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Abstract. Simple retrenchment is briefly reviewed as a liberalisation of
classical refinement, for the formal description of application develop-
ments too demanding for refinement. Two generalisations, output and
evolving retrenchment, are presented. Simple monotonicity results for
retrenchment are recalled, forming the basis of a piecewise development
method.

This work then commences the study of the structuring of developments
using retrenchment. The aim is to decompose a single retrenchment be-
tween specifications, over most or all of the combined frame, into a set
of finer-grained (i.e. of smaller domain) retrenchments over partitioned
subsets of the combined frame. The partition may distinguish inter alia

between refining, approximately refining, and non-refining sets of be-
haviours, and the decomposed retrenchments should be correspondingly
stronger and more informative. Two decomposition results are given,
that each sharpen a coarse-grained retrenchment description with re-
spect to a general operation syntactic structure at concrete and abstract
levels respectively. A third result decomposes a retrenchment, simultane-
ously exploiting structure in both levels. The theory is motivated by and
applied to a simple example from distributed computing, and method-
ological aspects are considered.

1 Introduction

From early concerns about proving correctness of programs such as Hoare’s [15]
and Dijkstra’s [14], a mature refinement calculus of specifications to programs
has developed. Thorough contemporary discussion can be found in [13, 2]. For
model-based specifications the term “refinement” has a very precise meaning;
according to Back and Butler [3] it is a “...correctness-preserving transforma-
tion...between (possibly abstract, non-executable) programs which is transitive,



thus supporting stepwise refinement, and is monotonic with respect to program
constructors, thus supporting piecewise refinement”. A succinct characterisation
of refinement is a relation between models where the precondition is weakened
and the postcondition strengthened.

This work develops the retrenchment method, a liberalisation of refinement.
We argued, when introducing the notion [7, 8], for a weakening of the retrieve
relation over the operation step, allowing concrete non-simulating behaviour in
retrenchment. Concrete I/O may have different type to the abstract counterpart,
and moreover the retrenchment relation may define fluidity between state and
I/O components across the development step from abstract to concrete model.
[19] reported initial work, using transitivity and monotonicity arguments, on the
development of a calculus of retrenchment in B. This calculus was completed in
[22], which showed all primitive operators of the B GSL, including operation
sequence, to be monotonic with respect to retrenchment. [9, 10] gave a substan-
tial theoretical presentation and development of the retrenchment framework,
exploring the landscape between refinement, simulation and retrenchment. [5]
addressed the integration of refinement and retrenchment from a methodological
perspective. [20, 6] present two generalisations, evolving and output retrench-
ment respectively, that are applied in this paper.

A number of textbook-scale application examples of retrenchment have been
presented, among the more substantial being [21, 12]. This work considers some
requirements of practical retrenchment work in specification. More than one
aspect of methodological support is required: the choice of abstractions and
designs for understandable and decidable retrenchment obligations, how best to
integrate with refinement methods, how to compose atomic retrenchment steps
up to the scale of realistic specifications, how to decompose coarse-grained “first-
cut” retrenchments to improve descriptiveness. The second aspect has been well
considered [op.cit.]. [11] makes some commentary on the first, largely in response
to the lack of published methodological reflection on refinement. This paper is
concerned with the third and fourth aspects, the composition and decomposition
of retrenchments.

A typical style of operational specification partitions the state/input do-
main in order to process each part of the partition appropriately; in B this
case analysis approach is structured using a bounded choice over guarded GSL
commands. This paper will concentrate on this style. A retrenchment relation
covering the whole domain of such an operation and its concrete counterpart
will in general document the processing choices in terms of a disjunctive choice
of outcomes in the postcondition. Since there will usually be case structure at
both levels, this disjunctive weakening effect is exacerbated. Describing such a
given retrenchment as “coarse-grained”, in this work we seek a decomposition
into a collection of retrenchments, each of which is restricted to one branch of
the case structure (at abstract or concrete levels separately, or both levels si-
multaneously). Each such decomposed retrenchment should be “finer-grained”
(i.e. have stronger postcondition on a restricted domain) in the sense of includ-



ing only one or some of the disjunctive possibilities in the postcondition of the
composite retrenchment.

The paper proceeds as follows. Section 2 recaps syntactic and semantic def-
initions for simple retrenchment and its evolving variant. On the way output
retrenchment is introduced. We restate the transitivity theorem of [22, 19], used
for composing two retrenchments. Section 3 recalls basic monotonicity results for
retrenchment, which provide a baseline for structuring retrenchments in spec-
ification. Section 4 presents a running example retrenchment to motivate the
discussion, and demonstrates how the disjunctive shape of the simple retrench-
ment obligation is coarser and less descriptive than is desirable. Section 5 gives
a number of results for retrenchment decomposition. Three syntactic patterns
are given for decomposing a single retrenchment into a more descriptive, finer-
grained family of retrenchments. Each pattern is shown to be a valid decompo-
sition in general. Section 6 applies the decomposition to the example to show its
utility, and section 7 concludes.

2 Simple, Output and Evolving Retrenchment

2.1 Introduction

Simple retrenchment is a weakening of the refinement relation between two lev-
els of abstraction; loosely speaking, it strengthens the precondition, weakens the
postcondition, and introduces mutability between state and I/O at the two levels.
The postcondition comprises a disjunction between a retrieve relation between
abstract and concrete state, where refining behaviour is described, and a conces-
sion relation between abstract and concrete state and output. This concession
(where non-refining concrete behaviour is related back to abstract behaviour) is
the vehicle in the postcondition for describing I/O mutability. Use of the simple
retrieve relation, however, precludes I/O mutability being described in the case
of refining behaviour. In output retrenchment [6] we conjoin an “output” clause
to the retrieve clause to deal with this.

