):

xC((k+1)T) = (1 + TAC)xC(kT) + TBCrC(kT) + o(T) (9.7)

so that:

xC((k+1)T) – xD(k+1) = (xC(kT) – xD(k)) + T(ACxC(kT) – ADxD(k)) +

T(BCrC(kT) – BDrD(k)) + o(T) (9.8)

10. The extension of retrenchment to encompass more global aspects of execution sequences
holds out the prospect of incorporating the various frequency domain based approaches to con-
trol engineering (including Laplace transforms) into the retrenchment formalism. This how-
ever is outside the scope of this paper.

∆+TxD(k) = ——–––———
xD(k+1) – xD(k)

T
(9.4)

xC((k+1)T) = eACTxC(kT) + ∫
T

0
eAC(T – τ)BCrC(kT + τ) dτ (9.6)
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Now at time (k+1)T , the difference between the two states, xC((k+1)T) – xD(k+1), be-
comes comparable to that at time kT , i.e. xC(kT) – xD(k), provided:

ACxC(kT) – ADxD(k) + BCrC(kT) – BDrD(k) = o(1) (9.9)

This illustrates that by adjusting the external demand suitably, one can keep the con-
tinuous and discrete controls in line, an unsurprising proposition. Also this is based
on an extremely simple approximation. If we retain second order terms in T then
(9.5), being exact, remains unchanged, but (9.6) acquires more terms, which feed
through to (9.8), and to (9.9) which becomes:

ACxC(kT) – ADxD(k) + BCrC(kT) – BDrD(k) +

where
.
rC(kT) is the time derivative of rC at kT. Higher order terms in T would bring

the appearance of higher derivatives of rC at kT of course. These indicate that the de-
tails of the shape of rC between kT and (k+1)T have an important bearing on the con-
formance between discrete and continuous systems. Detailed calculations are be-
yond the scope of this paper.

The facts we now have can be interpreted as retrenchments in the following manner.
First we have to set up our transition systems. The abstract system is given by a tran-
sition relation for an abstract operation OpA as follows:

(xC(t),
.
xC(t)) -(rC(t), OpA)-› (xC(t′),

.
xC(t′)) (9.11)

where t and t′ are nonnegative real valued and t < t′; and there is a requirement that
there exists a (global) solution of (9.2), such that for any 0 < t < t′ the solution agrees
with the quantities appearing in (9.11) at t and t′. Standard theory [Jeffreys and Jef-
freys (1956), Hildebrand (1962)] says that there is enough information recorded in
the state vector (xC(t),

.
xC(t)), to ensure that a unique analytic solution is determined

by it and the input, on which (9.6) is based.

The concrete system is given by a transition relation for a concrete operation OpC of
the following kind:

xD(k) -(rD(k), OpC)-› xD(k+1) (9.12)

where k is natural valued and the quantities appearing in (9.12) must constitute a so-
lution of (9.5). Clearly there is enough information recorded in the state xD(k) to en-
sure that a unique solution to (9.5) is determined by it and the input.

As a simple retrieve relation we will take:

G(xC(kT), xD(k)) ≡  | xC(kT) – xD(k) | ≤ ε (9.13)

where ε is sufficiently small (or indeed even zero). Now (9.9) lends itself to a re-
trenchment reinterpretation with within and concedes relations:

P1(rC(kT), rD(k), xC(kT), xD(k)) ≡
| ACxC(kT) – ADxD(k) + BCrC(kT) – BDrD(k) | ≤ o(1) (9.14)

C1(xC((k+1)T), xD(k+1); rC(kT), rD(k), xC(kT), xD(k)) ≡
| xC((k+1)T) – xD(k+1) | ≤ o(1) (9.15)

— (AC
2xC(kT) + ACBCrC(kT) +

.
BCrC(kT)) = o(T)T

2
(9.10)
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If we wish to extend the the argument to second order we may do so, though we
would have to include

.
rC(kT) as an additional input in the formulation of (9.11) be-

cause of its presence in (9.10).  Assuming this, (9.10) yields:

P2(rC(kT), rD(k), xC(kT), xD(k)) ≡
| ACxC(kT) – ADxD(k) + BCrC(kT) – BDrD(k) +

C2(xC((k+1)T), xD(k+1); rC(kT), rD(k), xC(kT), xD(k)) ≡
| xC((k+1)T) – xD(k+1) | ≤ o(T) (9.17)

As (primitive) retrenchments, these say that if the discrete system makes a step, then
provided the appropriate conditions hold, the continuous system’s behaviour will be
acceptable. Note that we do not have absolute bounds on the errors involved due to
the extreme simplicity of our analysis. We could have done a little better by using
one of the exact forms of Taylor’s Theorem, at the cost of some clutter; but the essen-
tial point is well enough made as it is.

