Safety Requirements and Fault Trees using
Retrenchment

R. Banach and R. Cross

Computer Science Department, Manchester University, Manchester, M13 9PL, UK
banach@cs.man.ac.uk, r.cross@cs.man.ac.u

Abstract. In the formal modelling of safety critical systems, an initial
abstract model captures the ideal, fault free, conception of the system.
Subsequently, this model is enriched with the detail required to deal
with envisaged faults that the system is designed to be robust against,
resulting in a concrete extended system model. Normally, conventional
refinement cannot provide a formal account of the relationship between
the two models. Retrenchment, a liberalisation of refinement introduced
to address such situations, allows model evolution, and is deployed to
provide a formal account of the fault injection process that yields the
extended system model. The simulation relationship of retrenchment is
used to derive fault trees for the faults introduced during the injection
process. A two bit adder example drawn from the FSAP/NuSMV-SA
safety analysis platform is used to illustrate the technique.

1 Introduction

Safety-critical systems are required to behave in a predictable and acceptable
way in the face of failures which have been forseen and designed for during their
development. Generally speaking, the behaviour in both desired and undesired
(degraded) situations must be fully documented to provide a comprehensive
system description. The process of creating such a comprehensive description
starts by writing down an ideal, fault free, abstract model of the system. In this
model, only the desired behaviour of the system is expressed. Once this initial
model has been created, the elicitation of safety requirements yields a fresh
set of criteria that the system must meet. The incorporation of these into the
ideal model yields an ‘extended system model’, which encompasses all system
behaviour in both desired and undesired circumstances.

One framework for carrying out this task is the FSAP/NuSMV-SA safety
analysis platform [11]. This is a toolkit that allows the creation of the ideal model,
and then permits the automatic injection of possible faults into the ideal model
from pre-defined libraries of generic faults. In this way the extended system
model is obtained. Verification techniques such as Fault Tree Analysis can then
be used to establish the root cause of a given failure, and relate it to the ideal
model in an informal manner. Bozzano et al., the authors of the FSAP /NuSMV-
SA platform, justify the use of such informal techniques in relating ideal and
failure-sensitive models by pointing out the deficiencies of formal approaches,

saying: “...even when formal methods are applied, the information linking the
design and the safety assessment phases is often carried out informally”.

The reason that this happens is not hard to see, and is due to the fact that
the traditional formal relationship between an abstract and a more concrete
model is refinement [27], [16], [15]. Unfortunately the formal proof obligations
of refinement are quite stringent, and are parameterised only by the retrieve (or
abstraction) relation between the state spaces of the two models. This restriction
prevents the description via refinement of many of the kinds of modification or
adaptation that arise naturally during system development, and often forces
the abstract and concrete models to be much closer together than one might
ideally like. The impact of this for using refinement in the case of safety critical
development would entail committing, more or less at the outset, to an abstract
model that already contains essentially all the desired fault tolerant behaviour,
and this obviously flies in the face of the desire to create just the ideal model
first, and only later to consider the incorporation of faults (and of the system’s
responses to them) via a separate safety requirements analysis phase.

In this paper, we show that retrenchment, a liberalisation of refinement which
was introduced precisely to address the excessive stingency of the formal proof
obligations of refinement in such situations, can fare better in the role of inter-
mediary between the ideal and extended system models. Retrenchment achieves
this by introducing extra data, the within, output and concedes relations, into
the principal refinement proof obligation. These extra relations depend on the
the two systems being discussed and introduce much greater parameterisation
into the description of the relationship between them. So we gain much greater
flexibility in capturing the desired relationship between models. We exploit this
flexibility to give a credible formal account of the relationship between ideal and
fault tolerant systems in the process of fault injection. Most importantly, such a
formal account offers opportunities for formally tying together —via the bridge
offered by retrenchment— other aspects of the safety critical development, hith-
erto done separately (even if formally) in the ideal and extended model worlds.
We illustrate this potential for fault tree generation, and more briefly comment
on model checking.