2.2 Simple and Output Retrenchment

Figure 1 defines the syntax of output retrenchment in the B language of J.-R.
Abrial [1]; it differs only from the simple form in the addition of the OUTPUT
clause. Abstract machine M has parameter a, state variable u, and invariant
predicate I (u). Variable u is initialised by substitution X (u), and is operated
on by operation OpName, a syntactic wrapper for substitution S (u, i , o), with
input i and output o. Unlike a refinement, which in B is a construct derived
from the refined machine, a retrenchment is an independent MACHINE. Thus
N is a machine with parameter b (not necessarily related to a), state variable
v , invariant J (v), initialisation Y (v), and operation OpNameC as wrapper for
T (v , j , p), a substitution with input j and output p.



MACHINE M (a) MACHINE N (b)

RETRENCHES M

VARIABLES u VARIABLES v

INVARIANT I (u) INVARIANT J (v)

RETRIEVES G(u, v)

INITIALISATION X (u) INITIALISATION Y (v)

OPERATIONS OPERATIONS

o ←− OpName(i) =̂ p ←− OpNameC (j ) =̂

S (u, i , o) BEGIN

END T (v , j , p)

WITHIN

P(i , j ,u, v)

OUTPUT

E (u, v , o, p)

CONCEDES

C (u, v , o, p)

END

END

Fig. 1. Syntax of simple retrenchment

The RETRENCHES clause (similarly to REFINES) makes visible the con-
tents of the retrenched construct. The name spaces of the retrenched and re-
trenching constructs are disjoint, but admit an injection of (retrenched to re-
trenching) operation names, allowing extra independent dynamic structure in
the retrenching machine.

The relationship between concrete and abstract state is fundamentally dif-
ferent before and after the operation. We model this by distinguishing between a
strengthened before-relation between abstract and concrete states, and a weak-
ened after-relation. Thus the syntax of the concrete operation OpNameC in N

is precisely as in B, with the addition of the ramification, a syntactic enclosure
of the operation. The precondition is strengthened by the WITHIN condition
P(u, v , i , j ) which may change the balance of components between input and
state. In the postcondition, the RETRIEVES clause G(u, v) is weakened by the
CONCEDES clause (the concession) C (u, v , o, p), which specifies what the op-
eration guarantees to achieve (in terms of after-state and output) if it cannot
maintain the retrieve relation G . Since in simple retrenchment, the RETRIEVES
clause gives no information about the relation between concrete and abstract out-
put, we conjoin onto that clause an OUTPUT clause E (u, v , o, p). This means
that, should any change occur in the balance of components between abstract
and concrete state and output, the change is fully described both for refining



and non-refining behaviour. We will see how the need for the OUTPUT clause
arises in calculating certain compositions.

Retrenchment has the same initialisation requirements as refinement, i.e. that
the retrieve relation be established:

[Y (v)] ¬ [X (u)] ¬G(u, v) (1)

Output retrenchment is defined1 as follows; for simple retrenchment, simply
remove the E clause:

I (u) ∧ G(u, v) ∧ J (v) ∧ P(i , j , u, v) ∧ trm(T (v , j , p))

⇒ trm(S (u, i , o)) ∧ [T (v , j , p)]¬ [S (u, i , o)]¬

((G(u, v) ∧ E (u, v , o, p)) ∨ C (u, v , o, p)) (2)

From this point we will refer to “retrenchment” where we actually mean “output
retrenchment” The following shorthand for (2) will be used:

S .G,P ,E ,C T (3)

2.3 Transitivity: Composing Output Retrenchments

For transitivity, it is straightforward to generalise the theorem for simple re-
trenchments [9, 22]. We assume as in section 2.2 that machine N RETRENCHES
M , and further that machine O RETRENCHES N . Define machine O syntacti-
cally as a “lexicographic increment” on N , schematically replacing occurrences of
N,b,M,v,J,G,Y,p,j,T,P,E,C in N by O,c,N,w,K,H,Z,q,k,U,Q,F,D, respectively.
Thus operation S in machine M is retrenched by operation T in machine N

(w.r.t. G ,P ,E ,C ), which is in turn retrenched by operation U in machine O

(w.r.t. H ,Q ,F ,D).
Theorem

If S .G,P ,E ,C T and T .H ,Q,F ,D U then...

I (u) ∧ ∃ v • (G(u, v) ∧ J (v) ∧ H (v ,w)) ∧ K (w)

∧ ∃ v , j • (G(u, v) ∧ J (v) ∧ H (v ,w) ∧ P(i , j , u, v) ∧ Q(j , k , v ,w))

∧ trm(U (w , k , q))

⇒ trm(S (u, i , o)) ∧ [U (w , k , q)]¬ [S (u, i , o)]¬

( ∃ v , p • (G(u, v) ∧ J (v) ∧ H (v ,w) ∧ E (u, v , o, p) ∧ F (v ,w , p, q))

∨ ∃ v , p • (G(u, v) ∧ E (u, v , o, p) ∧ D(v ,w , p, q))

∨ ∃ v , p • (C (u, v , o, p) ∧ H (v ,w) ∧ F (v ,w , p, q))

∨ ∃ v , p • (C (u, v , o, p) ∧ D(v ,w , p, q))) (4)

1 See [6] for a more general definition and full development of output retrenchment.



The result is intuitively satisfying, albeit weak in the explosion of disjuncts in the
after-frame. The RETRIEVES clause ∃ v • (G ∧ J ∧ H ) combines component
RETRIEVES clauses and intermediate invariant. The WITHIN clause ∃ v , j •
(G ∧ · · · ∧ Q) combines all component before-state RETRIEVES and WITHIN
constraints. The OUTPUT clause E ∧ F combines the component OUTPUT
clauses. The concession is a cross-product of component RETRIEVES clauses,
their associated OUTPUT clauses, and concessions. It can be shown that the
transitivity property associates.

