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Abstract

The drawbacks of using refinement alone in the construc-
tion of specifications from simple abstract models is used
as the spur for the introduction of retrenchment, a method
based on the main ideas of refinement, but one which is
more liberal in character. The basics of the retrenchment
mechanism are reviewed in preparation for exploring its
integration with refinement.
The particular aspect of integration investigated in this
paper continues on from earlier work which examined the
pushout-like problem of completing a square[13] and
examines the complementary pullback-like problem of
completing a square. More specifically, given a model
which is both a refinement of a modelRetand a retrench-
ment of a modelRef, the problem of finding a model for
which there is both a retrenchment toRetand a refinement
to Ref is examined. A construction is given that solves the
problem in a universal manner, in that it is the most
abstract reconciliation ofRet andRef.

1. Introduction

Retrenchment, first put forward in [3], is a technique based
on refinement that provides a more flexible specification
constructor than its precursor. This greater flexibility per-
mits us to formally describe steps in the development of a
specification which cannot be captured by refinement.
Consult [7] for an introduction to retrenchment and also see
[4, 5, 6, 8].

In this paper we focus on the approach to developing
model-based specifications found in refinement methods
like B, VDM and Z [1, 14, 24]. In such methods a devel-
opment step involves incorporating more detail/informa-
tion into a specification and showing that the result still pre-
serves the requirements expressed in its predecessor. This
is done by discharging a number of formal proofs known as
proof obligations (POs). Thus a complete specification can

be built up gradually, and refinement provides the ass
ance that properties introduced at each stage are prese
through the rest of the development.

Unfortunately, when we try to apply refinement to rea
world applications the process often runs into difficultie
For systems whose most abstract specifications are cas
the language of continuous mathematics, the transform
tion into the discrete specifications necessary for sub
quent implementation are beyond the grasp of refineme
The strong nature of the refinement POs is just too restr
tive.

Even when we consider developing specifications f
systems whose models fall entirely into the discrete d
main, refinement is not always in the clear. To manage t
complexity of such systems we begin with models whic
express the main properties of the system. Such abstrac
makes the models not only more approachable but a
more amenable to formal analysis. Only later do we intr
duce lower level detail, like that dealing with the finitenes
of data structures, a property present in any concrete imp
mentation. However, the need to establish refinement re
tionships between the models involved often forces t
consideration of these concrete properties much earlier
the design process than desired.

Difficulties can also arise when we try to apply refine
ment to already established development routes. The h
archy of models in such a development is governed by e
gineering concerns and it may be the case that the relati
ship between some models is not expressible us
refinement. The adoption of refinement would therefo
entail an overhaul of the established engineering proc
dure. A situation eclipsing any perceived benefits of th
rigour introduced by refinement.

Retrenchment was designed to address the difficult
outlined above. Being more liberal than refinement it
able to relate models which cannot be connected by the
finement mechanism. As is well known, a refinement st
between levels of abstraction permits the weakening of t
precondition and strengthening of the postcondition.
1
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contrast, a retrenchment step permits the opposite:
strengthening of the precondition and weakening of the
postcondition. It is this that gives rise to the more liberal
nature of the retrenchment POs. Additionally, retrench-
ment allows state and I/O entities to move from one to the
other across a development step. In refinement the relation-
ship between two levels, commonly referred to as abstract
and concrete, is expressed by a retrieve or abstraction rela-
tion which links corresponding states. In retrenchment
there are two extra relations called within and concedes.
The former expresses the precondition strengthening, and
the latter expresses the postcondition weakening. In partic-
ular, non-refinement-like behaviour can be accommodated
within the framework via the weakened postcondition.

We stress that our intention is not to replace refinement
with retrenchment, but in fact to extend the family of for-
mal techniques available to the developer. We think it is
particularly important that the two techniques work
smoothly together. Given this aim, a significant branch of
research is concerned with investigating the integration of
retrenchment and refinement. In practice this amounts to
solving a number of algebraic problems.

In [2, 12] we investigated the canonical factorisation of
an arbitrary retrenchment into a refinement and an abstrac-
tion-preserving retrenchment. In [13] we explored the
pushout-like problem of completing a square.

Continuing the categorical theme of [13], this paper
considers another way of completing the square, by explor-
ing a pullback-like arrangement. Thus suppose we have a
systemConc which is both a refinement of a systemRet
and a retrenchment of a systemRef. We want to find a sys-
temUniv which isbothretrenchable toRet and refinable to
Ref. We seek a canonical reconciliation by requiring that
for any other systemXtra which also completes the square,
there is a refinement fromUniv to Xtra. ThusUniv is the
most abstract completion possible. A summary of the
problem is shown in Figure 1.

