UseCase-wise Development: Retrenchment for Event-B

Richard Banach

School of Computer Science,
University of Manchester,
Manchester, M13 9PL, UK

banach@s. nan. ac. uk

Abstract. UseCase-wise Development, the introduction of functity&ito an
application in stages, with each stage being carried thrdagideally) imple-
mentation before the next is considered, is examined witiew Yo its being
treated via an Event-B methodology. The need to modify tepllbehaviour in
a nonskip way precludes its naive treatment via Event-B refinemert, @aves
the way for the use of retrenchment in Event-B. The detailaroEvent-B for-
mulation of retrenchment, aligned to the practical det@fithe Rodin toolset, are
described. The details of refinement/retrenchment intedng needed to handle
UseCase-wise development are outlined, and a simple azdbgistgiven.

Key words: Event-B, UseCase-wise Development, Incremental Devedopm
Refinement, Retrenchment, Tower Pattern

1 Introduction

One of the notable things about the move from traditional BtflEvent-B [2, 3],
is the way that the re-engineered refinement theory of EBehtts managed to en-
compass many ‘low hanging fruit’ issues, for the handlingvbich, retrenchment has
been advanced in more conventional refinement framewortteipast. One can men-
tion: the introduction of new events at successive devetyrevels (within certain
restrictions); the emphasis on guards (rather than prations)) and their strengthening
during refinement; the migration of information between V&iables and state vari-
ables (since in Event-B there is generally no separate oated 1/O variables to worry
about); and so on. All of this is beneficial, in bringing suskues under more rigorous
control than when using other development techniques (@mwising retrenchment).

Nevertheless, because in Event-B (as in every other rigorefinement frame-
work), the development strategy and the notion of correxsn® fixedab initio —and
yet the world is richly and subtly structured— it is almostvitable that sooner or later
an application scenario will arise in which the demands cériEsB will prove to be a
less than ideal fit for the application in question. It is tépheccomodate situations like
these that retrenchment was originally conceived, so iatsinal to ask what retrench-
ment amounts to in the Event-B context, and how the notiorisveint-B refinement
and Event-B retrenchment would interact. Fortunatelygeitine original introduction
of retrenchment [4], we have accumulated a good deal of épex and evidence on
which to base the answer (see eg. [5]).

2 R. Banach

In this paper we examine retrenchmentin the Event-B conlgXboking at a small
case study developed using a UseCase-wise developmerddotiby. UseCase-wise
development is our name for a development strategy in wiricteiments of function-
ality are added in stages, with the introduction of eachltiegpin a usable application
before the nextis considered. Such an approach is at oddsheitmore traditional wa-
terfall model with which typical formal development appcbas are frequently aligned.
We view the exploration of alternative strategies as a gootivation for studying how
retrenchment should be formulated in Event-B, a questioichvis of independent in-
terest in any case.

The rest of this paper is as follows. In Section 2 we describe@hse-wise develop-
ment, contrasting it with conventional Event-B developim&ection 3 briefly reviews
Event-B and discusses the details of retrenchment for EBelrt Section 4 we cover re-
trenchment/refinement interworking and the Tower Patt€he preceding ingredients
are then applied to a small case study, illustrating a godmkfiveen the UseCase-wise
approach and Event-B correctness when retrenchment isbl@iSection 6 concludes.

2 UseCase-wise Development

In Event-B there is a strong emphasis on getting the req@resncorrect (or as near
correct as is achievable) at the outset. One then analysagduirements and deter-
mines the most appropriate order in which to take them intmant within a sequence
of refinements. The refinements themselves, mix the acaorefioequirements issues
as identified during requirements analysis, with data refierts, as appropriate. As
the models get more detailed, sound decomposition techaigue available to split
models into components, allowing further refinements to deedndependently. This
TopDown (TD) approach, proceeding as it does in an esshniiimar manner, shows
that the Event-B approach can be viewed as a formal intexfoetof a fairly traditional
waterfall strategy.

By UseCase-wise (UCw) development, we mean an approactstensydevelop-
ment that proceeds by taking one or more of the UseCasesfiddrduring require-
ments analysis, and completes the development of thosdiiinst the abstract models
down to implementation, giving a usable system (with limifanctionality). Subse-
quently further UseCases are incorporated, with all thenelgs of the development
getting suitably enhanced, and yielding another workirgeay, this time with greater
functionality. The process is repeated until all the UseSadentified during require-
ments analysis have been developed, yielding a system Ihitiedunctionality desired.
UCw development can be seen as a member of the ‘Agile Mettadsly of system
development techniqués.