The rest of this paper is structured as follows: Section 2 describes the two-bit
adder, the case study that will serve as a running example in this paper, and
explains the way in which it will evolve to model implementation-level faults.
Section 3 overviews refinement in a simple partial correctness formulation, and
applies it to the two-bit adder to show the shortcomings of refinement in this
context. Section 4 introduces retrenchment, and shows how it can be used to
give a much improved account of fault injection for the two-bit adder scenario.
Section 5 introduces the simulation relationship of retrenchment, and shows how
it can be used to generate the fault tree for the two-bit adder via a resolution-like
procedure. Section 6 comments briefly on a similar approach to model checking.
Section 7 concludes, looking forward to more detailed expositions of the topics
introduced briefly in this paper.

2 The Two-Bit Adder Example

In the rest of the paper, we will frame our discussions of relationships between
models in terms of an abstract system Abs, and a concrete one Conc, which
will be two adjacent systems in the development hierarchy. The abstract system
Abs, will contain a number of operations Opa, taken from its set of operations
Opsa. An abstract operation Opy is a transition relation for which the individual
transitions will be written:

OpA(“? i? ul7 O)

or more evocatively:

u (i,0pa, 0)> o'

where u, u' are elements of the state space U, and i and o are elements of the
input space lp, and the output space Op, respectively. Below we will use the
arrow format to fix the signature of an operation in terms of states and outputs,
and will use the Opa format when we simply wish to utilise the transition relation
as a component of a more complex relational expression. It turns out that for the
simple examples that appear in this paper, all variables are either read-only or
write-only, so we will model them using input and output variables, finessing the
absence of genuine updatable state by using one-element state spaces containing
a single ‘x’ value. Thus the typical abstract operation becomes x -(i, Opa, 0)> * .
In addition to all this the system is started in an initial state u’ satisfying the
predicate Inita (u').

Corresponding concrete operations are defined in exactly the same way, ex-
cept with operations Opc taken from Opsc, with state space v € V, input j € Jop
and output p € Pp,. Decoration is used to distinguish between before and after
states of variables, with an operation Op being identified as abstract or concrete
by use of a subscript A or C as necessary. The initialisation predicate is Initc(v').

The example that will be used to highlight the use of retrenchment is the
two-bit adder adapted from [11]. From now on, unless stated otherwise, all I/O
variables take values in {0,1} the usual one bit space. We follow the structure
of [11] closely, and so the abstract two-bit adder Addery is specified in terms of
a subsidiary operation Bita. In fact Bita merely copies its input to its output,
acting as a placeholder for subsequent injection of faulty behaviour. Note the
use of pairing to turn two individual inputs 4; and i to Addery, into a single
formal input (iy,42).

x (i, Bita,0)>*x = (0=1)
x -((i1,12), Addera,0)>* = (0= (i1 + iz mod 2))

Following [11] again, these operations are wrapped up in an enclosing operation
Maina which takes its input values, feeds them into the adder, and extracts the

result.

x -((r1,r2), Maina , adder)> x =
(3 b1,ba @ Bita(*,71,%,b1) A Bita(x,72,%,b2) A
Addera (x, (b1, b2), ¥, adder))

The above abstract idealised model describes how the system should behave
when it is functioning correctly. The next step is to specify how the system
should behave in degraded situations (i.e. when a fault occurs in a part of the
system). So safety requirements are added, through the process of fault injection,
to create a concrete extended system model.

We will inject two types of fault into the above system: a corruption of the
input bit of the Bit module, and a stuck-at-zero fault in the Adder module. These
are incorporated into the two concrete module defnitions of Bitg and Adderc.

* _(ja Bjt07p)_> * =
(ft = no_failure A\p=j)V
(ft = inverted A p = —j)

* _((j15j2)5 AdderC>p)_> * =
(fta = no_failure Ap = (j1 + j2 mod 2)) V
(ft, = stuck_at_zero A p = 0)

Both the concrete Bit and Adder operations have an additional free variable, ft
(fault_type), that indicates whether the fault in question is active. In the case
of a faulty Bit, the input value is inverted, while in the case of a faulty Adder,
the output is set to zero irrespective of the inputs. These definitions lead to a
corresponding concrete extended Main operation, in which we relabel the (r1,72)
inputs and adder output as (s1,s2) and sum for later convenience.

