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1   Introduction

In [Banach et al. (2007)] the authors gave a comprehensive and broadly based over-
view of the motivations for introducing retrenchment. Background and context were
extensively discussed, and some key issues that arise with retrenchment were de-
scribed, which we will not repeat here. In [Banach et al. (2008)], various kinds of
composition for retrenchment were studied, and these were shown to be both associ-
ative individually, and associatively compatible.

Composition mechanisms are not simply God-given, but are a matter for definition.
One posits a definition for a law of composition (in a given algebraic structure), and
then shows that it is sound. In many algebraic structures there are usually few ‘sen-
sible’ candidates for a composition of a particular type; often there is only one. View-
ing retrenchment as a particular kind of algebraic structure, the composition mecha-
nisms of [Banach et al. (2008)], which are based on purely propositional reasoning,
are certainly the ones that most obviously come to mind. However, while being per-
fectly sound, they do have a tendency to proliferate ‘junk’ cases in the highest level
of the retrenchment conclusion when used in specific application contexts. This is
because retrenchment offers a disjunction of a number of cases in its conclusion, only
one of which needs to be true at any time. Under composition, the distributive law
wastes no time in multiplying the possibilities, and when a case that is false is com-
bined with a case that is true (at a given point), the result is a case that is false. The
number of such false cases can grow exponentially in the number of retrenchments
that are being composed, interfering with the usefulness of retrenchment in the appli-
cations sphere.

In this paper we attempt to bypass the proliferation of nonsense cases by exploiting
semantic insights of varying depth to yield stronger composition laws, attacking the
notion of composition from a different direction. And while we can successfully lim-
it the nonsensical proliferation in varying degrees, the price we have to pay is that var-
ious considerations, notably associativity, become technically more troublesome.
Our investigations are confined to vertical composition: the relationship of our results
here to the propositional reasoning for vertical composition in [Banach et al. (2008)]
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shows how things would go for other types of composition. We illustrate what this
general framework can accomplish by considering a simple model for feature engi-
neering.

In more detail, the rest of the paper is as follows. Section 2 recalls the basic defini-
tions for retrenchment, the ‘usual’ propositionally based vertical composition, and
default retrenchments. Section 3 considers some special cases of retrenchment, the
tidy, neat and fastidious retrenchments. We see that default retrenchments are natu-
rally fastidious, and also neat or tidy under additional constraints. In Section 4 we
consider stronger ways of composing a pair of retrenchments than the usual proposi-
tional technique, relying on assumptions about the transition relations of the systems
involved. Though showing that the stronger techniques are sound is not problematic,
no attempt is made to show that the new compositions preserve the stronger proper-
ties assumed. Beginning with some counterexamples to illustrate why it is nontrivial,
Section 5 explores the compositionality and associativity properties of the stronger
methods of composition. After some protracted calculations, sufficient conditions
are established which guarantee the needed compositionality and associativity.

Section 6 applies the technology just developed to give a retrenchment based account
of software feature engineering. Features in software are normally introduced and
manipulated without too much regard to whether or not what is being done lends it-
self well to being expressed via refinement. Usually ‘not’ prevails. We see that with
the help of a few reasonable assumptions, the more liberal possibilities that retrench-
ment allows us, are flexible enough to give an unstressed account of at least the kind
of elementary feature oriented situations satisfying the stated assumptions. Section
7 concludes, intimating that in this paper we have merely scratched the surface in
terms of the possibilities for richer compositions for retrenchments, and points to fu-
ture work for mapping out the territory more extensively.

2   Retrenchment

In this section we give our notational conventions and present our basic definitions.
We suppose that there is an abstract system Abs and a concrete one Conc. The ab-
stract system has a set of operation names OpsA, with typical element OpA. An op-
eration OpA will work on the abstract state space U having typical element u (the be-
fore-state), and an input space IOpA

with typical element i. OpA will produce an after-
state typically written u′, once more in U, and an output o drawn from an output space
OOpA

. Initial states are any states that satisfy the property InitA(u′). In this paper we
work exclusively in a transition system framework, so an operation OpA is given by
its transition or step relation consisting of steps u -(i, OpA, o)-› u′. The set of such
steps is written stpOpA

(u, i, u′, o). At the concrete level we have a similar setup. The
operation names are OpC ∈ OpsC. States are v ∈ V, inputs j ∈ JOpC

, outputs p ∈
POpC

. Initial states satisfy InitC(v′). Typical transitions are v -(j, OpC, p)-› v′, ele-
ments of the concrete step relation stpOpC

(v, j, v′, p).

2.1   The Retrenchment POs

Given the preceding, retrenchment is defined by three facts. Firstly OpsA ⊆ OpsC,
i.e. to each abstract operation there corresponds a concrete operation assumed to have
the same name; the inclusion can be proper so the converse need not hold.1 Secondly
we have relations as follows: a retrieve relation G(u, v) between abstract and concrete
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state spaces; and for each operation OpA ∈ OpsA, within, output and concedes rela-
tions: POp(i, j, u, v), OOp(o, p; u′, v′, i, j, u, v) and COp(u′, v′, o, p; i, j, u, v) respec-
tively.2 The within and concedes relations are over the variables shown, i.e. the with-
in relations involve the inputs and before-states, while the concedes relations involve
predominantly the outputs and after-states, though inputs and before-states can also
feature if required. We suppress the ‘A’ and ‘C’ subscripts on Op in these relations
since they concern both levels of abstraction equally. Thirdly a collection of proper-
ties (the proof obligations or POs) must hold.  The initial states must satisfy:

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (2.1)

and for every corresponding operation pair OpA and OpC, the abstract and concrete
step relations must satisfy the operation PO:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

COp(u′, v′, o, p; i, j, u, v))) (2.2)

2.2   Vertical Composition

We next record the definition of (the usual, propositionally based) vertical composi-
tion for retrenchments.  See [Banach et al. (2008)] for a proof of soundness.

Definition 2.1 Let Sys0 (with system variables u0, i0, u′0, o0) be retrenched to Sys1
(with system variables u1, i1, u′1, o1) using G1, {POp,1, OOp,1, COp,1 | Op ∈ Ops0},
and Sys1 be retrenched to Sys2 (with system variables u2, i2, u′2, o2) using G2,
{POp,2, OOp,2, COp,2 | Op ∈ Ops1}. Then Sys0 is retrenched to Sys2 using retrieve,
within, output, and concedes relations G(1,2), {POp,(1,2), OOp,(1,2), COp,(1,2) | Op ∈
Ops0}, where:

G(1,2)(u0, u2) ≡ [∃ u1 • G1(u0, u1) ∧ G2(u1, u2)] (2.3)

POp,(1,2)(i0, i2, u0, u2) ≡
[∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧

POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)] (2.4)

OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 • OOp,1(o0, o1; … ) ∧ OOp,2(o1, o2; … )] (2.5)

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))] (2.6)

1. This confirms that the ‘A’ and ‘C’ subscripts on operation names are meta level tags.
2. We recall that the semicolons in OOp and COp are purely cosmetic, separating the variables
‘of most interest’ from others which are permitted, if seldom needed.
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2.3   Default Retrenchments

Default retrenchments make precise the intuition that ‘an arbitrary pair of systems’
can be related by retrenchment. Since they arise in a generic manner, they can be
used to give generic treatments of many situations via retrenchment, our discussion
of feature engineering in Section 7 being a case in point. We recall the following
from [Banach et al. (2007)].

Proposition 2.2 Suppose given two systems Abs and Conc, with OpsA ⊆ OpsC.
Let G(u, v) and {POp(i, j, u, v), OOp(o, p; u′, v′, i, j, u, v) | Op ∈ OpsA} be arbitrary
relations in the variables stated. Let default within and concedes relations {PDef

Op |
Op ∈ OpsA} and {CDef

Op | Op ∈ OpsA} be given by:

PDef
Op(i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧

(∃ u′, o, v′, p • stpOpA
(u, i, u′, o) ∧ stpOpC

(v, j, v′, p))) (2.7)

CDef
Op(u′, v′, o, p; i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p) ∧

¬ (G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) (2.8)

Then G and {PDef
Op, OOp, CDef

Op | Op ∈ OpsA} define a retrenchment from Abs to
Conc called the default retrenchment from Abs to Conc.

Default retrenchments stand in contrast to bespoke retrenchments, ones specifically
crafted by designers to express the goals of their design step. Normally, a bespoke
retrenchment will have a concession weaker than CDef

Op, in order to more transpar-
ently express the intended design goal. The gap between what a bespoke concession
allows, and what the two systems involved can realise, is one source of the junk cases
we attack in this paper.

3   Closures, Tidiness, Neatness, Fastidiousness

Suppose we have an retrenchment from Abs to Conc as previously.

Definition 3.1 We define the retrieve closure of an abstract operation Op of the re-
trenchment by:

GOp(u′, v′, o, p; i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p) ∧

G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) (3.1)

and the concedes closure of Op by:

COp(u′, v′, o, p; i, j, u, v) ≡
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p) ∧

COp(u′, v′, o, p; i, j, u, v)) (3.2)

Loosely speaking, the retrieve and concedes closures of Op give versions of the re-
trieve and output relations and the concedes relations respectively, that are validated
in a particularly strong way; i.e. there exist abstract and concrete transitions that wit-
ness the validity of these closures whenever they are true, something that need not
hold for either G(u′, v′)∧OOp(o, p; …) or for COp(u′, v′, o, p; …) in isolation. In a
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sense, the G(u′, v′)∧OOp(o, p; …) and COp(u′, v′, o, p; …) that appear in the conse-
quent of the retrenchment operation PO, and are largely determined by what the de-
signer deems important to capture in the PO, can be viewed as a shorthand for GOp
and COp respectively, in a manner made precise by the next result.

Proposition 3.2 Let an retrenchment be defined in the usual manner. Then the op-
eration PO (2.2) is satisfied iff (3.3) is satisfied:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • GOp(u′, v′, o, p; i, j, u, v) ∨ COp(u′, v′, o, p; i, j, u, v)) (3.3)

Proof. Straightforward: in the forward direction we just note that the facts beyond
stpOpA

∧G′∧OOp asserted in GOp are present in the hypotheses (similarly for COp);
in the backward direction we are simply weakening the conclusion.

It is clear that GOp(u′, v′, o, p; i, j, u, v) and COp(u′, v′, o, p; i, j, u, v) describe exactly
those situations in the relationship between the two systems which are captured by
the operation PO. The closures enable us to define some additional conditions on re-
trenchments that later lead to interesting composition properties.

Definition 3.3 We define the following relations for an abstract operation Op:

preRet
Op(u, i, v, j) ≡  (∃ u′, o, v′, p • GOp(u′, v′, o, p; i, j, u, v)) (3.4)

preCon
Op(u, i, v, j) ≡  (∃ u′, o, v′, p • COp(u′, v′, o, p; i, j, u, v)) (3.5)

preRetA
Op(u, i) ≡  (∃ v, j • preRet

Op(u, i, v, j)) (3.6)

preRetC
Op(v, j) ≡  (∃ u, i • preRet

Op(u, i, v, j)) (3.7)

preConA
Op(u, i) ≡  (∃ v, j • preCon

Op(u, i, v, j)) (3.8)

preConC
Op(v, j) ≡  (∃ u, i • preCon

Op(u, i, v, j)) (3.9)

Proposition 3.4 For any retrenchment the following holds:

(preRet
Op(u, i, v, j) ∨ preCon

Op(u, i, v, j)) ≡ PDef
Op(i, j, u, v)) (3.10)

where PDef
Op(i, j, u, v) is defined by (3.1).

Proof. If either preRet
Op(u, i, v, j) or preCon

Op(u, i, v, j) is true, then PDef
Op(i, j, u, v)

follows by weakening. Conversely suppose PDef
Op(i, j, u, v) holds as witnessed by

some u′, o, v′, p. Then for u, i, v, j, v′, p, we have (G ∧ POp ∧ stpOpC
) so that we can

invoke the operation PO to infer the existence of some u′, o (not necessarily related
to u′, o), such that the consequent of the PO holds. From this we deduce GOp(u′, v′,
o, p; i, j, u, v) ∨ COp(u′, v′, o, p; i, j, u, v) by (3.3), which yields preRet

Op(u, i, v, j) ∨
preCon

Op(u, i, v, j) by quantification.

Proposition 3.5 Let an retrenchment be defined in the usual manner. Then the op-
eration PO (2.2) is satisfied iff (3.11) is satisfied:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC
(v, j, v′, p) ⇒

(∃ u′, o • stpOpA
(u, i, u′, o) ∧

((preRet
Op(u, i, v, j) ∧ G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

(preCon
Op(u, i, v, j) ∧ COp(u′, v′, o, p; i, j, u, v)))) (3.11)

Proof.  Similar to Proposition 3.2.
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The reformulation of the operation PO in (3.11) is very convenient among strength-
enings of the operation PO that capture all of the information available in the ante-
cedents and see that it is added to the consequent. All the elements of the original PO
remain undisturbed, and the extra information is held in the pre- relations. We will
return to this formulation when convenient subsequently.

Definition 3.6 A retrenchment is tidy iff for all abstract operations Op:

preRetA
Op(u, i) ∧ preConA

Op(u, i) ≡ false (3.12)

and

preRetC
Op(v, j) ∧ preConC

Op(v, j) ≡ false (3.13)

This says that the combinations of before-states and inputs at both levels that charac-
terise the transitions that can reestablish the retrieve and output relations, are disjoint
from those that merely establish the concedes relation, in a particularly strong way.

Lemma 3.7 For a tidy output retrenchment we have:

preRetA
Op(u, i) ∧ preConC

Op(v, j) ≡ false (3.14)

and

preConA
Op(u, i) ∧ preRetC

Op(v, j) ≡ false (3.15)

Proof.  Obvious.

Definition 3.8 A retrenchment is neat iff for all abstract operations Op:

preRet
Op(u, i, v, j) ∧ preCon

Op(u, i, v, j) ≡ false (3.16)

The neat condition keeps retrieve relation preserving behaviour apart from concedes
relation establishing behaviour, as does the tidy condition, but it does it in a techni-
cally different and more finegrained way as the next Proposition shows.

Proposition 3.9 A tidy retrenchment is neat.

Proof. Arguing by contraposition, from the denial of neatness, i.e. preRet
Op(u, i, v, j)

∧ preCon
Op(u, i, v, j), we infer (∃ v, j • preRet

Op(u, i, v, j)) ∧ (∃ v, j • preCon
Op(u, i, v, j))

≡ preRetA
Op(u, i) ∧ preConA

Op(u, i), so that tidiness is contradicted.

Definition 3.10 A retrenchment is fastidious iff for all abstract operations Op:

GOp(u′, v′, o, p; i, j, u, v) ∧ COp(u′, v′, o, p; i, j, u, v) ≡ false (3.17)

The fastidious condition keeps retrieve relation preserving behaviour apart from con-
cedes relation establishing behaviour, in an even more finegrained way than the neat
condition.

Proposition 3.11 A neat retrenchment is fastidious.

Proof.  Similar to the preceding.

Proposition 3.12 For any tidy or neat retrenchment we have:

(preRet
Op(u, i, v, j) ⊕ preCon

Op(u, i, v, j)) ≡ PDef
Op(i, j, u, v)) (3.18)

where ⊕ is exclusive or.
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Proof. For a neat retrenchment we have (3.16). Yet for any retrenchment we have
(3.10), so the ‘or’ must be exclusive. Since tidy retrenchments are neat, the result fol-
lows for them too.

Proposition 3.13 A default retrenchment is fastidious.

Proof.  We calculate for a default retrenchment:

GOp ∧ COp

≡

(G ∧ POp ∧ stpOpA
∧ stpOpC

∧ G′ ∧ OOp) ∧
(G ∧ POp ∧ stpOpA

∧ stpOpC
∧ CDef

Op)

≡

(G ∧ POp ∧ stpOpA
∧ stpOpC

∧ G′ ∧ OOp ∧ ¬ (G′ ∧ OOp))

≡

false (3.19)

However there is no reason to presume that an arbitrary default retrenchment will sat-
isfy the stronger neatness or tidiness conditions.

We recall now that a deterministic system is one for which for every operation Op,
given an input i and a before-state u, there is at most one output o and after-state u′
for which stpOp(u, i, u′, o) holds.  This yields the following.

Proposition 3.14 A default retrenchment between two deterministic systems is neat.

Proof.  We calculate:

preRet
Op(u, i, v, j) ∧ preCon

Op(u, i, v, j)

≡ (definition)

(∃ u′a, oa, v′a, pa • GOp(u′a, v′a, oa, pa; i, j, u, v)) ∧
(∃ u′b, ob, v′b, pb • CDef

Op(u′b, v′b, ob, pb; i, j, u, v))

≡ (instantiating u′a, oa, v′a, pa, u′b, ob, v′b, pb)

(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA
(u, i, u′a, oa) ∧ stpOpC

(v, j, v′a, pa) ∧
G(u′a, v′a) ∧ OOp(oa, pa; u′a, v′a, i, j, u, v)) ∧
(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA

(u, i, u′b, ob) ∧ stpOpC
(v, j, v′b, pb) ∧

CDef
Op(u′b, v′b, ob, pb; i, j, u, v))

⇒ (determinism: u′a = u′b = u′, oa = ob = o, v′a = v′b = v′, pa = pb = p)

(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA
(u, i, u′, o) ∧ stpOpC

(v, j, v′, p) ∧
G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧
CDef

Op(u′, v′, o, p; i, j, u, v))

≡ (definition)
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(G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA
(u, i, u′, o) ∧ stpOpC

(v, j, v′, p) ∧
G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧
¬ (G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)))

≡

false (3.20)

Next we recall that a relation R : X ↔ Y is regular iff R;R–1;R = R, where ; is forward
relational composition; see [Schmidt and Ströhlhein (1993), Banach (1994), Banach
(1995)]. Regular relations are also often called difunctional because any regular re-
lation R can be equivalently characterised by the property that there are two partial
functions f : X → T and g : Y → T such that f;g–1 = R. As an easy consequence of
this, a regular relation can also be characterised by the property that its domain
dom(R) and range rng(R) are partitioned into an equal number of equivalence classes,
such that for any two classes [x] ⊆ dom(R) and [y] ⊆ rng(R), R is either empty from
[x] to [y], or universal from [x] to [y], where the universal cases correspond to f –

1(t)×g–1(t) when t ∈ T is in the range of both f and g. These points of T consequently
set up a bijection between the equivalence classes of the domain and those of the
range. Adding the complement of the domain and range respectively to the collec-
tions of equivalence classes extends this bijection by one more pair (provided both
complements are nonempty, otherwise we don’t get a pair), and makes every point of
X and Y belong to some class or other in the relevant collection. We call these ex-
tended collections of subsets of X and Y the partitions of the domain and range types.

Regarding the regularity of any of the relations G, POp, OOp, COp, of a retrenchment
(or any relations formed from these), we mean regularity when these relations are
viewed as relations from the relevant cartesian product of abstract data spaces to the
corresponding cartesian product of concrete spaces.

