
UseCase-wise Development: Retrenchment for Event-B

Richard Banach

School of Computer Science,
University of Manchester,
Manchester, M13 9PL, UK
banach@cs.man.ac.uk

Abstract. UseCase-wise Development, the introduction of functionality into an
application in stages, with each stage being carried through to (ideally) imple-
mentation before the next is considered, is examined with a view to its being
treated via an Event-B methodology. The need to modify top level behaviour in
a non-skip way precludes its naive treatment via Event-B refinement, and paves
the way for the use of retrenchment in Event-B. The details ofan Event-B for-
mulation of retrenchment, aligned to the practical detailsof the Rodin toolset, are
described. The details of refinement/retrenchment interworking needed to handle
UseCase-wise development are outlined, and a simple case study is given.

Key words: Event-B, UseCase-wise Development, Incremental Development,
Refinement, Retrenchment, Tower Pattern

1 Introduction

One of the notable things about the move from traditional B [1] to Event-B [2, 3],
is the way that the re-engineered refinement theory of Event-B has managed to en-
compass many ‘low hanging fruit’ issues, for the handling ofwhich, retrenchment has
been advanced in more conventional refinement frameworks inthe past. One can men-
tion: the introduction of new events at successive development levels (within certain
restrictions); the emphasis on guards (rather than preconditions) and their strengthening
during refinement; the migration of information between I/Ovariables and state vari-
ables (since in Event-B there is generally no separate category of I/O variables to worry
about); and so on. All of this is beneficial, in bringing such issues under more rigorous
control than when using other development techniques (or when using retrenchment).

Nevertheless, because in Event-B (as in every other rigorous refinement frame-
work), the development strategy and the notion of correctness is fixedab initio —and
yet the world is richly and subtly structured— it is almost inevitable that sooner or later
an application scenario will arise in which the demands of Event-B will prove to be a
less than ideal fit for the application in question. It is to help accomodate situations like
these that retrenchment was originally conceived, so it is natural to ask what retrench-
ment amounts to in the Event-B context, and how the notions ofEvent-B refinement
and Event-B retrenchment would interact. Fortunately, since the original introduction
of retrenchment [4], we have accumulated a good deal of experience and evidence on
which to base the answer (see eg. [5]).

2 R. Banach

In this paper we examine retrenchment in the Event-B context, by looking at a small
case study developed using a UseCase-wise development methodology. UseCase-wise
development is our name for a development strategy in which increments of function-
ality are added in stages, with the introduction of each resulting in a usable application
before the next is considered. Such an approach is at odds with the more traditional wa-
terfall model with which typical formal development approaches are frequently aligned.
We view the exploration of alternative strategies as a good motivation for studying how
retrenchment should be formulated in Event-B, a question which is of independent in-
terest in any case.

The rest of this paper is as follows. In Section 2 we describe UseCase-wise develop-
ment, contrasting it with conventional Event-B development. Section 3 briefly reviews
Event-B and discusses the details of retrenchment for Event-B. In Section 4 we cover re-
trenchment/refinement interworking and the Tower Pattern.The preceding ingredients
are then applied to a small case study, illustrating a good fitbetween the UseCase-wise
approach and Event-B correctness when retrenchment is available. Section 6 concludes.

2 UseCase-wise Development

In Event-B there is a strong emphasis on getting the requirements correct (or as near
correct as is achievable) at the outset. One then analyses the requirements and deter-
mines the most appropriate order in which to take them into account within a sequence
of refinements. The refinements themselves, mix the accretion of requirements issues
as identified during requirements analysis, with data refinements, as appropriate. As
the models get more detailed, sound decomposition techniques are available to split
models into components, allowing further refinements to be done independently. This
TopDown (TD) approach, proceeding as it does in an essentially linear manner, shows
that the Event-B approach can be viewed as a formal interpretation of a fairly traditional
waterfall strategy.

By UseCase-wise (UCw) development, we mean an approach to system develop-
ment that proceeds by taking one or more of the UseCases identified during require-
ments analysis, and completes the development of those first, from the abstract models
down to implementation, giving a usable system (with limited functionality). Subse-
quently further UseCases are incorporated, with all the elements of the development
getting suitably enhanced, and yielding another working system, this time with greater
functionality. The process is repeated until all the UseCases identified during require-
ments analysis have been developed, yielding a system with all the functionality desired.
UCw development can be seen as a member of the ‘Agile Methods’family of system
development techniques.1

1 We coined the term ‘UseCase-wise development’ to avoid confusion. It is enough to glance
at http://en.wikipedia.org/wiki/Agile software development and the acronym blizzard one
finds there, with the same term having different meanings in different settings, to realise what
dangers lurk in the casual use of terms invented in this field.What we call UseCase-wise devel-
opment is also called ‘incremental development’ in other places, but that term is so laden with
possibilities for misinterpretation, that we thought it safest to invent a fresh name, inevitably
causing yet more terminological proliferation.