1 We coined the term ‘UseCase-wise development’ to avoidusiaf. It is enough to glance
athttp://en.wikipedia.org/wiki/Agile_software_development and the acronym blizzard one
finds there, with the same term having different meaningsffarént settings, to realise what
dangers lurk in the casual use of terms invented in this fidldat we call UseCase-wise devel-
opment is also called ‘incremental development’ in othecpk, but that term is so laden with
possibilities for misinterpretation, that we thought ifest to invent a fresh name, inevitably
causing yet more terminological proliferation.

UseCase-wise Development: Retrenchment for Event-B

e o o o

ffffffffffffffffff L] \ [\ LT 0| [1]
,,,,,,,,,,,,,,,,,, _id .

Fig. 1. lllustrating TopDown versus UseCase-wise developmeategiies.

Fig. 1 illustrates the TD versus UCw distinction. On the {eé see a development
proceeding TD in layers, while on the right, we see additicfiaes of functionality
being added UCw to an initially developed system. It is int@iotto realise that the TD

vs. UCw distinction refers to theynamics of the process by which the system is built.

Even though a system may be built using a UCw process, onehvidisuperficially
unsympathetic to Event-B perspectives, there is no reasontie end result should
not be a collection of models which enjoy the levels of mutt@isistency character-
istic of Event-B. Thus, even though one might argue thabohicing a UCw approach
into Event-B would be a retrograde step for Event-B, it ischtardispute that introduc-
ing Event-B’s criteria for correctness into the UCw appitoamuld be a positive step
for UCw development. This begs the question of how one migtrporate Event-B
correctness into the UCw process. This will be dealt withéct®n 4.

3 Event-B Machines, Refinement and Retrenchment for Event-B

In this section, we review Event-B machines, refinementd against this background,
we formulate retrenchmentin a way that will permit the sni@st possible cooperation
between the two techniques.

3.1 Event-B Machines

In a nutshell, an Event-B MACHINE hasrame, it SEES one or morgtatic contexts,
and it owns some VARIABLES; these are allowed to be updateadBXENTS, but
are required to always satisfy the INVARIANTS. The events daclare their own
parameters (which are bound variables acting as carriers of input \&lue each event
has one or morguards, and one or moractions which are specified viaefore-after
predicates (or notations such as assignment for simpler cases). Antengvents there
is anINITIALISATION, whose guard must keue.

The semantics of Event-B machines and of the refinemenioe&itip between
machines, is expressed via a number of proof obligationsYPiese must be provable
in order for the machine or refinement in question to be wdihaéel. We quote the main
ones of interest to us, mentioning the others more brieflg.[3€3] for full details.

For a machiné to be well defined thanitialisation andcorrectness POs must hold:

Inita(u) = (W) 1)
[(U) A Ggy,(i,u) A Eva(u,i,u’) = 1(U) 2

3

4 R. Banach

In (1), Inita is the initialisation event and (1) says that the valuef A’s state variable
u established bynita satisfiesA’s invariantl. Likewise, (2) says that for an eveBva

of A, if A’'s invariantl, andEva’s guardGgy, (i, u), both hold in the before-state of the
event, andEva’'s before-after relatiorEva(u, i, u’) also holds, then the after-state will
satisfy the invariant once more. In (1) and (2) we have suppressed mention of the
details of the static contexts seen Aybut we have singled olva’s input variables

i for later convenience. For closer conformance to [2, 3] weeh@ot mentioned any
output variables, though it would be trivial to include thémthe before-after relation
Eva(u,i,u’) and in (2). Aside from (1) and (2), Event-B machines mustséafeasi-
bility POs for the initialisation and for all events, and alsdeadlock freedom PO for
non-terminating systems; see [2, 3].

3.2 Event-B Refinement

Suppose that as well as machilyewe have another machir@ with state variablav,
input variablek, initialisation eventnitc, and typical evenEvc, with guardGg,. (K, w)
and before-after relatioBvc(w, k, w'). If C is a refinement oA, its invariantK (u, w)
will be a relation over botlu andw, and the counterparts of (1) and (2) are:

Initc(W) = (U e Inita(U') A K(U',W)) (3)
[(u) A K(u,w) A Ggy (k,w) A Eve(w, k,w)
= (3i,U & Gey (i, u) A Eva(u,i, u) A K(U, W) (4)