Definition 3.15 A retrenchment has regular data iff for all operations Op, the rela-
tion given by G(u, v) ∧ POp(i, j, u, v), the relation given by G(u′, v′) ∧ OOp(o, p; u′,
v′, i, j, u, v), and the relation given by COp(u′, v′, o, p; i, j, u, v), are all regular in the
sense just mentioned (where in the case of G ∧ POp and of G′ ∧ OOp, we implicitly
assume that G and G′ are extended by appropriate universal relations on the other var-
iables involved, in order that the overall relation has the correct signature). We write
the equivalence classes of the domain and range types of these relations using the no-
tation [u, i]G∧P, [v, j]G∧P, [u′, o, i, u]G′∧O, [v′, p, j, v]G′∧O, [u′, o, i, u]C, [v′, p, j, v]C.

Definition 3.16 A retrenchment respects its regular data, iff it has regular data, and
also for every abstract transition u -(i, OpA, o)-› u′:

(1) If (u, i) ∈ [u, i]G∧P and u -(i, OpA, o)-› u′ is an abstract transition, then

(u′, o, i, u) ∈ [u′, o, i, u]G′∧O, and (u′, o, i, u) ∈ [u′, o, i, u]C, for some (u′, o).

(2) If (u′, o, i, u) ∈ [u′, o, i, u]G′∧O and u -(i, OpA, o)-› u′ is an abstract transition,

then (u, i) ∈ [u, i]G∧P.

(3) If (u′, o, i, u) ∈ [u′, o, i, u]C and u -(i, OpA, o)-› u′ is an abstract transition,

then (u, i) ∈ [u, i]G∧P.

and for every concrete transition v -(j, OpC, p)-› v′:



9

(4) If (v, j) ∈ [v, j]G∧P and v -(j, OpC, p)-› v′ is a concrete transition, then

(v′, p, j, v) ∈ [v′, p, j, v]G′∧O, and (v′, p, j, v) ∈ [v′, p, j, v]C, for some (v′, p).

(5) If (v′, p, j, v) ∈ [v′, p, j, v]G′∧O and v -(j, OpC, p)-› v′ is a concrete transition,

then (v, j) ∈ [v, j]G∧P.

(6) If (v′, p, j, v) ∈ [v′, p, j, v]C and v -(j, OpC, p)-› v′ is a concrete transition,

then (v, j) ∈ [v, j]G∧P.

Proposition 3.17 A default retrenchment which respects its regular data is tidy.

Proof. We confirm that preRetA
Op(u, i) ∧ preConA

Op(u, i) reduces to false as required
by (3.12).  Instantiating the existentially quantified variables we get:

(G(u, va) ∧ POp(i, ja, u, va) ∧ stpOpA
(u, i, u′a, oa) ∧ stpOpC

(va, ja, v′a, pa) ∧
G(u′a, v′a) ∧ OOp(oa, pa; u′a, v′a, i, ja, u, va)) ∧

(G(u, vb) ∧ POp(i, jb, u, vb) ∧ stpOpA
(u, i, u′b, ob) ∧ stpOpC

(vb, jb, v′b, pb) ∧
CDef

Op(u′b, v′b, ob, pb; i, jb, u, vb)) (3.21)

Now since stpOpA
(u, i, u′a, oa) and stpOpA

(u, i, u′b, ob) are both true, and the retrench-
ment respects its regular data, since CDef

Op(u′b, v′b, ob, pb; i, jb, u, vb) holds, we de-
duce CDef

Op(u′a, v′b, oa, pb; i, jb, u, vb). Since G ∧ POp is regular and G(u, va) ∧ POp(i,
ja, u, va) and G(u, vb) ∧ POp(i, jb, u, vb) are both true, [va, ja]G∧P = [vb, jb]G∧P. So
since the retrenchment respects its regular data, since stpOpC

(va, ja, v′a, pa) and st-
pOpC

(vb, jb, v′b, pb) both hold, CDef
Op(u′a, v′b, oa, pb; i, jb, u, vb) implies CDef

Op(u′a,
v′a, oa, pa; i, ja, u, va). But the latter implies ¬ (G(u′a, v′a) ∧ OOp(oa, pa; u′a, v′a, i, ja,
u, va)) which contradicts the G(u′a, v′a) ∧ OOp(oa, pa; u′a, v′a, i, ja, u, va) in (3.21),
giving false.  The calculation for (3.13) is entirely analogous.

Since any tidy retrenchment is neat (Proposition 3.9), we get:

Corollary 3.18 A default retrenchment which respects its regular data, is neat.

We close this section by applying the techniques developed here to the comparison
of defaults with arbitrary bespoke retrenchments.

Suppose for a given application with retrieve relation G(u, v), that P°Op(i, j, u, v) is a
‘minimal’ within relation, expressing no more than how abstract and concrete inputs
are related (but allowing for the possibility that this relationship may depend on the
states). It is important to note that the choice of P°Op is a meta level issue, as the
universal relation given by true is always available and is certainly minimal (in the
sense of being the weakest possible) but is usually unhelpful. Let O°Op(o, p; u′, v′,
i, j, u, v) be a correspondingly minimal output relation. Let PDef

Op(i, j, u, v) be the
default within relation manufactured from P°Op by using P°Op instead of P in (2.7),
and let CDef

Op(u′, v′, o, p; i, j, u, v) be the corresponding default concedes relation.

Assuming the same retrieve relation G(u, v), suppose that we also have a bespoke out-
put retrenchment characterised by data {PBes

Op, OBes
Op, CBes

Op | Op ∈ OpsA}, and
let PBC

Op(i, j, u, v) be given by:

PBC
Op(i, j, u, v) ≡
(G(u, v) ∧ PBes

Op(i, j, u, v) ∧
(∃ u′, o, v′, p • stpOpA

(u, i, u′, o) ∧ stpOpC
(v, j, v′, p))) (3.22)
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i.e. the analogous construction to PDef
Op. Then we may make the meta level assump-

tion that for any such PBes
Op:

PBC
Op(i, j, u, v) ⇒ PDef

Op(i, j, u, v) (3.23)

Note that PBC
Op and PDef

Op provide a better basis for comparison than P°Op and
PBes

Op alone, since the application developer is prone to choose the simplest form for
the latter, secure in the knowledge that they will only be used in the context of the
relevant POs.

In the same vein, and motivated by the presumption that a bespoke output relation
will be at worst stronger than the minimal one, we assume also at the meta level:

G(u′, v′) ∧ OBes
Op(o, p; u′, v′, i, j, u, v) ⇒

G(u′, v′) ∧ O°Op(o, p; u′, v′, i, j, u, v) (3.24)

The absence of any existential quantification in (3.24) greatly assists the following
result.

Proposition 3.19 Let GBes
Op and CBes

Op be the retrieve and concedes closures for a
bespoke retrenchment, and let CDef

Op be the concedes closure for the default re-
trenchment.  Then assuming (3.23) and (3.24):

CBes
Op(u′, v′, o, p; i, j, u, v) ∧ ¬GBes

Op(u′, v′, o, p; i, j, u, v) ⇒
CDef

Op(u′, v′, o, p; i, j, u, v) ∨ ¬GBes
Op(u′, v′, o, p; i, j, u, v) (3.25)

Proof.  Suppressing the variable names we calculate as follows:

CBes
Op ∧ ¬GBes

Op

≡

G ∧ PBes
Op ∧ stpOpA

∧ stpOpC
∧ CBes

Op ∧
¬(G ∧ PBes

Op ∧ stpOpA
∧ stpOpC

∧ G′ ∧ OBes
Op)

≡

G ∧ PBes
Op ∧ stpOpA

∧ stpOpC
∧ CBes

Op ∧ ¬(G′ ∧ OBes
Op)

≡  (3.24)

G ∧ PBes
Op ∧ stpOpA

∧ stpOpC
∧ CBes

Op ∧ ¬(G′ ∧ O°Op ∧ G′ ∧ OBes
Op)

⇒ (3.23), weakening, PC)

(G ∧ PDef
Op ∧ stpOpA

∧ stpOpC
∧ ¬(G′ ∧ O°Op)) ∨

(G ∧ PBes
Op ∧ stpOpA

∧ stpOpC
∧ ¬(G′ ∧ OBes

Op))

⇒

CDef
Op ∨ ¬GBes

Op (3.26)

Thus under the constraint of ¬GBes
Op in the hypotheses, and in the presence of

¬GBes
Op in the conclusion to mop up the properties of any ‘stray’ transition pairs, we

see that the default concedes relation is weaker than a bespoke one, according with
rough intuition.
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Corollary 3.20 Under the assumptions of Proposition 3.19, if the bespoke retrench-
ment is fastidious (or neat or tidy), we have:

CBes
Op(u′, v′, o, p; i, j, u, v) ⇒
CDef

Op(u′, v′, o, p; i, j, u, v) ∨ ¬GBes
Op(u′, v′, o, p; i, j, u, v) (3.27)

Proof.  We merely need to prefix (3.26) with CBes
Op ⇒ CBes

Op ∧ ¬GBes
Op.

4   Stronger Compositions of Retrenchments

Suppose that we are given three systems, a top level system with data u0, i0, u′0, o0,
and transition relation stpOp,0, an intermediate system with data u1, i1, u′1, o1, and
transition relation stpOp,1, and a lowest level system with data u2, i2, u′2, o2, and tran-
sition relation stpOp,2. Let there be a retrenchment from top level to intermediate sys-
tem characterised by relations G1(u0, u1), POp,1(i0, i1, u0, u1), OOp,1(o0, o1; u′0, u′1,
i0, i1, u0, u1), COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1), and a retrenchment from intermedi-
ate to lowest level system characterised by relations G2(u1, u2), POp,2(i1, i2, u1, u2),
OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2), COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2).

In a similar manner we define ‘1’ subscripted and ‘2’ subscripted versions of the re-
lations introduced in Section 3, i.e. GOp,1, COp,1, preRet

Op,1, preCon
Op,1, preRetA

Op,1,
preRetC

Op,1, preConA
Op,1, preConC

Op,1; GOp,2, COp,2, preRet
Op,2, preCon

Op,2, preRetA
Op,2,

preRetC
Op,2, preConA

Op,2, preConC
Op,2.

With these in place we can derive strengthenings of the composition of retrenchments
that follows from Proposition 3.2 and Proposition 3.5.

Theorem 4.1 Two retrenchments compose to give a single retrenchment which val-
idates the operation PO:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ stpOp,2(u2, i2, u′2, o2) ⇒
(∃ u′0, o0 • GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ∨

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2)) (4.1)

where:

G(1,2)(u0, u2) ≡ [∃ u1 • G1(u0, u1) ∧ G2(u1, u2)] (4.2)

POp,(1,2)(i0, i2, u0, u2) ≡
[∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧

POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)] (4.3)

OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 • OOp,1(o0, o1; … ) ∧ OOp,2(o1, o2; … )] (4.4)

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))] (4.5)
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and:

GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
(G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2)) (4.6)

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
(G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2)) (4.7)

Proof. To show that we have a retrenchment, we must show that the POs for the com-
posed retrenchment follow from the POs for the individual ones. The initialisation
PO follows by composing the individual initialisation POs. Thus given a u′2 satisfy-
ing Init2(u′2), from Init2(u′2) ⇒ (∃ u′1 • Init1(u′1) ∧ G2(u′1, u′2)) we deduce a u′1 sat-
isfying Init1(u′1) (and G2(u′1, u′2)). Repeating the argument for this u′1, we deduce
a u′0 satisfying Init0(u′0) and G1(u′0, u′1). So altogether we get Init2(u′2) ⇒ (∃ u′0 •
Init0(u′0) ∧ G(1,2)(u′0, u′2)) when we existentially quantify over u′1.

For the operation PO, we are required to establish (4.1) with the component data de-
fined above. We assume the antecedents, so that we have G(1,2) ∧ POp,(1,2). This
gives us existential witnesses u1 and i1 for (4.2) and (4.3), taking the u1 witness to be
common. Since we have G2 ∧ POp,2 ∧ stpOp,2 we use the operation PO for the inter-
mediate to lowest level retrenchment to infer for the intermediate system (∃ u′1, o1 •
stpOp,1 ∧ ((G2 ∧ OOp,2) ∨ COp,2)). For the u1, i1, u′1, o1 that we have now derived,
and using G1 ∧ POp,1 ∧ stpOp,1 all of which have been established, we apply the op-
eration PO for the top level to intermediate retrenchment to deduce (∃ u′0, o0 • stpOp,0
∧ ((G1 ∧ OOp,1) ∨ COp,1)) for the top level system.

Thus given G(1,2) ∧ POp,(1,2) ∧ stpOp,2 we have deduced u′0 and o0 such that stpOp,0
and ((G1 ∧ OOp,1) ∨ COp,1)) ∧ ((G2 ∧ OOp,2) ∨ COp,2)) hold, all witnessed by a com-
mon intermediate transition u1 -(i1, OpI, o1)-› u′1. The distributive law now yields:

(G′1 ∧ OOp,1 ∧ G′2 ∧ OOp,2) ∨

((G′1 ∧ OOp,1 ∧ COp,2) ∨ (COp,1 ∧ G′2 ∧ OOp,2) ∨ (COp,1 ∧ COp,2)) (4.8)

all conjoined with G(1,2) ∧ POp,(1,2) ∧ stpOp,2 ∧ stpOp,0. When the latter is distributed
into the first disjunct we obtain GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) after pushing
the existential quantification over u1, i1, u′1, o1 over the first ‘∨’ in (4.8), this dis-
charging (4.1). Likewise when G(1,2) ∧ POp,(1,2) ∧ stpOp,2 ∧ stpOp,0 is distributed into
the second collection of disjuncts in (4.8) we obtain COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0,
u2) after dealing with the quantification over u1, i1, u′1, o1, also discharging (4.1).

Theorem 4.2 Two retrenchments compose to give a single retrenchment given by
the data:

G(1,2)(u0, u2) ≡ [∃ u1 • G1(u0, u1) ∧ G2(u1, u2)] (4.9)

POp,(1,2)(i0, i2, u0, u2) ≡
[∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧

POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)] (4.10)
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OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 • OOp,1(o0, o1; … ) ∧ OOp,2(o1, o2; … ) ∧

preRet
Op,1(u0, i0, u1, i1) ∧ preRet

Op,2(u1, i1, u2, i2)] (4.11)

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))] (4.12)

Proof. To show that we have a retrenchment, we must show that the POs for the com-
posed retrenchment follow from the POs for the individual ones. The initialisation
PO is disposed of as in Theorem 4.1.

For the operation PO, we are required to establish:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ stpOp,2(u2, i2, u′2, o2) ⇒
(∃ u′0, o0 • stpOp,0(u0, i0, u′0, o0) ∧

((G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2)) ∨
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))) (4.13)

which would not entail anything unfamiliar were it not for the fact that OOp,(1,2) is
now given by (4.11) and not (2.5) and COp,(1,2) is given by (4.12) and not (2.6). We
argue as usual from G(1,2) ∧ POp,(1,2), to get u1 and i1, taking u1 to be common. From
G2 ∧ POp,2 ∧ stpOp,2 we use the operation PO to infer (∃ u′1, o1 • stpOp,1 ∧ ((G2 ∧
OOp,2) ∨ COp,2)). For u1, i1, u′1, o1, we use G1 ∧ POp,1 ∧ stpOp,1 and the operation
PO to deduce (∃ u′0, o0 • stpOp,0 ∧ ((G1 ∧ OOp,1) ∨ COp,1)) for the top level system.

So for all these existential witnesses we have established:

stpOp,0 ∧ stpOp,1 ∧ stpOp,2 ∧ G1 ∧ POp,1 ∧ G2 ∧ POp,2 ∧
((G′1 ∧ OOp,1) ∨ COp,1) ∧ ((G′2 ∧ OOp,2) ∨ COp,2) (4.14)

The two disjunctions generate a disjunction of four terms by the distributive law:
(G′1∧OOp,1∧G′2∧OOp,2 …) ∨ (G′1∧OOp,1∧COp,2 …) ∨ (COp,1∧G′2∧OOp,2 …) ∨
(COp,1∧COp,2 …), where the ellipsis refers to everything on the top line of (4.14). In
each of these disjuncts it is now straightforward to see that the properties asserted by
the various pre- clauses in (4.11) and (4.12) are easily provable, so that a composition
of retrenchments utilising (4.9)-(4.12) is sound.

Note the contrast between Theorem 4.1 and Theorem 4.2. The former is stated in
terms of a modified operation PO, while the latter uses the standard retrenchment op-
eration PO but just requires the composed retrenchment data to be strengthened. Fur-
thermore readers can easily convince themselves, using Proposition 3.2, that a proof
combining elements of both of these can establish a version of Theorem 4.1 that uses
(4.11) and (4.12) instead of (4.4) and (4.5).
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We moreover note that in Theorem 4.2, although we are able to strengthen the com-
posed output and concedes relation in the manner expected from Proposition 3.5, a
similar strengthening of the retrieve relation cannot be carried through as the retrieve
relation itself does not admit all of the required variables. This is in line with the fact
that the retrieve relation also appears in the antecedents of the operation PO, where
the strengthening we are considering does not make sense. Thus we must distinguish
carefully between strengthening what is said in the operation PO itself, as in (3.3) and
(3.11), and merely strengthening the data which enter into the conventional operation
PO, as in (4.11) and (4.12), and for which there are in principle fewer opportunities.

Now we turn to the tidy, neat, and fastidious retrenchments. Under suitable assump-
tions we will compose these kinds of retrenchment in a more incisive manner than in
Section 2.

Definition 4.3 We say that two adjacent retrenchments like the above, which are
both tidy, are compatibly tidy iff for all abstract operations Op:

preRetA
Op,2(u1, i1) ⇒ preRetC

Op,1(u1, i1) (4.15)

and

preConA
Op,2(u1, i1) ⇒ preConC

Op,1(u1, i1) (4.16)

hold for the intermediate system.

Theorem 4.4 Two compatibly tidy retrenchments compose to give a single retrench-
ment given by the data:

G(1,2)(u0, u2) ≡ [∃ u1 • G1(u0, u1) ∧ G2(u1, u2)] (4.17)

POp,(1,2)(i0, i2, u0, u2) ≡
[∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧

POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)] (4.18)

OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)] (4.19)

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 • COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)] (4.20)

Proof. We can take over the first two paragraphs of the proof of Theorem 4.2 verba-
tim, aside from the fact that a different composition of output and concedes relations
is being dealt with here.

Having established (4.14) as before, we now argue as follows. Since the intermediate
to lowest level retrenchment is tidy, either preRetC

Op,2(u2, i2) or preConC
Op,2(u2, i2) will

hold, but not both. Suppose we have preRetC
Op,2(u2, i2). Then by tidiness we can de-

duce preRetA
Op,2(u1, i1) too. Then for u1, i1, u′1, o1, u2, i2, u′2, o2, from the truth of

the operation PO we must have GOp,2(u′1, u′2, o1, o2; i1, i2, u1, u2), since tidiness and
our assumptions preclude COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2). Since the two retrench-
ments are compatibly tidy and we have preRetA

Op,2(u1, i1), we can also deduce pre-
RetC

Op,1(u1, i1) from (4.15). Since the top level to intermediate retrenchment is tidy,
preConC

Op,1(u1, i1) becomes impossible, whereupon the truth of the operation PO for
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the top level to intermediate output retrenchment implies for u0, i0, u′0, o0, u1, i1, u′1,
o1, that GOp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) holds, and that COp,1(u′0, u′1, o0, o1; i0, i1,
u0, u1) is precluded. So we have GOp,2 ∧ GOp,1 which yields G(1,2)(u′0, u′2) ∧
OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2), which for the stated u′0, o0 is enough to prove
the operation PO.