2.4 Evolving Retrenchment

[20, 21] defined evolving retrenchment, which we recap very briefly. This variant
uses the device of adding a “precision” model parameter to the retrieve relation,
say Gα, and then exploiting that relation as a concession by varying the param-
eter. That is, Gα(u, v) is required to start the retrenchment step, and Gβ(u ′, v ′)
is a possible outcome. This formulation can describe a typical precision-decay
situation over a simulation, for example in simulating (real to floating point) a
sequence of arithmetic steps. In general precision of representation may increase,
decrease, or not change over a simulation step.

Whereas intuition here is to use weakened, or evolved RETRIEVES clauses
as concessions, we define evolving output retrenchment in full generality2:

I (u) ∧ Gα(u, v) ∧ J (v) ∧ Pα(i , j , u, v ,A) ∧ trm(T )(v , j )

⇒ trm(S )(u, i) ∧ [T (v , j , p)]¬ [S (u, i , o)]

¬ ((Gβ(u, v) ∧ Eβ(u, v , o, p)) ∨ Cβ(u, v , o, p)) (5)

Although we use the parameterised retrieve relation device in this paper, the
analysis uses (non-evolving) output retrenchment for reasons of simplicity and
space.

3 Basic Monotonicity Results for Retrenchment

[22] showed the GSL constructors of B to be monotonic w.r.t. simple retrench-
ment, in the weak sense of the following theorem, which is extended here for
output retrenchment.
Theorem

Retrenchment is monotonic w.r.t. the precondition, guard, bounded and un-
bounded choice constructors of B.
Case | : Assume S (u, i , o) .G,P ,O,C T (v , j , p). Assume Q is a predicate
either on a common input variable or some shared external variable unaffected
by either operation. Provided u, v , o, p are nonfree in Q , then

(Q | S ) .G,P ,O,C (Q | T )

2 As before in (2), omit the E clause for evolving simple retrenchment.



Case =⇒ : Assume S (u, i , o) .G,P ,O,C T (v , j , p). Assume Q as for case |
above. Then

(Q =⇒ S ) .G,P ,O,C (Q =⇒ T )

Case [] : Assume S1(u, i , o) .G,P1,O1,C1
T1(v , j , p) and S2(u, i , o) .G,P2,O2,C2

T2(v , j , p). Then
S1[]S2 .G,P1∧P2,O1∨O2,C1∨C2

T1[]T2

Case @ : Now assume that S (u, i , o, x ) .G,P ,O,C T (v , j , p, x ) for some fresh
free external variable x (distinct from u, i , v , j , p). Then

@x • S .G,P ,O,C @x • T (6)

Monotonicity is a fundamental requirement in order that retrenchment be a
piecewise development method. The theorem is weak in the sense that the pred-
icates added by the constructors are constrained to say little about the variables
in the frame of the retrenchment; this work will contribute some more incisive
structure to composite retrenchments.

We have omitted the parallel constructor from theorem (6); this structuring
mechanism will be the subject of future work.

4 Example: Resource Allocation

For brevity in this paper we will use the abstract syntax of B. We use the
following shorthand in a choice of guarded commands, where ELSE denotes the
complement of the disjoined guards ¬ ∃ z • (P ∨ Q ∨ · · · ):

@z • (P =⇒ S )

[] @z • (Q =⇒ T )

· · ·

[] ELSE =⇒ W

Our example is part of a resource allocation and management system in some
distributed environment: resources must be acquired, scheduled for processing,
and released in some prespecified way. We do not go into the nature of such
scheduling or processing, simply focussing on the operation of allocation, or
acquisition. What is of interest for our purposes is the degree of non-idealism in
distributed, perhaps Internet, applications.

An ideal abstract description might require instantaneous allocation of a
specified resource on the basis of a simple, decidable set membership test. In the
real world of implementation, there are a number of constraints on acquisition of
software resources in a distributed environment. Timeliness is first: how long will
it take to find? Contractual issues arise in an open multi-vendor environment:
do we have a contract to acquire repository X’s resource? Quality of service, or
trust: are we prepared to accept a resource that falls short of our requirements
to a greater or lesser degree, in terms of functionality, security, capacity, or
performance?



We prefer, by the principle of separation of concerns, not to clutter the ab-
stract model with these constraints, but rather to describe them in a separate,
more concrete model. In refinement practice, this is not possible: any excep-
tional, or constrained behaviour must be present in the abstract description, or
be indistinguishable (through refinement steps) from behaviour in that descrip-
tion. This necessity in refinement to breach the separation principle is a key part
of the case for the generalisation that is retrenchment [7, 9]. The retrenchment
description of a design for the example incorporates such constraints and approx-
imations of the idealised requirement. Our separation of concerns is reminiscent
of the superimposition [18] and superposition refinement [4] approaches.

Figure 2 specifies part of an abstract resource management machine RsAlloc,
with allocation operation Alloc. SPEC is the set of all resource specifications,
and specu a function returning the specification for any given resource from envi-
ronment RSS . State variable u records all resources already allocated. Operation
Alloc allocates any resource available in the RSS whose specification meets re-
quirement rqt . The operation tests only for availability, somewhere in the world,
of the resource, abstracting over the real-world constraints already mentioned.