whereEvc is an eventthat is supposed to refih and we have amalgamated therd
strengthening andcorrectness POs in (4) for later convenience. In (3), edclitc (W)
intialisation must be witnessed by sofmita(u’) intialisation that establishes the joint
invariantJ(u’, w'). Likewise, (4) says that when both invariants hold, eaef(w, k, w')
event is witnessed by sonteva(u,i,u’) event that re-establishes the joint invariant.
Aside from (3) and (4) there are aldeasibility POs for the initialisation and for all
eventsyariant decrease POs for ‘new’C events not declared to be refinements of any
event ofA, and also an overaiklative deadlock freedom PO. See [2, 3] for full detalils.
We give a small example of Event-B refinement. It builds aalad graph from a
finite universe of possible nodes contained in a\N&@t held in a contexNCtx.
MachineNodesis concerned with the requirement of assigning nodes to ithghg
picking them out of the séiSet using the evenfddNode, starting with the empty set.
MachineEdgesrefines Nodes, and addresses the requirement of having bdtyesen
some of the graph nodes. In typical Event-B fashion, it symggicumulates the new
model elements, leaving the preceding ones unchanged&@ss just containdNodes
in its body. The new requirement is handled by adding a nevabbredg and a new
eventAddEdge. AddEdgeacts likeskip on the existing variableod, as required for such
‘new’ events. Also sinc&ddEdge does not refine any existing event (unlikddNode
which refines itself and is thus ‘ordinary’), it must be ‘camgent’, which means that
each invocation ohddEdgedecreases th¥-valued VARIANT cardNSet x NSet—edg),
ensuring relative deadlock freedom. (We suppress the WHECtlauses below.)

UseCase-wise Development: Retrenchment for Event-B

MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS
nod € P(NSet)
EVENTS
INITIALISATION
WHICH IS ordinary
BEGIN nod := & END
AddNode
WHICH IS ordinary
ANY n
WHERE n € NSet — nod
THEN nod := nod U {n}
END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod, edg
INVARIANTS
nod € P(NSet)
edg € P(NSet x NSet)
EVENTS
INITIALISATION
WHICH IS ordinary
BEGIN nod := @ END
AddNode
WHICH IS ordinary
REFINES AddNode
ANY n

END WHERE n € NSet — nod
THEN nod := nod U {n}
END
AddEdge
WHICH IS convergent
ANY n,m

WHERE {n, m} C nod
n+— me& NSet x NSet — edg
THEN edg := edg U {n — m}
END
VARIANT card(NSet x NSet — edg)
END

3.3 Retrenchment for Event-B

We now formulate retrenchment for Event-B against the ptacgbackground. The
objective of retrenchment s to offer a flexible relationshetween machines or system
models that can capture situations in which all the detait#dria of some species of
refinement cannot be met, but where the two models in queat®deemed neverthe-
less (and especially by domain experts rather than refinegpeartialists) to belong to
the same development activity. The focus of retrenchmeun ia simulation-like crite-
rion, with the added aim of convenient interworking with nefinent. Retrenchment is
therefore formulated as a modification of the main POs of #dfieement notion, with
the incorporation of suitable additional predicates toarde expressivity.

For the specific context of Event-B, retrenchment is a refeip that is to hold
between top level machines. When a retrenchment involvirefinement machine is
needed, one must quantify away the dependence on the heyleéabstractions to get
a self-contained top level machine using the techniquertbestin Chapter 11 of [1].

Unlike refinement in Event-B, in which the refinement dataséegially just the
joint invariant and some bookkeeping details, as in our g{ajrare incorporated into
the syntax of the refining machine, retrenchment is an indéget syntactic construct,
as befits the weaker relationship between machines thatiesges, and especially, the
desire that none of the details of retrenchment interfeeminway with any refinement
that any machine involved in a retrenchment might also belved in. Notationally
this departs from the scheme in [4] and agrees with the likertén [6-8].

2 Thus the modification of the relevant refinement POs coristitthe sense in which the
simulation-like criterion is intended; suitable pairs of transitions in the two modsisuld
satisfy an appropriate generalisation of (4).

6 R. Banach

Suppose we have top level machideghaving the elements mentioned earlier) and
B, andB's state and input variables avg, the invariant is)(v) and the other pieces can
be imagined. Here is a schematic syntax for the retrenchowrgtruct, intended as a
good fit for Event-B as currently implemented in the Rodinli$ed[9]:

RETRENCHMENT Identifier Retag
FROM Identifier A TO Identifier B
[SEES IdentifierList]
[RETRIEVES Predicate R(u, v)]
[EVENTS
[RAMIFICATIONS Identifier Eva [TO Identifier Evg]
[WITHIN Predicate WE\,A,EVB(Lj, u,v)]
[CONCEDES Predicate Ceyy kg (U, V', i,), U, V) |
END
1+
1
END

The construct has a naneta g, and is FROM machiné TO machineB. It can SEE
static contexts as can a machine or refinement. There is a FEVHES relationR(u, v)
between the two state spaces, and for each pair of retremtinelated events iA and
B, eg.Eva andEvg (where one can omit mentionirigys if it has the same name &s,),
there are the RAMIFICATIONS, consisting of the WITHIN reétat We,, ey, (i,], U, V)
and the CONCEDES relatid@gy, gy, (U, V', 1,], U, V).