Alternatively suppose that preConC
Op,2(u2, i2) is true. Then analogous reasoning es-

tablishes in turn COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2), preConA
Op,2(u1, i1), preConC

Op,1(u1,
i1), and COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1). Thus COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0,
u2) (given by (4.20)) holds. The two cases together verify the operation PO for the
composed retrenchment with retrieve, within, output and concedes relations given by
(4.17)-(4.20).

The structure of the above result is very appealing. The data that specifies the com-
bined retrenchment is built in an especially simple way from the component data, and
is strictly simpler than that for compositions of arbitrary retrenchments. As we weak-
en the separation between retrieve-relation-re-establishing behaviour and concedes-
relation-establishing behaviour, this simplicity degrades, as the following results sug-
gest.

Theorem 4.5 Two neat retrenchments compose to give a single retrenchment such
that given an intermediate level before-state and input (u1, i1), for any intermediate
transition issuing from (u1, i1) that witnesses the composed operation PO:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ stpOp,2(u2, i2, u′2, o2) ⇒
(∃ u′0, o0 • stpOp,0(u0, i0, u′0, o0) ∧

((G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2)) ∨
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))) (4.21)

with G(1,2), POp,(1,2), OOp,(1,2) and COp,(1,2) given by (4.9)-(4.12), at most one of:

(1) (G′(1,2) ∧ OOp,(1,2))

(2) (G′1∧OOp,1∧COp,2) from COp,(1,2)

(3) (COp,1∧G′2∧OOp,2) from COp,(1,2)

(4) (COp,1∧COp,2) from COp,(1,2) (4.22)

is true, the choice of which is true being dependent solely on (u1, i1).

Proof. Since a neat retrenchment is a retrenchment, it is described by the data (4.9)-
(4.12), by Theorem 4.2. Given (u1, i1), suppose an intermediate step u1 -(i1, OpI,
o1,a)-› u′1,a witnessed some option (a) from (4.22) in the proof of Theorem 4.2, and
an intermediate step u1 -(i1, OpI, o1,b)-› u′1,b witnessed option (b) from (4.22) in the
proof of Theorem 4.2, where a, b ∈ {1 … 4} and a ≠ b. Then we could contradict
the neatness of either the top level to intermediate retrenchment, or the intermediate
to lowest level retrenchment. For example, if options (1) and (2) were verified by u1
-(i1, OpI, o1,a)-› u′1,a and u1 -(i1, OpI, o1,b)-› u′1,b respectively, then we would also
have preRet

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2) from (4.11) and preRet

Op,1(u0,
i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2) from (4.12). As a consequence preRet
Op,2(u1, i1,

u2, i2) and preCon
Op,2(u1, i1, u2, i2) would contradict the neatness of the intermediate

to lowest level retrenchment.

Corollary 4.6 Two neat retrenchments that further satisfy:
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preCon
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2) ≡ false (4.23)

compose to give a single retrenchment given by (4.17)-(4.19) and:

COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡
[∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2))] (4.24)

Of course there are similar corollaries when other preCon
Op/preRet

Op combinations re-
duce to false.

Theorem 4.7 Two fastidious retrenchments compose to give a single retrenchment
such that for any intermediate transition that witnesses the composed operation PO:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ stpOp,2(u2, i2, u′2, o2) ⇒
(∃ u′0, o0 • stpOp,0(u0, i0, u′0, o0) ∧

((G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2)) ∨
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))) (4.25)

with G(1,2), POp,(1,2), OOp,(1,2) and COp,(1,2) given by (4.9)-(4.12), at most one of:

(1) (G′(1,2) ∧ OOp,(1,2))

(2) (G′1∧OOp,1∧COp,2) from COp,(1,2)

(3) (COp,1∧G′2∧OOp,2) from COp,(1,2)

(4) (COp,1∧COp,2) from COp,(1,2) (4.26)

is true.

Proof. This is similar to Theorem 4.5 except that the choice between (1)-(4) depends
on the individual intermediate transition, and not on a set of them issuing from a com-
mon before-state and input.

Note how the increasingly delicate conditions of tidiness, neatness, and fastidious-
ness have decreasingly visible effects on the syntactic appearance of the composition
law for concedes relations. For compatibly tidy retrenchments, we get a dramatic
simplification of the composition law; for neat retrenchments, we get at best a
strengthening of the individual alternatives by what are effectively additional input
guards that apply anyway to any retrenchment, but that are strengthened by a mutual
exclusion condition; for fastidious retrenchments the same applies but the mutual ex-
clusion condition is more finegrained. Since the conditions weaken from tidiness on-
wards, it is clear that all conclusions derived for later systems are applicable to sys-
tems satisfying earlier restrictions.

5   Compositionality and Associativity

The results of the previous section are not enough to give compositionality let alone
associativity for all the various strengthened notions of retrenchment.
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Counterexample 5.1 Fig. 1 shows a situation in which in all three systems, there
are no inputs or outputs (thus the output relations are defined by true, and the within
relations coincide with the retrieve relations on the before-state pairs). There are no
other points in the state spaces other than the ones shown, and no transitions other
than the ones shown either. (N.B. The diamond states and dashed transitions and
relations are only present to ensure that the various retrenchment operation POs are
satisfied in all necessary cases.) Both retrieve relations consist of just the pairs illus-
trated, and the concedes relations are focussed on just the pairs of after-states indicat-
ed (being universal in the before-states). It is easy to check that the two retrench-
ments are both tidy; therefore they are also neat and fastidious. The composition of
the two retrenchments is not fastidious though, because it is clear that the GOp,(1,2)
and COp,(1,2) conditions are simultaneously verified for the pair of solid transitions
shown.  The composition is therefore also neither neat nor tidy.

Counterexample 5.2 Fig. 2 shows another source of trouble. With the same con-
ventions as in Counterexample 6.1, both the upper and lower retrenchments are fas-
tidious and neat (though not tidy). However although the intermediate after-state val-
ues refered to by the component retrieve relations differ from those refered to by the
component concedes relations, when the retrenchments are composed, we find that
fastidiousness fails (and therefore so does neatness and tidiness) because as in the
previous case, the GOp,(1,2) and COp,(1,2) conditions are simultaneously verified for
the topmost and lowest transitions.

We move towards compositionality and thence to associativity by precluding situa-
tions such as these. However the conditions we come up with for compositionality
will typically be sufficient rather than necessary, since there will always be situations
such as the ‘duelling yardbrushes’ scenario depicted in Fig. 3, in which although
there is scope for the ‘dangling’ G and C tuples to fuse to form a counterexample of
the kind shown in Fig. 1 or Fig. 2, nevertheless the individual tines of the two yard-
brushes never actually meet point to point in the needed way, and the composition
remains problem free. Such situations remain outside the remit of conditions that can
be expressed purely in terms of the intrinsic properties of the component systems,
since they crucially depend on joint properties of the combination.

We tackle the various strengthenings in roughly increasing order of difficulty.

Definition 5.3 We call a retrenchment specifically closed iff the following four prop-
erties are satisfied:

G(u, v) ∧ POp(i, j, u, v) ∧ G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧

stpOpC
(v, j, v′, p) ⇒

(u = u) ∧ (i = i) ∧ (v = v) ∧ (j = j) ∧ (u′ = u′) ∧ (v′ = v′) ∧

stpOpA
(u, i, u′, o) (5.1)

G(u, v) ∧ POp(i, j, u, v) ∧ G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧

stpOpA
(u, i, u′, o) ⇒

(u = u) ∧ (i = i) ∧ (v = v) ∧ (j = j) ∧ (u′ = u′) ∧ (v′ = v′) ∧

stpOpC
(v, j, v′, p) (5.2)
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Fig. 1   A non-fastidious composition of two tidy retrenchments.
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Fig. 2   A non-fastidious composition of two fastidious (and neat) retrenchments.
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Fig. 3   A problem free composition.
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G(u, v) ∧ POp(i, j, u, v) ∧ COp(u′, v′, o, p; i, j, u, v) ∧
stpOpC

(v, j, v′, p) ⇒
(u = u) ∧ (i = i) ∧ (v = v) ∧ (j = j) ∧ stpOpA

(u, i, u′, o) (5.3)

G(u, v) ∧ POp(i, j, u, v) ∧ COp(u′, v′, o, p; i, j, u, v) ∧
stpOpA

(u, i, u′, o) ⇒
(u = u) ∧ (i = i) ∧ (v = v) ∧ (j = j) ∧ stpOpC

(v, j, v′, p) (5.4)

Definition 5.4 We call a retrenchment generally closed iff the following four prop-
erties are satisfied:

G(u, v) ∧ POp(i, j, u, v) ∧ G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧
stpOpC

(v, j, v′, p) ⇒
stpOpA

(u, i, u′, o) ∧ (∀ u′, v′, i, j, u, v • OOp(o, p; u′, v′, i, j, u, v)) (5.5)

G(u, v) ∧ POp(i, j, u, v) ∧ G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v) ∧
stpOpA

(u, i, u′, o) ⇒
stpOpC

(v, j, v′, p) ∧ (∀ u′, v′, i, j, u, v • OOp(o, p; u′, v′, i, j, u, v)) (5.6)

G(u, v) ∧ POp(i, j, u, v) ∧ COp(u′, v′, o, p; i, j, u, v) ∧
stpOpC

(v, j, v′, p) ⇒
stpOpA

(u, i, u′, o) ∧ (∀ i, j, u, v • COp(u′, v′, o, p; i, j, u, v)) (5.7)

G(u, v) ∧ POp(i, j, u, v) ∧ COp(u′, v′, o, p; i, j, u, v) ∧
stpOpA

(u, i, u′, o) ⇒
stpOpC

(v, j, v′, p) ∧ (∀ i, j, u, v • COp(u′, v′, o, p; i, j, u, v)) (5.8)

The closedness criteria ensure that transitions exist whenever the attendant assembly
of clauses leads us to hope they might do. The specific criteria ensure that the output
and concedes relations cannot refer to spurious before-states and inputs, while the
general criteria apply when the the output and concedes relations are independent of
the before-states and inputs, as is so often the case.

These closedness criteria are compositional as is shown next.

Theorem 5.5 With the current notations, the composition of two specifically closed
retrenchments is specifically closed.

Proof.  Consider (5.1).  We calculate as follows:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ G(1,2)(u′0, u′2) ∧
OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ∧
stpOp,2(u2, i2, u′2, o2)

⇒ (instantiation, for some u1, i1, u′1, o1, u1, i1, u′1)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
stpOp,2(u2, i2, u′2, o2)

⇒ (specific closedness, one point rule)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
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OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
stpOp,2(u2, i2, u′2, o2) ∧
(u2 = u2) ∧ (i2 = i2) ∧ (u′2 = u′2) ∧ stpOp,1(u1, i1, u′1, o1)

⇒ (specific closedness)

(u0 = u0) ∧ (i0 = i0) ∧ (u2 = u2) ∧ (i2 = i2) ∧ (u′0 = u′0) ∧ (u′2 = u′2) ∧
stpOp,0(u0, i0, u′0, o0) (5.9)

Property (6.2) is similar. Next we examine (5.4), (5.3) being similar. As before we
calculate:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0)

⇒ (instantiation, for some u1, i1, u′1, o1, u1, i1)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) ∧
stpOp,0(u0, i0, u′0, o0)

⇒ (specific closedness, one point rule)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) ∧
stpOp,0(u0, i0, u′0, o0) ∧
(u0 = u0) ∧ (i0 = i0) ∧ stpOp,1(u1, i1, u′1, o1)

⇒ (specific closedness, all three disjuncts)

(u0 = u0) ∧ (i0 = i0) ∧ (u2 = u2) ∧ (i2 = i2) ∧ stpOp,2(u2, i2, u′2, o2) (5.10)

This completes the proof.

Theorem 5.6 With the current notations, the composition of two generally closed
output retrenchments is generally closed.

Proof.  We examine (5.6) and (5.7).  For the former we have:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ G(1,2)(u′0, u′2) ∧
OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0)

⇒ (instantiation, for some u1, i1, u′1, o1, u1, i1, u′1)
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G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
stpOp,0(u0, i0, u′0, o0)

⇒ (general closedness)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧
stpOp,1(u1, i1, u′1, o1) ∧
(∀ u′0, u′1, i0, i1, u0, u1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1))

⇒ (general closedness)

stpOp,2(u2, i2, u′2, o2) ∧
(∀ u′0, u′1, i0, i1, u0, u1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1)) ∧
(∀ u′1, u′2, i1, i2, u1, u2 • OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2))

⇒

stpOp,2(u2, i2, u′2, o2) ∧
(∀ u′0, u′2, i0, i2, u0, u2 • OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2)) (5.11)

For (6.7) we have:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ∧
stpOp,2(u2, i2, u′2, o2)

⇒ (instantiation, for some u1, i1, u′1, o1, u1, i1)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) ∧
stpOp,2(u2, i2, u′2, o2)

⇒ (general closedness)

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
(∀ i1, i2, u1, u2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
(∀ i1, i2, u1, u2 • OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
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(∀ i1, i2, u1, u2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)))) ∧
stpOp,2(u2, i2, u′2, o2) ∧ stpOp,1(u1, i1, u′1, o1)

⇒ (general closedness)

stpOp,0(u0, i0, u′0, o0) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

(∀ i0, i1, u0, u1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1)) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
(∀ i1, i2, u1, u2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
(∀ i0, i1, u0, u1 • COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1)) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
(∀ i1, i2, u1, u2 • OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
(∀ i0, i1, u0, u1 • COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1)) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
(∀ i1, i2, u1, u2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))))

⇒

stpOp,0(u0, i0, u′0, o0) ∧
(∀ i0, i2, u0, u2 • COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) (5.12)

We are done.

Note that in the calculations (5.10) and (5.12), we used the most liberal recipe for
composing concedes relations, i.e. the standard formula (2.6). Since we obtained the
desired conclusions in that case, they will also hold without further ado for the vari-
ous stronger methods of composition that were considered in Section 4.

Theorem 5.7 With the notations of Theorem 4.4, two compatibly tidy output re-
trenchments which are moreover either specifically or generally closed, compose to
give a single tidy resp. specifically or generally closed output retrenchment given by
(4.17)-(4.20).

Proof. Theorem 4.4 tells us we have an output retrenchment, and Theorem 5.5 and
Theorem 5.6 tell us that the resulting output retrenchment is specifically or generally
closed respectively, so we just have to show that it is tidy. Suppose that for the com-
posed retrenchment we had:

preRetA
Op,(1,2)(u0, i0) ∧ preConA

Op,(1,2)(u0, i0) ≡/ false (5.13)

or

preRetC
Op,(1,2)(u2, i2) ∧ preConC

Op,(1,2)(u2, i2) ≡/ false (5.14)

Let us suppose that (5.13) is true. Then we would have some u0, i0, such that there
would be u2,a, i2,a, u′0,a, o0,a, u′2,a, o2,a, and u2,b, i2,b, u′0,b, o0,b, u′2,b, o2,b, such that
we could argue as follows:

G(1,2)(u0, u2,a) ∧ POp,(1,2)(i0, i2,a, u0, u2,a) ∧ G(1,2)(u′0,a, u′2,a) ∧
OOp,(1,2)(o0,a, o2,a; u′0,a, u′2,a, i0, i2,a, u0, u2,a) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2,a, i2,a, u′2,a, o2,a) ∧
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G(1,2)(u0, u2,b) ∧ POp,(1,2)(i0, i2,b, u0, u2,b) ∧
COp,(1,2)(u′0,b, u′2,b, o0,b, o2,b; i0, i2,b, u0, u2,b) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2,b, i2,b, u′2,b, o2,b)

⇒ (instantiation, for some

u1,aa, i1,aa, u′1,aa, u1,ab, i1,ab, u′1,ab, o1,a, u1,ba, i1,ba, u1,bb, i1,bb, u′1,b, o1,b)

G1(u0, u1,aa) ∧ G2(u1,aa, u2,a) ∧
POp,1(i0, i1,aa, u0, u1,aa) ∧ POp,2(i1,aa, i2,a, u1,aa, u2,a) ∧
G1(u′0,a, u′1,aa) ∧ G2(u′1,a, u′2,a) ∧
OOp,1(o0,a, o1,a; u′0,a, u′1,ab, i0, i1,ab, u0, u1,ab) ∧
OOp,2(o1,a, o2,a; u′1,ab, u′2,a, i1,ab, i2,a, u1,ab, u2,a) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2,a, i2,a, u′2,a, o2,a) ∧
G1(u0, u1,ba) ∧ G2(u1,ba, u2,b) ∧
POp,1(i0, i1,ba, u0, u1,ba) ∧ POp,2(i1,ba, i2,b, u1,ba, u2,b) ∧
COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1,bb, u0, u1,bb) ∧
COp,2(u′1,b, u′2,b, o1,b, o2,b; i1,bb, i2,b, u1,bb, u2,b) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2,b, i2,b, u′2,b, o2,b)

⇒ (closedness, getting u1,aa = u1,ab = u1,a, i1,aa = i1,ab = i1,a, u′1,aa = u′1,ab = u′1,a,

u1,ba = u1,bb = u1,b, i1,ba = i1,bb = i1,b either directly for specific closedness,

or after some modus ponens for general closedness)

G1(u0, u1,a) ∧ G2(u1,a, u2,a) ∧
POp,1(i0, i1,a, u0, u1,a) ∧ POp,2(i1,a, i2,a, u1,a, u2,a) ∧
G1(u′0,a, u′1,a) ∧ G2(u′1,a, u′2,a) ∧
OOp,1(o0,a, o1,a; u′0,a, u′1,a, i0, i1,a, u0, u1,a) ∧
OOp,2(o1,a, o2,a; u′1,a, u′2,a, i1,a, i2,a, u1,a, u2,a) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2,a, i2,a, u′2,a, o2,a) ∧
stpOp,1(u1,a, i1,a, u′1,a, o1,a) ∧
G1(u0, u1,b) ∧ G2(u1,b, u2,b) ∧
POp,1(i0, i1,b, u0, u1,b) ∧ POp,2(i1,b, i2,b, u1,b, u2,b) ∧
COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1,b, u0, u1,b) ∧
COp,2(u′1,b, u′2,b, o1,b, o2,b; i1,b, i2,b, u1,b, u2,b) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2,b, i2,b, u′2,b, o2,b) ∧
stpOp,1(u1,b, i1,b, u′1,b, o1,b) (5.15)

From the presence of the intermediate level steps, we deduce that the tidiness condi-
tion (3.12) for the top level to intermediate retrenchment is violated, a contradiction.
The argument for (5.14) is similar.  We are done.

Theorem 5.8 With the assumptions of Theorem 5.7, the composition of compatibly
tidy specifically or generally closed retrenchments is associative.