* _((815 82)5 Ma-inc, Sum)—> I
(3 c1, ¢ ® Bita(*,51,%,¢1) A Bitc(x, 89, %,¢2) A
Adderc(*, (¢1,c¢2), *, sum))

Note that the choice of simply making the ft variables free in the definitions of
Bitg, Adderc and Maing is but one way of handling the relevant information.
For us it was dictated by the desire for subsequent technical simplicity.

3 Refinement

In this section we outline a simple partial correctness formulation of model ori-
ented refinement, and show that it will not describe the relationship between
the abstract and concrete systems of the two bit adder. See [27], [15], [16] for
treatments of model oriented refinement in general and [17], [23], [26], [28], for
more details of the Z methodology, or [1], [24], [24] [25], for more details on B;
both Z and B being particular incarnations of the model oriented approach.

For a concrete model of the kind we have been discussing to be a refinement
of an abstract one, we need three things. Firstly that the sets of operation names
at the two levels are identical, i.e. Opspy = Opsc. Secondly that the initilisation
proof obligation (PO) holds:

Initc(v') = (3 u' e Inita(u') A G(u',v"))
Thirdly for each corresponding pair Opa and Opc, the operation PO holds:

G(u7 U) /\ Opc(v7j7 ,Ul3p)
= (3 u'i,00 Opa(u,i,u',0) AG(u',v') A (i = §) A (0 =p))

This shows that inputs and outputs are not permitted to change in the passage
from abstract to concrete (in line with refinement’s original objective of providing
an implementaiton level model substitutable for all occurrences of the abstract
one), and that the only scope for adjusting the relationship between the two
models is via the retrieve relation G. Since G appears in both the antecedent
and the consequent of the PO, there is often very little leeway indeed for the
choice of G.

Let us examine the prospects for treating our running example via refinement.
The initialisation PO is trivially satisfied because there is no state. On the other
hand the operation PO for Bit obviously cannot be satisfied since equality of
outputs does not always hold. Even if we are more permissive about I/O in
the consequent of the PO, and supplant (i = j) A (0 = p) by Inp,(i,j) A
Outop(o,p) where Inpp (i, j) and Outop(o, p) are more general input and output
relations as happens in eg. I/O refinement, [9], we are still in trouble since
the only relation Outop(o,p) that is independent of the fault_type parameter
ft, and relates all instances of output pairs needed by the Bit operation, is
the universal relation true, since when ft = no_failure we want Outop(0,p)
to be equality, whereas if ft = inverted we want Outo,(o,p) to be inequality.
This makes Outop(0,p) completely uninformative, and in the absence of state,
leaves the relationship between abstract and concrete completely unconstrained.
Entirely analogous remarks apply in the case of the Adder operation.

Thus although refinement does a good job of keeping development steps in
check, to the extent that behaviour defined at the abstract level is preserved at
the concrete level, it proves very inflexible in formally capturing many kinds of
development step that do not fall within its rather exacting constraints, but that
are entirely justifiable on engineering grounds. See [18], [10], [19], [4] for more
discussion of this and related points.

4 Retrenchment

Retrenchment ([3], [4], [5], [6], [7], [8], [2]), was introduced to provide a formal
vehicle which, while resembling refinement up to a point, provides greater flexi-
bility to express relationships between the models that designers genuinely have
in mind during development. Retrenchment achieves this by parameterising the

relationship between abstract and concrete model in a development step more
richly than by just a retrieve relation, having also within, output and concedes
relations. These modifiy the shape of the operation PO as follows (the initiali-
sation PO remains as for refinement):

G(U,’U) A PO;D(i;jauav) A OpC(UJjJ Ulap)
= (EI ulao. OpA(u77:7ul70) A ((G(UI7UI) A OOP(O7p; UI,UI,U,U,i,j))
\ COp(ulavlaohp;u:U:i:j)))