UseCase-wise Development: Retrenchment for Event-B 3

… … … … … … …… … … … …

Fig. 1. Illustrating TopDown versus UseCase-wise development strategies.

Fig. 1 illustrates the TD versus UCw distinction. On the leftwe see a development
proceeding TD in layers, while on the right, we see additional slices of functionality
being added UCw to an initially developed system. It is important to realise that the TD
vs. UCw distinction refers to thedynamics of the process by which the system is built.
Even though a system may be built using a UCw process, one which is superficially
unsympathetic to Event-B perspectives, there is no reason why the end result should
not be a collection of models which enjoy the levels of mutualconsistency character-
istic of Event-B. Thus, even though one might argue that introducing a UCw approach
into Event-B would be a retrograde step for Event-B, it is hard to dispute that introduc-
ing Event-B’s criteria for correctness into the UCw approach would be a positive step
for UCw development. This begs the question of how one might incorporate Event-B
correctness into the UCw process. This will be dealt with in Section 4.

3 Event-B Machines, Refinement and Retrenchment for Event-B

In this section, we review Event-B machines, refinements, and against this background,
we formulate retrenchment in a way that will permit the smoothest possible cooperation
between the two techniques.

3.1 Event-B Machines

In a nutshell, an Event-B MACHINE has aname, it SEES one or morestatic contexts,
and it owns some VARIABLES; these are allowed to be updated via EVENTS, but
are required to always satisfy the INVARIANTS. The events can declare their own
parameters (which are bound variables acting as carriers of input values) — each event
has one or moreguards, and one or moreactions which are specified viabefore-after
predicates (or notations such as assignment for simpler cases). Among the events there
is anINITIALISATION, whose guard must betrue.

The semantics of Event-B machines and of the refinement relationship between
machines, is expressed via a number of proof obligations (POs). These must be provable
in order for the machine or refinement in question to be well defined. We quote the main
ones of interest to us, mentioning the others more briefly. See [2, 3] for full details.

For a machineA to be well defined theinitialisation andcorrectness POs must hold:

InitA(u′) ⇒ I(u′) (1)

I(u) ∧ GEvA(i, u) ∧ EvA(u, i, u′) ⇒ I(u′) (2)

4 R. Banach

In (1), InitA is the initialisation event and (1) says that the valueu′ of A’s state variable
u established byInitA satisfiesA’s invariantI. Likewise, (2) says that for an eventEvA

of A, if A’s invariantI, andEvA’s guardGEvA(i, u), both hold in the before-state of the
event, andEvA’s before-after relationEvA(u, i, u′) also holds, then the after-state will
satisfy the invariantI once more. In (1) and (2) we have suppressed mention of the
details of the static contexts seen byA, but we have singled outEvA’s input variables
i for later convenience. For closer conformance to [2, 3] we have not mentioned any
output variables, though it would be trivial to include themin the before-after relation
EvA(u, i, u′) and in (2). Aside from (1) and (2), Event-B machines must satisfy feasi-
bility POs for the initialisation and for all events, and also adeadlock freedom PO for
non-terminating systems; see [2, 3].

3.2 Event-B Refinement

Suppose that as well as machineA, we have another machineC, with state variablew,
input variablek, initialisation eventInitC, and typical eventEvC, with guardGEvC(k, w)
and before-after relationEvC(w, k, w′). If C is a refinement ofA, its invariantK(u, w)
will be a relation over bothu andw, and the counterparts of (1) and (2) are:

InitC(w′) ⇒ (∃ u′
• InitA(u′) ∧ K(u′, w′)) (3)

I(u) ∧ K(u, w) ∧ GEvC(k, w) ∧ EvC(w, k, w′)

⇒ (∃ i, u′
• GEvA(i, u) ∧ EvA(u, i, u′) ∧ K(u′, w′)) (4)

whereEvC is an event that is supposed to refineEvA and we have amalgamated theguard
strengthening andcorrectness POs in (4) for later convenience. In (3), eachInitC(w′)
intialisation must be witnessed by someInitA(u′) intialisation that establishes the joint
invariantJ(u′, w′). Likewise, (4) says that when both invariants hold, eachEvC(w, k, w′)
event is witnessed by someEvA(u, i, u′) event that re-establishes the joint invariant.
Aside from (3) and (4) there are alsofeasibility POs for the initialisation and for all
events,variant decrease POs for ‘new’C events not declared to be refinements of any
event ofA, and also an overallrelative deadlock freedom PO. See [2, 3] for full details.