The above construction lets us to automatically liftRef
to the level of abstraction ofRet, thus allowingRef to be
considered from a different perspective; and considering a
problem under a different light isalways advantageous.
The construction is also of algebraic interest, as it comple-
ments the result given in [13] and is one more part towards
a complete algebraic theory of the integration of retrench-
ment and refinement. A further benefit of the reconcilia-
tion, is that it helps to absorb retrenchment, a new tech-
nique, into the fold of trusted formal tools. Reconciling re-
trenchment and refinement reassures practitioners that in
using retrenchment, they do not risk fracturing the develop-
ment process into incompatible and irreconcilable paths.

The rest of the paper is structured as follows. In Section
2 we present a simple example which gives a flavour of the
kinds of problems that may occur when we try to use refine-

ment to capture all desirable development steps. Sectio
introduces retrenchment, which is designed to address s
problems. Section 4 presents I/O-filtered refinements,
form of refinement used in the reconciliation. In Section
we give the details of the construction achieving the reco
ciliation. Section 6 examines the result in the context of th
running example.  Section 7 concludes.

Notation. In the sequel we will view systems mainly
from a set theoretic and relational viewpoint, which we di
cuss using a logical meta-notation. Thus a predicateis just
a notation for a set etc.

2. Problems with Refinement.

Let us suppose we are developing a large software syst
Separating concerns, we begin by producing abstract m
els that describe the basic functional requirements. Imp
mentational constraints, like the finiteness of data stru
tures, are ignored till later. We use refinement to show th
properties are preserved between successive models.
en the size of the system under development the result
functional model is already a large document. Imagine th
the many elements introduced into the specification by th
stage include a sequence ofNATs, an operation,Add, which
adds numbers to the sequence, and an operation,Rem,
which removes numbers from it. By formal analysis w
satisfy ourselves that the model so far, captures the key
haviour of the system. We therefore start to focus on low
level details like implementational constraints. Hence,
some subsequent stage we shall come to write a deve
ment step in which we address the finiteness of the
quence ofNATs. Let us see how refinement fares whe
faced with such a step.

We begin by setting up a suitable framework. LetRef
be the model we wish to develop further by limiting the siz
of the sequence, andConc be the model in which the con-
straint has been applied. Each model will be described
a state space and a set of operation names. Individual
erations will be defined by a transition or step relation, an
each will have its own input and output spaces.

ForRef let the state space beW with typical elementw.
OpsF will be the set of operation names withOpF designat-
ing a typical operation. For eachOp the input and output
spaces will beIOpandOOpwith i ando representing typical
elements respectively. We dispense with the subscripts
i ando as the operation in question will be clear from th
context. A typicalOpF transition will be depicted byw -(i,
OpT, o)-› w′, wherew and w′ are the before- and after-
states, andi ando are the input and output. The set of suc
transitions form the step relationstpOpF

(w, i, w′, o). In-
itF(w′) is the initialisation operation which sets the state
an initial valuew′.

Conc has a similar setup. The operation names areOpC
2
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∈ OpsC with OpsF = OpsC, and states aret ∈ T. In clas-
sical refinement the I/O signature of operations is not al-
lowed to change across a development step. Thus input and
output entities are the ones defined above. Transitions are
t -(i, OpC, o)-› t′, and these are members of the step relation
stpOpC

(t, i, t′, o).  The initialisation operation isInitC(t′).
To define a refinement relationship between adjacent

models in a development step we need to also specify a re-
trieve relation whose job is to link corresponding states be-
tween models. We denote this relation byG(w, t). Then,
for Conc to refineRef, initialisation PO (Init PO) (2.1)
must hold, and for eachOp, operation PO (Op PO) (2.2)
must hold.

InitC(t′) ⇒  (∃ w′ • InitF(w′) ∧ G(w′, t′)) . (2.1)

G(w, t) ∧ stpOpC
(t, i, t′, o) ⇒

(∃ w′, q • stpOpF
(w, i, w′, o) ∧ G(w′, t′)) . (2.2)

These POs require that everyOpC-step has a corresponding
OpF-step and arise from the basic notion of substitutivity of
concrete for abstract model on which refinement is based.
Here, we have given the forward simulation formulation of
refinement, since almost all applications of refinement are
of this kind. We will also work in a partial correctness set-
ting. For a comprehensive discussion of both forward and
backward simulation, total and partial correctness, and the
notion of substitutivity see [9, 10, 26].

To keep the example focused on the problem in hand, we
will assume that the state of each system is just the se-
quence ofNATs and ignore any other components that
make up the state. We will also ignore all operations other
thanAddandRem. Since these are the only ones that oper-
ate on the sequence, this is an acceptable simplification.