MACHINE RsAlloc

SETS RSS , SPEC

CONSTANTS specu

PROPERTIES specu : RSS → SPEC

VARIABLES u

INVARIANT u ⊆ RSS

INITIALISATION u := ∅

OPERATIONS

Alloc(rqt) =̂

rqt ∈ SPEC |

@x • (x ∈ RSS − u ∧ specu (x ) = rqt =⇒ u := u ∪ {x})

ELSE skip

· · ·

END

Fig. 2. Resource allocation: specification

The specification of concrete machine DRsAlloc in Fig. 3 contains the simple
distributed resource allocation operation DAlloc. Abstract sets SPEC ,RSS are
visible here. DRSS is the concrete environment of distributed resources. specv

returns the specification of any given resource in DRSS and a trust function
tr is defined over DRSS . v is the concrete state variable, recording resources
allocated. Retrieve relation Gδ,n , defined by (7) below, relates concrete state to
abstract.



DAlloc retrenches Alloc, being a step towards implementation by adding
some of the real-world constraints. We assume (for simplicity) that trust ratings
of 0, 1 or 2 can be assigned to each candidate resource available for allocation.
Trust is a generic rating here, an abstraction over the compromises to be made
over the availability, trustedness, or quality of the resources in question. Trust
level 2 indicates that requirements are fully met, level 1 that they are partially
met, and level 0 indicates that an appropriate resource is available, but that the
degree to which it meets requirements is unknown. This concrete specification
allocates level 2 and 1 resources from DRSS to v under separate guards, and
skips for level 0 or no resource available3. The relevance of trust level 0 is seen if
we imagine a concrete operation DModifyTrust , which may dynamically change
the trust level of a resource in the environment. With no effect through the
retrenchment on the abstract model, this operation retrenches (indeed, refines)
abstract skip.

The syntactic shorthand above is the RETRIEVES clause, defined

Gδ,n(u, v) =̂ ∃ f ∈ v � u • specu ◦ f = specv

∧ #(u − v) = δ

∧ #(v C tr B {1}) = n (7)

The example is, informally speaking, an evolving retrenchment, where the con-
cession is defined in terms of the retrieve clause Gδ,n (u, v), weakened by varying
the meta-parameters δ,n. To understand the Gδ,n clause, briefly consider the
pattern of resource allocation by the two operations. Abstractly, Alloc allocates
if a resource is available, and otherwise skips. Concretely, DAlloc allocates a
fully trusted resource if one is available, otherwise allocates a partially trusted
resource if one is available, and otherwise skips. That is, DAlloc may (i)4 ex-
actly simulate the behaviour of Alloc (either in allocating a trusted resource, or
not allocating when none are available), may (ii) approximate it in allocating a
partially trusted resource, or may (iii) (more coarsely) approximate it in simply
doing nothing. This approximating behaviour is recorded by parameters δ, the
number of times allocation fails (iii), and n, the number of partially trusted
resources allocated (ii).

Thus consider the representation of abstract resource set u by concrete set
v . Gδ,n states that (a) there is an injection from v to u which uniquely identifies
corresponding resource pairs, (b) each resource pair has matching specifications,
(c) u has exactly δ more elements than v , and (d) that the number of partially
trusted concrete resources is exactly n.

The retrenchment initialisation POB is clearly [InitC ] ¬ [InitA] ¬ G0,0: no
resources exactly represents no resources. The operation retrenchment POB for-
malises the increasing approximation or decay over time of the (initially exact)

3 We assume these guards are mutually disjoint and exhaustive. Formally, this would
require the conjunction of each guard with the negation of each other guard, and so
on, but we do not write this explicitly since to do so adds nothing to the discussion
at this point. For the example application, this is admittedly simplistic.

4 (i-iii) are annotations in Fig. 3



MACHINE DRsAlloc

RETRENCHES RsAlloc

SETS DRSS

CONSTANTS specv , tr

PROPERTIES specv : DRSS → SPEC ∧ tr : DRSS → {0, 1, 2}

VARIABLES v

INVARIANT v ⊆ DRSS

RETRIEVES Gδ,n (u, v)

INITIALISATION v := ∅

OPERATIONS

DAlloc(rqt) =̂

BEGIN

rqt ∈ SPEC |

@y • (y ∈ DRSS − v ∧ specv (y) = rqt ∧ tr(y) = 2

=⇒ v := v ∪ {y}) (i)

@y • (y ∈ DRSS − v ∧ specv (y) = rqt ∧ tr(y) = 1

=⇒ v := v ∪ {y}) (ii)

ELSE skip (i,iii)

WITHIN true

OUTPUT true

CONCEDES Gδ,n (u, v) ∨ Gδ,n+1(u, v) ∨ Gδ+1,n(u, v)

END

· · ·

END

Fig. 3. Resource allocation: retrenchment

representation: each operation either maintains precision of representation, or
weakens it by incrementing either δ or n. This is a weak and general state-
ment, as one would expect from the disjunctive shape of the operation retrench-
ment obligation. Evidently, a sharper description of the relationship between the
two models would detail the three retrenchment cases (i-iii) above, establishing
Gδ,n(u, v), Gδ,n+1(u, v) or Gδ+1,n(u, v) respectively. Case (i) is clearly a refine-
ment, in one layer of a partition of the retrenchment frame, where subsequent
layers are domains of weakening, approximate relationships between the models
(and ultimately, non-refining or exception layers).

4.1 Discussion

It is useful briefly to consider the example more fully. The resource allocation
of operations (Alloc,DAlloc) is clearly precursor to the main business of the
example system, i.e. processing those resources in some fashion. Let us call the



abstract/ concrete operation pair for processing (Proc,DProc). This could rep-
resent initiation of communicating agents, or it could be exploitation of remote
file and processing facilities. The system state u, v in the two models must be
augmented with state components, say ud , vd , which will be dynamically trans-
formed by this processing. This augmented state is subject to a retrieve rela-
tion augmented by a conjunct, say Gd

γ (ud , vd) with parameter γ modelling the
varying approximation of ud by vd . We expect the level of approximation un-
der (Proc,DProc) to remain constant where a fully trusted concrete resource is
available to represent the abstract one in question, and to decay otherwise.