Proof. We need to check that in a sequence of three tidy specifically or generally
closed retrenchments, in which adjacent pairs are compatibly tidy, the composition
of two adjacent ones remains compatibly tidy with the third, i.e.:

preRetA
Op,(2,3)(u1, i1) ⇒ preRetC

Op,1(u1, i1) (5.16)

preConA
Op,(2,3)(u1, i1) ⇒ preConC

Op,1(u1, i1) (5.17)
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and

preRetA
Op,3(u2, i2) ⇒ preRetC

Op,(1,2)(u2, i2) (5.18)

preConA
Op,3(u2, i2) ⇒ preConC

Op,(1,2)(u2, i2) (5.19)

Of these we will prove (5.16) and (5.19).  For the former we get:

preRetA
Op,(2,3)(u1, i1)

≡

(∃ u′1, o1, u3, i3, u′3, o3 • GOp,(2,3)(u′1, u′3, o1, o3; i1, i3, u1, u3))

≡

(∃ u′1, o1, u3, i3, u′3, o3 •

G(2,3)(u1, u3) ∧ POp,(2,3)(i1, i3, u1, u3) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,3(u3, i3, u′3, o3) ∧
G(2,3)(u′1, u′3) ∧ OOp,(2,3)(o1, o3; u′1, u′3, i1, i3, u1, u3))

⇒ (instantiation, for some u2,a, i2,a, u′2,a, o2, u′2,b, i2,b, u2,b)

(∃ u′1, o1, u3, i3, u′3, o3 •

G2(u1, u2,a) ∧ G3(u2,a, u3) ∧
POp,2(i1, i2,a, u1, u2,a) ∧ POp,3(i2,a, i3, u2,a, u3) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,3(u3, i3, u′3, o3) ∧
G2(u′1, u′2,a) ∧ G3(u′2,a, u′3) ∧
OOp,2(o1, o2; u′1, u′2,b, i1, i2,b, u1, u2,b) ∧
OOp,3(o2, o3; u′2,b, u′3, i2,b, i3, u2,b, u3))

⇒ (closedness, inferring u2,a = u2,b = u2, i2,a = i2,b = i2, u′2,a = u′2,b = u′2)

(∃ u′1, o1, u3, i3, u′3, o3 •

G2(u1, u2) ∧ G3(u2, u3) ∧
POp,2(i1, i2, u1, u2) ∧ POp,3(i2, i3, u2, u3) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧ stpOp,3(u3, i3, u′3, o3) ∧
G2(u′1, u′2) ∧ G3(u′2, u′3) ∧
OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3))

≡

(∃ u′1, o1, u2, i2, u′2, o2, u3, i3, u′3, o3 •

G3(u2, u3) ∧ POp,3(i2, i3, u2, u3) ∧
stpOp,3(u3, i3, u′3, o3) ∧
G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧
GOp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))

⇒

preRetA
Op,2(u1, i1)

⇒ (compatible tidiness)

preRetC
Op,1(u1, i1) (5.20)
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as required.  The argument for (5.17) is similar.  For (5.19) we get:

preConA
Op,3(u2, i2)

⇒ (compatible tidiness)

preConC
Op,2(u2, i2)

≡

(∃ u1, i1 • preConC
Op,2(u2, i2) ∧ preConA

Op,2(u1, i1))

⇒ (compatible tidiness)

(∃ u1, i1 • preConC
Op,2(u2, i2) ∧ preConA

Op,2(u1, i1) ∧ preConC
Op,1(u1, i1))

≡

(∃ u′2, o2, u1, i1, u′1,a, o1,a, u′1,b, o1,b, u0, i0, u′0,b, o0,b •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,a, o1,a) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1,a, u′2, o1,a, o2; i1, i2, u1, u2) ∧
G1(u0,b, u1) ∧ POp,1(i0,b, i1, u0,b, u1) ∧
stpOp,0(u0,b, i0,b, u′0,b, o0,b) ∧ stpOp,1(u1, i1, u′1,b, o1,b) ∧
COp,1(u′0,b, u′1,b, o0,b, o1,b; i0,b, i1, u0,b, u1))

⇒ (operation PO, G1(u′0,a, u′1,a) ∧ OOp,1(o0,a, o1,a; u′0,a, u′1,a, i0, i1, u0, u1)

being impossible by tidiness)

(∃ u′2, o2, u1, i1, u′1,a, o1,a, u′1,b, o1,b, u0, i0, u′0,a, o0,a, u′0,b, o0,b •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,a, o1,a) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1,a, u′2, o1,a, o2; i1, i2, u1, u2) ∧
G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧
COp,1(u′0,a, u′1,a, o0,a, o1,a; i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,1(u1, i1, u′1,b, o1,b) ∧
COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1, u0, u1))

⇒ (COp,(1,2) = (∃ u1, i1, u′1,a, o1,a, • COp,1 ∧ COp,2))

(∃ u′2, o2, u0, i0, u′0,a, o0,a •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,(1,2)(u′0,a, u′2, o0,a, o2; i0, i2, u0, u2)) ∧

(∃ u1, i1, u′1,a, o1,a, u′1,b, o1,b, u0, i0, u′0,b, o0,b •

stpOp,1(u1, i1, u′1,a, o1,a) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,1(u1, i1, u′1,b, o1,b) ∧
COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1, u0, u1))

⇒

(∃ u′2, o2, u0, i0, u′0,a, o0,a • COp,(1,2)(u′0,a, u′2, o0,a, o2; i0, i2, u0, u2))

≡

preConC
Op,(1,2)(u2, i2) (5.21)
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as needed.  The calculation for (5.18) is similar.

This done, it is now easy to check that for either association order, the expressions
obtained for the composed retrieve, within, output, and concedes relations are the ob-
vious extrapolations of (4.17)-(4.20) to three components, and are symmetrical in all
three of them, for example the retrieve relation:

G(1,(2,3))(u0, u3) ≡ (∃ u1 • G1(u0, u1) ∧ G(2,3)(u1, u3))

≡ (∃ u1 • G1(u0, u1) ∧ (∃ u2 • G2(u1, u2) ∧ G3(u2, u3)))

≡ (∃ u1, u2 • G1(u0, u1) ∧ G2(u1, u2) ∧ G3(u2, u3))

≡ (∃ u2 • (∃ u1 • G1(u0, u1) ∧ G2(u1, u2)) ∧ G3(u2, u3))

≡ (∃ u2 • G(1,2)(u0, u2) ∧ G3(u2, u3)) ≡ G((1,2),3)(u0, u3) (5.22)

which is sufficient.

We turn our attention to neat retrenchments.

Theorem 5.9 With the notations of Theorem 4.5, two neat retrenchments which are
moreover either specifically or generally closed, compose to give a single neat resp.
specifically or generally closed retrenchment given by (4.9)-(4.12).

Proof. Theorem 4.5 tells us we have a retrenchment, and Theorem 5.5 and Theorem
5.6 tell us that the resulting retrenchment is specifically or generally closed respec-
tively, so we just have to show that it is neat. Suppose that for the composed retrench-
ment we had:

preRet
Op,(1,2)(u0, i0, u2, i2) ∧ preCon

Op,(1,2)(u0, i0, u2, i2) ≡/ false (5.23)

Instantiating the after-variables, we argue as in Theorem 6.7, except that we need no
distinction between u2,a, i2,a, and u2,b, i2,b.  Thus:

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ G(1,2)(u′0,a, u′2,a) ∧
OOp,(1,2)(o0,a, o2,a; u′0,a, u′2,a, i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2, i2, u′2,a, o2,a) ∧
G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
COp,(1,2)(u′0,b, u′2,b, o0,b, o2,b; i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2, i2, u′2,b, o2,b)

⇒ (instantiation, for some u1, i1, u′1,a, u1,a, i1,a, u′1,aa, o1,a, u1,b, i1,b, u′1,b, o1,b)

G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0,a, u′1,a) ∧ G2(u′1,a, u′2,a) ∧
OOp,1(o0,a, o1,a; u′0,a, u′1,aa, i0, i1,a, u0, u1,a) ∧
OOp,2(o1,a, o2,a; u′1,aa, u′2,a, i1,a, i2, u1,a, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2, i2, u′2,a, o2,a) ∧
((G1(u′0,b, u′1,b) ∧ OOp,1(o0,b, o1,b; u′0,b, u′1,b, i0, i1,b, u0, u1,b) ∧

COp,2(u′1,b, u′2,b, o1,b, o2,b; i1,b, i2, u1,b, u2) ∧
preRet

Op,1(u0, i0, u1,b, i1,b) ∧ preCon
Op,2(u1,b, i1,b, u2, i2)) ∨

(COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1,b, u0, u1,b) ∧
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G2(u′1,b, u′2,b) ∧ OOp,2(o1,b, o2,b; u′1,b, u′2,b, i1,b, i2, u1,b, u2) ∧
preCon

Op,1(u0, i0, u1,b, i1,b) ∧ preRet
Op,2(u1,b, i1,b, u2, i2)) ∨

(COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1,b, u0, u1,b) ∧
COp,2(u′1,b, u′2,b, o1,b, o2,b; i1,b, i2, u1,b, u2) ∧
preCon

Op,1(u0, i0, u1,b, i1,b) ∧ preCon
Op,2(u1,b, i1,b, u2, i2))) ∧

stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2, i2, u′2,b, o2,b)

⇒ (closedness, inferring u1,a = u1,b = u1, i1,a = i1,b = i1, u′1,aa = u′1,a,

either directly for specific closedness, or after some modus ponens

for general closedness)

G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0,a, u′1,a) ∧ G2(u′1,a, u′2,a) ∧
OOp,1(o0,a, o1,a; u′0,a, u′1,a, i0, i1, u0, u1) ∧
OOp,2(o1,a, o2,a; u′1,a, u′2,a, i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

stpOp,0(u0, i0, u′0,a, o0,a) ∧ stpOp,2(u2, i2, u′2,a, o2,a) ∧
stpOp,1(u1, i1, u′1,a, o1,a) ∧
((G1(u′0,b, u′1,b) ∧ OOp,1(o0,b, o1,b; u′0,b, u′1,b, i0, i1, u0, u1) ∧

COp,2(u′1,b, u′2,b, o1,b, o2,b; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1, u0, u1) ∧
G2(u′1,b, u′2,b) ∧ OOp,2(o1,b, o2,b; u′1,b, u′2,b, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0,b, u′1,b, o0,b, o1,b; i0, i1, u0, u1) ∧
COp,2(u′1,b, u′2,b, o1,b, o2,b; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))) ∧

stpOp,0(u0, i0, u′0,b, o0,b) ∧ stpOp,2(u2, i2, u′2,b, o2,b) ∧
stpOp,1(u1, i1, u′1,b, o1,b) (5.24)

Now we consider the three disjuncts that would be obtained from the above via the
distributive law. From the first we have preRet

Op,2(u1, i1, u2, i2) ∧ preCon
Op,2(u1, i1, u2,

i2) which contradicts the neatness of the intermediate to lowest level retrenchment.
From the second, we deduce preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,1(u0, i0, u1, i1) con-

tradicting the neatness of the top level to intermediate retrenchment. For the third
disjunct we have a choice of two such arguments. So altogether, we deduce false,
and the composite is neat.

Before going on to consider the associativity of neat retrenchments we have some re-
sults that hold without the neatness assumption, in the spirit of Theorem 4.1 and The-
orem 4.2. The fact that these results do not hold without something resembling the
closedness and determinism assumptions, is a reflection of precisely the kind of sit-
uations discussed in the counterexamples at the beginning of this section.

Proposition 5.10 For a composition of two specifically or generally closed retrench-
ments between deterministic systems we have:

preRet
Op,(1,2)(u0, i0, u2, i2) ≡

(∃ u1, i1 • preRet
Op,1(u0, i0, u1, i1) ∧ preRet

Op,2(u1, i1, u2, i2)) (5.25)
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preCon
Op,(1,2)(u0, i0, u2, i2) ≡

(∃ u1, i1 •

(preRet
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2)) ∨
(preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(preCon
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2))) (5.26)

Proof.  For preRet
Op,(1,2)(u0, i0, u2, i2) we calculate:

preRet
Op,(1,2)(u0, i0, u2, i2)

≡

(∃ u′0, o0, u′2, o2 • GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))

≡

(∃ u′0, o0, u′2, o2 •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2))

≡

(∃ u′0, o0, u′2, o2 •

(∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
(∃ u′1 • G1(u′0, u′1) ∧ G2(u′1, u′2)) ∧
(∃ u′1, o1, u1, i1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)))

⇒ (closedness, inferring as usual u1 = u1, i1 = i1, u′1 = u′1)

(∃ u1, i1, u′0, o0, u′1, o1, u′2, o2 •

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2))

⇒

(∃ u1, i1 •

(∃ u′0, o0, u′1, o1 • G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1)) ∧

(∃ u′1, o1, u′2, o2 • G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)))

≡

(∃ u1, i1 •

(∃ u′0, o0, u′1, o1 • GOp(u′0, u′1, o0, o1; i0, i1, u0, u1)) ∧
(∃ u′1, o1, u′2, o2 • GOp(u′1, u′2, o1, o2; i1, i2, u1, u2)))
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≡

(∃ u1, i1 • preRet
Op,1(u0, i0, u1, i1) ∧ preRet

Op,2(u1, i1, u2, i2)) (5.27)

For the converse we have:

(∃ u1, i1 • preRet
Op,1(u0, i0, u1, i1) ∧ preRet

Op,2(u1, i1, u2, i2))

≡

(∃ u1, i1 •

(∃ u′0, o0, u′1,a, o1,a • GOp(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1)) ∧
(∃ u′1,b, o1,b, u′2, o2 • GOp(u′1b,, u′2, o1,b, o2; i1, i2, u1, u2)))

≡

(∃ u1, i1 •

(∃ u′0, o0, u′1,a, o1,a • G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1,a, o1,a) ∧
G1(u′0, u′1,a) ∧ OOp,1(o0, o1,a; u′0, u′1,a, i0, i1, u0, u1)) ∧

(∃ u′1,b, o1,b, u′2, o2 • G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,b, o1,b) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G2(u′1,b, u′2) ∧ OOp,2(o1,b, o2; u′1,b, u′2, i1, i2, u1, u2)))

⇒ (determinism: u′1,a = u′1,b = u′1, o1,a = o1,b = o1)

(∃ u1, i1, u′0, o0, u′1, o1, u′2, o2 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2))

⇒

(∃ u′0, o0, u′2, o2 •

(∃ u1, i1 •

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2)) ∧
(∃ u′1 • G1(u′0, u′1) ∧ G2(u′1, u′2)) ∧
(∃ u′1, o1, u1, i1 • OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2)))

≡

(∃ u′0, o0, u′2, o2 •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G(1,2)(u′0, u′2) ∧ OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2))

≡

(∃ u′0, o0, u′2, o2 • GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))

≡
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preRet
Op,(1,2)(u0, i0, u2, i2) (5.28)

For preCon
Op,(1,2)(u0, i0, u2, i2) we have a similar calculation:

preCon
Op,(1,2)(u0, i0, u2, i2)

≡

(∃ u′0, o0, u′2, o2 • COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))

≡

(∃ u′0, o0, u′2, o2 •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))

≡

(∃ u′0, o0, u′2, o2 •

(∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
(∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))))

⇒ (closedness, inferring u1 = u1, i1 = i1, in each disjunct)

(∃ u1, i1, u′0, o0, u′1, o1, u′2, o2 •

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)))

⇒

(∃ u1, i1 •

(∃ u′0, o0, u′1, o1, u′2, o2 •
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G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(∃ u′0, o0, u′1, o1, u′2, o2 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(∃ u′0, o0, u′1, o1, u′2, o2 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)))

⇒

(∃ u1, i1 •

((∃ u′0, o0, u′1, o1 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
preRet

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,2(u1, i1, u2, i2))) ∨
((∃ u′0, o0, u′1, o1 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preRet

Op,2(u1, i1, u2, i2))) ∨
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((∃ u′0, o0, u′1, o1 •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,2(u1, i1, u2, i2))))

≡

(∃ u1, i1 •

((∃ u′0, o0, u′1, o1 • GOp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
preRet

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

preCon
Op,2(u1, i1, u2, i2))) ∨

((∃ u′0, o0, u′1, o1 • COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 • GOp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

preRet
Op,2(u1, i1, u2, i2))) ∨

((∃ u′0, o0, u′1, o1 • COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1, o1, u′2, o2 • COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

preCon
Op,2(u1, i1, u2, i2))))

≡

(∃ u1, i1 •

(preRet
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2)) ∨
(preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(preCon
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2))) (5.29)

And for the converse we have:

(∃ u1, i1 •

(preRet
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2)) ∨
(preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(preCon
Op,1(u0, i0, u1, i1) ∧ preCon

Op,2(u1, i1, u2, i2)))

≡

(∃ u1, i1 •

((∃ u′0, o0, u′1,a, o1,a • GOp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) ∧
preRet

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1,b, o1,b, u′2, o2 • COp,2(u′1,b, u′2, o1,b, o2; i1, i2, u1, u2) ∧

preCon
Op,2(u1, i1, u2, i2))) ∨

((∃ u′0, o0, u′1,a, o1,a • COp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
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(∃ u′1,b, o1,b, u′2, o2 • GOp,2(u′1,b, u′2, o1,b, o2; i1, i2, u1, u2) ∧
preRet

Op,2(u1, i1, u2, i2))) ∨
((∃ u′0, o0, u′1,a, o1,a • COp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) ∧

preCon
Op,1(u0, i0, u1, i1)) ∧

(∃ u′1,b, o1,b, u′2, o2 • COp,2(u′1,b, u′2, o1,b, o2; i1, i2, u1, u2) ∧
preCon

Op,2(u1, i1, u2, i2))))

≡

(∃ u1, i1 •

((∃ u′0, o0, u′1,a, o1,a •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
G1(u′0, u′1,a) ∧ OOp,1(o0, o1,a; u′0, u′1,a, i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1,a, o1,a) ∧
preRet

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1,b, o1,b, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
COp,2(u′1,b, u′2, o1,b, o2; i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,b, o1,b) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preCon

Op,2(u1, i1, u2, i2))) ∨
((∃ u′0, o0, u′1,a, o1,a •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
COp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1,a, o1,a) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1,b, o1,b, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
G2(u′1,b, u′2) ∧ OOp,2(o1,b, o2; u′1,b, u′2, i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,b, o1,b) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preRet

Op,2(u1, i1, u2, i2))) ∨
((∃ u′0, o0, u′1,a, o1,a •

G1(u0, u1) ∧ POp,1(i0, i1, u0, u1) ∧
COp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1,a, o1,a) ∧
preCon

Op,1(u0, i0, u1, i1)) ∧
(∃ u′1,b, o1,b, u′2, o2 •

G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) ∧
COp,2(u′1,b, u′2, o1,b, o2; i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1,b, o1,b) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preCon

Op,2(u1, i1, u2, i2))))

⇒ (determinism: u′1,a = u′1,b = u′1, o1,a = o1,b = o1 in all disjuncts)

(∃ u1, i1 •

G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
((∃ u′0, o0, u′1, o1, u′2, o2 •

G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
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COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(∃ u′0, o0, u′1, o1, u′2, o2 •

COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(∃ u′0, o0, u′1, o1, u′2, o2 •

COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,1(u1, i1, u′1, o1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
stpOp,1(u1, i1, u′1, o1) ∧ stpOp,2(u2, i2, u′2, o2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))))

⇒

(∃ u′0, o0, u′2, o2 •

(∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
((∃ u1, i1, u′1, o1 •

G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(∃ u1, i1, u′1, o1 •

COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(∃ u1, i1, u′1, o1 •

COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))))

≡

(∃ u′0, o0, u′2, o2 •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
(∃ u1, i1, u′1, o1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
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COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))))

=

(∃ u′0, o0, u′2, o2 •

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2))

=

preCon
Op,(1,2)(u0, i0, u2, i2) (5.30)

We are done.