We give a small example of Event-B refinement. It builds a directed graph from a
finite universe of possible nodes contained in a setNSet held in a contextNCtx.

MachineNodes is concerned with the requirement of assigning nodes to the graph,
picking them out of the setNSet using the eventAddNode, starting with the empty set.
MachineEdges refines Nodes, and addresses the requirement of having edgesbetween
some of the graph nodes. In typical Event-B fashion, it simply accumulates the new
model elements, leaving the preceding ones unchanged. SoEdges just containsNodes
in its body. The new requirement is handled by adding a new variableedg and a new
eventAddEdge. AddEdge acts likeskip on the existing variablenod, as required for such
‘new’ events. Also sinceAddEdge does not refine any existing event (unlikeAddNode
which refines itself and is thus ‘ordinary’), it must be ‘convergent’, which means that
each invocation ofAddEdge decreases theN-valued VARIANT card(NSet×NSet−edg),
ensuring relative deadlock freedom. (We suppress the WHICHIS clauses below.)

UseCase-wise Development: Retrenchment for Event-B 5

MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS

nod ∈ P(NSet)
EVENTS

INITIALISATION
WHICH IS ordinary
BEGIN nod := ∅ END

AddNode
WHICH IS ordinary
ANY n
WHERE n ∈ NSet − nod
THEN nod := nod ∪ {n}
END

END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod, edg
INVARIANTS

nod ∈ P(NSet)
edg ∈ P(NSet × NSet)

EVENTS
INITIALISATION

WHICH IS ordinary
BEGIN nod := ∅ END

AddNode
WHICH IS ordinary
REFINES AddNode
ANY n
WHERE n ∈ NSet − nod
THEN nod := nod ∪ {n}
END

AddEdge
WHICH IS convergent
ANY n, m
WHERE {n, m} ⊆ nod

n 7→ m ∈ NSet × NSet − edg
THEN edg := edg ∪ {n 7→ m}
END

VARIANT card(NSet × NSet − edg)
END

3.3 Retrenchment for Event-B

We now formulate retrenchment for Event-B against the preceding background. The
objective of retrenchment is to offer a flexible relationship between machines or system
models that can capture situations in which all the detailedcriteria of some species of
refinement cannot be met, but where the two models in questionare deemed neverthe-
less (and especially by domain experts rather than refinement specialists) to belong to
the same development activity. The focus of retrenchment ison a simulation-like crite-
rion, with the added aim of convenient interworking with refinement. Retrenchment is
therefore formulated as a modification of the main POs of the refinement notion, with
the incorporation of suitable additional predicates to enhance expressivity.2

For the specific context of Event-B, retrenchment is a relationship that is to hold
between top level machines. When a retrenchment involving arefinement machine is
needed, one must quantify away the dependence on the higher level abstractions to get
a self-contained top level machine using the technique described in Chapter 11 of [1].

Unlike refinement in Event-B, in which the refinement data (essentially just the
joint invariant and some bookkeeping details, as in our example) are incorporated into
the syntax of the refining machine, retrenchment is an independent syntactic construct,
as befits the weaker relationship between machines that it expresses, and especially, the
desire that none of the details of retrenchment interfere inany way with any refinement
that any machine involved in a retrenchment might also be involved in. Notationally
this departs from the scheme in [4] and agrees with the line taken in [6–8].

2 Thus the modification of the relevant refinement POs constitutes the sense in which the
simulation-like criterion is intended; suitable pairs of transitions in the two modelsshould
satisfy an appropriate generalisation of (4).

6 R. Banach

Suppose we have top level machinesA (having the elements mentioned earlier) and
B, andB’s state and input variables arev, j, the invariant isJ(v) and the other pieces can
be imagined. Here is a schematic syntax for the retrenchmentconstruct, intended as a
good fit for Event-B as currently implemented in the Rodin toolset [9]:

RETRENCHMENT Identifier RetA,B

FROM Identifier A TO Identifier B
[SEES IdentifierList]
[RETRIEVES Predicate R(u, v)]
[EVENTS

[RAMIFICATIONS Identifier EvA [TO Identifier EvB]
[WITHIN Predicate WEvA,EvB (i, j, u, v)]
[CONCEDESPredicate CEvA,EvB (u′, v′, i, j, u, v)]
END

]+
]
END

The construct has a nameRetA,B, and is FROM machineA TO machineB. It can SEE
static contexts as can a machine or refinement. There is a RETRIEVES relationR(u, v)
between the two state spaces, and for each pair of retrenchment-related events inA and
B, eg.EvA andEvB (where one can omit mentioningEvB if it has the same name asEvA),
there are the RAMIFICATIONS, consisting of the WITHIN relation WEvA,EvB(i, j, u, v)
and the CONCEDES relationCEvA,EvB(u