Since DAlloc incorporates constraints of timely availability and quality of
the desired resource, in general it is possible that a resource not available at
some time t0 may become available later, say at t1 > t0. Thus execution of
(Alloc,DAlloc) with input rqt (allocating abstract resource x , but no concrete
resource) at t0 will increment δ. Provided x is not processed before t1, if we then
execute (skip,DAlloc) with input rqt at t1, we can guarantee improved approx-
imation in postcondition Gδ,n (u, v) by decrementing δ. That is, we could treat
DAlloc as an evolving retrenchment of skip, with the following WITHIN clause.
This clause is taken from Gδ,n to define the injection, establish the existence of
a concretely unwitnessed abstract resource x of spec rqt , and the existence of a
corresponding concrete witness resource for allocation:

Pδ,n (u, v , rqt) =̂ ∃ f : v � u • f ◦ specu = specv (8)

∧ #(u − v) = δ

∧ # ran(v C tr B {1}) = n

∧ ∃ x : RSS • (x ∈ u − ran f ∧ specu (x ) = rqt)

∧ ∃ y : DRSS • (y 6∈ v ∧ specv (y) = rqt ∧ tr(y) = 2)

The retrenchment, with false concession and stronger than a refinement, is thus

skip . DAlloc w.r.t. (Gδ,n ∧ Gd
γ ,Pδ,n −→ Gδ−1,n ∧ Gd

γ , false)

Whereas retrenchment is defined in terms of the classical forward simulation rule
for refinement [16, 13] with its one-to-one mapping between operation steps, this
example scenario brings to mind the more flexible m-to-n generalised refinement
rules of Schellhorn et al [23]. In that formulation refinement is proved where mi

abstract steps correspond to ni concrete steps between “synchronisation” points
(where the retrieve relation is established), for two execution traces with i ∈ N.
One can imagine such flexible formulation of evolving retrenchment models for
the example: we have seen defferred allocation of resources improving the Gδ,n

approximation, and can imagine other scenarios. A Proc-step might correspond
to a skipping DProc-step, where no corresponding concrete resource is available,
decaying the Gd

γ conjunct. Once we perform the deferred concrete allocation

by skip . DAlloc, we might improve Gd
γ by deferred concrete execution skip .

DProc. A Proc-step might on the other hand correspond to a DProc exception,
decaying the Gd

γ , followed by concrete recovery and improvement of Gd
γ .



The idea of improvement of the level of approximation in evolving retrench-
ment is one that has emerged from our case study work [20, 21]. Although
simple retrenchment is intrinsically a weakening relation between before- and
after-frame, evolving retrenchment can model a strengthening retrieve relation
by virtue of the parameterisation of the relation. In a control systems scenario
[op.cit.], for example, improvement in approximation can happen after sensor
failure is followed later by sensor recovery.

5 Decomposing a Retrenchment

We have seen that the retrenchment of Fig. 3 is weaker than we might wish. It
represents a broad design view of the problem, relating case splits in abstract
and concrete models through the retrenchment. This broad view includes all
alternative behaviour cases, resulting in a weak and coarse-grained retrenchment
picture, with a number of disjuncts in the concession. We need a systematic
way to decompose this into a number of stronger-concession, thus finer-grain
retrenchments that more sharply describe the partition (i-iii) of Fig. 3 of distinct
relationships between the models.

Three approaches will be needed: (a) decomposing w.r.t. given concrete struc-
ture, (b) decomposing w.r.t. given abstract structure, and (c) decomposing w.r.t.
given structure at both levels together.

For each of three decomposition results, a corresponding result enriched with
nondeterministic choice will be given. This is both for generality as well as to
support the example of section 4. Each of these six results is followed by a
corollary which re-composes the retrenchment decomposition of that result. Note
that we will make a distinction between bounded choice indexed over guards
and substitutions, and nondeterministic (unbounded) choice. Although these
two forms of choice are the same thing in the weakest precondition semantics,
they are quite distinct in the world of the specification.

5.1 Decomposition - The Concrete Level

Where the concrete operation is one of guarded choice over an l -indexed collec-
tion of nested substitutions COpl , we seek to decompose the single coarse-grained
retrenchment

AOp .G,P ,O,C []
l

(Rl =⇒ COpl ) (9)

into a finer-grained collection of retrenchments between the same two operations.
For each choice branch in turn, given guard Rk , we seek a retrenchment

AOp .G,P∧Rk ,Ok ,Ck
[]
l

(Rl =⇒ COpl ) (10)

Each retrenchment here is intended to describe partition layer k of the ab-
stract/concrete frame (the case concretely guarded by Rk ) by strengthening



the WITHIN and CONCEDES clauses to P ∧ Rk and Ck respectively, where
for each k we expect that Ck ⇒ C .

We show that (9) can be decomposed into (10) in two steps, by showing that
(10) is the composition as per (4) of two retrenchments. The second of these is
given by a lemma to show that a guarded command is retrenched by an indexed
choice of guarded commands. The apparent increase in nondeterminism in this
retrenchment is avoided by the assumption of mutual exclusivity of the guards.
This is a strong assumption; the question of nondeterministically overlapping
guards is addressed in section 5.2.
Lemma

For each k in turn, given Qk (where k and l independently index the same family
of substitutions), we have

Rk =⇒ COpk (ṽ , j̃ , p̃) . ṽ=v ,Qk ,p̃=p,false []
l

(Rl =⇒ COpl (v , j , p))

where Qk =̂ j̃ = j ∧ Rk (ṽ , j̃ ) ∧
∧

l 6=k

¬ Rl(ṽ , j̃ ) (11)

Proof is by writing out and manipulating the retrenchment POB (2):