In the preceding, Pop(i, j, u,v) is the within relation and serves to constrain the
impact of the implicational relationship between abstract and concrete models
where this is desirable; also it generalises the (¢ = j) input relation of refine-
ment and permits the mixing of input and before-state information where this
is considered appropriate. Likewise the output relation Oop(0, p;u’,v',u,v,1,5)
generalises the (o = p) of refinement, and the presence of the other variables
u',v',u,v,1,j allows the inclusion of any other facts that designers wish to high-
light concerning the case where the abstract and concrete steps re-establish the
retrieve relation G(u',v'). The crucial feature of retrenchment though, is the
presence of the disjunction between (G’ A Op,) and Co,, where Cp,, is the con-
cedes relation. Cp, features the same variables as Op,, giving the same level of
expressivity as Opp, but this time in circumstances where the retrieve relation
G(u',v") need not be re-established. This weakening of the postcondition gives
the much greater flexibility alluded to earlier, but of course comes at a price:
the price of the reworking of the whole of refinement theory. Refinement starts
with the general principle of substitutability of abstract by concrete and derives
its operation PO; retrenchment starts with the above operation PO and de-
rives whatever general principles might survive the modification. (See the cited
references for indication of progress on general principles).

In practical terms what retrenchment does is to honestly but formally allow
an abstract model to evolve to a more realistic one, acting as a more usable
specification constructor than refinement alone.! In the case of safety critical
design, it is the desire to separate initial design from safety analysis (and not the
demands of refinement) that drives the order in which features and requirements
are incorporated into the model, and retrenchment is better able to accomodate
this agenda than refinement, as we see when we revisit our case-study.

Starting with the Bit operation, it is not hard to see that the abstract and
concrete versions can be conveniently related by a retrenchment. Here is a rea-
sonable choice for the various component relations needed for the Bit operation:

GBit(x,%) = true

! The usual assumption is that there is a process of gradually incorporating require-
ments via a collection of incomplete models (related to each other by retrenchment
for example), until a final ‘contracted model’ is arrived at, which expresses all the
needed requirements, and which can then be refined to an implementation. Such a
picture is typically an oversimplification of a real development, but a nevertheless a
useful one.

PBit(i7j7 *, *) = (7' = J)
Opit(0,p;x, %, %,%,1,j) = (ft = no_failure Ao =p)
Cait(*, *,0,p; %, %,1,j) = (ft = inverted A o = —p)

Note that a considerable element of choice has been exercised in designing the
above relations. For instance, since there is no state to speak of, so that only
inputs and outputs need to be kept under control, we could have chosen to put all
the facts contained in the above Opg;; and Cp;; into either one of these relations,
defaulting its counterpart to true or false as appropriate. The choice we actually
made reflects our informal perception of which aspects of Bit’s behaviour are
viewed as refinement-like, and which are regarded as degraded. For the given
G,P,0,C, when we substitute the various components into the generic PO we
get:

true A (i = j) A ((ft = no_failure Ap = j) V (ft = inverted Ap = —j))
= (x,0e(0=1)A
((true A ft = no_failure A o = p) V (ft = inverted A o = —p)))

which is more or less selfevident.
Moving to the Adder operation, the relations for the retrenchment can be
chosen as follows:

G adder (%, %) = true
Pagger ((i1,42), (41,12), %, %) = true
O Adder (0, P; %, %, %, %, (i1,42), (J1, J2)) =
((fta = no_failure A (i1 + j1 +i2 +jo =0mod 2) Ao =p) V
(fta = no_failure A (i1 + j1 +i2 + jo = 1 mod 2) A o = —p))
Cadder (¥, %, 0, p; %, %, (i1,92), (1, J2)) =
(fta = stuck_at_zero A o = (i1 +i2 mod 2) A p = 0)

Note that the choice of within relation as true, is dictated by subsequent consid-
erations. The reader can check that the operation PO now reduces to the easily
verified:

true A true A ((fto, = no_failure A p = (j1 + j2 mod 2)) vV
(fta = stuck_at_zero A p =0))
= (I *,0e (0= (i1 + iz mod 2)) A
((true A
((fta = no_failure A (i1 + j1 +i2 +jo =0mod 2) Ao=p) V
(fta = no_failure A (i1 + j1 + 42 + jo = 1 mod 2) A o = —p)))
\%
(fta = stuck_at_zero A o = (i1 +i2 mod 2) A p =0)))

Finally we can retrench the Main operation thus:

Gain(*, %) = true

Prrain((r1,72), (51, 82),%,%) = (ry = 81 Are = 83)

Oain(adder, sum; , x, %, %, (r1,72), (81, 82))
(ft1 = fto = ft4 = no_failure A adder = sum)