′, v′, i, j, u, v).
The semantics of retrenchment is given by its POs. These are:

InitB(v′) ⇒ (∃ u′
• InitA(u′) ∧ R(u′, v′)) (5)

I(u) ∧ R(u, v) ∧ J(v) ∧ WEvA,EvB(i, j, u, v) ∧ EvB(v, j, v′)

⇒ (∃ i, u′
• EvA(u, i, u′) ∧ (R(u′, v′) ∨ CEvA,EvB(u

′, v′, i, j, u, v))) (6)

where there is an instance of (6) for each ramifications-related pairEvA andEvB. We
see that the intialisation PO is standard, while the correctness PO permits considerable
deviation from refinement-like behaviour by virtue of the presence of the within and
concedes relations. In addition to the above, we demand for eachEvA/EvB pair that:

WEvA,EvB(i, j, u, v) ⇒ GEvA(i, u) ∧ GEvB(j, v) (7)

which is the criterion that ensures smooth retrenchment/refinement interworking. Note
however, that the other POs of Event-B refinement, variant decrease and relative dead-
lock freedom, do not have counterparts in retrenchment; we want to be able to relate
machines with significantly different behaviour as regardsthese aspects, if desired.

Although we do not have space here to fully examine the arguments why the above
design is a good one for retrenchment, we can make the following remarks. Firstly,
the aim of a notion thatdeparts from refinement ordesires to accommodate inability
to satisfy refinement, must amount to a weakening of refinement — there isclearly
no point in doing the opposite. The proposal we have given above does this, since
the occurrences ofWEvA,EvB(i, j, u, v) andCEvA,EvB(u

′, v′, i, j, u, v), in the hypotheses and
conclusions respectively, of (6), clearly weaken (4). Secondly, we want this weaken-
ing to be as general as possible so as not to have to invent a different notion of non-
refinement for every conceivable departure from refinement that might arise. Again, (6)
achieves this sinceWEvA,EvB(i, j, u, v) andCEvA,EvB(u

′, v′, i, j, u, v) must be specified on a

UseCase-wise Development: Retrenchment for Event-B 7

A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D …

Fig. 2.The basic structure for the Tower Pattern on the left, and on the right, its use in constructing
a UCw development whose outcome enjoys the rigour of an Event-B development.

per-event-pair basis. Thirdly, we would want the departurefrom refinement to be quan-
tified in some way. Again, (6) achieves this, at least indirectly, sinceWEvA,EvB(i, j, u, v)
andCEvA,EvB(u

′, v′, i, j, u, v) must actually be specified by the user in each particular case
of retrenchment — in doing this the precise details of how refinement fails to hold is
made clear by the user in the details of these (otherwise unconstrained) relations. Lastly,
we would want good interworking with refinement. This important topic is the subject
of the next section. See [5] for more extensive discussion ofgeneralities such as these
concerning retrenchment.

4 Retrenchment and Event-B Interworking: the Tower Pattern

A definitesine qua non of retrenchment is that the use of retrenchment should not spoil
the rigour achievable via refinement. The best results are obtained when the two notions
work closely together, with retrenchment being used to connect together otherwise in-
compatible refinement strands. The more tightly such different refinement strands are
coupled via retrenchment, the more restraint is exercised over retrenchment’s otherwise
extreme permissiveness.

The paradigmatic arrangement of retrenchments and refinements, that achieves both
the tight coupling that restricts retrenchment and the non-interference with the rigour of
refinement, is theTower Pattern, an epithet that summarises a host of square comple-
tion and factorisation results in Jeske’s thesis [10]. The left hand side of Fig. 2 shows a
commuting square of retrenchments and refinements among four system modelsA, B,
C, D, with the retrenchments horizontal and the refinements vertical (and the data that
characterises these retrenchments and refinements implicit). The results of [10] show
that whenever you start with two adjacent sides of such a square, the square can be
completed by building the missing system model and its impinging retrenchment and
refinement out of the existing elements in a canonical way, and that the result is indeed
a commuting square. (Section 5 is concerned with an explicitexample of this construc-
tion.) Such commuting squares are the fundamental buildingblocks of the tower, which
itself is just an arrangement of such squares into a suitablegrid pattern appropriate to
the development at hand.

8 R. Banach

The tower construction has by now had substantial vindication. In the formal de-
velopment of the Mondex Electronic Purse [11], there were a number of requirements
issues that were handled less than ideally in the formal modelling. These have all been
handled convincingly via retrenchment, mostly using the tower [12–14].