J (ṽ) ∧ ṽ = v ∧ J (v) ∧ j̃ = j ∧ Rk (ṽ , j̃ ) ∧
∧

l 6=k

¬ Rl(ṽ , j̃ ) ∧ trm([]
l

Rl =⇒ COpl )

⇒ trm(Rk =⇒ COpk ) ∧ [[]
l

Rl =⇒ COpl ] ¬ [Rk =⇒ COpk ] ¬(ṽ = v ∧ p̃ = p)

The RETRIEVES and WITHIN assumptions identify state and input in the two
models. Also the mutual exclusivity of the guards ensures that this retrench-
ment is effectively an identity refinement. By the algebra of the GSL we have
trm([]

l

Rl =⇒ COpl ) ≡
∧
l

(Rl ⇒ trm(COpl )), and the consequent termination

clause follows. The consequent simulation clause reduces to

∧

l

(Rl ⇒ [COpl ]¬ (Rk ⇒ [COpk ]¬ (ṽ = v ∧ p̃ = p)))

≡
∧

l

(Rl ⇒ (Rk ∧ [COpl ] ¬ [COpk ] ¬(ṽ = v ∧ p̃ = p)))

Syntactically, Rk (ṽ , j̃ ) distributes through COpl (v , j , p) since they are over dis-
joint variable spaces. The mutual exclusivity premise Qk ensures that Rl only
holds for l = k , and the clause follows by identity refinement. QED

Theorem

Each retrenchment of index k may be transformed as follows:

AOp .G,Pk ,Ok ,Ck
Rk =⇒ COpk ` AOp(u, i , o) .G,P ′

k
,Ok ,Ck

[]
l

(Rl =⇒ COpl (v , j , p))

where P ′
k =̂ Pk ∧ Rk ∧

∧

l 6=k

¬ Rl (12)



Proof Here the abstract model is in variables u, i , o and the intermediate and
lower models have variables as per lemma (11). Proof is by transitive composition
of the left-hand retrenchment in (12) with that in the lemma, as per (4). This
is straightforward; as again per (4) we have the composed postcondition clause
in the form (G ∧ O) ∨ C :

∃ ṽ , p̃ • (G(u, ṽ ) ∧ J (ṽ) ∧ v = ṽ ∧ Ok (u, ṽ , o, p̃) ∧ p̃ = p)

∨ ∃ ṽ , p̃ • (Ck (u, ṽ , o, p̃) ∧ ṽ = v ∧ p̃ = p)

This gives composite WITHIN ≡ G , OUTPUT ≡ Ok , and CONCEDES ≡ Ck .
We see here the need for output retrenchment: without the second-step OUT-
PUT clause p̃ = p, the concrete p output would be completely unconstrained in
the composite concession, which would be ∃ p̃ • Ck . QED

Corollary

Given a decomposition of retrenchments (12), the following retrenchment holds5:

AOp .G,
∨
k

P ′

k
,
∨
k

Ok ,
∨
k

Ck
[]
l

(Rl =⇒ COpl ) (13)

Proof We use the facts that (i) if A ⇒ B and C ⇒ D then A ∨ C ⇒ B ∨ D

and (ii) the modal operator [ ] ¬ [ ] ¬ is semidistributive over disjunction6.
Take the disjunction over all k sets of hypotheses, infer the disjunction of the k

consequents, and thus the composite consequent. QED

The example of section 4 includes nondeterministic choice, so the results of
this section all need to be modified accordingly. Thus we have
Lemma

For each k in turn, given Qk , we have

@z • (Rk =⇒ COpk (ṽ , j̃ , z , p̃)) . ṽ=v ,Q′

k
,p̃=p,false []

l

@z • (Rl =⇒ COpl (v , j , z , p))

where Q ′
k =̂ j̃ = j ∧ ∃ z • Rk (ṽ , j̃ , z ) ∧

∧

l 6=k

¬ ∃ z • Rl(ṽ , j̃ , z ) (14)

Proof is as for lemma (11), with guard mutual exclusivity strengthened to in-
clude the choice variable z : given ṽ , j̃ , if any z satisfies Rk then no z satisfies
any other guard Rl at ṽ , j̃ . The termination consequent follows as before. The
simulation consequent reduces to

∧

l

∀ z • (Rl(v , j , z ) ⇒ (∃ z̃ • Rk(ṽ , j̃ , z̃ )

∧ [COpl (v , j , z , p)] ¬ [COpk (ṽ , j̃ , z̃ , p̃)] ¬(ṽ = v ∧ p̃ = p)))

5 The alert reader may be confused when constrasting the disjunctive WITHIN hy-
pothesis here with the conjunctive one in the apparently similar [] result of (6). The
latter result combines given retrenchments between different operation pairs, where
this result combines given retrenchments over the same operation pair. If (6) is ap-
plied to two retrenchments over the same operation pair, then it does indeed apply
with a disjunction of given WITHIN clauses.

6 That is, [T (v)] ¬ [S (u)] ¬C (u, v) ∨ [T ] ¬ [S ] ¬D(u, v)⇒ [T ] ¬ [S ] ¬ (C ∨ D)



The WITHIN clause ensures that the ∀-quantified expression is vacuously true

for guards other than Rk , and any z satisfying Rk(v , j , z ) can be used as the
existential witness z̃ . QED

The following results are proved as before.
Theorem

Each retrenchment of index k may be transformed as follows:

AOp .G,Pk ,Ok ,Ck
@z • (Rk =⇒ COpk )

` AOp(u, i , o) .
G,P

∀

k
,Ok ,Ck

[]
l

@z • (Rl =⇒ COpl (v , j , z , p))

where P
∀

k =̂ Pk ∧ ∃ z • Rk ∧
∧

l 6=k

¬ ∃ z • Rl (15)

Corollary

Given a decomposition of retrenchments (15), the following retrenchment holds:

AOp .
G,

∨
k

P
∀

k
,
∨
k

Ok ,
∨
k

Ck
[]
l

@z • (Rl =⇒ COpl ) (16)

5.2 Mutual Exclusivity Considered Harmful ?

The mutual exclusivity restriction of the above results seem very constraining.
Particularly so, considering that retrenchment is an early-specification activity,
intended to separate out concerns of architecture and information loss in the
reification of a rich model down to a discrete, finite computer program. Nonde-
terminism is an intrinsic feature of abstract descriptions.