We define the state spaceW of Ref as the set of injective
sequences ofNATs, i.e.W = iseq(NAT). IAdd= ORem= NAT
andOAdd = IRem= ∅. Transitions for the two operations
AddF andRemF have the form

w -(i, AddF)-› w ^ < i >, wherei ∉ ran(w)

w -(i, AddF)-› w, wherei ∈ ran(w) (2.3)

and

< o > ^ w -(RemF, o)-› w  . (2.4)

The state and I/O spaces forConc are the same as for
Ref. In Conc we want to limit the size of the sequence.
We will allow a maximum length of 10. We can achieve
this by defining the transitions forAddC to be

t -(i, AddC)-› t ^ < i >, wherei ∉ ran(t) ∧
len(t) ≤ 9

t -(i, AddC)-› t, wherei ∈ ran(t) (2.5)

and leaveRemunchanged, giving

< o > ^ t -(RemC, o)-› t  . (2.6)

If we now define the retrieve relationG(w, t) to be an iden-
tity, then the above is a refinement ofRef since Op PO (2.2)
holds. However, our specification is incomplete becau
we have not specified what happens when the sequenc
full and we try to add another element. One possibility is
do nothing, that is justskip. Thus we could try and extend
the definition by adding the transitions

t -(i, AddC)-› t ^ < i >, wherei ∉ ran(t) ∧
len(t) = 10 . (2.7)

Unfortunately this amendment means we no longer hav
refinement because an element not already in the seque
will still be added in the abstract model, and so the retrie
relation will fail. This should be apparent seeing that b
forehandlen(w) = len(t) = 10, yet after,len(w) = 11 but
len(t) = 10. Perhaps the problem could be fixed by mo
ifying G. One possibility isG(w, t) = (first(w, 10) =first(t,
10)), wherefirst(s, l) returns a sequence made up of the fir
l elements ofs, or all of s if len(s) < l. But now of course
whenlen(w) > 10 andlen(t) = 10, if Remis used to remove
an element, the retrieve relation will no longer hold. So w
are running into difficulties trying to establish a refineme
relationship for our desired step.

Let us now considerRemC. Notice (2.6) does not spec-
ify what happens if we try to remove a number when the s
quence is empty. The sensible thing to do in such a situ
tion is to signal an error. Accordingly we could extend th
definition with

< > -(RemC, EMPTY)-› < > . (2.8)

However this fails on two counts. First, this cannot be a r
finement because there is no corresponding abstract s
Second, a change in I/O signature is not allowed. In fa
whatever we choose to do, we will not get a refinemen
simply because there is no corresponding abstract step

It is fair to say that all the above problems can be avoi
ed by dealing with the issue of finiteness in the abstra
model. However, recall that our example just focuses
one small part of a much larger system. Given an industr
scale project, it is not difficult to appreciate that lifting al
the necessary low level detail to the abstract level in ord
to get a refinement, will significantly bloat an already size
able document. The result is a model more difficult to fo
mally analyse and harder to penetrate for developers try
to comprehend the behaviour of the described system. R
trenchment, introduced in the next section, plays a mo
subordinate role than refinement and gives the develo
more control in the way a specification is constructed.

Many situations involving a finite computable sub
domain of a mathematically ideal and infinite one, follow
the pattern described above, and a number of approac
3
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described in the literature, have been designed to address
the problem. One technique is Neilson’s thesis [17], which
describes the concept of acceptably inadequate refine-
ments. These tackle the problem by observing that the in-
finite ideal domains usually arise as well behaved limits of
corresponding finite ones, and thus refinement in the ideal-
ised case can be understood as the limit of a finite version.
A second technique is presented in [18, 19], in which Owe
proposes a logical approach based on a careful analysis of
the effects of ill-definedness on a programming logic.

Two further proposals are Liu’s evolution [15] and
Smith’s realisation [22, 23]. These like retrenchment are a
weakening of refinement. Evolution relates models by re-
quiring that the pre- and post-conditions of the abstract
specification in a development step be semantically equiv-
alent to subformulae of those at the more concrete level.
Realisation relates models by substituting subterms when
moving from the abstract to the concrete specification.

A separate issue raised in the example is the desirability
of changing I/O signatures across a development step.
Works on this question include [10, 11, 16, 25].

3. Retrenchment

We begin by modifying the framework introduced in the
previous section. ForRef eachOpF now has inputsk ∈
KOpF

and outputsq ∈ QOpF
. Transitions are thereforew -(k,

OpF, q)-› w′, and are members of the step relationstpOpF
(w,

k, w′, q). ForConc eachOpC has inputsh ∈ HOpC
and out-

putss∈ SOpC
. Transitions aret -(h, OpF, s)-› t′ and the step

relation isstpOpC
(t, h, t′, s). In retrenchment it is assumed

that there is a distinctOpC corresponding to each distinct
OpF, but not necessarily vice versa, so the concrete level
may contain additional operations. For convenience we as-
sume this correspondence isOpsF ⊆ OpsC.