Chain(*, *, adder, sum; , x, (r1,r2), (51,82)) =
(fta = stuck_at_zero A sum = 0) V
(fta = no-failure A ft1 # fta A adder = —sum) V
(fta = no_failure A ft1 = inverted = fto A adder = sum)

Again, when we substitute these into the PO we get the messier but still easily
verified:

true A (r1 =s1 Arg =82) A
(F e, @
((ft1 = no_failure A ¢y = 81) V (ft1 = inverted A ¢; = —s1)) A
((fta = no_failure A ca = s2) V (fta = inverted A ca = —182)) A
((fta = no-failure A sum = (¢; + ¢2 mod 2)) V
(fta = stuck_at_zero A sum = 0)))
= (3 x,adder ®
(3 b1,b2 @y = by Arg =ba A (adder = (by + by mod 2))) A
((true A ft1 = fto = ft, = no_failure A adder = sum)
\%
((fty = stuck_at_zero A sum = 0) V
(fty = no-failure A ft1 # fta A adder = —sum) V
(fta = no-failure A ft1 = inverted = fta A adder = sum))))

5 Fault Trees and Compositions

Associated with the retrenchment PO is the (one step) retrenchment simulation
relationship, obtained from the PO by replacing the top level implication by a
conjunction, and removing the existential quantification. It describes those pairs
of steps of which the PO speaks, which make its antecedent valid:

G(u7 U) A Pop(i7j7 u, U) A OpC(U7j7 vlap) A OpA(U, i: ula 0) A

((G(ula UI) A OOp(Oap; ula Ula u,v, zﬂj)) \ COp(ula UI; o,p;u,v, Z:J))
and is written (u -(i, Opa,0)>u') X' (v -(4,Opc,p)+v'). We will now show that
in the present context it can be used to extract fault trees for the Bit operation.

In a typical fault of Bitc the input is O while the output is 1, in contrast to
the ideal behaviour of Bita which has 0 for both. We know already that these

abstract and concrete values validate the PO. Let X', be the simulation relation
for Bit (which is derived from the previous section’s PO verification condition for
Bit by applying the syntactic modifications mentioned). We conjoin expressions
defining the values of i,,0 as 0 and p as 1, to X'}, and obtain:

i=0A0o=0Aj=0Ap=1AXg,
Applying the substitutions and simplifying, we infer:

true A true A ((ft = no_failure A false) V (ft = inverted A true)) A
true A ((true A ft = no_failure A false) V (ft = inverted A true))

The only way that this can be true is if ft = inverted holds. We have derived the
cause of the fault from the definition of the fault’s behaviour. A fault tree could
now be constructed with the fault definition as top level event and its inferred
cause, ft = inverted, as its child.

A similar technique could yield a fault tree for the Adder operation, consist-
ing of a single cause ft, = stuck_at_zero, if the fault concerned concrete inputs
0,1 say and concrete output 0.

It will not have escaped the reader’s notice that we are performing a kind
of resolution to derive the fault tree. How then does it fare with compound op-
erations such as Main? QOperations such as Main raise the question of how to
understand Main’s retrenchment in the context of the retrenchments of its com-
ponents. Preferably, we want to understand the former in terms of a parallel and
sequential composition of the latter. Now, sequential composition of retrench-
ments has been explored in some depth in [22] but it turns out that a completely
different notion of sequential composition is appropriate here.

We require a notion of composition that gathers any of the erroneous or
degraded cases that arise during the information flow, into the concession of
the composed retrenchment, leaving only the completely fault-free cases for the
output relation. That there is some choice in the matter arises because, in this
paper, the information flow is via the inputs and outputs rather than the state.
Since O and C are in disjunction, a true fact about I/O can be accomodated in
either O or C without changing the value of O V C. Several things conspire to
make our goal an achievable one:

— Each operation is a total relation.

— In each operation the various correct and degraded cases are disjoint.

— The various output and concedes relations have been carefully structured.
— Adder’s within relation has deliberately been made unrestrictive.