It is possible to weaken retrenchment (11) by allowing nondeterministically
overlapping guards in the WITHIN clause, and weakening the concession. How-
ever, a rather baroque picture results which we choose not to pusue here, not
least for reasons of space.

Methodologically, the assumption of mutual exclusivity will not prove to be
a serious restriction. A nondeterministic guarded choice operation is always re-
finable to a deterministic one, by removing excess transitions. This amounts to
refinement to an IF-THEN-ELSIF nesting, with precedence ordering of guards a
design decision. A refinement is always expressible as a false-concession retrench-
ment, by including abstract termination as a WITHIN conjuct if necessary [9]. It
is thus trivial to see that the following retrenchments compose, where R′

k ⇒ Rk :

AOp .G,P ,Ok ,Ck
Rk =⇒ COpk ,

Rk =⇒ COpk . ṽ=v ,j̃=j∧R′

k
,p̃=p,false R′

k =⇒ COpk

` AOp .G,P∧R′

k
,Ok ,Ck

R′
k =⇒ COpk (17)

Thus guard-strengthening retrenchments compose seamlessly. We simply re-
trench away the nondeterminism until mutual exclusivity obtains, and then ap-
ply the relevant decomposition theorem. Since guard strengthening should be
designed to eliminate nondeterminism, the overall operation guard ought not to
strengthen; it should remain exhaustive, if the original overall guard is.



5.3 Decomposition - The Abstract Level

We now seek the complementary decomposition to that of section 5.1; i.e. to
decompose the single retrenchment []

l

(Rl =⇒ AOpl) .G,P ,O,C COp into a finer-

grained collection.
Lemma

For each k in turn, given Qk , we have

[]
l

(Rl =⇒ AOpl(u, i , o)) . u=ũ,P ,o=õ,false Rk =⇒ AOpk (ũ, ĩ , õ)

where P =̂ i = ĩ ∧
∧

l

(Rl ⇒ trm(AOpl)) (18)

Proof is trivial: this is the conventional rewriting of a refinement as a retrench-
ment, with abstract termination as part of the WITHIN clause and a false con-
cession. The simulation consequent reduces to

Rk ⇒ [AOpk ](
∨

l

(Rl ∧ ¬ [AOpl ]¬ (u = ũ ∧ o = õ)))

which is satisfied for l = k as for lemma (11). The disjunctive expression here
means that guard mutual exclusivity is not required. QED

Theorem

Each retrenchment of index k may be transformed as follows:

Rk =⇒ AOpk .G,Pk ,Ok ,Ck
COpk

` []
l

(Rl =⇒ AOpl(u, i , o)) .G,P ′

k
,Ok ,Ck

COp(v , j , p)

where P ′
k =̂ Pk ∧

∧

l

(Rl ⇒ trm(AOpl )) (19)

Proof , as before, is by transitive composition of the left-hand retrenchment in
(19) with that in lemma (18), as per (4). QED

Corollary

Given a decomposition of retrenchments (19), the following retrenchment holds:

[]
l

(Rl =⇒ AOpl ) .G,
∨
k

P ′

k
,
∨
k

Ok ,
∨
k

Ck
COp (20)

Via the appropriate lemma, the analogue of (19) including nondeterministic
choice is
Theorem

Each retrenchment of index k may be transformed as follows:

@z • (Rk =⇒ AOpk) .G,Pk ,Ok ,Ck
COpk

` []
l

@z • (Rl =⇒ AOpl(u, i , o, z )) .
G,P

∀

k
,Ok ,Ck

COp(v , j , p)

where P
∀

k =̂ Pk ∧
∧

l

∀ z • (Rl ⇒ trm(AOpl )) (21)



Corollary

Given a decomposition of retrenchments (21), the following retrenchment holds:

[]
l

@z • (Rl =⇒ AOpl ) .
G,

∨
k

P
∀

k
,
∨
k

Ok ,
∨
k

Ck
COp (22)

5.4 Decomposition - Both Levels Together

The two sections above show how to decompose a coarse-grained retrenchment
by exploiting concrete and abstract model structure respectively. An even more
finely grained picture should be obtainable by considering all such structure si-
multaneously. That is, given an abstractly decomposed retrenchment (19) achiev-
ing (G ∧ O) ∨ Ck under assumptions Hk , and a concretely decomposed re-
trenchment (12) between the same operations achieving (G ∧ O) ∨ Cl under
assumptions Hl , we seek a retrenchment achieving (G ∧ O) ∨ (Ck ∧ Cl ) under
assumptions Hk ∧ Hl

7. Unfortunately, the modal simulation operator [ ] ¬ [ ] ¬
is not conjunctive. It is necessary to perform the full decomposition from first
principles, as the application of three transitive composition steps (4) combining
those of the two above theorems.