The relationship between abstract and concrete state
spaces is given, as before, by a retrieve relation, which we
now write asH(w, t). The Init PO is the same as found in
refinement, and in the present context has the form

InitC(t′) ⇒  (∃ w′ • InitF(w′) ∧ H(w′, t′)) . (3.1)

Retrenchment differs from refinement in thatH alone is not
enough to fix the relationship between the two levels. We
also have for allOp in OpsF, the within relationQOp(k, h,
w, t) and concedes relationDOp(w′, t′, q, s; k, h, w, t). The
punctuation inDOp is intended to emphasize that this re-
lation is mainly concerned with after-values, but may refer
to the before-values if required. The three relationsH, QOp
andDOp, are combined into the retrenchment Op PO for the
OpsF operations which says that for each suchOp

H(w, t) ∧ QOp(k, h, w, t) ∧ stpOpC
(t, h, t′, s) ⇒

(∃ w′, q • stpOpF
(w, k, w′, q) ∧

(H(w′, t′) ∨ DOp(w′, t′, q, s; k, h, w, t))) (3.2)

This means the following. We assert the consequent of
implication, but only provided bothH andQ hold. This en-
ables us to restrict via the within relationQ, the applica-
bility of the relationship between the abstract and concre
systems; permitting the bringing together of models th
would otherwise fail to support a refinement. The cons
quent itself asserts that for every concrete step, there is
abstract step that either re-establishes the retrieve rela
H, or failing that, satisfies the concedes relationD. Again
the additional flexibility allowed byD permits us to relate
models that would not otherwise be capable of being fo
mally related.

Thus the within relation strengthens the retrieve relatio
in before-states, and most importantly, the concedes re
tion weakens the retrieve relation in after-states. Beyo
the ability to restrict the relationship between abstract a
concrete levels, the within relation captures any non-trivi
relationship between inputs and before-states. Likew
the concedes relation captures non-refinement-like prop
ties, and non-trivial relationships between outputs and
ter-states1 (and also before-entities if appropriate).

We now reconsider our earlier example as a retrenc
ment. We defineOpsF = OpsC = { Init, Add, Rem}, W = T
= iseq(NAT). KAddF

= HAddC
= NAT andQAddF

= SAddC
= ∅.

KRemF
= HRemC

= ∅, QRemF
= NAT and SRemC

= NAT ∪
{ EMPTY}. AddC is given by (2.5) and (2.7), so the opera
tion does askip when the sequence is full.RemC is given
by (2.6) and (2.8), and so an error is output when the s
quence is empty.

To establish a retrenchment betweenRef andConc we
need to specify the retrieve relation and also the within a
concedes relations forAdd andRem. Hence,

H(w, t) = (w = t ∧ len(w) ≤ 10) ,

QAdd(k, h, w, t)  =  (k = h) ,

DAdd(w′, t′; k, h, w, t)  =

(len(w) = 10∧ k ∉ ran(w) ∧ w′ = w ^ < k > ∧
t′ = w) ,

QRem(w, t)  =  (len(t) ≠ 0) ,

DRem(w′, t′ q, s; w, t)  = false . (3.3)

Notice how concessionDAdd allows Conc to exhibit dif-
ferent behaviour when the sequence is full.Ref adds an-
1. Relations between outputs and states ought to hold universally, and
just when H fails. Sharp retrenchment and output retrenchme
addresses this, establishing in the consequent of the PO, in the for
case ((H ∨ D) ∧ V), and in the latter ((H ∧ O) ∨ D) whereV, the neverthe-
less relation, orO the output relation allows extra conjunctive propertie
to be expressed.  See [6] and [8].
4
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other element to the sequence butConc preforms askip. So
although the retrieve relation does not hold for the after-
sates,DAdddoes, and thus Op PO (3.2) is satisfied. ForRem
we use the within clauseQRemto exclude the ill-behaved
cases from consideration. Whenlen(t) = 0, QRemis false
and so (3.2) holds trivially.

We concede that the simplicity of our example does not
do much to champion the case for retrenchment. However,
limited space and a wish not to obfuscate the construction
presented in this paper are points in its favour. But more
importantly, is the fact that it is characteristic of the kinds
of situations retrenchment was designed to address, for re-
trenchment allows developers to delay the introduction of
detail in circumstances where refinement does not. More
convincing problems in support of retrenchment can be
found in [20], which looks at the specification of a program
for dose calculation in radiotherapy, and in [21], which
presents a control system case study.

4. I/O-Filtered Refinements

We now make precise the notion of refinement we need so
that our subsequent results go through. Since I/O signa-
tures can be changed during retrenchment, it is useful to ab-
sorb this capability into refinement. We assume we have an
abstract systemRet and a concrete systemConc.