Suppose we sequentially compose two retrenchments, each with trivial state x.
Dropping the true retrieve relation and all mention of the state for economy’s
sake, the first retrenchment will give rise to a simulation relationship:

Ppy(i,5) A Ope (3, €) A Opls (i, 5) A (00, (b, ¢4,.5) V Cpp (b, ¢34,)
and the second one, a simulation relationship:

P5,(b,c) A Opgi(c, p) A Opli(b,0) A (05, (0,p;b,¢) V CG,(0,p; b, ¢))

The distributive law applied to the conjunction of these yields a simulation:
PG (i, 5) A OpE (3, p) A Oply (i, 0) A (G, (0, 3, §) V Cgy (0,15,)

where we define:

I;11 LII
Opji = Oply; Opy Pg, = FPo,
I;11
Op()' = Opy; Opg o8t = 0L,,; OY,
I; II
Cop = 00 Ch, V Ch,3 06, V Chpi Co,

with ; denoting the usual composition of relations. Provided that (O, VC5,) =
ng then all composable individual steps described by the individual retrench-
ments will survive to the composition. This simulation relationship can be un-
derstood as arising from a composed retrenchment with data P(I)II)I, OngI,CI i1

and trivial GB!I, We re-emphasise that this is not the only viable definition
of sequential composition for retrenchments, particularly in view of the special
conditions that have to hold for it to be well defined.

Parallel composition is similar and easier. Again we have a conjunction, this
time of simulation relationships acting on disjoint spaces. Denoting parallel com-
position by | (logically a conjunction), we get a simulation relationship corre-
sponding to the data:

op'y" = opl|op!] Py = P, |PY

Opet = OpL|Oplh 0IIII = 00p|0
Coy = 06,/CH, V Cb,|08, V Cb,|CB,

It is not hard to see that doing the above for two Bits composed in parallel, with
the outcome sequentially composed with an Adder, yields retrenchment data
equivalent (in the variables’ and other symbols’ natural interpretations?) to that
given for Main3.

We note that if each of Og,,,Ct,,, 05, Ch,, is a disjunction of cases, then

all of C’gg, CI‘H proliferate the case analysis via the distributive law. With this
observation, we can outline the construction of multilevel fault trees from a com-
posed retrenchment as follows, using our Main operation with abstract inputs
r1 # ro and concrete output sum = 0 as a running example.

Our technique is to resolve the values defining the fault with the composed
simulation relation X3,... to yield any intermediate values needed, and apply

these to the decomposition of the composed concedes relation whose structure

% Note that we are not claiming propositional equivalence here.

3 We emphasise once more that this is a consequence of design, and the design of the
retrenchment data for Main in particular. It is very easy to write down different
retrenchment data for Main, which are equally adept at discharging the retrench-
ment operation PO for Main, but which do not arise as the composition of the
retrenchment data for Main’s subcomponents.

will reveal the required fault tree. We need to work with both X},.. and Chwmain
as the latter need not contain all the data required during the decomposition.
The top level constructor of our system is a sequential composition, so the
top level event of the fault tree corresponds to a collection of values that makes
the composed simulation relation (x -(4, Opf,in, 0)>*) X1 (x (4, OpIC;H, p)>*), and
specifically the concession CBLI, valid. Here 1T refers to Adder and I refers to two

Bits in parallel. If CBLI is a disjunction of cases, the ones that are true in the
given valuation are the possible alternative causes of the fault, and lead to a
disjunctive branching at the next level of the fault tree.

In our example we have two validated alternatives in Chfain, namely (ft, =
stuck_at_zero A sum = 0) and (fty, = no-failure A ft; # fto A adder = —sum).
The first of these gives a bottom level explanation of the fault and needs no
further analysis, closing off that branch of the fault tree. The second asserts
fto, = no_failure for the Adder component, and so does need further analysis.

We now decompose the composed simulation relation in a reversal of the pro-
cess described above. This involves finding intermediate abstract and concrete
values by, by, c1, ¢2, that can act as existential witnesses for both the (de)composed
simulation relation, and for the decomposition of Ck;,.; O, . where CL. re-
duces to Opit, |CBit, V Chit, |OBit,- This gives a three way disjunctive structure
at the top level of the fault tree.* (The third disjunct of CL;,, namely Chgit, |Chit,
is excluded by ft; # fto which we just derived.)