The semantics of retrenchment is given by its POs. These are:

Initg(V') = (U e Inita(U’) A R(U,V)) (5)
I(u) A R(U,V) A J(V) A Wey,ew (i,], U, V) A Evg(V,j,V)
= (Ji,u e Eva(u,i,u’) A (R(U,V) V Ceyuew (U, V,i,j,u,V))) (6)

where there is an instance of (6) for each ramificationstedlpairEva andEvg. We
see that the intialisation PO is standard, while the conesg PO permits considerable
deviation from refinement-like behaviour by virtue of theepence of the within and
concedes relations. In addition to the above, we demandafdrtevs/Evg pair that:

Wy, eve (1,], U, V) = Gew (i, U) A Ges (), V) (7)

which is the criterion that ensures smooth retrenchmeirtément interworking. Note
however, that the other POs of Event-B refinement, variaotedese and relative dead-
lock freedom, do not have counterparts in retrenchment; wetwo be able to relate
machines with significantly different behaviour as regahdse aspects, if desired.
Although we do not have space here to fully examine the argisvehy the above
design is a good one for retrenchment, we can make the faipwémarks. Firstly,
the aim of a notion thadeparts from refinement ordesires to accommodate inability
to satisfy refinement, must amount to a weakening of refinement — thectealy
no point in doing the opposite. The proposal we have givervalmes this, since
the occurrences ONgy, ey, (1,], U, V) andCgy, v (U, V', 1,], U, V), in the hypotheses and
conclusions respectively, of (6), clearly weaken (4). $eltyy we want this weaken-
ing to be as general as possible so as not to have to invenfeaedif notion of non-
refinement for every conceivable departure from refinemeattrnight arise. Again, (6)
achieves this sinC&/gy, gy, (1,], U, V) andCgy, ey, (U, V', i,], U, V) must be specified on a

UseCase-wise Development: Retrenchment for Event-B 7

Reta

A——>B
RefA’c \l/ \l/ RefBYD
C———D

Retcp

Fig. 2. The basic structure for the Tower Pattern on the left, andhemight, its use in constructing
a UCw development whose outcome enjoys the rigour of an EBatgvelopment.

per-event-pair basis. Thirdly, we would want the deparftom refinement to be quan-
tified in some way. Again, (6) achieves this, at least indiyesinceWgy, gy, (i, j, U, V)
andCgy, ey (U, V', i,], u,v) must actually be specified by the user in each particular case
of retrenchment — in doing this the precise details of hownegfient fails to hold is
made clear by the user in the details of these (otherwisensti@ined) relations. Lastly,

we would want good interworking with refinement. This imgont topic is the subject

of the next section. See [5] for more extensive discussiageokralities such as these
concerning retrenchment.

4 Retrenchment and Event-B Interworking: the Tower Pattern

A definitesine qua non of retrenchment is that the use of retrenchment should rok sp
the rigour achievable via refinement. The best results a@mdd when the two notions

work closely together, with retrenchment being used to eshtogether otherwise in-

compatible refinement strands. The more tightly such difierefinement strands are
coupled via retrenchment, the more restraint is exercigsedretrenchment’s otherwise
extreme permissiveness.

The paradigmatic arrangement of retrenchments and refinesythat achieves both
the tight coupling that restricts retrenchment and the imb@rerence with the rigour of
refinement, is th@ower Pattern, an epithet that summarises a host of square comple-
tion and factorisation results in Jeske’s thesis [10]. ®ieHand side of Fig. 2 shows a
commuting square of retrenchments and refinements amomgystem model#\, B,

C, D, with the retrenchments horizontal and the refinementsozitand the data that
characterises these retrenchments and refinements ithplibe results of [10] show

that whenever you start with two adjacent sides of such arsqtae square can be
completed by building the missing system model and its imipig retrenchment and
refinement out of the existing elements in a canonical waythat the result is indeed
a commuting square. (Section 5 is concerned with an exph@mple of this construc-
tion.) Such commuting squares are the fundamental buildiocks of the tower, which

itself is just an arrangement of such squares into a suitgiidepattern appropriate to
the development at hand.

8 R. Banach

The tower construction has by now had substantial vindicatin the formal de-
velopment of the Mondex Electronic Purse [11], there weremlmer of requirements
issues that were handled less than ideally in the formal tindeThese have all been
handled convincingly via retrenchment, mostly using theeio[12—14].

Although [10] was done in the context of Z refinement to diseserve the needs
of the Mondex work, the approach advocated in Section 3 ascldsed more widely
in [5], ensures that there is a wide commonality betweerenetniment formulations
for different variants of refinement. The insistence thatrechment is confined to the
initialisation and correctness POs helps here, since nudiins of refinement have ini-
tialisation and correctness POs that are either identicalrtextremely close to, (5) and
(6). In particular, this applies to Event-B and Z refinemeats since the composition
of refinements and retrenchments is defined via their irga#éibn and correctness POs,
these compositions (which yield retrenchments), will benidcally defined for both Z
and Event-B. See [15].