The notation set up already will do forConc. ForRet,
with operation namesOpsT, whereOpsT = OpsC, the state
space will beV with elementsv. The input and output spac-
es forOpT are given byj ∈ JOpT

andp ∈ POpT
. The abstract

and concrete state spaces are related by a retrieve relation
K(v, t). For an I/O-filtered refinement, we further have for
eachOp ∈ OpsT, a within relationROp(j, h), and a never-
theless relationVOp(p, s). This assembly of components is
required to verify the following POs.

Firstly there is the Init PO. This is essentially the same
as (3.1), and so using the relations above has the form

InitC(t′) ⇒  (∃ v′ • InitT(v′) ∧ K(v′, t′)) . (4.1)

Secondly there is the Op PO, which for a typicalOp says

K(v, t) ∧ ROp(j, h) ∧ stpOpC
(t, h, t′, s) ⇒

(∃ v′, p • stpOpT
(v, j, v′, p) ∧

K(v′, t′) ∧ VOp(p, s)) . (4.2)

Note thatVOp enters the consequent of (4.2) conjunctively,
in contrast to the retrenchment case.

We return to our running example and introduce a sim-
ple refinement. The states ofRet are sets ofNATs, soV =
P(NAT). JAddT

= HAddC
, PAddT

= SAddC
, JRemT

= HRemC
and

PRemT
 = SRemC

.
The retrieve relation isK(v, t) = (v = rng(t)) and thus as-

sociates each set with all its possible serialisations. Hence,
for example,v = {1, 2, 3} corresponds tot = <1, 2, 3>, or v

= <2, 1, 3>, or to any of four other possibilities. The within
and nevertheless relations are all the obvious identities.

It remains to define the operations. These exhibit t
same behaviour as theirConc counterparts. Therefore
AddT is given by

v -(j, AddT)-› v ∪ { j}, where|v| < 10

v -(j, AddT)-› v, where|v| = 10 , (4.3)

andRemT is given by

v ∪+ {p} -(RemT, p)-› v

{ } -(RemT, EMPTY)-› {  } , (4.4)

where∪+ represents disjoint union.
With the self-evident initialisation, it is clear that (4.2)

suitably instantiated, holds for this arrangement.

5. The Reconciliation

In this section we take the retrenchment fromRef to Conc
and the I/O-filtered refinement fromRet to Conc, and
build a new universal systemUniv, from which there is
both a retrenchment toRet and a refinement toRef; see
Fig. 1. Due to a shortage of space we present all the m
terial in this section without proof2. First let

HD(w, t) = H(w, t) ∨
 (∃ q, s, k, h, w, t • DOp(w, t, q, s; k, h, w, t))

(5.1)
2. Proofs available online inrec.ret.ref.2.prf.ps.gz  at
http://www.cs.man.ac.uk/~banach/some.pubs/ .

Univ

Conc
H Q D

K

Ref

Ret
H• Q• D•

R
V

K•

R•

V•

All arrows labelled with aK R V are refinements.

All arrows labelled with a H Q D are retrenchments.

Xtra
H˜ Q˜

D˜K˚
R̊

V˚

K˜
R̃

V˜

⊆

⊆

Figure 1.

∨
Op
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QIOp(k, h) = (∃ w, t • QOp(k, h, w, t)) (5.2)

DOOp(q, s) =

(∃ w′, t′, k, h, w, t • DOp(w′, t′, q, s; k, h, w, t))

(5.3)

Given these, we now introduce the following equiva-
lence relations.

~V = ((K;HDT);(K;HDT)T)* (5.4)

~W = ((HD;KT);(HD;KT)T)* (5.5)

~JOp = ((ROp;QIOp
T );(ROp;QIOp

T )T)* (5.6)

~KOp = ((QIOp;ROp
T );(QIOp;ROp

T )T)* (5.7)

~POp = ((VOp;DOOp
T );(VOp;DOOp

T )T)* (5.8)

~QOp = ((DOOp;VOp
T );(DOOp;VOp

T )T)* (5.9)

The operation names set ofUniv is OpsU with elements
OpU. The state space isU with elementsu, inputs arei ∈
IOp, outputso ∈ OOp. These are all constructed fromRet
andRef as follows. LetOpsU = OpsF. The state spaceU
is V/~V × W/~W. Similarly the input and output spaces for
eachOpU are IOp = JOp/~JOp × KOp/~KOp andOOp = POp/
~POp × QOp/~QOp.

Now for some more definitions.