More incisive results yet could be obtained, but only at the cost of much greater ef-
fort. This is due to the necessity of working with convolutions when we focus on the
time domain, as these are less easy to estimate in a straightforward way. It is also
well known that if the demand input is sufficiently troublesome, the time domain be-
haviour of a (continuous) linear system may be prone to large local deviations, de-
spite the fact that the overall system performance (say in the L2 sense) may be per-
fectly acceptable. These facets explain why the majority of engineering analysis of
systems resides in the frequency domain.

One aspect that is clear even in our elementary treatment, is that retrenchment has
cleanly separated out all aspects that involve the sampling period T from the abstract
model. They all reside in the retrenchment data and concrete model. Thus consider-
ation of the sampling period may be postponed to an appropriate point, without wor-
rying about impacting the abstract model. The fact that this is possible is one of the
major strengths of the retrenchment approach.

9.3   The Mondex Purse and Retrenchment

The Mondex Purse is a smartcard electronic purse for containing genuine money. As
such, it is a security critical application, and the 1990s development of Mondex was
one of the first developments to achieve the highest possible ITSEC rating of E6
(equivalent these days to a Common Criteria rating of EAL7) [DTI (1991), ISO
(2005)]. The ITSEC E6 rating requires there to be an abstract model, a concrete mod-
el, and a proof of correspondence between them; in the case of Mondex, this proof
was a human-performed refinement proof between abstract and concrete models
written in Z. The Mondex project generated a public version [Stepney et al. (2000)],
of the models and proof in the more comprehensive commercially sensitive develop-
ment. The development as described in [Stepney et al. (2000)] remains an impressive
achievement, not least in being a trailblazer for showing that fully formal techniques
could be applied within realistic time and cost limitations on industrial scale applica-
tions.

  + — (AC
2xC(kT) + ACBCrC(kT) +

.
BCrC(kT)) | ≤ o(T)T

2
(9.16)
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The Mondex development consists of two refinements, necessitating three models:
the A(bstract) model, the B(etween) model, and the C(oncrete) model. The A model
is a model of atomic funds transfer, which can: either complete successfully (lodging
the funds transfered instantaneously in the destination purse); or atomically ‘lose’ the
funds (placing them in a special ‘lost’ component of the state). The B model captures
the essence of the funds transfer protocol, and is thus non-atomic. The protocol can
either succeed or fail, corresponding to the two kinds of A model outcome. The A
model is refined to the B model, and the non-atomicity raises the issue of the resolu-
tion of nondeterminism within the refinement. In fact the abstract nondeterminism is
resolved early with respect to the protocol, forcing the A to B refinement to be a back-
ward one. The backwards direction of the refinement in turn necessitates the B model
state to be constrained by a number of properties (mainly concerning the ether of
messages in transit between purses), in order to maintain the integrity of the protocol.
This means that the B model cannot be taken verbatim as a representation of the real
world environment of the protocol, since the constraints do not correspond to una-
voidable properties of the raw B model state. Fortunately, the constraints are induc-
tive properties (over runs of the protocol) of the unconstrained state, so the C model
is a version of the B model without the constraints, and a forward refinement from
the B model to the C model establishes that all states reachable via the protocol in the
unconstrained world, nevertheless satisfy the B model constraints. The overall Mon-
dex refinement is thus the composition of the A to B and B to C refinements. This
state of affairs, the content of [Stepney et al. (2000)], is summarised in the left hand
column of Fig. 3.

Despite the impeccable credentials of the Mondex development as a genuine and
honest representation of the development within a fully formal framework, the exi-
giencies of refinement (to which we have often referred above) caused a number of
issues to be treated in a less than ideal manner. In the Mondex project itself, the treat-
ment of these issues was dealt with via suitable informal arguments to justify the
stance taken, but it would clearly have been better to be able to integrate the treat-

A-bstract

B-etween

C-oncrete D-iscrete

E-levated

B-Ref

F-Ref

F-Ret

F-Ret

F-Ref

B-Ref

F-iltered

Id

Fig. 3.  The Tower Pattern instantiated for the Mondex development.
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ments and their supporting arguments into the refinement development in a suitably
formal manner.