Summarising, either the Adder failed, or one but not the other of the two
Bits failed. Aggregating the intermediate value cases which yield the same fault
tree structure, each of the latter two options can now be seen as a conjunction
of three facts:

1. Bit(1+k) failed.
2. Bit(14(1—r)) functioned correctly.
3. The Adder functioned correctly.

The first two conjuncts come from the parallel decomposition of CL;,. (which is
a conjunction), while the third comes from the instantiation of the existential
witness by, ba, c1,c2, during the sequential decomposition of Ck;,; OY ., (this
being (3b1,ba, c1, 2 @ Oy (b1, b2), (1, ¢2), - -) A Ofgqer (b1, 02), (e, €2))).-

With these three alternatives, we have derived the structure of the fault
tree for this example as generated by the FSAP/NuSMV-SA toolkit [11]. See
Fig. 1 (reproduced, with the authors’ permission). It is not hard to see that
the techniques described can be applied to more deeply nested compositions, to
give derivations of fault trees for faults that occur deeper in the structure of a
complex system. The derivation of the fault trees that we have outlined gives
rise to fresh validation opportunities, by comparing this kind of derivation with
more conventional routes.

4 We have silently merged cases in which distinct data values lead to the same fault
tree, for clarity of exposition.

K = Fault Tree Display
File

Events FHe:| frnpffileik piSt/events.ba Zoor Factor:| 70%
Gates FHe:| fornpfileik piSt/gates.t

Top Level Event

aclder
stuck_at_1

fault_efey_1 fault_efy_2

kit bit2 aricler bitl hit2 adder
invertes no_failure no_falure no_failre invertect no_failure

[ot mverte | [ote_ro_siwrs_| [attr_no_aire_| [oitt_no_saiwrs_| [bt verten | [adder no_tare_|

-
A K »
T "

Fig. 1. The fault tree for the Adder example, from [11].

6 Model Checking

The fault tree analysis above was sensitive to the temporal order of the com-
ponent transitions in a sequential composition, via the before/after ingredients
of the retrenchment simulation relationship. A similar sensitivity is a feature
of the model checking of temporal properties, so we can easily imagine that a
retrenchment approach could also prove profitable in that sphere. Once more
following [11], the ideal Main operation satisfies:

AG(ri =0Ar2 =0 — adder =0)
while the degraded system satisfies:
AG(s1=0As2=0Asum#0 — (ft, = invertedV fto = inverted))

and these are checkable via the model checker in the FSAP/NuSMV-SA safety
analysis platform. Conventional formal techniques (i.e. refinement) cannot relate
these two facts. However, in these two facts, it is not hard to recognise a very
similar situation to the one analysed above, and so with retrenchment compo-
sition/decomposition techniques, we can expect a similar degree of success to
that which we enjoyed for fault trees. To be sure there are technical issues to do
with the integration of the retrenchment viewpoint and the temporal viewpoint,
which will clutter the development somewhat, but these will not be onerous. The
resulting analysis leads to fresh validation opportunities, as above.

7 Conclusions

In the preceding sections we have outlined a transition system model of fault
injection similar to the one used in [11], and shown that while refinement strug-
gles to describe the fault injection process, retrenchment accomplishes this in a
natural manner. Of course the two faults we explored in detail are merely rep-
resentative, and other typical faults dealt with in the FSAP/NuSMV-SA safety
analysis platform, such as random or glitch could be accomodated without prob-
lems.

With fault injection under control, we indicated how retrenchment composi-
tion and decomposition could lead to the generation of fault trees for the simple
Adder system. Retrenchment composition/decomposition is investigated in [20],
[21], and the application of comparable ideas here is a gratifying endorsement of
this family of techniques. Of course there is more left out than discussed, and a
full treatment of the relationship between retrenchment and fault trees will be
given elsewhere. (For instance the distinct results that can arise from monotonic
versus non-monotonic analysis when faulty and non-faulty cases overlap can be
brought out by finetuning the fault tree extraction algorithm.) Similar remarks
apply to the promising interaction between retrenchment and model checking,
which will also be pursued elsewhere.

Acknowledgements The authors would like to express their thanks to Marco
Bozzano and Adolfo Villafiorita for their feedback on an earlier version of this

paper.