Although [10] was done in the context of Z refinement to directly serve the needs
of the Mondex work, the approach advocated in Section 3 and discussed more widely
in [5], ensures that there is a wide commonality between retrenchment formulations
for different variants of refinement. The insistence that retrenchment is confined to the
initialisation and correctness POs helps here, since most notions of refinement have ini-
tialisation and correctness POs that are either identical to, or extremely close to, (5) and
(6). In particular, this applies to Event-B and Z refinements, so, since the composition
of refinements and retrenchments is defined via their initialisation and correctness POs,
these compositions (which yield retrenchments), will be identically defined for both Z
and Event-B. See [15].

For our purposes, we need a suitable analogue of the PostjoinTheorem from [10],
which states that if we have three systemsA, B, C, as in Fig. 2, the square can be com-
pleted in a canonical way with a systemD, and a connecting retrenchmentRetC,D and
refinementRefB,D, so that the two retrenchment+refinement compositions round it are
equal. What impedes the immediate application of the theorem from [10] is: (a) its fero-
cious technical complexity; (b) its detailed Z dependence as regards ‘non-correctness’
POs (i.e. the POs that in Z replace guard strengthening and relative deadlock freedom).
Fortunately the same remedy overcomes both problems. The ferocity of the postjoin
construction comes from wanting to deal with the most general situation possible, which
means allowing the relations that comprise the given retrenchment and refinement to be
as unrestricted as possible. The postjoin construction then has to extract those parts of
these constituent entities that compose smoothly, and it attempts to do so in the most
general manner achievable — this generates formidable complexity. However, if we
are dealing with a situation in which the constituents are well behaved to start with,
most of the complexity simplifies drastically, and a situation that is ‘obviously sensi-
ble’ emerges. The same applies to the non-correctness POs; in a well behaved context,
these do not cause problems either. Further discussion of these points is best given in
the context of an example, so we pick up this thread again nearthe end of Section 5.

What does any of this have to do with reconciling the TD and UCwstrategies? Well,
a single step of the UCw strategy takes the pre-existing development, and incorporates
a new UseCase of functionality. We can imagine that the pre-existing development has
been captured within a sequence of Event-B refinements, starting with the most abstract
formulation of the pre-existing functionality, and descending into more concrete levels
of description, perhaps aggregating additional events into the description as we go in
the usual Event-B way. We can represent this pre-existing development by the thick
vertical line in the middle of Fig. 2.

The incorporation of the new functionality may well requirethe introduction of new
events at the top level, a reworking of the top level invariant, reworked top level guards,
and so on. As such it will not generally fit into the preceding refinement sequence, not
least because the new top level functionality will usually not manipulate the top level
state in askip-like fashion. (These of course are the crucial reasons why one cannot, in

UseCase-wise Development: Retrenchment for Event-B 9

general, capture such increments of functionality using Event-B refinements.) However,
the new functionality can be related to the existing development via a retrenchment.

(We can say the latter with confidence since we show in [5] thatany two system
models can be related via a retrenchment, the potential vacuousness of such a state-
ment being alleviated by the observation that the various relations that comprise a re-
trenchment help toquantify the difference between the models, as noted above. In a
well-controlled situation, such as the introduction of newfunctionality, the difference
between the two models will not be capriciously arbitrary (despite not necessarily con-
forming to Event-B refinement desiderata), and so the retrenchment between them will,
in fact, be able to say quite a lot.)

Depicting the retrenchment from previous top level model tonew top level model
horizontally, we arrive at the shape given by the solid part of the next piece of Fig. 2.

Now the tower construction can take over, and complete a sequence of refinements
from the new top level via the requisite sequence of postjoinsquare completions, work-
ing downwards, as illustrated in the next part of Fig. 2. The new bottom level will be
at the right level of abstraction to correspond with the pre-existing bottom level model.
Thus one bout of UseCase introduction has been achieved via the tower. Successive
bouts follow the same route. In each case we draw up the retrenchment that takes us
to the new top level model, and allow the tower to do the rest. Finally, the right hand
column of the last bout yields a pristine Event-B development of the full functionality,
shown as an even thicker line on the right of Fig. 2.

5 A Simple Case Study

We tackle a toy distributed allocation problem. It is carried out in the way done here
only for purposes of illustrating our techniques. In reality, one would only apply the
machinery discussed in this paper to significantly more substantial examples.

Elements are to be allocated. At the most abstract level, there is a large (potentially
infinite) set,ASet, whose elements are to be allocated, and at a low level this isreplaced
by a much smaller finite subsetDSet. Also, at low enough levels of abstraction,ASet
andDSet are statically partitioned intoASet1, ASet2 andDSet1, DSet2 (the latter being
subsets of the former) for allocation to two individual agents. These static facts are
captured in the contextCtx:

CONTEXT Ctx
SETS ASet, DSet, ASet1, ASet2, DSet1, DSet2
AXIOMS

axm1 : ASet1 ∪ ASet2 = ASet
axm2 : ASet1 ∩ ASet2 = ∅

axm3 : DSet ⊂ ASet
axm4 : DSet1 = DSet ∩ ASet1
axm5 : DSet2 = DSet ∩ ASet2

END

5.1 Four Machines

Below are four machines,A, B, C, D, deliberately arranged as in Fig. 2. The left hand
column treats only one UseCase, that of allocation. MachineA, the most abstract one,

10 R. Banach

simply models the allocation of an element fromASet at the global level. MachineA
is refined to machineC, in which two agents can allocate from their statically assigned
partitions, each agent allocation refining the global allocation event.