For our purposes, we need a suitable analogue of the Po$tj@iorem from [10],
which states that if we have three syste8, C, as in Fig. 2, the square can be com-
pleted in a canonical way with a systdi and a connecting retrenchmeRetc o and
refinementRefg p, so that the two retrenchment+refinement compositionsdauare
equal. What impedes the immediate application of the thredirem [10] is: (a) its fero-
cious technical complexity; (b) its detailed Z dependerxesgards ‘non-correctness’
POs (i.e. the POs that in Z replace guard strengthening daiveedeadlock freedom).
Fortunately the same remedy overcomes both problems. Theitfe of the postjoin
construction comes from wanting to deal with the most gdiséiteation possible, which
means allowing the relations that comprise the given retrerent and refinement to be
as unrestricted as possible. The postjoin constructiom Itz to extract those parts of
these constituent entities that compose smoothly, andeingits to do so in the most
general manner achievable — this generates formidable lexityp However, if we
are dealing with a situation in which the constituents ard xehaved to start with,
most of the complexity simplifies drastically, and a sitaatthat is ‘obviously sensi-
ble’ emerges. The same applies to the non-correctness R@Qsyéll behaved context,
these do not cause problems either. Further discussioreséthoints is best given in
the context of an example, so we pick up this thread againtheand of Section 5.

What does any of this have to do with reconciling the TD and Wihategies? Well,
a single step of the UCw strategy takes the pre-existingldpwgent, and incorporates
a new UseCase of functionality. We can imagine that the pigtieg development has
been captured within a sequence of Event-B refinementtingtavith the most abstract
formulation of the pre-existing functionality, and desdiarg into more concrete levels
of description, perhaps aggregating additional events tin¢ description as we go in
the usual Event-B way. We can represent this pre-existingldpment by the thick
vertical line in the middle of Fig. 2.

The incorporation of the new functionality may well requiine introduction of new
events at the top level, a reworking of the top level invariegworked top level guards,
and so on. As such it will not generally fit into the precediafimrement sequence, not
least because the new top level functionality will usualby manipulate the top level
state in askip-like fashion. (These of course are the crucial reasons walgyoannot, in

UseCase-wise Development: Retrenchment for Event-B 9

general, capture such increments of functionality usingrifaB refinements.) However,
the new functionality can be related to the existing develept via a retrenchment.

(We can say the latter with confidence since we show in [5] dngittwo system
models can be related via a retrenchment, the potentialousriess of such a state-
ment being alleviated by the observation that the variolagioms that comprise a re-
trenchment help tquantify the difference between the models, as noted above. In a
well-controlled situation, such as the introduction of niewctionality, the difference
between the two models will not be capriciously arbitrargggite not necessarily con-
forming to Event-B refinement desiderata), and so the relmerent between them will,
in fact, be able to say quite a lot.)

Depicting the retrenchment from previous top level modehéw top level model
horizontally, we arrive at thI” shape given by the solid part of the next piece of Fig. 2.

Now the tower construction can take over, and complete aesegpuof refinements
from the new top level via the requisite sequence of posgqumare completions, work-
ing downwards, as illustrated in the next part of Fig. 2. Tleeviottom level will be
at the right level of abstraction to correspond with the exésting bottom level model.
Thus one bout of UseCase introduction has been achieveditotver. Successive
bouts follow the same route. In each case we draw up the odtreent that takes us
to the new top level model, and allow the tower to do the reistally, the right hand
column of the last bout yields a pristine Event-B developnoéthe full functionality,
shown as an even thicker line on the right of Fig. 2.

5 A Simple Case Study

We tackle a toy distributed allocation problem. It is cadrizut in the way done here
only for purposes of illustrating our techniques. In raalitne would only apply the
machinery discussed in this paper to significantly more tsuttisl examples.

Elements are to be allocated. At the most abstract levak tisea large (potentially
infinite) set,ASet, whose elements are to be allocated, and at a low level thepliaced
by a much smaller finite subsBiSet. Also, at low enough levels of abstractiohSet
andDSet are statically partitioned intdSet1, ASet2 andDSet1, DSet2 (the latter being
subsets of the former) for allocation to two individual atgerThese static facts are
captured in the contexitx:

CONTEXT Ctx
SETS ASet, DSet, ASet1, ASet2, DSet1, DSet2
AXIOMS

axml : ASet]l U ASet2 = ASet

axm2 : ASetl N ASH2 = &

axm3 : DSet C ASet

axmd : DSetl = DSet N ASetl

axmb : DSet2 = DSet N ASet2
END

5.1 Four Machines

Below are four machineg, B, C, D, deliberately arranged as in Fig. 2. The left hand
column treats only one UseCase, that of allocation. Machirtee most abstract one,

10 R. Banach

simply models the allocation of an element fré8et at the global level. MachinA
is refined to machin€, in which two agents can allocate from their statically gssd
partitions, each agent allocation refining the global atmmn event.