References

1. J R Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. R Banach. Retrenchment and system properties. Submitted.

3. R Banach and C Jeske. Output retrenchments, defaults, stronger compositions,
feature engineering. Submitted.

4. R Banach and M Poppleton. Engineering and theoretical underpinnings of re-
trenchment. Submitted.

5. R Banach and M Poppleton. Retrenchment: An engineering variation on refine-
ment. B’98: Recent Advances in the Development and Use of the B Method: Second
International B Conference, Montpellier, France, LNCS, 1393:129-147, 1998.

6. R Banach and M Poppleton. Retrenchment and punctured simulation. Proc. IFM-
99, Springer, Araki, Gallway, Taguchi (eds.):457-476, 1999.

7. R Banach and M Poppleton. Sharp retrenchment, modulated refinement and punc-
tured simulation. Form. Asp. Comp., 11:498-540, 1999.

8. R Banach and M Poppleton. Retrenching partial requirements into system defini-
tions: A simple feature interaction case study. Requirements Engineering Journal,
8:266—288, 2003.

9. E Boiten and J Derrick. Io-refinement in Z. In A Evans, D Duke, and T Clark, edi-
tors, Electronic Workshops in Computing. Springer-Verlag, September 1998. Proc.
Third BCS-FACS Northern Formal Methods Workshop. Ilkley, U.K.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.
27.

28.

J P Bowen and S Stavridou. Formal methods and software safety. In H. H.
Frey, editor, Safety of Computer Control Systems (SAFECOMP), pages 93-98.
Pergamon Press, October 1992. Proc. IFAC Symposium, Zurich, Switzerland.

M Bozzano and A Villafiorita. Improving system reliability via model checking:
The FSAP/NuSMV-SA safety analysis platform. Computer Safety, Reliability, and
Security, LNCS, 2788:49-62, 2003.

M Bozzano and A Villafiorita. Integrating fault tree analysis with event ordering
information. Proc. ESREL 2003, pages 247-254, 2003.

M Bozzano, A Villafiorita, et al. ESACS: An integrated methodology for design
and safety analysis of complex systems. Proc. ESREL 2003, pages 237-245, 2003.
M Bozzano, A Villafiorita, et al. Improving safety assessment of complex systems:
An industrial case study. International Symposium of Formal Methods Europe
(FME 2003), Pisa, Italy, LNCS, 2805:208-222, September 2003.

W P de Roever and K Engelhardt. Data Refinement Model-Oriented Proof methods
and their Comparison. Cambridge University Press, 1998.

J Derrick and E Boiten. Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer-Verlag UK, 2001.

J Jacky. The Way of Z. Cambridge University Press, 1997.

S Liu and R Adams. Limitations of formal methods and an approach to improve-
ment. Proc. 1995 Asia-Pacific Software Engineering Conference (APSEC’95),
IEEE Computer Society Press, Brisbane, Australia, pages 498507, December 1995.
S Liu, V Stavridou, and B Duterte. The practice of formal methods in safety-
critical systems. The Journal of Systems and Software, 28(1):77-87, January 1995.
M Poppleton and R Banach. Structuring retrenchments in B by decomposition. In-
ternational Symposium of Formal Methods Europe (FME 2003), Pisa, Italy, LNCS,
2805:814-833, September 2003.

M Poppleton and R Banach. Requirements validation by lifting retrenchments
in B. In Proc. 9th IEEE International Conference on Engineering of Complez
Computer Systems (ICECCS-04), Florence, Italy. IEEE Computer Society Press,
2004. to appear.

M R Poppleton. Formal methods for Continuous Systems: Liberalising Refinement
in B. PhD thesis, University of Manchester, Computer Science Dept., 2001.

B Potter, J Sinclair, and D Till. An Introduction to Formal Specification and Z.
Prentice Hall, second edition, 1996.

S Schneider. The B-Method: An Introduction. PALGRAVE, 2001.

E Sekerinski and K Sere. Program Development by Refinement: Case Studies Using
the B-Method. Springer, 1998.

J M Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

J Woodcock and J Davies. Using Z, Specification, Refinement and Proof. Prentice
Hall, 1996.

J C P Woodcock and C C Morgan. Refinement of state-based concurrent systems.
Formal Methods in Software Development, LNCS, 428, 1990.