Below we summarise the issues themselves, and how retrenchment can achieve the
desired integration. Instrumental to the integration exercise for most of the cases is
the Tower Pattern (see Section 8). In Fig. 3 we illustrate how the original refinement
chain from A to C can be related to a further refinement chain from F to D via a col-
lection of retrenchments, forming an instance of the Tower. The typical scenario runs
as follows. An issue is identified as being imperfectly treated in the development.
Since the top level is atomic, such issues are typically not visible there, and emerge
only in the lower level models. Accordingly, a more accurate low level model can be
constructed via a retrenchment from the C model. This yields the D(iscrete) model,
so named for the finiteness of the data structures that are to be found there. The B to
C refinement and the C to D retrenchment can now be composed, yielding a retrench-
ment from B to D. Using results from [Jeske (2005)], this retrenchment can now be
factored the other way, into a retrenchment followed by a refinement, in a canonical
way. This construction yields the E(levated) model, which lifts the level of abstrac-
tion of the C to D retrenchment to that of the B model. Due to the particularly careful
design of the original refinement, in most cases, a refinement can now be discerned
from the original A model to the E model, enabling us to complete the Tower by mak-
ing the F model be a copy of the A model.

Sequence Number The integrity of the low level protocol depends partly on the se-
quence number of the transaction in progress. Sequence numbers are not required in
the A model, but are vital in the B and C models where they are naturals. In the actual
Mondex implementation they are bounded numbers, although the bound is large. In
this scenario, one can take into account the boundedness of the real sequence num-
bers via a straightforward retrenchment from the C model to the D model; the simple
example of Section 4.2 indicates the general nature of what is needed (though the C
to D retrenchment is even simpler since sequence numbers only ever increase). The
retrenchment can now be lifted to the E model as indicated above (it turns out that the
E model can be taken to be a close analogue of the D model), and the clean design of
the original refinement and the fact that sequence numbers are absent from the ab-
stract model, enables the Tower to be completed rather trivially with the A and F
models identical.  See [Banach et al. (2005)].

Log Full Transfers completing abnormally in the concrete models are aborted and
logged locally by purses. The relationship between local purse logs and the ‘All val-
ue accounted’ security property (which relates successful and unsuccessful concrete
transfers to the abstract balances and ‘lost’ components respectively) is rather com-
plicated. Suffice it to say here that purses’ log contents are vital. Logs occur in the
B and C models where they are unbounded; in reality they are finite, and the bound
is small. From a purely mathematical perspective, although there are minor differ-
ences in the way that the modelling is done in the D model, there are strong analogues
between this scenario and the preceding one: both deal with finite capacity situations.
Thus the construction of the E and F models follows the same pattern as above. See
[Banach et al. (2006a)].

The fascinating aspect of these two scenarios concerns the validation of the respec-
tive retrenchments necessitated by the demands of a properly supported glass box de-
sign activity. In the sequence number case the bound was large, and validation fo-
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cused on confirming that the actual bound would not ever be reached during any re-
alistic use of the purse. In the full log case the bound was small, and validation
focused on ensuring that no fresh transaction could start when the log was full, in case
it too failed, creating a log entry for which there was no room. The retrenchment ap-
proach was able to identify out common (or nearly common) structural aspects of
these two scenarios, while recognising (via the glass box philosophy) that their ap-
propriateness could not be justified on the relatively simple structural forms that re-
trenchment offers, and would always depend on application specific criteria.

Hash Function The concrete B and C models implement the abstract ‘lost ’ com-
ponent in terms of an off-card central archive into which purses’ log contents are
saved. A purse needs to be assured that the data is safely in the archive before it can
clear it from its own, highly constrained, log memory. Safe archival is signalled to
the purse using a CLEAR code. The purse log contents are assumed to be in total
injective correspondence with the CLEAR codes, as that property is required in the
proof of the maintenance of the security properties. In reality of course a crypto-
graphic hash function is used, which is not injective, but was informally argued to be
‘sufficiently injective’ in the actual Mondex implementation. In this scenario one can
use retrenchment to contrast the ideal situation of the C model injective function with
the realistic hash function of the D model.

Consider the following state of affairs surrounding the log clear operation in the D
model. Before log clearance, the (set theoretic) union of the central archive and local
purse log is correct, and therefore the relevant security invariants hold. Suppose nev-
ertheless that there is a discrepancy (masked by the union) between the central ar-
chive and the log, which has arisen due to some past activity, and such that the archive
is incorrect. Suppose that a CLEAR code, generated from the archive, arrives at the
purse, and suppose that it is found by the purse to correspond to its log contents, even
though these do not match the archive, (an eventuality made possible by the many-
one nature of the hash function). Then the log clear operation will make the security
invariants fail in the D model, since the log/archive discrepancy will become un-
masked during log clearance. Such a turn of events is impossible in the C model, so
a C to D retrenchment of the log clear operation can capture the above scenario in the
concession, while giving an account of the normal playout of log clearance in the out-
put relation.  The C to D retrenchment can then be lifted to the E model as before.