KH(v, [w])  =

( ∀ t • K(v, t) ⇒ (∃ w • w ∈ [w] ∧ H(w, t)) )
(5.10)

HK([v], [w])  =

( ∀ w, t • w ∈ [w] ∧ H(w, t) ⇒
(∃ v • v ∈ [v] ∧ K(v, t) ∧ KH(v, [w])) ) (5.11)

KDOp(v, [w])  =

( ∀ t • K(v, t) ⇒
(∃ w • w ∈ [w] ∧

(∃ q, s, k, h, w, t • DOp(w, t, q, s; k, h, w, t))) )
(5.12)

DKOp([v], [w])  =

( ∀ w, t • w ∈ [w] ∧
(∃ q, s, k, h, w, t • DOp(w, t, q, s; k, h, w, t)) ⇒

(∃ v • v ∈ [v] ∧ K(v, t) ∧ KDOp(v, [w])) )
(5.13)

RQOp(j, v, [k], [w])  =

( ∀ h, t • ROp(j, h) ∧ K(v, t) ⇒
(∃ k, w • k ∈ [k] ∧ w ∈ [w] ∧ H(w, t) ∧

QOp(k, h, w, t)) ) (5.14)

QROp([j], [k])  =

( ∀ h, t, k, w, v, w • k ∈ [k] ∧ H(w, t) ∧
QOp(k, h, w, t) ∧ K•(([v], [w]), w) ⇒

(∃ j, v • j ∈ [j] ∧ v ∈ [v] ∧ ROp(j, h) ∧
K(v, t) ∧ RQOp(j, v, [k], [w])) )

(5.15)

VDOp(v′, p, j, v, [w′], [q], [k], [w])  =

( ∀ t′, s, h, t • K(v′, t′) ∧ VOp(p, s) ∧ ROp(j, h) ∧
K(v, t) ⇒

(∃ w′, q, k, w • w′ ∈ [w′] ∧ q ∈ [q] ∧ k ∈ [k] ∧
w ∈ [w] ∧ H(w, t) ∧ QOp(k, h, w, t) ∧
DOp(w′, t′, q, s; k, h, w, t)) )

(5.16)

DVOp([p], [q])  =

(∀ t′, s, h, t, w′, q, k, w, v′, w′, j, k, v, w •

q ∈ [q] ∧ H(w, t) ∧ QOp(k, h, w, t) ∧
DOp(w′, t′, q, s; k, h, w, t) ∧ K•(([v′], [w′]), w′) ∧
R•

Op(([j], [k]), k) ∧ K•(([v], [w]), w) ⇒
(∃ v′, p, j, v • v′ ∈ [v′] ∧ p ∈ [p] ∧ j ∈ [j] ∧

v ∈ [v] ∧ K(v′, t′) ∧ VOp(p, s) ∧
ROp(j, h) ∧ K(v, t) ∧
VDOp(v′, p, j, v, [w′], [q], [k], [w])) )

(5.17)

We can now define the component relations for the r
trenchment fromUniv toRet and the refinement fromUniv
to Ref; see Fig. 1 again.

K•(([v], [w]), w)  =

w ∈ [w] ∧ HK([v], [w]) ∧ DKOp([v], [w])

(5.18)

H•(([v], [w]), v)  =

v ∈ [v] ∧ (∃ t • K(v, t)) ∧ KH(v, [w]) ∧
HK([v], [w]) ∧ DKOp([v], [w]) (5.19)

R•
Op(([j], [k]), k)  =

k ∈ [k] ∧ QROp([j], [k]) (5.20)

Q•
Op(([j], [k]), j, ([v], [w]), v)  =

j ∈ [j] ∧ v ∈ [v] ∧ (∃ h, t • ROp(j, h) ∧ K(v, t)) ∧
RQOp(j, v, [k], [w]) ∧ QROp([j], [k])

(5.21)

V•
Op(([p], [q]), q)  =

q ∈ [q] ∧ DVOp([p], [q]) (5.22)

D•
Op(([v′], [w′]), v′, ([p], [q]), p; ([j], [k]), j, ([v], [w]), v) =

v′ ∈ [v′] ∧ p ∈ [p] ∧ j ∈ [j] ∧ v ∈ [v] ∧

∧
Op

∧
Op
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(∃ t′, s, h, t • K(v′, t′) ∧ VOp(p, s) ∧ ROp(j, h) ∧
K(v, t)) ∧

VDOp(v′, p, j, v, [w′], [q], [k], [w]) ∧ DVOp([p], [q]) ∧
HK([v′], [w′]) ∧ DKOp([v′], [w′])

(5.23)

With these definitions Fig. 1 commutes in the following
sense. FirstlyK•(u, w);H(w, t) = H•(u, v);K(v, t). We write
this for short as

K•;H ≡ H•;K ≡ G . (5.24)

Secondly(K•(u, w) ∧ R•
Op(i, k));(H(w, t) ∧ QOp(k, h, w, t))

= (H•(u, v) ∧ Q•
Op(i, j, u, v));(K(v, t) ∧ ROp(j, h)), or,

(K• ∧ R•
Op);(H ∧ QOp) ≡ (H• ∧ Q•

Op);(K ∧ ROp)

≡ POp . (5.25)

Thirdly, quoting the shorter form only, and using a prime to
indicate after-states are being referred to we have,

(K•′ ∧ V• ∧ R• ∧ K•);(H ∧ QOp∧ DOp) ≡
(H• ∧ Q•

Op∧ D•
Op);(K′ ∧ V ∧ R ∧ K) ≡ COp . (5.26)

The initialisation and step relations ofRef andRet must
satisfy conditions (5.27) to (5.30) below.