MACHINE A MACHINE B
SEES Ctx SEES Cix
VARIABLES x VARIABLES y

INVARIANTS invl : x € P(ASet)
EVENTS
INITIALISATION
BEGIN actl : x := @ END
AddEI
ANY €
WHERE grd1 : e € ASet — x
THEN actl : x := xU {el}

INVARIANTS invl : y € P(ASet)
EVENTS
INITIALISATION
BEGIN actl : y:= @ END
AddEl
ANY €
WHERE grd1 : el € ASet —y
THEN actl : y:=yU {el}

END END
END SubEI
ANY €
WHERE grdl : y # &
gd2:el €y
THEN actl : y:=y — {el}
END
END
MACHINE C MACHINE D
REFINES A REFINES B
SEES Cix SEES Ctx

VARIABLES x1, x2
INVARIANTS invl : x1 € P(ASetl)
inv2 : x2 € P(ASet2)
inv3 : x = x1 Ux2
EVENTS
INITIALISATION
BEGIN actl : x1 := &
act2 : x2 :=
END
AddEI1
REFINES AddEI
ANY e
WHERE grd1 : el € ASetl — x1
THEN actl : x1 :=x1 U {el}
END
AddEI2
REFINES AddEI
ANY e
WHERE grd1 : el € ASet2 — x2
THEN actl : x2 :=x2 U {el}
END
END

VARIABLES vy1,y2
INVARIANTS invl : y1 € P(DSetl)
inv2 : y2 € P(DSet2)
inv3:y=ylUy2
EVENTS
INITIALISATION
BEGIN actl : yl := &
act2 : y2 :=
END
AddEI1
REFINES AddEI
ANY €
WHERE grd1 : el € DSetl — y1
THEN actl : yl :=yl U {el}
END
AddEI2
SubEl1
REFINES SubEl
ANY €
WHERE grdl : y1 # @
grd2 : e €yl
THEN actl : yl :=yl — {el}

END

The right hand column introduces the deallocation UseQdaehineB is like ma-
chineA, except that (aside from variable renaming for clarity)dstaSubEl event as
well as anAddEl one. Machine is refined to machin®. In machineD, the allocation
and deallocation events are refined into their agent-wisatewparts (the ones for agent
2 are just like the ones for agent 1, and so are suppresseddsgace). Also machine
D introduces the use @Set and its partition intdSetl, DSet2.

Let us consider the relationships between these variousimas. TheA to C re-
finementis a normal Event-B refinement, as isBre D refinement. However there is a

UseCase-wise Development: Retrenchment for Event-B 11

difference between the two. In tieto C refinement, the static séSet stays the same,
whereas in th@ to D refinement, we are able to replad&et by DSet. The reason we
are able to do this in the case of tBe&o D refinement but not thé to C refinement is
connected with the details of Event-B refinement POs. Onbexfd, the relative dead-
lock freedom PO, demands that the disjunction of the guairadl the abstract events
implies the disjunction of the guards of all the concretesor@@onsider then the state
in which all DSet elements have been allocated. If we ug¥skt instead ofASet in
machineC, then, whereas the machiAeAddEl’s guard would berue (since there are
plenty of elements left iSet — DSet) the disjunction of the machin@ AddEI1 and
AddEI2 guards would béalse (since by definition(DSetl —x1)U(DSet2—x2) is empty
in this state). So the disjunction of the abstract guardsidvoat imply the disjunction
of the concrete ones, and the refinement would fail. The sametitrue of thé3 to D re-
finement. There, when all tHeSet elements have been allocated, the disjunction of the
abstract guards isue as before, but now, at the concrete level, even thadgll1 and
AddEI2 are disabled as in machii@ we have theSubEl1 and SUbEI2 events enabled,
so the disjunction of the concrete guardsrise as well, and the refinement succeéds.