We omit proofs in this section because of their similarity with previous proofs.
Theorem

Each of a collection of retrenchments, with abstract and concrete models indexed
separately by k and m, can be transformed as follows:

ARk =⇒ AOpk .G,Pkm ,Okm ,Ckm
CRm =⇒ COpm

` []
l

(ARl =⇒ AOpl(u, i , o)) .G,P ′

km
,Okm ,Ckm

[]
n

(CRn =⇒ COpn (v , j , p))

where P ′
km =̂ Pkm ∧

∧

l

(ARl ⇒ trm(AOpl )) ∧ CRm ∧
∧

n 6=m

¬ CRn (23)

We note the following points about this result. This fine-grained collection of
retrenchments fully exploits the structure in both models, meeting the goal dis-
cussed at the beginning of this section. Usually we will have Pkm ⇒ ARk ∧ CRm ,
i.e. each retrenchment layer will be defined within the subdomain where both
abstract and concrete guards hold. Guards may overlap nondeterministically in
the abstract model, and, should they do so in the concrete model, the latter can
be “retrenched down” seamlessly to the required mutual exclusivity of guards.
Corollary

Given a decomposition of retrenchments (23), the following retrenchment holds:

[]
l

(ARl =⇒ AOpl) .G,
∨
k

P ′

km
,
∨
k

Okm ,
∨
k

Ckm
[]
n

(CRn =⇒ COpn ) (24)

Note that where the corollary is indexed over k , it is of course applicable over
various disjunctions: over all abstract guards l , over all concrete guards n, or
over all guards at both levels together.

7 Note that here the two retrenchments share the OUTPUT clause O .



Finally, the analogue of (23) and (24) including nondeterministic choice is
Theorem

Each of a collection of retrenchments, with abstract and concrete models indexed
separately by k and m, can be transformed as follows:

@z • (ARk =⇒ AOpk ) .G,Pkm ,Okm ,Ckm
@z • (CRm =⇒ COpm)

` []
l

@z • (ARl =⇒ AOpl(u, i , o)) .
G,P

∀

km
,Okm ,Ckm

[]
n

@z • (CRn =⇒ COpn (v , j , p))

where P
∀

km =̂ Pkm ∧
∧

l

∀ z • (ARl ⇒ trm(AOpl)) ∧

∃ z • CRm ∧
∧

n 6=m

¬ ∃ z • CRn (25)

Corollary

Given a decomposition of retrenchments (25), the following retrenchment holds:

[]
l

@z • (ARl =⇒ AOpl) .
G,

∨
k

P
∀

km
,
∨
k

Okm ,
∨
k

Ckm
[]
n

@z • (CRn =⇒ COpn ) (26)

6 Decomposing The Example

We apply (25,26) to the example. Modulo comments in section 5 and footnote 3
about mutual exclusivity of guards, we read guards AR1 and AR2 ≡ ¬ AR1 from
Fig. 2 and CR1,CR2,CR3 from Fig. 3. We have P1m ≡ AR1 for m = 1 . .3, since
the existence of an abstract resource is a necessary condition for there to exist a
concrete approximating resource. We have no retrenchments for k = 2,m = 1. .2,
since we cannot (in this model) relate abstract resource non-existence to concrete
resource existence. We have P23 ≡ ¬ AR1. All simple guarded substitutions here
of form R =⇒ Op always terminate. Finally, we have G ≡ Gδ,n and for all
indices Okm ≡ true.

Thus for input to theorem (25) we have four component retrenchments, say
rkm , for k = 1 . . 2 and m = 1 . . 3. r11 achieves concession C11 ≡ false, since Gδ,n

is guaranteed in this case. r12 achieves concession C12 ≡ Gδ,n+1. r13 achieves
concession C13 ≡ Gδ+1,n . r23 achieves concession C23 ≡ false, since Gδ,n is
guaranteed in this case where both models skip.

Applying (25) we have four fine-grained retrenchments rkm of Alloc to Dalloc,
each qualified by WITHIN clause P ′

km combining relevant abstract and concrete
guard predicates, and CONCEDES clause Ckm . Corollary (26) combines these
retrenchments to recover the original coarse-grained retrenchment of Fig. 3.

7 Conclusion

The observant reader will by now have noticed the sleight-of-hand in the ap-
proach of this paper: formally speaking, our “decomposition” is in fact com-
position masquerading as decomposition. The decomposition problem we have



ostensibly addressed, in its full generality, is “given a retrenchment r from ab-
stract AOp to concrete COp, can we find two retrenchments r1 from AOp to
some intermediate IOp and r2 from IOp to COp such that r1

o

9 r2 = r ?”. We
have in reality sidestepped this question by starting with a general syntactic form
for the composite retrenchment, and a strong intuition about the finer-grained
component retrenchments, in order to prove some simple composition results.

These will suffice for our purposes, because the generality of the composite
form “covers most of the bases” required by practical specification work. Also,
the natural (and traditional) approach to design is to deal with any case-split
structure in the model under consideration, and to worry about its relationship
to adjacent models later. A significant base not covered is of course the parallel
substitution ||; this remains for future work.

The obvious universality question related to the question above arises: “What
are the ‘best’, i.e. weakest-WITHIN and strongest-CONCEDES component re-
trenchments r1 and r2?”. Further work in the categorical style of the integration
of refinement and retrenchment [5, 17] is indicated here. The suggestion of [22]
of a lattice theory of retrenchment (over the collection of all WITHIN clauses
that satisfy a given retrenchment, similarly all CONCEDES clauses) also needs
pursuing to this end.

In the case of the more general decomposition problem where our approach
cannot be applied, transitivity of retrenchment (4) gives some guidance: for the
composite retrenchment r to follow from the decomposition r1

o

9 r2 we must have

RETRIEVES (r) ≡ RETRIEVES (r1
o

9
r2)

∧ WITHIN (r) ⇒ WITHIN (r1
o

9 r2)

∧ OUTPUT (r) ≡ OUTPUT (r1
o

9
r2)

∧ CONCEDES (r1
o
9 r2) ⇒ CONCEDES (r) (27)
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