The final lifting of the E model to the F model is a little more interesting in this sce-
nario. In the conventional Modex world, money is never truly lost, since the money
contained in protocol messages that fail to arrive, can be reliably recovered, due to
the properties of the logging/archiving parts of the protocol. So ‘lost’ really means
‘recoverably lost’ in the A, B, C models. The scenario we described in the D model
introduces an additional category of ‘irrecoverably lost’ funds, those inadvertently
discarded from the log even though they are not in the archive. To deal with this at
the level of the F to E retrieve relation, it is sufficient to replace an equality (between
the F and E recoverably lost funds) with an inequality, and to thereby complete the
tower construction.  See [Banach et al. (2006b)].

Balance Enquiry Each purse has a balance enquiry operation; consider the follow-
ing scenario for invoking it in the middle of a B (or C) model transaction. Recall that
the resolution of nondeterminism in the A model is synchronised with the beginning
of (the critical portion of) the B model protocol in the backward refinement. There-
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fore both models agree about when the transaction starts. They disagree however
about when the transaction ends. In the A model it ends immediately, while in the B
model it does not end until the message carrying the money arrives. Suppose we per-
form a balance enquiry for the recipient purse while the money is in flight. In the A
model, the money is already there and incorporated in the A model balance output.
In the B model it is yet to arrive. So the A and B balance outputs will disagree. In
the actual Mondex implementation this is handled formally by a modelling trick, us-
ing finalisation instead of the enquiry operation output to observe the state. Taking
into account also the other details of the backward refinement, the resulting treatment
of balance enquiries can appear so very counterintuitive, that the balance enquiry op-
eration was removed completely from [Stepney et al. (2000)].

However the retrenchment approach can handle the situation rather easily. The dis-
crepancy in balances is just a reflection of what is a perfecly legitimate temporary dis-
agreement in the balances during the playout of the protocol. The output relation of
an A to B retrenchment of the balance enquiry operation can unproblematically relate
the output discrepancy to the legitimate balance discrepancy (assuming that the pro-
tocol is indeed in its critical part). The retrenchment is validated by observing that
since the protocol is entirely acceptable without the balance enquiry, adding the read-
only balance enquiry operation, for which the output disagreements, such as they are,
can be readily accounted for, cannot be objectionable. See [Banach et al. (2007)].
Note that the balance enquiry scenario did not require the building of a tower as such.
Rather, dealing with the balance discrepancy was more a question of retrenchment-
enhancing an existing refinement in order to comfortably account for a state of affairs
that was just a little too awkward to fall within the scope of the refinement technique
used in [Stepney et al. (2000)].

10   Conclusions

In the preceding sections we surveyed the way the refinement has evolved to address
not only the provision of guaranteed properties of specifications during the imple-
mentation of a contracted model, but also the desirability of acting as a specification
contructor above it. In the latter arena, it sometimes proves restrictive regarding the
relationships between models that it can express, and this provided the spur for the
introduction of retrenchment, first introduced in [Banach and Poppleton (1998)] for
the B-Method; (see also [Poppleton and Banach (1999), Poppleton (2001)].) Re-
trenchment moves away from refinement, by abandoning the link between refine-
ment’s semantic foundations and its POs. Freed to consider a more accommodating
operation PO, retrenchment responds to the need for flexibility by incorporating a
disjunctive option in the PO consequent (among other things). This turns out to be a
rather drastic move in terms of the loss of desirable refinement properties — how nice
it would be if propositional logic offered us a ‘one tenth of a disjunction’ connective,
allowing a gentler departure from refinement.  But there is no such thing.

Retrenchment, has more parameters than refinement and (as we have formulated it
here), defaults to pure state based refinement for suitable values of these parameters
(eg. P = O = true, C = false). Therefore it can be expected to enjoy a weaker theory
than refinement, but to be more widely applicable. The discussions of stepwise sim-
ulation and of control theory bear out this view. Retrenchment thus permits the in-
corporation of models within a development path that could not be brought together
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using refinement. This gives developers more flexibility, and invites its use in much
broader contexts of requirements engineering and model evolution than its original
motivations suggested.

It has to be stressed that retrenchment must be deployed in an entirely glass box man-
ner, where the incompatibilities between levels of abstraction that it permits are trans-
parent and are properly validated by user and supplier at system definition time.
Since for large and complex systems, particularly those interfacing to continuous
physical models, system definition is a lengthy and nontrivial process, and substantial
parts of it are beyond the reach of refinement, retrenchment can help to smoothly in-
tegrate this early activity into a formal methodology in which refinement can ulti-
mately take over to guarantee the properties of the contracted model. By widening
the applicability of formal techniques in this manner, it is anticipated that retrench-
ment can help to overcome the bad press that formal development methods have to
some extent acquired, as expressed in the delightful epithet of [Barroca and McDer-
mid (1992)]: ‘formal methods are both oversold and under-used’.
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