The relationship from machin& to machineB cannot be an Event-B refinement
since machin®’s SUbEI event manipulates the machiAestate in a norskip manner
(and furthermore, the relationship cannot be a conversatEBeefinement since then
machineB's SUbEl event would not be refined by anything). To capture this ietehip
we need retrenchment, and the trivial retrenchniant g that follows will do#

RETRENCHMENT Reta g

FROM A TO B

SEES Ctx

RETRIEVESTetl : x =y

EVENTS

RAMIFICATIONS AddEl

WITHIN wthl : true
CONCEDEScon1 : false
END

END

RETRENCHMENT Retc p
FROM C TO D
SEES Ctx
RETRIEVESTetl : x1 =yl
ret2 : x2 = y2
EVENTS
RAMIFICATIONS AddEl1
WITHIN wthl : true
CONCEDEScon1 : false
END

RAMIFICATIONS AddEI2

END

AlongsideReta g, we haveRetc p, the retrenchment required to relate machinie
machineD. Note that neither retrenchment needs to say anything abeirtitialisation
events, since they are required to work just as in refinenReatt,p looks just as trivial
asRetp g but in factitis less so. In the Rodin toolset, there is a catioa that when one
event refines another, any parameters that are identicaiyed in the two events are
in fact equal, and the relevant equalities are automayi¢aditored in to the automated
reasoning. We have availed ourselves of a similar convetfitioretrenchments, and it
applies in bottReta g andRetc p. In Reta g this has little impact, since the only place
where it applies (the parameters of the mactirad machind® AddEI events), the as-

3 The success can be attributed to the fact that we are usingetierelative deadlock freedom
PO rather than the strong one (see [3], Deliverable D3). Tiwag version demands that for
each abstract event, its guard implies the disjunction of theesponding concrete guard with
all the ‘new event’ guards. Such a PO would fail here, a cirstamce that could be overcome
with a more extensive use of retrenchment.

One could introduce syntax to deal with such trivial evetterechments more succinctly.

12 R. Banach

sumptions pertaining to the two events’ parameters ardicinin Retc p however, the
same situation is less trivial, since machitis AddEI1 €l is selected fronASet while
machineD’s AddEI1 €l is selected fronDSet. If we temporarily rename the parameters
in these two events by adding subscripts, the real withiati@h between thé&ddEl1
events inRetc p becomes:

elc = elp A el € ASet A elp € DSet (8)

which enforces an additional constraintea. So, despite appearances, the within re-
lation of AddEI1 has some real work to do. (Note that a similar thing is sileat-
complished in the course of thigto D refinement. And if we had taken name identity
even further, and avoided renaming tA¢C variablesx, x1, x2, to theB/D variables
y,y1,y2, we could have simplifiedReta g andRetc p even more by ftrivialising the re-
trieve relations.)

5.2 A B, C, D and the Tower

MachinesA, B, C, D, (and the various retrenchments and refinements that thlate),
form a commuting square and an instance of the Postjoin Emeolt is time to pick
up the discussion left over from Section 4 regarding thisvéffollow a state element
from A through theA to B retrieve relation and then through tBeo D joint invariant,
we arrive at the same set of possibilities as if we had firsegbrough théA to C joint
invariant and then th€ to D retrieve relation, i.e. the relevant relational compasis
are equal (a claim easy enough to check by hand in this singamgle), and they
constitute the retrieve relation for the composed retremafit. The rest depends on the
events. Of these, the initialisations behave straightéodly of course; assuming the
truth of the component initialisation POs enables the tafithe composed initialisation
PO to be proved, given the composed retrieve relation.

For the other events, we note that machiseAddEl event is going to be retrenched
to both AddEI1 and AddEI2 in machineD, by tracing the square viB or C. Since
AddEI1 and AddEI2 are so similar, it will be sufficient for us to discugsldEl1l and
to leave AddEI2 to the reader. To discusdddEl1, we first need the within relation
for AddEl andAddEI1. This can be obtained in one of two ways. One can compose the
within relation of theA to B retrenchment with the conjunction of the joint invariantian
WITNESS relation® of the B to D refinement, or one can compose the joint invariant
and WITNESS relations of th& to C refinement with the within relation of th@é to D
retrenchment. Since the square commutes, these two dadnigagree, as they must,
and as the reader can check.

The concedes relation fokddEl and AddEI1 is determined similarly. One way
round, the concedes relation of tieto B retrenchment is composed with the joint
invariant and witness relations of ttito D refinement for the before-state and input

5 In Rodin, when an event and its refinement have differentrpaters, the refined event has a
WITNESS clause to say how any abstract parameters not @egunrthe refinement are to be
related to the refined ones. This is like the within relatié@ oetrenchment and goes beyond
what is documented in [3] Deliverable D3. See the Rodin Usanbl at [9]. When there are
no such abstract parameters, the witness relation tis@sli

UseCase-wise Development: Retrenchment for Event-B 13

parameters, and another copy of #B¢o D refinement joint invariant is used for the
after-state. The other way round, the witness relation asedcbpies of the joint invari-
ant of theA to C refinement are composed with the concedes relation oCtle D
retrenchment. Again, either way round the square yields#me result. See [15] for
more detailed calculations and proofs regarding the génasz.