MACHINE A
SEES Ctx
VARIABLES x
INVARIANTS inv1 : x ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : x := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet − x
THEN act1 : x := x ∪ {el}
END

END

MACHINE B
SEES Ctx
VARIABLES y
INVARIANTS inv1 : y ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : y := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet − y
THEN act1 : y := y ∪ {el}
END

SubEl
ANY el
WHERE grd1 : y 6= ∅

grd2 : el ∈ y
THEN act1 : y := y − {el}
END

END

MACHINE C
REFINES A
SEES Ctx
VARIABLES x1, x2
INVARIANTS inv1 : x1 ∈ P(ASet1)

inv2 : x2 ∈ P(ASet2)
inv3 : x = x1 ∪ x2

EVENTS
INITIALISATION

BEGIN act1 : x1 := ∅

act2 : x2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet1 − x1
THEN act1 : x1 := x1 ∪ {el}
END

AddEl2
REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet2 − x2
THEN act1 : x2 := x2 ∪ {el}
END

END

MACHINE D
REFINES B
SEES Ctx
VARIABLES y1, y2
INVARIANTS inv1 : y1 ∈ P(DSet1)

inv2 : y2 ∈ P(DSet2)
inv3 : y = y1 ∪ y2

EVENTS
INITIALISATION

BEGIN act1 : y1 := ∅

act2 : y2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ DSet1 − y1
THEN act1 : y1 := y1 ∪ {el}
END

AddEl2
.

SubEl1
REFINES SubEl
ANY el
WHERE grd1 : y1 6= ∅

grd2 : el ∈ y1
THEN act1 : y1 := y1 − {el}
END

SubEl2
.

END

The right hand column introduces the deallocation UseCase.MachineB is like ma-
chineA, except that (aside from variable renaming for clarity) it has aSubEl event as
well as anAddEl one. MachineB is refined to machineD. In machineD, the allocation
and deallocation events are refined into their agent-wise counterparts (the ones for agent
2 are just like the ones for agent 1, and so are suppressed to save space). Also machine
D introduces the use ofDSet and its partition intoDSet1, DSet2.

Let us consider the relationships between these various machines. TheA to C re-
finement is a normal Event-B refinement, as is theB to D refinement. However there is a

UseCase-wise Development: Retrenchment for Event-B 11

difference between the two. In theA to C refinement, the static setASet stays the same,
whereas in theB to D refinement, we are able to replaceASet by DSet. The reason we
are able to do this in the case of theB to D refinement but not theA to C refinement is
connected with the details of Event-B refinement POs. One of these, the relative dead-
lock freedom PO, demands that the disjunction of the guards of all the abstract events
implies the disjunction of the guards of all the concrete ones. Consider then the state
in which all DSet elements have been allocated. If we usedDSet instead ofASet in
machineC, then, whereas the machineA AddEl’s guard would betrue (since there are
plenty of elements left inASet − DSet) the disjunction of the machineC AddEl1 and
AddEl2 guards would befalse (since by definition,(DSet1−x1)∪(DSet2−x2) is empty
in this state). So the disjunction of the abstract guards would not imply the disjunction
of the concrete ones, and the refinement would fail. The same is not true of theB to D re-
finement. There, when all theDSet elements have been allocated, the disjunction of the
abstract guards istrue as before, but now, at the concrete level, even thoughAddEl1 and
AddEl2 are disabled as in machineC, we have theSubEl1 andSubEl2 events enabled,
so the disjunction of the concrete guards istrue as well, and the refinement succeeds.3

The relationship from machineA to machineB cannot be an Event-B refinement
since machineB’s SubEl event manipulates the machineA state in a non-skip manner
(and furthermore, the relationship cannot be a converse Event-B refinement since then
machineB’s SubEl event would not be refined by anything). To capture this relationship
we need retrenchment, and the trivial retrenchmentRetA,B that follows will do:4

RETRENCHMENT RetA,B

FROM A TO B
SEES Ctx
RETRIEVES ret1 : x = y
EVENTS

RAMIFICATIONS AddEl
WITHIN wth1 : true
CONCEDEScon1 : false
END

END

RETRENCHMENT RetC,D

FROM C TO D
SEES Ctx
RETRIEVES ret1 : x1 = y1

ret2 : x2 = y2
EVENTS

RAMIFICATIONS AddEl1
WITHIN wth1 : true
CONCEDEScon1 : false
END

RAMIFICATIONS AddEl2
.