Corollary 5.11 For a composition of two specifically or generally closed retrench-
ments which both respect their regular data, we have (5.25) and (5.26).

Proof. We merely need to replace the invocations of determinism in the proof of
Proposition 5.10 by an appeal to regularity and to conditions (1) and (4) of Definition
3.16, to validate the selection of either u′1,a, o1,a or u′1,b, o1,b across both clauses at
the relevant points in the proof.

Theorem 5.12 The composition of specifically or generally closed retrenchments,
given by (4.9)-(4.12), between deterministic systems, is associative.

Proof. We tackle the associativity for the concedes clauses, the most nontrivial part
of the proof.  For this we have:

COp,(1,(2,3))(u′0, u′3, o0, o3; i0, i3, u0, u3)

≡

(∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
COp,(2,3)(u′1, u′3, o1, o3; i1, i3, u1, u3) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,(2,3)(u1, i1, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G(2,3)(u′1, u′3) ∧ OOp,(2,3)(o1, o3; u′1, u′3, i1, i3, u1, u3) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,(2,3)(u1, i1, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,(2,3)(u′1, u′3, o1, o3; i1, i3, u1, u3) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,(2,3)(u1, i1, u3, i3)))

≡

(∃ u′1, o1, u1, i1 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
(∃ u′2, o2, u2, i2 •

(G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧
preRet

Op,2(u1, i1, u2, i2) ∧ preCon
Op,3(u2, i2, u3, i3)) ∨

(COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧
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preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧

preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3))) ∧

preRet
Op,1(u0, i0, u1, i1) ∧

(∃ u2, i2 •

(preRet
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

(∃ u′2 • G2(u′1, u′2) ∧ G3(u′2, u′3)) ∧

(∃ u′2, o2, u2, i2 • OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧

OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧

preRet
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∧

preCon
Op,1(u0, i0, u1, i1) ∧

(∃ u2, i2 • preRet
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3))) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧

(∃ u′2, o2, u2, i2 •

(G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧

preRet
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)) ∨

(COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧

preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧

preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3))) ∧

preCon
Op,1(u0, i0, u1, i1) ∧

(∃ u2, i2 •

(preRet
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)))))

In this expression, under the top level conjunction, we have a disjunction of three ma-
jor subexpressions.  Consider the first of them, which contains the structure:

(∃ u′2, o2, u2, i2 •

(… ∧ preRet
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)) ∨

(… ∧ preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(… ∧ preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3))) ∧

… ∧

(∃ u2, i2 •

(preRet
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)) ∨

(preCon
Op,2(u1, i1, u2, i2) ∧ preCon

Op,3(u2, i2, u3, i3)))
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When the (∃ u2, i2 • …) conjunct is distributed into the (∃ u′2, o2, u2, i2 • …) conjunct,
because the u2, i2 and u2, i2 quantifications range over precisely the same values, for
every u2, i2 pair that makes one of its (pre-… ∧ pre-…) terms true, the same pair of
values will make the corresponding (… ∧ pre-… ∧ pre-…) term in the (∃ u′2, o2, u2,
i2 • …) conjunct true, leaving it unaffected. Therefore every conjunction of that par-
ticular (… ∧ pre-… ∧ pre-…) term with anything else demanded by the distribution
will vanish by the absorption law. In this manner the whole (∃ u2, i2 • …) conjunct
can be erased.

A similar argument works for the third major subexpression, which contains the same
structure.  This leaves the second major subexpression:

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
(∃ u′2 • G2(u′1, u′2) ∧ G3(u′2, u′3)) ∧
(∃ u′2, o2, u2, i2 • OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧

OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧
preRet

Op,2(u1, i1, u2, i2) ∧ preRet
Op,3(u2, i2, u3, i3)) ∧

preCon
Op,1(u0, i0, u1, i1) ∧

(∃ u2, i2 • preRet
Op,2(u1, i1, u2, i2) ∧ preRet

Op,3(u2, i2, u3, i3)))

Again the (∃ u2, i2 • …) quantification can be taken into the (∃ u′2, o2, u2, i2 • …)
quantification and eliminated. The same applies to the (∃ u′2 • …) quantification
since the (∃ u′2, o2, u2, i2 • …) term cannot be true unless a u′2 exists that makes
G2 ∧ G3 true.  Rearranging terms, we find for the whole thing:

≡

(∃ u′1, o1, u1, i1, u′2, o2, u2, i2 •

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ preRet
Op,1(u0, i0, u1, i1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧ preCon
Op,3(u2, i2, u3, i3)) ∨

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ preRet
Op,1(u0, i0, u1, i1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧ preCon
Op,2(u1, i1, u2, i2) ∧

G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧ preRet
Op,3(u2, i2, u3, i3)) ∨

(G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧ preRet
Op,1(u0, i0, u1, i1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧ preCon
Op,2(u1, i1, u2, i2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧ preCon
Op,3(u2, i2, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ preCon
Op,1(u0, i0, u1, i1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧ preRet
Op,3(u2, i2, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ preCon
Op,1(u0, i0, u1, i1) ∧

G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧ preCon
Op,3(u2, i2, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ preCon
Op,1(u0, i0, u1, i1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧ preCon
Op,2(u1, i1, u2, i2) ∧

G3(u′2, u′3) ∧ OOp,3(o2, o3; u′2, u′3, i2, i3, u2, u3) ∧ preRet
Op,3(u2, i2, u3, i3)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ preCon
Op,1(u0, i0, u1, i1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧ preCon
Op,2(u1, i1, u2, i2) ∧

COp,3(u′2, u′3, o2, o3; i2, i3, u2, u3) ∧ preCon
Op,3(u2, i2, u3, i3))) (5.31)



38

This structure is now suitably symmetrical in the indices 1, 2, 3, and so it is clear that
the other order of association will generate the same result, completing the proof for
the concedes relations. For the output relations, we need a calculation similar to that
for the second major subexpression above, and the calculations for the retrieve and
within relations have been covered in the proof of Theorem 5.8.  We are done.

Corollary 5.13 The composition of specifically or generally closed retrenchments,
given by (4.9)-(4.12), which both respect their regular data, is associative.

Proof. Were it true, we would show first that the composition of two specifically or
generally closed retrenchments which both respect their regular data has regular data,
and moreover respects it. Unfortunately the composition of regular relations is not
regular unreservedly, so this will not work. Nevertheless the only properties of output
retrenchments which respect their regular data that were needed to prove Corollary
5.11 were (a) and (b) as follows:

(a) Given two level 1 steps u1 -(i1, Op1, o1,a)-› u′1,a and u1 -(i1, Op1, o1,b)-› u′1,b,

whenever u1 -(i1, Op1, o1,a)-› u′1,a is related by G1(u′0, u′1,a) ∧ OOp,1(o0, o1,a;

u′0, u′1,a, i0, i1, u0, u1) or COp,1(u′0, u′1,a, o0, o1,a; i0, i1, u0, u1) to a level 0 step

u0 -(i0, Op0, o0)-› u′0, then the same can be said about u1 -(i1, Op1, o1,b)-› u′1,b.

(b) Similarly for analogous relationships to a level 2 step u2 -(i2, Op2, o2)-› u′2.

When two out of three specifically or generally closed retrenchments which all re-
spect their regular data are composed, it is not hard to see that these properties persist
for the system at the interface of the composition and the remaining output retrench-
ment. Thus we can re-establish the analogue for three retrenchments of Corollary
5.11, and thence the associativity of composition that we seek, despite the failure in
general of the regular data conditions for the composites.

From these facts we readily deduce the following.

Theorem 5.14 The composition of specifically or generally closed neat retrench-
ments, given by (4.9)-(4.12), between deterministic systems, is associative.

Corollary 5.15 The composition of specifically or generally closed neat output re-
trenchments, given by (4.9)-(4.12), which both respect their regular data, is associa-
tive.

Now we progress to consider fastidious retrenchments.

Theorem 5.16 With the notations of Theorem 4.7, two fastidious retrenchments be-
tween deterministic systems, which are moreover either specifically or generally
closed, compose to give a single fastidious resp. specifically or generally closed re-
trenchment given by (4.9)-(4.12).

Proof. Theorem 4.7 tells us we have an retrenchment, and Theorem 5.5 and Theorem
5.6 tell us that the resulting retrenchment is specifically or generally closed respec-
tively, so we just have to show that it is fastidious. Suppose that for the composed
retrenchment we had:

GOp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ≡/ false (5.32)
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Instantiating the intermediate variables, we argue as in Theorem 5.9, except that we
need even fewer distinct variables.

G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧ G(1,2)(u′0, u′2) ∧
OOp,(1,2)(o0, o2; u′0, u′2, i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
G(1,2)(u0, u2) ∧ POp,(1,2)(i0, i2, u0, u2) ∧
COp,(1,2)(u′0, u′2, o0, o2; i0, i2, u0, u2) ∧
stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2)

⇒ (instantiation, for some u1, i1, u′1,a, u1,a, i1,a, u′1,aa, o1,a, u1,b, i1,b, u′1,b, o1,b)

G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1,a) ∧ G2(u′1,a, u′2) ∧
OOp,1(o0, o1,a; u′0, u′1,aa, i0, i1,a, u0, u1,a) ∧
OOp,2(o1,a, o2; u′1,aa, u′2, i1,a, i2, u1,a, u2) ∧
preRet

Op,1(u0, i0, u1,a, i1,a) ∧ preRet
Op,2(u1,a, i1,a, u2, i2) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
((G1(u′0, u′1,b) ∧ OOp,1(o0, o1,b; u′0, u′1,b, i0, i1,b, u0, u1,b) ∧

COp,2(u′1,b, u′2, o1,b, o2; i1,b, i2, u1,b, u2) ∧
preRet

Op,1(u0, i0, u1,b, i1,b) ∧ preCon
Op,2(u1,b, i1,b, u2, i2)) ∨

(COp,1(u′0, u′1,b, o0, o1,b; i0, i1,b, u0, u1,b) ∧
G2(u′1,b, u′2) ∧ OOp,2(o1,b, o2; u′1,b, u′2, i1,b, i2, u1,b, u2) ∧
preCon

Op,1(u0, i0, u1,b, i1,b) ∧ preRet
Op,2(u1,b, i1,b, u2, i2)) ∨

(COp,1(u′0, u′1,b, o0, o1,b; i0, i1,b, u0, u1,b) ∧
COp,2(u′1,b, u′2, o1,b, o2; i1,b, i2, u1,b, u2) ∧
preCon

Op,1(u0, i0, u1,b, i1,b) ∧ preCon
Op,2(u1,b, i1,b, u2, i2))) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2)

⇒ (closedness, inferring u1,a = u1,b = u1, i1,a = i1,b = i1, u′1,aa = u′1,a,

either directly for specific closedness, or after some modus ponens

for general closedness; determinism, inferring

u′1,a = u′1,b = u′1, o1,a = o1,b = o1)

G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2) ∧
G1(u′0, u′1) ∧ G2(u′1, u′2) ∧
OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧
OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
stpOp,1(u1, i1, u′1, o1) ∧
((G1(u′0, u′1) ∧ OOp,1(o0, o1; u′0, u′1, i0, i1, u0, u1) ∧

COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preRet

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2)) ∨

(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
G2(u′1, u′2) ∧ OOp,2(o1, o2; u′1, u′2, i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preRet
Op,2(u1, i1, u2, i2)) ∨
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(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧
COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
preCon

Op,1(u0, i0, u1, i1) ∧ preCon
Op,2(u1, i1, u2, i2))) ∧

stpOp,0(u0, i0, u′0, o0) ∧ stpOp,2(u2, i2, u′2, o2) ∧
stpOp,1(u1, i1, u′1, o1)

⇒

GOp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ GOp,2(u′1, u′2, o1, o2; i1, i2, u1, u2) ∧
((GOp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ GOp,2(u′1, u′2, o1, o2; i1, i2, u1, u2)) ∨
(COp,1(u′0, u′1, o0, o1; i0, i1, u0, u1) ∧ COp,2(u′1, u′2, o1, o2; i1, i2, u1, u2))) (5.33)

It is now easy to see that distributing the GOp,1 ∧ GOp,2 into the disjunction yields
contradictions of fastidiousness of at least one of the component retrenchments in
each resulting disjunct.

Predictably enough we have:

Corollary 5.17 With the notations of Theorem 4.7, two fastidious retrenchments
which both respect their regular data, and which are moreover either specifically or
generally closed, compose to give a single fastidious resp. specifically or generally
closed retrenchment given by (4.9)-(4.12).

Since the data for a composed fastidious retrenchment is the same as that for a com-
posed neat retrenchment, Theorem 5.14 immediately yields:

Theorem 5.18 The composition of specifically or generally closed fastidious re-
trenchments, given by (4.9)-(4.12), between deterministic systems, is associative.

Corollary 5.19 The composition of specifically or generally closed fastidious re-
trenchments, given by (4.9)-(4.12), which both respect their regular data, is associa-
tive.

6   Case Study: Simple Abstract Feature Engineering

In this section we apply some of the preceding material to give an abstract account of
software feature engineering. In [Zave (2001)] a feature of a software system is de-
scribed as ‘an optional or incremental unit of functionality’, and the technique of de-
veloping or evolving software by taking into account successive features, is called
feature engineering. If it were the case that features fell into a convenient hierarchy
in which successive features built smoothly upon the facilities offered by their pred-
ecessors, we could use refinement, especially in its superposition refinement incarna-
tion [Back (2002), Back and Sere (1996), Katz (1993), Francez and Forman (1990)],
to compose the system out of its pieces. However it is manifestly not the case that
features necessarily conform to such a convenient discipline. Especially in telecom-
munications engineering [Zave (2001)], providers invent new features that telephone
systems might offer, without constraining their imaginations regarding how the new
features might interact with existing functionality: that is left as a challenging and im-
portant problem for system integrators. In the face of such functional anarchy, which
inevitably has to face situations where the new system being developed must contra-
dict some properties possessed by its predecessor, refinement is rather hamstrung in
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what it can offer as a development methodology, since contradicting what has already
been established is anathema for any refinement technique. In this regard, the more
indulgent ways of retrenchment have more scope for giving an account of the process
that bears some relation to what is actually done by the engineers, as we now demon-
strate.

In the following paragraphs, we define a feature and give a simple language for build-
ing operations out of features in which each feature expression has a normal form.
We say how feature oriented definitions of an operation may evolve, and discuss the
relationships between state, input and output spaces at successive stages of such an
evolution. These turn out to be regular, and, suitably packaged, they form the re-
trieve, within, and output relations of a retrenchment decription of the evolution proc-
ess. The concedes relations for these retrenchments are built according to the default
retrenchment strategy. Furthermore, under mild assumptions, these retrenchments
are shown to be neat, but in general they fail to fully enjoy the associative composi-
tion properties we worked hard to establish in the previous section.

6.1   Operations, Features, Feature Expressions, Normal Forms

From our perspective, a feature oriented development process will be concerned with
developing one or more operations of some system, through a number of incarnations
displaying evolving functionality. As usual we will focus on some generic operation
Op whose incarnations through the development are labelled Opk where k = 0, 1, … ,
as in previous sections. We assume that at each incarnation, the operation Opk is
model complete, by which we mean that Opk supplies a response to any demand that
it is reasonable to make on Opk, appropriate to the level of abstraction and to the state
of the overall development at level k. Model completeness is related to the issue of
the totality of the transition relation of Opk, stpOp,k, on its space of before-states and
inputs, but is different from it. In particular, it is possible that a model complete Opk
is a partial relation in the mathematical sense, i.e. dom(stpOp,k) is not all of Uk × IOp,k,
so that there are before-states and inputs pairs (u, i) in Uk × IOp,k which are not the
source of some transition of Opk. But in such cases it must be possible to firmly jus-
tify this state of affairs on engineering grounds; eg. it might be physically impossible
to invoke Opk for those particular (u, i).

Model completeness is an important consideration from requirements and fitness for
purpose perspectives, but is contingent on the understanding of how a particular for-
mal model relates to the real world. Thus it is ultimately a meta level issue, and out-
side the scope of the formal model itself. Nevertheless it is something that impacts
formal development methodology indirectly, because the need to give an appropriate
response under all circumstances that are reasonable according to the meta level re-
lationship of the formal model to the real world, can lead to the adoption of responses
that need to be contradicted at later levels of the development, with the consequences
noted above. (Whereas a cunning refinement based strategy could forego model
completeness and simply omit at higher levels responses that could not be subse-
quently refined in the way desired.)

So much for operations. Now for features. The key difference between a feature and
an operation, is that every feature is ‘an optional or incremental unit of functionality’.
As a consequence, features are not required to be model complete in the sense just
discussed, since the functionality that they address need not concern the entire set of
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demands that might be made on Opk. So each Opk will be composed of a collection
of features which together must guarantee model completeness but that separately
need not have the property.

In the spirit of aiming to support software engineering intuitions, we said that we will
assume that our models are model complete at every level k. This corresponds nicely
to the statement that the system has no capabilities that lie outside the remit of the
default within relations PDef

Op,k+1(ik, ik+1, uk, uk+1) defined in (2.7). For to have such
capabilities implies that when Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) holds, we
have either the absence of an abstract transition when there is a concrete one, or vice
versa. But model completeness implies just the negation of that: if some (uk, ik) is a
point from which it is necessary for a level k transition to emerge, then its level k+1
counterpart (uk+1, ik+1), obtained via Gk+1 ∧ POp,k+1, must be a point from which it
is appropriate for a level k+1 transition to emerge, and vice versa. We avail ourselves
of the properties of model completeness below.

Individual features are denoted fd,k where d refers to the feature itself and k is the level
of the development, and are (normally partial) relations with the same signature as
the operations to which they contribute: Uk × IOp,k ↔ Uk × OOp,k. We now (and at
other times below) suppress the subscript k till we return to discussing relationships
between different levels of abstraction/development.

Since all features that contribute to a given Op have the same signature, features may
be combined using any operator on relations that yields a result with the given rela-
tional signature from suitable parameters. We fix on the following, rather oversim-
plified menu of combinators; one which is just rich enough to show the potential util-
ity of retrenchment based techniques in this application area.

Definition 6.1 Feature expression combinators (illustrated working on individual
features, but applicable to feature expressions in general).