Altogether, we get the composed retrenchntegih p, in which the familiar facts
hold for the commorel parameter oAddEl andAddEI1:

RETRENCHMENT Reta p
FROM A TO D
SEES Ctx
RETRIEVESTretl : x =yl Uy2
EVENTS
RAMIFICATIONS AddEl TO AddEl1
WITHIN wthl : true
CONCEDEScon1 : false
END
RAMIFICATIONS AddEl TO AddEI2

END

The above sketches a confirmation that macin@vhich we pulled out of a hat)
has the right characteristics to be the desired square @tiop! In general, when ma-
chines are constructed to solve plausible problems, th&grrielationships are benign,
and it is normally transparent what the square completiaukhlook like, without
resorting to the general theory. Benign situations areasttarised by the fact that the
state (and other) spaces patrtition into equivalence dasgech the various relations in
play treat in an ‘all or nothing’ manner. In other words, tle¢éations involved and their
needed compositions are atfular [16]. In such cases one can confidently eschew the
forbidding complexity of the results in [10], or as here,itHevent-B analogues, and
work by hand.

6 Conclusions

Assuming that bringing the correctness achievable usingnigues like Event-B to
today’s ‘Agile Methods’ would be a good thing, we argued thatgeneral, Event-
B’s insistence that levels of abstraction be complete aptiet of introduction blocks
its ready deployment in such methodologies. Thus, in theip&Cw approach, one
might want to introduce new top level events that manipulaestate in norskip ways,
and perhaps to make even more drastic modifications. We th@mesl that retrench-
ment, which we reformulated in a manner suitable for Even&il for Rodin, could
address such situations via thewer Pattern, which we illustrated ‘by hand’.

The same technical constructions also enlarge the scopeviemt-B to tackle a
wider variety of ‘real-world’ applications. For exampley@&nt-B’s insistence that all
data types are discrete (at least) inhibits its applicatioeal-world scenarios in which
the intrinsic variable types are continuous. Of course isath cases, the continuous
variables must eventually be reduced to discrete ones ier todmplement digital con-
trollers, but carrying out the argument to justify this regtment within a retrenchment
context allows it to make real contact with the formal depeh@nt, whereas otherwise,
it would have to be expelled completely from the formal cdesations. Other ways in

14 R. Banach

which retrenchment might capture the ‘grey areas’ surrinmd formal development
using Event-B could be easily imagined.

It would of course be desirable to mechanise the technologgduced here. For
this, as well as the obvious tool development, it would beessary to formulate an
Event-B version of the theorems of [10]. This would need ttufoon the useful cases
of the tower in a manner that allowed for ready mechanisadibthe whole square
completion process. These aspects remain as work for theefut

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanin@ambridge University Press

(1996)

. Abrial, J.R.: Event-B. to be published.

3. Rodin. European Project Rodin (Rigorous Open DeveloprfterComplex Systems) IST-
51159%http://rodin.cs.ncl.ac.uk/.

4. Banach, R., Poppleton, M.: Retrenchment: An Engineevimgation on Refinement. In
Bert, D., ed.: 2nd International B Conference. Volume 13BBNCS., Montpellier, France,
Springer (April 1998) 129-147

5. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Emgigeand Theoretical Underpin-
nings of Retrenchment. Sci. Comp. Pr6§.(2007) 301-329

6. Banach, R., Fraser, S.: Retrenchment and the BToolkiZBn2005: Formal Specification
and Development in Z and B. Volume 3455 of LNCS., Springef8®03-221

7. Fraser, S., Banach, R.: Configurable Proof ObligatiorthénFrog Toolkit. In: Proc. Fifth
IEEE International Conference on Software Engineering Bowinal Methods. IEEE Com-
puter Society Press, IEEE (2007) 361-370

8. Fraser, S.: Mechanized Support for Retrenchment. Phiistiechool of Computer Science,
University of Manchester (2008)

9. The Rodin Platformhttp://sourceforge.net/projects/rodin-b-sharp/.

10. Jeske, C.: Algebraic Integration of Retrenchment arfthBment. PhD thesis, University of
Manchester (2005)

11. Stepney, S., Cooper, D., Woodcock, J.: An Electronic@®uBpecification, Refinement and
Proof. Technical Report PRG-126, Oxford University Conmpgil_aboratory (2000)

12. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: iéirg the Purse: Finite Sequence
Numbers, and the Tower Pattern. In: Proc. FM-06, LNCS. (20682-398

13. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: ritdiireg the Purse: Finite Exception
Logs, and Validating the Small. In: Proc. IEEE/NASA SEW3R-®005) 234-245

14. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: iivéiireg the Purse: Hashing Injective
CLEAR Codes, and Security Properties. In: Proc. IEEE ISAI6A{2006) to appear.

15. Banach, R., Jeske, C., Poppleton, M.: Composition M@shes for Retrenchment. J. Log.
Alg. Prog.75(2008) 209-229

16. Banach, R.: On Regularity in Software Design. Sci. CoRtpg.24 (1995) 221-248

N