END

AlongsideRetA,B, we haveRetC,D, the retrenchment required to relate machineC to
machineD. Note that neither retrenchment needs to say anything aboutthe initialisation
events, since they are required to work just as in refinement.RetC,D looks just as trivial
asRetA,B but in fact it is less so. In the Rodin toolset, there is a convention that when one
event refines another, any parameters that are identically named in the two events are
in fact equal, and the relevant equalities are automatically factored in to the automated
reasoning. We have availed ourselves of a similar convention for retrenchments, and it
applies in bothRetA,B andRetC,D. In RetA,B this has little impact, since the only place
where it applies (the parameters of the machineA and machineB AddEl events), the as-

3 The success can be attributed to the fact that we are using theweak relative deadlock freedom
PO rather than the strong one (see [3], Deliverable D3). The strong version demands that for
each abstract event, its guard implies the disjunction of the corresponding concrete guard with
all the ‘new event’ guards. Such a PO would fail here, a circumstance that could be overcome
with a more extensive use of retrenchment.

4 One could introduce syntax to deal with such trivial event retrenchments more succinctly.

12 R. Banach

sumptions pertaining to the two events’ parameters are identical. InRetC,D however, the
same situation is less trivial, since machineC’s AddEl1 el is selected fromASet while
machineD’s AddEl1 el is selected fromDSet. If we temporarily rename the parameters
in these two events by adding subscripts, the real within relation between theAddEl1
events inRetC,D becomes:

elC = elD ∧ elC ∈ ASet ∧ elD ∈ DSet (8)

which enforces an additional constraint onelC. So, despite appearances, the within re-
lation of AddEl1 has some real work to do. (Note that a similar thing is silently ac-
complished in the course of theB to D refinement. And if we had taken name identity
even further, and avoided renaming theA/C variablesx, x1, x2, to theB/D variables
y, y1, y2, we could have simplifiedRetA,B andRetC,D even more by trivialising the re-
trieve relations.)

5.2 A, B, C, D and the Tower

MachinesA, B, C, D, (and the various retrenchments and refinements that relatethem),
form a commuting square and an instance of the Postjoin Theorem. It is time to pick
up the discussion left over from Section 4 regarding this. Ifwe follow a state element
from A through theA to B retrieve relation and then through theB to D joint invariant,
we arrive at the same set of possibilities as if we had first gone through theA to C joint
invariant and then theC to D retrieve relation, i.e. the relevant relational compositions
are equal (a claim easy enough to check by hand in this simple example), and they
constitute the retrieve relation for the composed retrenchment. The rest depends on the
events. Of these, the initialisations behave straightforwardly of course; assuming the
truth of the component initialisation POs enables the truthof the composed initialisation
PO to be proved, given the composed retrieve relation.

For the other events, we note that machineA’s AddEl event is going to be retrenched
to both AddEl1 and AddEl2 in machineD, by tracing the square viaB or C. Since
AddEl1 andAddEl2 are so similar, it will be sufficient for us to discussAddEl1 and
to leaveAddEl2 to the reader. To discussAddEl1, we first need the within relation
for AddEl andAddEl1. This can be obtained in one of two ways. One can compose the
within relation of theA to B retrenchment with the conjunction of the joint invariant and
WITNESS relations5 of theB to D refinement, or one can compose the joint invariant
and WITNESS relations of theA to C refinement with the within relation of theC to D
retrenchment. Since the square commutes, these two calculations agree, as they must,
and as the reader can check.

The concedes relation forAddEl and AddEl1 is determined similarly. One way
round, the concedes relation of theA to B retrenchment is composed with the joint
invariant and witness relations of theB to D refinement for the before-state and input

5 In Rodin, when an event and its refinement have different parameters, the refined event has a
WITNESS clause to say how any abstract parameters not occurring in the refinement are to be
related to the refined ones. This is like the within relation of a retrenchment and goes beyond
what is documented in [3] Deliverable D3. See the Rodin User Manual at [9]. When there are
no such abstract parameters, the witness relation trivialises.

UseCase-wise Development: Retrenchment for Event-B 13

parameters, and another copy of theB to D refinement joint invariant is used for the
after-state. The other way round, the witness relation and two copies of the joint invari-
ant of theA to C refinement are composed with the concedes relation of theC to D
retrenchment. Again, either way round the square yields thesame result. See [15] for
more detailed calculations and proofs regarding the general case.