(1) Union: written ( ∪ ) ;  eg. (fd ∪ fe)

(2) Union asserted disjoint: written ( ∪ ) ;  eg. (fd ∪ fe)

(3) Override: written (  <+ ) ;  eg. (fe <+ fd)

(4) Conditional: written (If  then  else  fi)  ;  eg.  (If p(u, i) then fd else fe fi)

also written (  <+p ) ;  eg. (fe <+p fd)

(5) Case: written (Case  of :  ; … ; esac)  ;

eg. (Case p(u, i) of v0: fd0
 ; v1: fd1

 ; … vn: fdn
 ; else fe ; esac)

also written (  • :  ; … ;;  )  ;  eg. (p • v0: fd0
 ; v1: fd1

 ; … vn: fdn
 ;; fe) (6.1)

It is clear from this that there are two kinds of subexpression of feature expressions:
a subexpression can be a feature subexpression (a FSE, a subexpression of feature
type), or a condition subexpression (a CSE, a subexpression of boolean type). We
call a subexpression a pure FSE, iff it is not a subexpression of a CSE.

Definition 6.2 A feature expression φ is featurewise linear iff any individual feature
fd occurs at most once as a pure FSE of φ.

Semantically, the feature expression combinators are to be understood as follows.

Union has the meaning of conventional set theoretic union.
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Union asserted disjoint is slightly unusual in that its semantics is that of conventional
set theoretic union, but with the side condition that its operand relations have disjoint
domains. The elements of a union asserted disjoint can each be mapped back to the
set from which they came, without confusion, because of the side condition. This is
in contrast to disjoint union proper, which guarantees such a ‘birth certificate’ prop-
erty unconditionally, by employing some behind the scenes machinery typically in-
volving the tagging of each element of the disjoint union with some label indicating
where it came from. We reject the general construction for our purposes because it
always introduces some additional set theoretic machinery which is not specified ca-
nonically. In our environment, set theoretic details are suposed to correspond to ele-
ments of the application that we are trying to model, and arbitrary unspecified set the-
oretic mechanisms can have no place. Notations employing union asserted disjoint
in which the side condition is not true are undefined.

Conditional composition behaves as expected. When p(u, i) evaluates to true, then
the conditional (If p(u, i) then fd else fe fi) is true iff stpfd

(u, i, u′, o) is true. When p(u,
i) evaluates to false, then the conditional (If p(u, i) then fd else fe fi) is true iff stpfe

(u,
i, u′, o) is true. And p(u, i) must always evaluate to one of these, or else the whole
expression is not defined. N.B. Note the differing order of the operands in the two
notations.

Override is a special case of Conditional in which p(u, i) is ((u, i) ∈ dom(stpfd
)).

Case is defined in the usual way. We demand that p(u, i) is a (partial) function, yield-
ing at most one value, or else the whole expression is not defined. When p(u, i) eval-
uates to one of the values in {v0 … vn}, vj say, then the case construct is true iff for
the relevant j, stpfdj

(u, i, u′, o) is true. Otherwise, i.e. if p(u, i) yields a value not in
{v0 … vn}, or if p(u, i) is undefined, then the case construct is true iff stpfe

(u, i, u′, o)
is true.

These operators are sufficient to model others we might also want to consider. For
example domain restriction and domain subtraction can be modelled by:

(S <| fd) ≡  (If (u, i) ∈ (dom(stpfd
) ∩ S) then fd else ∅ fi) (6.2)

(S <−| fd) ≡  (If (u, i) ∈ (dom(stpfd
) – S) then fd else ∅ fi) (6.3)

With this collection of feature combination operators at our disposal we can regard
the stp relation of an operator Op as the value of an expression built out of features
using these combinators, a feature expression (FE). When an operator Op is defined
by a FE, we call this a feature oriented definition (FOD) of Op.

In line with the emphasis on semantic issues in this paper, we regard FEs as identical
if they differ at worst by the renaming of constituent individual features or by the per-
mutation of the parameters of commutative combinators. Thus fd ∪ fe and fe ∪ fd are
regarded as identical FEs. On the other hand fd ∪ fd and fd are different FEs which
happen to have the same value (i.e. they are equivalent FEs though not identical). We
are thus regarding FEs as a fairly abstract syntax for the relations that they denote.

In future we will write dom(fd) and dom(Op) instead of dom(stpfd
) and dom(stpOp).

If φ is a FE, we write dom(φ) for the domain of the relation that φ defines.

Theorem 6.3 Every FE φ has a normal form, NF(φ):
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φ  = φ1 ∪ φ2 ∪ … ∪ φn (6.4)

such that:

(1) Each φj is nonempty, unless φ itself denotes the empty relation (in which

case NF(φ) ≡ ∅).

(2) U × IOp is partitioned into:

dom(φ1) ∪ dom(φ2) ∪ … ∪ dom(φn) ∪ ((U × IOp) – dom(φ)) (6.5)

where the last term is omitted if φ is total, and all terms except the last are

omitted if φ is the empty relation.

(3) For each j, φj = dom(φj) <| (faj
∪ fbj

∪ … ∪ fzj
) where: the fbj

 are distinct

individual features occuring in the FE φ; for each fbj
, dom(φj) ⊆ dom(fbj

);

and if j1 ≠ j2, then (faj1
∪ fbj1

∪ … ∪ fzj1
) and (faj2

∪ fbj2
∪ … ∪ fzj2

) differ

by at least one individual feature.

Proof. We go by induction on the structure of φ. If φ is ∅, or is an individual feature
fb, (7.4) is an identity and the remaining conclusions are trivial.

Suppose φ is (φa ∪ φb), and suppose NF(φa) and NF(φb) are known.  Then since:

dom(φa ∪ φb)  =  dom(φa ∩ φb) ∪ dom(φa – φb) ∪ dom(φb – φa) (6.6)

we can use this decomposition of dom(φa ∪ φb) to generate a common refinement of
the partitions of U × IOp from the NFs of φa and φb, and to define the φjs belonging to
this partition. In a preprocessing phase, elements φj of the NF for φa whose domains
intersect both dom(φa – φb) and dom(φa ∩ φb) are first split into two across the bound-
ary of dom(φb) yielding (dom(φj) – dom(φb)) <| (faj

∪ fbj
∪ … ∪ fzj

) and (dom(φj) ∩
dom(φb)) <| (faj

∪ fbj
∪ … ∪ fzj

). Likewise for elements φj of the NF for φb whose
domains intersect both dom(φb – φa) and dom(φa ∩ φb). It is clear that this first phase
preserves all the desired properties of the NFs for φa and φb, except for the ‘differ by
at least one individual feature’ property in (3). Each element of these NFs for φa and
φb now has its domain wholly inside one of: (i) dom(φa ∩ φb), (ii) dom(φa – φb), (iii)
dom(φb – φa).  The NF for φa ∪ φb is now constructed as follows.

Any elements ((U × IOp) – dom(φa)) and ((U × IOp) – dom(φb)) from the original par-
titions of U × IOp are both refined to an element of the new partition ((U × IOp) –
dom(φa ∪ φb)), provided it is nonempty.

If dom(φaj
) ∩ dom(φbj

) ≠ ∅, where φaj
and φbj

are elements of the NFs of φa and φb,
then if φaj

= dom(φaj) <| (faj
∪ faaj

∪ … ∪ faaaj
) and φbj

= dom(φbj) <| (fbj
∪ fbbj

∪ …
∪ fbbbj

), then an element of the NF for φa ∪ φb is defined by (dom(φaj
) ∩ dom(φbj

))
<| (faj

∪ faaj
∪ … ∪ faaaj

∪ fbj
∪ fbbj

∪ … ∪ fbbbj
), where duplicate occurrences of

features are removed from the union. The set (dom(φaj
) ∩ dom(φbj

)) forms an ele-
ment of the new partition of U × IOp.

Elements of the partition for φa whose domains lie wholly inside dom(φa – φb) form
elements of the new partition, and their φjs also belong to the new normal form. Like-
wise for the ‘entirely in dom(φb – φa)’ case.
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In a postprocessing phase, any elements of the partition of U × IOp that now share the
same collection of individual features, are amalgamated. This completes the con-
struction.  It is easy to see that the construction possesses the claimed properties.

Suppose φ is (φa ∪ φb).  Then we have a simpler version of the preceding.

Suppose φ is (φb <+p φa). Let true(p) denote the subset of U × IOp where p is true; let
false(p) denote its complement. In a preprocessing phase, elements of the NFs of
both φa and φb are first split into two across the boundary between true(p) and false(p)
in the obvious way. New partition element ((U × IOp) – dom(φb <+p φa)) is generated,
provided it is nonempty. The new NF then consists of elements of the NF of φa (and
the corresponding partition elements) whose domains lie entirely in true(p) together
with elements of the NF of φb (and the corresponding partition elements) whose do-
mains lie entirely in false(p), discarding of course any empty ones, and amalgamating
any partition elements that share the same individual feature collections.

Suppose φ is (φb <+ φa).  This is a special case of the preceding.

Suppose φ is (p • v0: φa0
; v1: φa1

; … vn: φan
;; φb). This is similar to the preceding.

We are done.

The normal form theorem gives us a vivid picture of what systems built out of fea-
tures using the combinators of (7.1) look like. Fundamentally, the space of valid be-
fore-states and inputs partitions into a collection of sets, on each of which a well de-
fined subset of the features defines the behaviour by nondeterministic choice amongst
them; essentially this reduces any FE to a case analysis.

Theorem 6.4 Every FE φ is equivalent to a featurewise linear FE φ′.

Proof. Suppose NF(φ) = φ1 ∪ φ2 ∪ … ∪ φn, in which the individual features that
occur are {fa, fb, … , fz}. For all i ∈ {a … z}, let domfl(fi) ≡ ∪ {dom(φj) | j ∈ {1…n},
fi is an element of the union φj}.  Then it is easy to see that φ is equivalent to:

φ′ ≡  (domfl(fa) <| fa) ∪ (domfl(fb) <| fb) ∪ … ∪ (domfl(fz) <| fz) (6.7)

which is featurewise linear.

We can get another handle on where individual feature occurrences (and more gen-
eral subexpressions of a FOD) determine the behaviour defined, by solving a con-
straint problem in the manner of attributed grammars. Thus, while the domains of
individual features attempt to define the behaviour of the operation as a whole, the
conditions in the Case, Conditional and Override combinators impose restrictions on
what part of the domain of the operation has its behaviour defined by the controlled
subexpressions. We calculate the tradeoff using an inherited attribute in(φ) and a syn-
thesised attribute sy(φ), for each subexpression φ.

Definition 6.5 The active domain domact(φ) for a FSE φ in a FE Φ is given by finding
the solution to the set of constraints generated as follows over the structure of Φ:

(1) The root of φ has in(φ) = Uk × IOp,k.

(2) An individual feature fc has sy(fc) = dom(fc) ∩ in(fc).

(3) If φ is (φd ∪ φe) then in(φd) = in(φ), in(φe) = in(φ), sy(φ) = sy(φd) ∪ sy(φe).

(4) If φ is (φd ∪ φe) then in(φd) = in(φ), in(φe) = in(φ), sy(φ) = sy(φd) ∪ sy(φe).
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(5) If φ is (φe <+ φd) then in(φd) = in(φ), in(φe) = in(φ) – sy(φd),

sy(φ) = sy(φd) ∪ sy(φe).

(6) If φ is (φe <+p φd) then in(φd) = in(φ) ∩ true(p), in(φe) = in(φ) ∩ false(p),

sy(φ) = (sy(φd) ∩ true(p)) ∪ (sy(φe) ∩ false(p)).

(7) If φ is (p • v0: φd0
 ; v1: φd1

 ; … vn: φdn
 ;; φe) then in(φdj

) = in(φ) ∩ p–1(vj),

in(φe) = in(φ) ∩ (Uk × IOp,k – ∪j (p
–1(vj))),

sy(φ) = ∪j (sy(φdj
) ∩ p–1(vj)) ∪ (sy(φe) ∩ (Uk × IOp,k – ∪j (p

–1(vj)))).

(8) domact(φ) = sy(φ).

Because we have no feature variables (which might lead to recursive equations) it is
clear that for any FOD Φ, the above system can be solved for the sy(φ) provided we
know all the dom(fc) and the various conditions p. The solution is obtained by a
depth first traversal of the parse tree of the FOD Φ, pushing in(_) sets down and pick-
ing up sy(_) sets on the way back up.

Specifically, the base cases of the traversal for (1) and (2) are obvious. For cases (3)
and (4), we propagate the in sets down first, and wait for the sy sets to come back up.
For case (5), we propagate the in set down the dominant branch and wait for the re-
turning sy set, after which we propagate the relevant in set down the subordinate
branch and wait for the sy set, after which we send the sy set for the whole subexpres-
sion up. For case (6), we propagate the relevant part of the in set down the true
branch, similarly for the false branch; and when the child sy sets are available, we
synthesise the sy set for the whole case. Case (7) is similar. When the process has
calculated the sy set for φ, we return the desired result via (8).

If we let φ in the above be a feature occurrence fd, we can calculate its active domain
by the above procedure. If we aggregate all the occurrences of the same feature fd in
Φ, the union of the collection of domact sets that we generate (one per occurrence of
fd), equals domfl(fd), a fact whose proof we leave to the reader. In future, when we
write domact(fd) without making it explicit that an occurrence of fd is being referred
to, we will intend it to mean this aggregation of domact sets of individual occurrences,
equal to domfl(fd).

Definition 6.6 Let Φ be a FE and let φ be a FSE of Φ. The apparent active domain
of φ is defined as the maximal subset of dom(φ), domappact(φ), such that (domappact(φ)
<| φ) is a subrelation of (the relation defined by) Φ.

Note that domact(φ) ⊆ domappact(φ), and the inclusion may be proper since φ may be
overridden on part of its domain by some other part of the FE Φ that locally defines
the same relation as φ.  The FE (φd <+ φd) is the obvious example.

Feature engineering consists of manipulating the features that enter into an operation
in order to achieve the effects desired, where we can describe this activity either via
the FOD or via the NF. Depending on the details, it might be more convenient to
align an implementation with one or the other of these descriptions. We turn our at-
tention to how such descriptions evolve.

6.2   Evolution of FODs of Operations

We will consider two kinds of development steps for FODs of operations. Neither is
required to go according to the syntactic structure of the FOD, simply because there
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is no reason to assume that the development activity —driven as it is by many exter-
nal considerations— will meekly conform to syntactic criteria. Indeed we have re-
marked already that model completeness at all stages of development is a crucial con-
sideration, and there need not be any correlation between that and syntax.

The first kind of development step simply alters the condition p in a Conditional or
Case construct somewhere in the FOD; the second involves the infiltration of one or
more new features into the current FOD of the operation. We say ‘infiltration’ to
stress we are not necessarily working by recursion on the structure of the final FOD.

Despite the unruly nature of such steps as regards the syntactic structure of the FOD,
the normal form theorem assures us that all such development steps can be reduced
to consideration of partitions of the before-state and input space and the specification
of appropriate behaviour on any new pieces generated.

We examine this in more detail below. However before we do so we must recognise
that it is seldom the case that all the features we need to deal with intrinsically have
the same signature Uk × IOp,k ↔ Uk × OOp,k. Often new features introduced during
the development of a system need additional data structures to support the novel
functionality, so as k increases, the various Uk, IOp,k, OOp,k spaces cannot be assumed
to stay the same. Luckily the relative independence of individual features makes this
situation tractable.

Suppose that feature fd, which is introduced in the step from level k to level k+1, re-
quires additional supporting data ud in the state, drawn from a space of values for ud,
Ud say. Then Ud will be present in Uk+1 and not be present in Uk. It will be present
in Uk+1 as a cartesian factor, since Ud will be independent of any other data types used
in the system.

Given this, we must now consider how a feature fc which is present at level k and per-
sists into level k+1, and so is well defined on states in Uk, is to be understood on a
larger state space including Ud. The answer is easy. In common with programming
practice in which an update of a variable leaves all other variables unaffected, we un-
derstand the relation representing fc in the larger state space including Ud, to be the
relation on Uk extended by the identity on irrelevant factors such as Ud. Specifically,
if u -(i, fc,k, o)-› u′ is a typical transition for individual feature fc at level k, then at level
k+1, the transition u -(i, fc,k, o)-› u′ will be represented by a collection of transitions
(u, ud) -(i, fc,k+1, o)-› (u′, ud), one for every ud ∈ Ud, where we have assumed that the
adjunction of the space Ud is the only alteration in the state spaces needed in the pas-
sage from level k to level k+1. The same idea works for as many irrelevant factors
as we need to introduce in the passage from level k to level k+1.

In general Uk will be a cartesian product of individual types Ua,k × Ub,k × … × Ud,k
some of which are present because a specific feature demands them, others being
common to the activity of several or all of the features at level k. Similarly for level
k+1 where Uk+1 will be Ua′,k+1 × Ub′,k+1 × … × Ue′,k+1. Regarding the relationship
between levels k and k+1, some of the Ub,k can be identified with some of the Ub′,k+1.
This will be because they are data types ‘used in the same way’ by features that are
present at both levels; typically they will be the types of the same variables in a syn-
tactic description of the common features. (Nonetheless we emphasise that in a pure-
ly semantic framework like ours, strictly speaking, this correspondence remains out-
side the formalism without recourse to some such syntactic description of features;
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which is why ‘used in the same way’ appeared in quotes.) The remainder of the Uc,k
… Ud,k will be present only at level k, and the remainder of the Uc′,k+1 … Ue′,k+1 will
be present only at level k+1; this being because they concern features present exclu-
sively at one level but not the other3.

In this scenario the relationship between Uk and Uk+1 will be a total surjective regular
relation ρU,k,k+1. For let a typical value in Uk be uk = (ua,k, … , uc,k, ud1,k , … , udn,k)
and a typical value in Uk+1 be uk+1 = (ud′1,k+1, … , ud′n,k+1, ue′,k+1, … , ug′,k+1), where
subspace Ua,k × … × Uc,k is removed from Uk in the passage from level k to level k+1,
and subspace Ue′,k+1 × … × Ug′,k+1 is added; and where Ud1,k = Ud′1,k+1, … , Udn,k =
Ud′n,k+1 are the common types, n of them, identified as indicated.

Then:

ρU,k,k+1(uk, uk+1) ≡  (ud1,k = ud′1,k+1 ∧ … ∧ udn,k = ud′n,k+1) (6.8)

We see that ρU,k,k+1 is the composition of the projection that discards (ua,k, … , uc,k)
from uk followed by the inverse projection that adds (ue′,k+1, … , ug′,k+1) to get uk+1.
Since projections are functions, this displays ρU,k,k+1 in difunctional form.

Regular relations between the various levels such as these, possess compositionality
properties not shared by arbitrary chains of regular relations. For suppose Uk and
Uk+1 are related via ρU,k,k+1 as in (6.8).

For the relationship between levels k+1 and k+2, let us relabel Uk+1 by letting a typ-
cal value in Uk+1 be uk+1 = (ua′,k+1, … , uc′,k+1, ue′1,k+1 , … , ue′m,k+1), and let a typcal
value in Uk+2 be uk+2 = (ue′′1,k+2, … , ue′′m,k+2, uf′′,k+2, … , uh′′,k+2), where subspace
Ua′,k+1 × … × Uc′,k+1 is removed from Uk+1 in the passage from level k+1 to level
k+2, and subspace Uf′′,k+2 × … × Uh′′,k+2 is added. Suppose Ue′1,k+1 = Ue′′1,k+2, … ,
Ue′m,k+1 = Ue′′m,k+2 are the common types between levels k+1 and k+2, m of them,
identified as indicated.