InitT(v′) ⇒ (∃ v′, w′ • H•(([v′], [w′]), v′)) (5.27)

H•(([v], [w]), v) ∧ Q•
Op(([j], [k]), j, ([v], [w]), v) ∧

stpOpT
(v, j, v′, p) ⇒

(∃ v′, w′, p, q • H•(([v′], [w′]), v′) ∨
D•

Op(([v′], [w′]), v′, ([p], [q]), p;

([j], [k]), j, ([v], [w]), v)) (5.28)

InitF(w′) ⇒ (∃ v′, w′ • K•(([v′], [w′]), w′)) (5.29)

K•(([v], [w]), w) ∧ R•
Op(([j], [k]), k) ∧

stpOpF
(w, k, w′, q) ⇒

(∃ v′, w′, p, q • K•(([v′], [w′]), w′) ∧
V•

Op(([p], [q]), q)) (5.30)

Now we can give the transitions ofUniv. For eachOpU
a typical transition isu -(i, OpU, o)-› u′ or, more explicitly,

([v], [w]) -(([ j], [k]), OpU, ([p], [q]))-› ([v′], [w′])
(5.31)

iff [ v], [w], [ j], [k], [p], [q], [v′], [w′] satisfy

( ∃ w, k, w′, q • K•(([v], [w]), w) ∧ R•
Op(([j], [k]), k) ∧

stpOpF
(w, k, w′, q) ∧ K•(([v′], [w′]), w′) ∧

V•
Op(([p], [q]), q)) ) (a)

∨
( ∃ v, j, v′, p • H•(([v], [w]), v) ∧

Q•
Op(([j], [k]), j, ([v], [w]), v) ∧ stpOpT

(v, j, v′, p) ∧

(H•(([v′], [w′]), v′) ∨
D•

Op(([v′], [w′]), v′, ([p], [q]), p;

([j], [k]), j, ([v], [w]), v)) ) (b)

(5.32)

The initialization predicateInitU(u′) setsu′ to any value
([v′], [w′]) for which

( ∃ w′ • InitF(w′) ∧ K•(([v′], [w′]), w′) ) ∨
( ∃ v′ • InitT(v′) ∧ H•(([v′], [w′]), v′) ) (5.33)

is true. This completes the definition ofUniv.
The components introduced above define a retren

ment fromUniv to Ret because they satisfy POs (5.34) an
(5.35), and a refinement fromUniv to Ref because they sat-
isfy POs (5.36) and (5.37).

InitT(v′) ⇒ (∃ u′ • InitU(u′) ∧ H•(u′, v′)) (5.34)

H•(u, v) ∧ Q•
Op(i, j, u, v) ∧ stpOpT

(v, j, v′, p) ⇒
(∃ u′, o • stpOpU

(u, i, u′, o) ∧
(H•(u′, v′) ∨ D•

Op(u′, v′, o, p; i, j, u, v))) (5.35)

InitF(w′) ⇒ (∃ u′ • InitU(u′) ∧ K•(u′, w′)) (5.36)

K•(u, w) ∧ R•
Op(i, k) ∧ stpOpF

(w, k, w′, q) ⇒
(∃ u′, o • stpOpU

(u, i, u′, o) ∧
K•(u′, w′) ∧ V•

Op(o, q)) (5.37)

Finally, the composition of theUniv to Ret retrenchment
and theRet to Conc refinement on the one hand, or the
Univ to Ref refinement and theRef to Conc retrenchment
on the other, yield a retrenchment fromUniv to Conc be-
cause they satisfy POs (5.38) and (5.39) below. What
more, (5.24) to (5.26) show they both give thesamere-
trenchment, with retrieves, within, and concedes relatio
given respectively byG, POp andCOp.

InitC(t′) ⇒ (∃ u′ • InitU(u′) ∧ G(u′, t′)) (5.38)

G(u, t) ∧ POp(i, h, u, t) ∧ stpOpC
(t, h, t′, s) ⇒

(∃ u′, o • stpOpU
(u, i, u′, o) ∧

(G(u′, t′) ∨ COp(u′, t′, o, s; i, h, u, t))) (5.39)

Note also thatUniv possesses the following properties.