Altogether, we get the composed retrenchmentRetA,D, in which the familiar facts
hold for the commonel parameter ofAddEl andAddEl1:

RETRENCHMENT RetA,D

FROM A TO D
SEES Ctx
RETRIEVES ret1 : x = y1 ∪ y2
EVENTS

RAMIFICATIONS AddEl TO AddEl1
WITHIN wth1 : true
CONCEDEScon1 : false
END

RAMIFICATIONS AddEl TO AddEl2
.

END

The above sketches a confirmation that machineD (which we pulled out of a hat)
has the right characteristics to be the desired square completion. In general, when ma-
chines are constructed to solve plausible problems, their interrelationships are benign,
and it is normally transparent what the square completion should look like, without
resorting to the general theory. Benign situations are characterised by the fact that the
state (and other) spaces partition into equivalence classes, which the various relations in
play treat in an ‘all or nothing’ manner. In other words, the relations involved and their
needed compositions are allregular [16]. In such cases one can confidently eschew the
forbidding complexity of the results in [10], or as here, their Event-B analogues, and
work by hand.

6 Conclusions

Assuming that bringing the correctness achievable using techniques like Event-B to
today’s ‘Agile Methods’ would be a good thing, we argued that, in general, Event-
B’s insistence that levels of abstraction be complete at thepoint of introduction blocks
its ready deployment in such methodologies. Thus, in the specific UCw approach, one
might want to introduce new top level events that manipulatethe state in non-skip ways,
and perhaps to make even more drastic modifications. We then showed that retrench-
ment, which we reformulated in a manner suitable for Event-B, and for Rodin, could
address such situations via theTower Pattern, which we illustrated ‘by hand’.

The same technical constructions also enlarge the scope forEvent-B to tackle a
wider variety of ‘real-world’ applications. For example, Event-B’s insistence that all
data types are discrete (at least) inhibits its applicationin real-world scenarios in which
the intrinsic variable types are continuous. Of course in all such cases, the continuous
variables must eventually be reduced to discrete ones in order to implement digital con-
trollers, but carrying out the argument to justify this replacement within a retrenchment
context allows it to make real contact with the formal development, whereas otherwise,
it would have to be expelled completely from the formal considerations. Other ways in

14 R. Banach

which retrenchment might capture the ‘grey areas’ surrounding a formal development
using Event-B could be easily imagined.

It would of course be desirable to mechanise the technology introduced here. For
this, as well as the obvious tool development, it would be necessary to formulate an
Event-B version of the theorems of [10]. This would need to focus on the useful cases
of the tower in a manner that allowed for ready mechanisationof the whole square
completion process. These aspects remain as work for the future.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press
(1996)

2. Abrial, J.R.: Event-B. to be published.
3. Rodin. European Project Rodin (Rigorous Open Development for Complex Systems) IST-

511599http://rodin.cs.ncl.ac.uk/.
4. Banach, R., Poppleton, M.: Retrenchment: An EngineeringVariation on Refinement. In

Bert, D., ed.: 2nd International B Conference. Volume 1393 of LNCS., Montpellier, France,
Springer (April 1998) 129–147

5. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and Theoretical Underpin-
nings of Retrenchment. Sci. Comp. Prog.67 (2007) 301–329

6. Banach, R., Fraser, S.: Retrenchment and the BToolkit. In: ZB 2005: Formal Specification
and Development in Z and B. Volume 3455 of LNCS., Springer (2005) 203–221

7. Fraser, S., Banach, R.: Configurable Proof Obligations inthe Frog Toolkit. In: Proc. Fifth
IEEE International Conference on Software Engineering andFormal Methods. IEEE Com-
puter Society Press, IEEE (2007) 361–370

8. Fraser, S.: Mechanized Support for Retrenchment. PhD thesis, School of Computer Science,
University of Manchester (2008)

9. The Rodin Platform.http://sourceforge.net/projects/rodin-b-sharp/.
10. Jeske, C.: Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of

Manchester (2005)
11. Stepney, S., Cooper, D., Woodcock, J.: An Electronic Purse: Specification, Refinement and

Proof. Technical Report PRG-126, Oxford University Computing Laboratory (2000)
12. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Finite Sequence

Numbers, and the Tower Pattern. In: Proc. FM-06, LNCS. (2005) 382–398
13. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Finite Exception

Logs, and Validating the Small. In: Proc. IEEE/NASA SEW30-06. (2005) 234–245
14. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Hashing Injective

CLEAR Codes, and Security Properties. In: Proc. IEEE ISOLA-06. (2006) to appear.
15. Banach, R., Jeske, C., Poppleton, M.: Composition Mechanisms for Retrenchment. J. Log.

Alg. Prog.75 (2008) 209–229
16. Banach, R.: On Regularity in Software Design. Sci. Comp.Prog.24 (1995) 221–248