Then:

ρU,k+1,k+2(uk+1, uk+2) ≡  (ue′1,k+1 = ue′′1,k+2 ∧ … ∧ ue′m,k+1 = ue′′m,k+2) (6.9)

Let θk+1 be the relabelling function so that θk+1 captures the bijection between the
labels of the (ud′1,k+1, … , ud′n,k+1, ue′,k+1, … , ug′,k+1) decomposition of uk+1 and the
labels of the (ua′,k+1, … , uc′,k+1, ue′1,k+1 , … , ue′m,k+1) decomposition. Then we de-
fine the composition of ρU,k,k+1 and ρU,k+1,k+2 by:

(ρU,k,k+1 ; ρU,k+1,k+2)(uk, uk+2) ≡
((udj1,k = ud′j1,k+1 ∧ θk+1(d′j1,k) = e′j1,k ∧ ue′j1,k+1 = ue′′j1,k+2) ∧
(udj2,k = ud′j2,k+1 ∧ θk+1(d′j2,k) = e′j2,k ∧ ue′j2,k+1 = ue′′j2,k+2) ∧

… … …
(udjl,k

 = ud′jl,k+1 ∧ θk+1(d′jl,k) = e′jl,k ∧ ue′jl,k+1 = ue′′jl,k+2)) (6.10)

3. Uc,k not present at level k+1 can arise when a feature is removed (by being completely over-
ridden) at level k+1. Why introduce something earlier only to override it later? In a monolithic
development it makes no sense. But in a long lived development process, when there might be
millions of units of an earlier design out in the field, it will be impossible to pretend that a fea-
ture installed earlier can simply be erased from the development. Telephony is the obvious ex-
ample. If a feature is completely overridden in this manner it need not be implemented, and
so the data that it would otherwise need, i.e. Uc,k, can be removed from the state space.
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where d′j1,k, d′j2,k , … , d′jl,k lists all the types at level k+1 that are both common with
types at level k, and (under a different name) with types at level k+2. Since this is a
composition of a projection with an inverse projection just as before, it is a difunc-
tional presentation of ρU,k,k+1 ; ρU,k+1,k+2 and thus is total, surjective and regular.
Furthermore it is easy to see that the composition of these relations is associative.

We will assume that similar mechanisms hold for the input and output spaces IOp,k
and OOp,k, whose incarnations are related by total surjective regular relations ρI-

Op,k,k+1 and ρOOp,k,k+1 constructed in the same manner, i.e. by discarding some com-
ponent types and incorporating new ones. In particular their compositions are also
total, surjective and regular4.

One pathological situation that we must mention is when there are no common types
between two levels which are adjacent, or become related as a result of one or more
compositions. In this case the ρ relation becomes universal (an empty conjunction).
We will assume that the developments we are considering display enough coherence
that this situation does not arise. Since in practical feature engineering situations,
adding new features is far more prevalent than removing them completely, this is a
reasonable assumption.

The passage from level k to level k+1 can now be subdivided into the following steps.
We first add in any types newly required at level k+1 to the level k FOD in the manner
just described. Next we modify the FOD to incorporate any new feature(s) as we will
show below, given that the state and I/O spaces are now adequate to accommodate
them. Finally we can project out any types no longer needed due to their individual
features having empty active domains as a consequence of their being completely
overridden, using another application of the above techniques.

At this point we can reconsider the modification of a FOD on the assumption that the
signatures of all FEs entering into the discourse are the same. As previously the mod-
ifications are of two kinds: the alteration of a boolean condition, and the infiltration
of new features into the FOD which we now discuss in more detail.

Suppose we have an FOD Φ[φ], which we want to change in the vicinity of φ. Maybe
we want to introduce a new feature fc to act alongside φ. Unfortunately the domains
of φ and fc overlap, so we cannot just move to Φ[(φ ∪ fc)] because the subexpression
(φ ∪ fc) is ill defined. We could adopt the possibilities Φ[(φ <+ fc)] or Φ[(fc <+ φ)] but
we might have to acknowledge that the behaviour of φ or fc alone in the region of
overlap is no longer appropriate in the presence of the other. Instead we define a new

4. There is a subtlety with input and output spaces that is largely hidden in the case of the sys-
tem state. If the output space (say) needs to acquire a new cartesian factor, going from J to J
× K, because of the demands of some new feature fnew in the operation, then even when fnew is
not being used, a value from K must be output for all steps of the operation, even if it has to be
a default value, because outputs are now pairs. Although not inconceivable, this is quite a dras-
tic redesign of the operation as a whole. What is more likely in practice is that fnew will output
some hitherto unused values from J to accomplish its task (making the construction more like
a sum than a product, a technical ramification we will not pursue further). Similar remarks ap-
ply to inputs. State is different because it persists from step to step, so state components of no
interest to the feature currently being invoked remain undisturbed, and do not impact on the
current step. Only at system initialisation time do we see an effect as for inputs and outputs,
when values have to be supplied simultaneously for all state components.
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feature fx to take care of the interaction, making sure that the domain of fx is precisely
dom(fc) ∩ dom(φ). Now we can design Φ[((φ ∪ fc) <+ fx)], avoiding the unnatural-
ness of the (φ <+ fc) or (fc <+ φ) partial solutions, and also of Φ[(φ ∪ fc)], where the
nondeterminism between φ and fc in the overlapping region may be regarded as
equally inappropriate.

The schema for modifications of FODs that we thus consider is the rewrite of Φ[φ]
to Φ[γ[φ]]. Here Φ[_] is a FE context, i.e. a FE with a hole [_], within which we apply
the rewrite rule:

[_] => γ[_] (6.11)

Here γ[_] is itself also a FE context that is interposed between Φ and φ. We will as-
sume that all the modifications of the second kind that we permit to be applied to a
FOD are of this form.

This spells out in detail what is meant by ‘infiltration of new features’. The interpo-
sition of γ induces an operator Syγ(_) on the sy(φ) set passed up into Φ and an operator
Inγ(_) on the in(φ) set passed down into φ thus:

Syγ(sy(φ)) ≡ sy(γ(φ)) (6.12)

Inγ(in(φ)) ≡ in(φ)γ[_] (6.13)

where the notation on the right hand side of (6.13) reflects the fact that in reality, in(φ)
depends more on the context of φ than on φ itself. More generally Syγ(ψ) and Inγ(ψ)
may be understood as similarly induced for any subexpression ψ of Φ.

The equations in Definition 6.5 permit the calculation of Syγ and Inγ from γ in terms
of the other quantities of the system. For example, if for γ[_] we take (([_] ∪ fc) <+ fx)
as above, then taking all the other facts about that example into account we can cal-
culate:

sy(γ(φ)) = sy(φ) ∪ (dom(fc) ∩ in(φ)Φ[_]) (6.14)

in(φ)γ[_] = in(φ) – dom(fx) (6.15)

so that in this example:

Syγ(_) = (_) ∪ (dom(fc) ∩ in(φ)Φ[_]) (6.16)

Inγ(_) = (_) – dom(fx) (6.17)

The presence of in(φ)Φ[_] in (6.16) shows that in general Syγ and Inγ are not independ-
ent of one another.

Definition 6.7 We call an individual feature fd in a FOD active iff domact(fd) is non-
empty, and say that fd is active at some (u, i) ∈ dom(fd) iff (u, i) ∈ domact(fd).

6.3   Feature Evolution via Retenchment

Having described how we can move from level to level both in terms of how FODs
alter and how we can describe the relationship between the relevant state and other
spaces, we now turn our attention to describing the retrenchments that capture this
process.

We define the retrieve, within, and output relations between successive layers thus:
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Gk+1(uk, uk+1) ≡ ρU,k,k+1(uk, uk+1) (6.18)

POp,k+1(ik, ik+1, uk, uk+1) ≡ ρIOp,k,k+1(ik, ik+1) (6.19)

OOp,k+1(ok, ok+1; u′k, u′k+1, ik, ik+1, uk, uk+1) ≡ ρOOp,k,k+1(ok, ok+1) (6.20)

In (6.19) there is an implicit cartesian product with a universal relation from Uk to
Uk+1 on the right hand side, and in (6.20) there is on the right hand side an implicit
cartesian product with a universal relation from the values of the variables u′k, ik, uk,
to the values of the variables u′k+1, ik+1, uk+1. Since the cartesian product of regular
relations is regular, we conclude that the within and output relations will also be total
surjective regular relations whose compositions are total, surjective and regular.

Now we form the relation Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) by forming the
cartesian product of Gk+1(uk, uk+1) with a universal relation from the inputs at level
k to those at level k+1, and taking the intersection of the resulting relation with
POp,k+1(ik, ik+1, uk, uk+1). Since the intersection of regular relations is regular, we see
that the relations Gk+1 ∧ POp,k+1 are total surjective regular relations whose compo-
sitions are total, surjective and regular. A similar argument shows that the relations
Gk+1(u′k, u′k+1) ∧ OOp,k+1(ok, ok+1; u′k, u′k+1, ik, ik+1, uk, uk+1) also have this property.

We have almost shown that the retrenchments we are developing have regular data.
To say something about the concedes relations, we must first discuss the transition
relations for Opk and Opk+1.  We do so in the context of a number of assumptions.

Assumption 6.8 Model Completeness. We have discussed this above, where we
inferred that it implies that there are no situations of interest regarding models at ad-
jacent levels in the series, whose before-states and inputs are not in the scope of
PDef

Op,k+1(ik, ik+1, uk, uk+1), where PDef
Op,k+1 is built according to (2.7) using the

Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) just constructed.

Assumption 6.9 Interfeature Independence. By this we mean that distinct fea-
tures do not encroach on each other’s work. There is no point in designing a new fea-
ture to duplicate the work of an old one5, so if fc and fd are distinct features present
in levels k and k+j, (j ≥ 0) then we will always have the negation of the analogue of
GOp,(k+1,k+j) for them:

¬ (G(k+1,k+j)(uk, uk+j) ∧ POp,(k+1,k+j)(ik, ik+j, uk, uk+j) ∧
stpfc

(uk, ik, u′k, ok) ∧ stpfd
(uk+j, ik+j, u′k+j, ok+j) ∧

G(k+1,k+j)(u′k, u′k+j) ∧ OOp,(k+1,k+j)(ok, ok+j; u′k, u′k+j, ik, ik+j, uk, uk+j)) (6.21)

In (6.21), G(k+1,k+j) is the composition Gk+1 ; Gk+2 ; … ; Gk+j, defaulting to the iden-
tity if j = 0, and to Gk+1 if j = 1.  Similarly for the other relations.

Assumption 6.10 Interfeature Determinism. By this we mean that for any (uk,
ik), there should be at most one feature fd of the operation with a transition uk -(ik, fd,k,
ok)-› u′k emerging from (uk, ik). In other words, the active domains of distinct fea-
tures should not intersect. Users have a right to expect predictable behaviour for a
given starting condition, and we assume such nuggets of predictable behaviour are

5. This is perhaps a bit hasty. It may well be that on occasion we want to ‘clean up’ a longlived
development by removing (i.e. overriding) some tired old features and replacing them with
shiny new ones that (at least some of the time) do the same job as the old ones. But we will
ignore this possibility here for simplicity.
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encapsulated within individual features. That is not to say that individual features
cannot themselves be nondeterministic when there are justifiable requirements rea-
sons for them being so, (for example seat allocation on budget airline flights), but that
is a different issue.

Interfeature determinism excludes certain FODs, primarily ones containing ‘naked
unions’ such as (fc ∪ fd) where the domains of fc and fd overlap and the union is not
masked by some form of overriding. Not all FODs containing overlapping unions are
disbarred. Referring to our previous example γ(fd) = ((fd ∪ fc) <+ fx), where dom(fx)
= dom(fc) ∩ dom(fd), we see that despite the union, it is interfeature deterministic be-
cause of the override on the overlap. Such FODs can be rewritten to remove the un-
ions, eg. ((fd <+ fc) <+ fx). Although equivalent to the former expression this could be
less appropriate as regards eloquence in expressing requirements, as we noted before.

Let us reflect a little on these assumptions. While model completeness can easily be
understood as an uncontroversial requirement of the development methodology, the
status of interfeature independence and interfeature determinism is more open to
question. For example one can certainly imagine designing features that partially du-
plicate each other’s work, as noted already. But then one could focus the analysis
lower down, by introducing a notion of subfeature, such that each feature would be a
union asserted disjoint of a family of subfeatures, and such that individual subfea-
tures capture the unique pieces of functionality shared among more than one parent
feature. One could then consider the legitimacy of the idea of intersubfeature inde-
pendence. Similarly one can imagine designing operations requiring features that
partially overlap in a common subdomain where both are active. In such a case one
could again refocus the analysis on subfeatures that capture the common behaviour
and consider the legitimacy of intersubfeature determinism.

In both scenarios the crucial issue amounts to ‘What is a (sub)feature?’, a meta level
issue that is related to the naturalness or otherwise of different subdivisions of the
functionality offered by an operation. For the sake of having a relatively straightfor-
ward scenario to illustrate our retrenchment theory we will accept the assumptions
stated without further comment.

We now consider a development step from level k to level k+1, given either by mod-
ifying some condition in the FOD Φk[φ] of Opk, or by applying a rewrite rule like [_]
=> γ[_] in (7.11) to some subexpression φ of Φk[φ]. The fact that neither option need
act at the root of the parse tree of Φk[φ] by an application of a FE constructor, blocks
the analysis of what can happen via the structural induction route, at least in any
straightforward way. Fortunately, the NF theorem allied with the assumptions above
gives us another route towards an analysis.

Consider some (uk, ik) from which a level k transition emerges. By model complete-
ness, there will be a (uk+1, ik+1) related to (uk, ik) by PDef

Op,k+1(ik, ik+1, uk, uk+1), from
which a level k+1 transition emerges, and vice versa. We fix (uk, ik) and (uk+1, ik+1)
for the next few paragraphs. By interfeature determinism, both transitions will be-
long to features fa,k and fy,k+1, each unique within the context of its level. There are
now three possibilities, which by interfeature determinism again are mutually exclu-
sive, (P1), (P2), (P3):

(P1) fy,k+1 is the image under Gk+1, POp,k+1, OOp,k+1 of fa,k.
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In this case for every level k+1 transition uk+1 -(ik+1, fa,k+1, ok+1)-› u′k+1 there will be
a level k transition uk -(ik, fa,k, ok)-› u′k related to it by:

(Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
stpfa

(uk, ik, u′k, ok) ∧ stpfa
(uk+1, ik+1, u′k+1, ok+1) ∧

Gk+1(u′k, u′k+1) ∧ OOp,k+1(ok, ok+1; u′k, u′k+1, ik, ik+1, uk, uk+1)) (6.22)

because all of the level k+1 transitions are constructed precisely by mapping all of
the level k transitions through Gk+1, POp,k+1, G′k+1, OOp,k+1. In this case we reestab-
lish the retrieve relation, and have preRet

Op,k+1(uk, ik, uk+1, ik+1).

(P2) fy,k+1 is the image under Gk+1, POp,k+1, OOp,k+1 of some level k feature fb,k ≠ fa,k.

This can arise because a condition somewhere in Φk[φ] was modified, making fb,k+1
active at (uk+1, ik+1) whereas fa,k was active at (uk, ik). In this case, interfeature inde-
pendence, in the shape of (6.21), ensures that we have:

¬ (Gk+1(uk, uk+j) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
stpfa

(uk, ik, u′k, ok) ∧ stpfb
(uk+1, ik+1, u′k+1, ok+1) ∧

Gk+1(u′k, u′k+1) ∧ OOp,k+1(ok, ok+1; u′k, u′k+1, ik, ik+1, uk, uk+1)) (6.23)

which is equivalent to:

Gk+1(uk, uk+j) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
stpfa

(uk, ik, u′k, ok) ∧ stpfb
(uk+1, ik+1, u′k+1, ok+1) ⇒

¬ (Gk+1(u′k, u′k+1) ∧ OOp,k+1(ok, ok+1; u′k, u′k+1, ik, ik+1, uk, uk+1)) (6.24)

so that the antecedents of (6.24) are sufficient to imply the whole of what would be
the default concedes relation for this (uk, ik) and (uk+1, ik+1). As a result, when build-
ing the complete concedes relation, including these antecedents will be enough to ex-
press what is needed.

(P3) fy,k+1 is not the Gk+1, POp,k+1, OOp,k+1 image of some level k feature fb,k ≠ fa,k.

In this case fy,k+1 is a new feature in the FOD, freshly introduced via [_] => γ[_]. The
same arguments as in (P2) apply, and the analogues of (6.23) and (6.24) hold.

From now on we treat (P2) and (P3) simultaneously, calling the level k+1 feature fe
regardless of its origins.  So we have for the given (uk, ik) and (uk+1, ik+1):

(Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
stpfa

(uk, ik, u′k, ok) ∧ stpfe
(uk+1, ik+1, u′k+1, ok+1)) (6.25)

To build the complete concedes relation we must accumulate these cases taking care
to delineate how the pieces fit together according to the partitions of Uk × IOp,k and
Uk+1 × IOp,k+1 induced from the NF theorem.

Definition 6.11 We define the offdiagonal active domain of a pair of distinct features
fb,k and fg,k+1 with respect to the given development step by:

domODact(fb,k, fg,k+1) ≡
{(uk, ik, uk+1, ik+1) | (uk, ik) ∈ domact(fb,k), (uk+1, ik+1) ∈ domact(fg,k+1),

(feature fb ≠ feature fg) ∧ Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
(∃ u′k, ok, u′k+1, ok+1 •

stpfb
(uk, ik, u′k, ok) ∧ stpfg

(uk+1, ik+1, u′k+1, ok+1))} (6.26)
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We can now define the complete concedes relation for levels k and k+1 as follows.
What we do is tantamount to writing out the default concedes relation that relates Opk
and Opk+1 except that we decompose Opk and Opk+1 into their various features ac-
cording to the offdiagonal active domains for various distinct feature pairs:

COp,k+1(u′k, u′k+1, ok, ok+1; ik, ik+1, uk, uk+1) ≡
(Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
(∨(fb ≠ fg) ((uk, ik, uk+1, ik+1) ∈ domODact(fb,k, fg,k+1) ∧

stpfb
(uk, ik, u′k, ok) ∧ stpfg

(uk+1, ik+1, u′k+1, ok+1)))) (6.27)

From (6.27) we conclude that in (P2) and (P3), we have preCon
Op,k+1(uk, ik, uk+1, ik+1)

for the concedes relation (6.27), as we would expect.

Proposition 6.12 The concedes relation (6.27) is regular.

Proof. Consider COp,k+1. Let πk(u′k, ok; ik, uk) be the projection that takes (u′k, ok,
ik, uk) to (ik, uk); and let πk+1(u′k+1, ok+1; ik+1, uk+1) be the projection that takes (u′k+1,
ok+1, ik+1, uk+1) to (ik+1, uk+1). Let ιk(u′k, ok, ik, uk) be the injection of dom(COp,k+1)
into Uk × OOp,k × IOp,k × Uk, and let ιk+1(u′k+1, ok+1, ik+1, uk+1) be the injection of
rng(COp,k+1) into Uk+1 × OOp,k+1 × IOp,k+1 × Uk+1. Let f;g–1 be a difunctional pres-
entation of Gk+1 ∧ POp,k+1. Then we have a difunctional presentation of COp,k+1 giv-
en by:

COp,k+1(u′k, u′k+1, ok, ok+1; ik, ik+1, uk, uk+1) ≡
(ιk(u′k, ok, ik, uk) ; πk(u′k, ok; ik, uk) ; f) ;

(ιk+1(u′k+1, ok+1, ik+1, uk+1) ; πk+1(u′k+1, ok+1; ik+1, uk+1) ; g)–1 (6.28)

This shows that COp,k+1 is regular.

So our retrenchments have regular data. The next question is whether they respect
their regular data. Here the answer is no. For consider the following situation in
which there is no I/O. We have at level k, a value u of the state variable uk, from
which a transition of feature fa,k issues. At level level k+1 the state variables are uk+1
which consist of a pair of values (u, w) where the value w is needed by feature fe,k+1,
newly introduced at level k+1. The retrieve relation Gk+1(uk, uk+1) is just the inverse
projection that relates u at level k to (u, w) for any w at level k+1. Now we suppose
that for a value w1 there is a level k+1 transition of fa,k+1, namely (u, w1) -(fa,k+1)-›
(u′, w′1), and for a value w2 there is a level k+1 transition of fe,k+1, namely (u, w2) -
(fe,k+1)-› (u′2, w′2). (This is quite reasonable since there is no requirement for any in-
dividual feature to be model complete.) In such a case, for the (u, w1) transition, we
would establish Gk+1(u′, (u′, w′1)), since the level k+1 transition would just be a copy
of a level k transition, u -(fa,k)-› u′; and for the (u, w2) transition we would have
COp,k+1(u′k, u′k+1 …) because feature fe,k+1 is active. Now (u, w1) and (u, w2) are in
the same (Gk+1 ∧ POp,k+1) equivalence class, since they are both (Gk+1 ∧ POp,k+1)-
related to u at level k. But (u′, w′1) and (u′2, w′2) are not in the same COp,k+1 equiv-
alence class, since COp,k+1 is only defined when the level k feature and level k+1 fea-
ture are different, by (6.27); in particular COp,k+1 is not defined for (u′, w′1). So con-
dition (4) of Definition 3.16 is violated and the retrenchments with concedes relations
(6.27) do not respect their regular data. In particular, tidiness is too strong a property
to expect in feature engineering.  On the other hand, we have the following.

Proposition 6.13 The retrenchments given by (6.18)-(6.20) and (6.27) are neat.
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Proof. Consider some (uk, ik) related to some (uk+1, ik+1) by Gk+1 ∧ POp,k+1. If we
have the same feaure active at both levels, then we have preRet

Op,k+1(uk, ik, uk+1, ik+1).
By interfeature determinism, no other features can be active for this (uk, ik) and (uk+1,
ik+1) so for the after-states and outputs etc. related to these (uk, ik) and (uk+1, ik+1),
COp,k+1 will not be defined (because we were careful to relate only offdiagonal active
domains via COp,k+1) and so preCon

Op,k+1(uk, ik, uk+1, ik+1) will not be valid. Contra-
rily, if for (uk, ik) and (uk+1, ik+1) two different features are active, and we have
COp,k+1, and thus preCon

Op,k+1(uk, ik, uk+1, ik+1) is valid, interfeature determinism says
no other features can be active for these (uk, ik) and (uk+1, ik+1), and interfeature in-
dependence allows us to conclude that G′k+1 ∧ OOp,k+1 will not be valid ‘fortuitous-
ly’, precluding the validity of preRet

Op,k+1(uk, ik, uk+1, ik+1), a possibility we must
guard against since G′k+1 ∧ OOp,k+1 are globally defined on Uk × OOp,k × IOp,k × Uk,
and Uk+1 × OOp,k+1 × IOp,k+1 × Uk+1.  Neatness thus follows.

Even though we have neatness of the retrenchments for individual development steps,
we do not in general have strong enough properties to be able to deduce that compo-
sitions of such steps (done according to (4.9)-(4.12)) yield neat retrenchments, nor
that the composition of such retrenchments, if neat, is necessarily associative. In fact
it is easy to see that the output relations satisfy the general closedness conditions
(5.5)-(5.6); but there is no reason to suppose that the concedes relations (6.27) are be-
nign enough. (The composition of the neat retrenchments is of course associative
when it is done in the sense of the normal composition of retrenchments, i.e. (2.3)-
(2.6); rather than (4.9)-(4.12) together with Theorem 4.5.)

Counterexample 6.14 Consider an operation defined at level 0 by (fb <+p fa), where
we suppose that the domains of the two interfeature independent features fa and fb are
equal. Consider the development step in which p is replaced by ¬p, giving at level
1, (fb <+¬p fa). A nontrivial concedes relation will be needed to describe the fact that
one behaviour is replaced by another in the whole domain. Consider the further de-
velopment step in which ¬p is replaced by p, giving at level 2, (fb <+p fa) again. An-
other nontrivial concedes relation will be needed here to undo the damage caused by
the first one; in fact it will be the transpose of the first concedes relation. However
the composition of these development steps is the identity development step, which
needs only the empty concedes relation. This is not equal to the composition of the
component concedes relations according to any of the schemes that we considered
above, since the composition of a nontrivial relation and its transpose will in general
include a nonempty subrelation of the identity relation. We therefore see that in this
example, for a typical transition of the operation, we will validate both the G and C
conditions for the composition, and the composition will not be neat. Actually, if in
Fig. 2 we remove the rear intermediate level transition and the left hand G1/G2 pair
it issues from, we get an illustration of the situation just described.

The general form of modification to FODs that we allow in the passage from one level
to another makes it difficult to say anything too specific about how the partition of the
Uk × IOp,k promised by the NF theorem evolves from level to level. Of course in any
particular case, the calculational strategy of Definition 6.5 et seq. will yield a partic-
ular answer. However there are some special cases, in which the partition evolves in
a more systematic manner, and we illustrate one of these.

Suppose all the FODs for Op are simply sequences of overrides, such as:

Opk  = fDef,k <+ fq,k <+ fp,k … fb,k <+ fa,k (6.29)
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Here fDef is some default feature that guarantees model completeness no matter what.
(Thus we tacitly assume that at each level the limits of its domain serve to define
model completeness, and that no feature is defined beyond the domain of fDef at any
level.) Then the progression from level k to level k+1 is just the insertion of some
fg,k+1 into the above sequence, changing … fd,k <+ fc,k … into … fd,k+1 <+ fg,k+1
<+ fc,k+1 … .

It is now clear that the only alteration to the definition of Op will occur on dom(fg,k+1)
– dom(fc,k+1 ∪ … ∪ fa,k+1) at level k+1. (N.B. We no longer have to worry separately
about offdiagonal active domains because of the simple structure of (6.29).) On this
part, the concedes relation COp,k+1 will be defined and will equal:

COp,k+1(u′k, u′k+1, ok, ok+1; ik, ik+1, uk, uk+1) ≡
(Gk+1(uk, uk+1) ∧ POp,k+1(ik, ik+1, uk, uk+1) ∧
(((uk, ik) ∈ (dom(fd,k) – dom(fc,k) … – dom(fa,k)) ∧

stpfd
(uk, ik, u′k, ok)) ∨

… … ∨
((uk, ik) ∈ (dom(fDef,k) – dom(fq,k) – … – dom(fd,k)

– dom(fc,k) – … – dom(fa,k)) ∧ stpfDef
(uk, ik, u′k, ok))) ∧

((uk+1, ik+1) ∈ (dom(fg,k+1) – dom(fc,k+1) – … – dom(fa,k+1)) ∧
stpfg

(uk+1, ik+1, u′k+1, ok+1)) (6.30)

where we have assumed that dom(fg,k+1) ⊆ dom(fDef,k+1), and the dissection of the
concedes relation into specific feature stp relations on the various domains is just the
decomposition of stpOpk

(uk, ik, u′k, ok) and stpOpk+1
(uk+1, ik+1, u′k+1, ok+1) into their

constituents.

When we have a sequence of such modifications, the concedes relations that describe
the resulting operation depend on the order in which different features are inserted
into the overall FOD. Eg. suppose after inserting fg,k+1 above we next insert feature
fh,k+2. Then we have two different outcomes depending on whether fh,k+2 is overrid-
den by fg,k+2 or not, i.e. whether it occurs lower down the override hierarchy.

Suppose it is inserted next in priority after fg,k+1, giving … fd,k+2 <+ fh,k+2 <+ fg,k+2
<+ fc,k+2 ….  Then the corresponding concedes relation reads:

COp,k+2(u′k+1, u′k+2, ok+1, ok+2; ik+1, ik+2, uk+1, uk+2) ≡
(Gk+2(uk+1, uk+2) ∧ POp,k+2(ik+1, ik+2, uk+1, uk+2) ∧
(((uk+1, ik+1) ∈ (dom(fd,k+1) – dom(fg,k+1) – dom(fc,k+1) … – dom(fa,k+1)) ∧

stpfd
(uk+1, ik+1, u′k+1, ok+1)) ∨

… … ∨
((uk+1, ik+1) ∈ (dom(fDef,k+1) – dom(fq,k+1) – … – dom(fd,k+1)

– dom(fg,k+1) – dom(fc,k+1) – … – dom(fa,k+1)) ∧
stpfDef

(uk+1, ik+1, u′k+1, ok+1))) ∧
((uk+2, ik+2) ∈ (dom(fh,k+2) – dom(fg,k+2) – dom(fc,k+2) – …

– dom(fa,k+2)) ∧ stpfh
(uk+2, ik+2, u′k+2, ok+2)) (6.31)

We can see that since in (6.30), (uk+1, ik+1) ∈ (dom(fg,k+1) – …) guards fg,k+1, and in
(6.31), (uk+1, ik+1) ∈ (… – dom(fg,k+1) …) guards fd,k+2 (and similarly for the other
features that contribute to the level k+1 values), then (6.30) and (6.31) compose to
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give the empty relation, and we have a composition of output retrenchments reminis-
cent of the situation described in Corollary 4.6.

On the other hand, if fh,k+2 overrides fg,k+2 on a nonempty overlap of domains, then
some of the modification captured by COp,k+1 earlier, will be undone by the new mod-
ification, and this will be captured by COp,k+2, such that in a subsequent composition,
all three terms of the composed concedes relation will be valid somewhere. That this
is not the same as in the previous case is not surprising since fd,k+2 <+ fh,k+2 <+ fg,k+2
<+ fc,k+2 is not the same as fd,k+2 <+ fg,k+2 <+ fh,k+2 <+ fc,k+2. However these two fea-
ture expressions have the same shape, so one might expect the same shape of overall
concedes relation from (… fd,k+2 <+ fc,k+2 …) to (… fd,k+2 <+ fh,k+2 <+ fg,k+2 <+ fc,k+2
…) or (… fd,k+2 <+ fg,k+2 <+ fh,k+2 <+ fc,k+2 …) to emerge. In benign cases, appropriate
manipulations of the two compositions can bring out the expected similarity.

We conclude this section by pointing out that in [Banach and Poppleton (2003)],
there is a toy feature engineering case study, focused on telephone system feature in-
teraction, and done largely along the lines of the theory above. The fact that it is very
much a toy is a consequence of using a formalism similar to the one in this paper,
relating a single step at one level to a single step at the next level. However such an
approach has a very real drawback in that the behavioural or multistep aspects of gen-
uine telephony applications are abstracted away. In a typical interaction with a real
telephone system, one goes through a number of phases before the interaction com-
pletes, and disregarding this finer level of granularity undoubtedly undermines the
credibility of any such decription. Still, the main point of [Banach and Poppleton
(2003)] was to illustrate retrenchment, not to advance the state of the art in telephony.
However, both that paper and this one, support the view that a development of re-
trenchment based ideas more accurately targeted at the needs of realistic telephone
feature engineering problems would enjoy a good measure of success.

Aside from the previous point, there is a crucial difference between the theory of this
paper and that of [Banach and Poppleton (2003)] since the case study there is done
using primitive retrenchment rather than the output retrenchment6 of this paper.7 At
a number of points, especially when we want to distinguish between system transi-
tions that differ only in their outputs, the insensitivity of primitive retrenchment to
this kind of situation inhibits its use in giving a fluent account of the matter. The
kinds of theorem we have been able to prove in preceding sections of this paper can-
not be constructed in as clean a manner without output relations. It would be an un-
demanding exercise to repeat the case study in [Banach and Poppleton (2003)] in the
present framework, and to carry out successfully the programme discussed there, but
only partially carried through.

6. Outputs retrenchments and primitive retrenchments, both introduced in [Banach et al.
(2007)], differ in that primitive retrenchments do not have a separate output relation. Even
though the two formulations are equivalent (as shown in [Banach et al. (2007)]), the conven-
ience of having a separate output relation is considerable. The retrenchments of this paper are
all (of course) output retrenchments.
7. There is another technical difference between this paper and [Banach and Poppleton
(2003)]. In the latter input, output, and state spaces were assumed fixed ab initio, and large
enough to accommodate all features needed at any point in the development; thus making G
and P identities (there was no O of course).
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7   Conclusions

In the preceding sections we have focused on introducing various strengthenings of
the notion of retrenchment that subsequently lead to tighter laws of composition,
helping to avoid the ‘junk’ that purely propositional reasoning can generate. Regard-
ing such tighter laws, it is clear that they come at a price. When we come to consider
compositionality, and even more to the point, associativity, we find that these proper-
ties do not hold automatically for the new formulations. The convoluted calculations
of Section 5 demonstrate the lengths to which we must go to recover them. This goes
to show that regarding the properties considered in this paper, associativity is much
more like a completeness property than a soundness property. To prove associativity
we must be able to decompose a composite structure into its components in a well
behaved way, in order that we can subsequently reassemble all the pieces into the oth-
er association order. The frequent presence of conjunctions of existentially quanti-
fied expressions, in which the existential witnesses drawn from the same domain can-
not be assumed to be the same across different conjuncts, causes endless trouble in
this regard.

Our approach in preceding sections was to restrict where necessary the kind of re-
trenchments we considered in order to carry through the proofs we wanted in the
most transparent manner possible. This meant imposing conditions on the collection
of relations that expresses a retrenchment, or on the transition relations of the systems
in question, or on the relationship between the two. We can call this the extrinsic ap-
proach because the conditions come from outside, and any systems etc. that do not
satisfy the relevant conditions are excluded from consideration. The extrinsic ap-
proach gives an easily digestible formulation of what is needed to carry through a
proof.

This extrinsic approach is not only easy to grasp, but also often proves useful, be-
cause people like to build systems using concepts that are as simple as is practicable.
Consequently the ingredients of those systems can frequently satisfy simple structur-
al conditions such as the ones we hypothesised. A good illustration of this occurred
in 6, where with a few general assumptions, the theory we had previously developed
gave a reasonable account of simple feature engineering.

However there are other options for getting the results we obtained. The conditions
assumed were normally sufficient conditions to enable a particular proof fragment to
be carried through. As an alternative, one could instead axiomatise the required proof
fragments themselves. We can call this the weakly extrinsic approach. Such a refor-
mulation of the material in this paper would be more widely applicable than the treat-
ment here because we would not be insisting that a particular condition holds every-
where, but only where it will be utilised in a proof, and thus more systems would po-
tentially satisfy the conditions demanded. (As an example, in Corollary 5.17 we used
regularity to prove that from G1(u′0, u′1,a) ∧ OOp,1(o0, o1,a; u′0, u′1,a, …) ∧ COp,1(u′0,
u′1,b, o0, o1,b; …) we could, amongst other things, infer COp,1(u′0, u′1,a, o0, o1,a; …).
However instead of using regularity we could have assumed this implication directly
as a property of the component output retrenchments, and the proof would have suc-
ceeded equally well; moreover we would only have assumed just what was needed,
rather than a global condition like regularity which imposes constraints even in places
where the proof in question does not exploit them.) A specific case when the weakly
extrinsic approach was actually unavoidable in this paper occurred in Corollary 5.13,
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where the simple assumptions of regularity did not compose, and we had to refer to
a more fingrained condition to complete the proof.

There is yet another approach which is also available. The nature of retrenchments
is that there is always scope for a tradeoff between facts stated in the concedes rela-
tion (and in our case the output relation too), and restrictions imposed in the within
relations. In the present context, instead of imposing conditions on systems and re-
trenchments from the outside, we have the option of drafting the composed within re-
lations so that the resulting composed retrenchments have the properties we seek to
prove, given that the operation PO has the within relation as a hypothesis. In other
words we create the composed retrenchments in such a manner that they avert their
gaze from those parts of the two systems which do not comply with the criteria de-
manded for the proof of the desired property. This enables any two systems to be
composed by a suitable version of any of the methods that we have introduced in this
paper, at the risk that in certain cases, the composed retrenchment can turn out to be
to narrowly defined (or even vacuuous) if the resulting within relation turns out to be
too strong (or even empty).  Possibilities such as these remain to be investigated.

These technical difficulties, that arise so quickly when disjunction features so prom-
inently at a structural level as it does in retrenchment, makes it is easy to see why
there is such a strong impulse to use refinement wherever possible. The accumula-
tion of properties, without the possibility of later denying properties established ear-
lier —so characteristic of well constructed refinement approaches— is highly appeal-
ing when compared to what we had to do above, and we would certainly not dissuade
from this approach when it can achieve what is desired in a sensible way.

Nevertheless the real world is a messy place where such an accumulative strategy
cannot always be carried through convincingly for realistic applications, and some-
times it cannot be carried through at all. (One clear example of the latter is the cap-
ture of the transition from continuous models to discrete models, in engineering ap-
plications that require the modelling of physical phenomena in software; there, the
way that engineers describe the continuous to discrete transition does not lend itself
to a refinement treatment.) The application of default output retrenchments to feature
engineering in the preceding section, illustrates that the greater flexibility of retrench-
ments can give a formal account of situations such as these. The intention is that once
the most challenging modelling steps have been captured within suitable retrench-
ments, refinement, with its stronger grip on how properties evolve through the devel-
opment, can control the remaining less controversial steps of the development. In
other words we should apply the Tower Pattern [Banach et al. (2005), Jeske (2005)]
to get the best of both worlds.

Having developed the theory, we confronted it with a plausible application scenario,
namely the theoretical description of a fairly flexible model of feature engineering.
There, we saw that given the assumptions we made about the process, certain aspects
of the previously developed theoretical landscape were indeed applicable, and others
were not, showing the usefulness of having a range of different results to deploy. And
since, in the absence of a concrete application, it is impossible to write down specific
refinement or retrenchment data, our treatment was based on default retrenchments,
which enabled a generic account to be given. While default retrenchments are ‘al-
ways available’, and so are very useful for giving generic accounts of this kind, it is
worth reiterating that the mere possibility of applying them mechanistically, is coun-
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terproductive as regards possibly the main benefit of retrenchment, which is to de-
scribe non-refinement system evolutions in a manner that demands that some math-
ematical consistency be established between the system models involved, and human
intuition about what the evolution is meant to achieve.
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