InitU(u′) ⇒
( (∃ w′ • InitF(w′) ∧ K•(u′, w′)) ∨

(∃ v′ • InitT(v′) ∧ H•(u′, v′)) ) (U1)

stpOpU
(u, i, u′, o) ⇒ (

(∃ w, k, w′, q • K•(u, w) ∧ R•
Op(i, k) ∧

stpOpF
(w, k, w′, q) ∧ K•(u′, w′) ∧ V•

Op(o, q))
∨
(∃ v, j, v′, p • H•(u, v) ∧ Q•

Op(i, j, u, v) ∧

∧
Op
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stpOpT
(v, j, v′, p) ∧

(H•(u′, v′) ∨ D•
Op(u′, v′, o, p; i, j, u, v))) ) (U2)

K•(u′, w′) ∧ K•(u′, w′) ⇒  w′ ~ w′ (U3)

(H•(u′, v′) ∨ D•
Op(u′, v′, ...)) ∧

(H•(u′, v′) ∨ D•
Op(u′, v′, ...)) ⇒ v′ ~ v′ (U4)

V•
Op(o, q) ∧ V•

Op(o, q) ⇒ q ~ q (U5)

D•
Op(..., o, p; ...) ∧ D•

Op(..., o, p; ...) ⇒ p ~ p (U6)

H•(u′, v′) ⇒  (∃ w • K•(u′, w′)) (U7)

H•(u′, v′) ∧ K•(u′, w′) ⇒ H•(([v′], [w′]), v′) (U8)

H•(u, v) ∧ Q•
Op(i, j, u, v) ∧

D•
Op(u′, v′, o, p; i, j, u, v) ⇒
(∃ w′, q, k, w • K•(u′, w′) ∧ V•

Op(o, q) ∧
R•

Op(i, k) ∧ K•(u, w)) (U9)

K•(u′, w′) ∧ V•
Op(o, q) ∧ R•

Op(i, k) ∧ K•(u, w) ∧
H•(u, v) ∧ Q•

Op(i, j, u, v) ∧
D•

Op(u′, v′, o, p; i, j, u, v) ⇒
H•(([v], [w]), v) ∧ Q•

Op(([j], [k]), j, ([v], [w]), v) ∧
D•

Op(([v′], [w′]), v′, ([p], [q]), p;

([j], [k]), j, ([v], [w]), v)) (U10)

V•
Op(o, q) ⇒ (∃ p • V•

Op(([p], [q]), q)) (U11)

The data given so far satisfies part (1) of the theorem below.

Theorem 5.1 Let there be a retrenchment fromRef to
Conc, and a refinement fromRet to Conc (as shown in
Fig. 1), which satisfy conditions (5.27) to (5.30). Then the
following hold.

(1) There is a universal systemUniv for which there is a
retrenchment fromUniv to Ret and an I/O-filtered re-
finement fromUniv to Ref whose compositions with
the original refinement and retrenchment respectively
are equal as retrenchments fromUniv to Conc, and
which satisfies (U1) to (U11).

(2) Whenever there is a systemXtra and a retrenchment
from Xtra to Ret and an I/O-filtered refinement from
Xtra to Ref whose compositions with the original re-
finement and retrenchment respectively are equal as
retrenchments fromXtra to Conc, and which satisfies
(X1) to (X11) below, then there is an I/O-filtered re-
finement fromUniv to Xtra such thatK˚;H˜ ⇒ H•, (K˚
∧ R̊ );(H˜ ∧ Q˜) ⇒ (H• ∧ Q•), (K˚′ ∧ V˚ ∧ R̊ ∧ K˚);(H˜
∧ Q˜ ∧ D˜) ⇒ (H• ∧ Q• ∧ D•), and such thatK˚;K˜ ⇒
K•,  R̊ ;R̃ ⇒ R•, V˚;V˜ ⇒ V•.

(3) Whenever a systemUniv* has properties (1) and (2)
above ofUniv, thenUniv andUniv* are mutually in-
terrefinable.

Part (2) of Theorem 5.1 is concerned with the refinement

from Univ to Xtra. Suppose there is an I/O-filtered refine
ment fromXtra to Ref given by retrieve relationK˜, within
relation R̃ , and nevertheless relationV˜; and a retrench-
ment fromXtra to Ret given by retrieve relationH˜, within
relationQ˜, and concedes relationD˜. Let the state, input
and output spaces ofXtra be given byu˜ ∈ U˜, i˜ ∈ I˜, o˜ ∈
O˜ and let the initialisation and step predicates forXtra be
InitX andstpOpX

. Finally let Xtra have properties (X1) to
(X11) below.

InitX(u˜′) ⇒
( (∃ w′ • InitF(w′) ∧ K˜(u˜′, w′)) ∨

(∃ v′ • InitT(v′) ∧ H˜(u˜′, v′)) ) (X1)

stpOpX
(u˜, i˜, u˜′, o˜) ⇒

( (∃ w, k, w′, q • K˜(u˜, w) ∧ R̃ Op(i˜, k) ∧
stpOpF

(w, k, w′, q) ∧ K˜(u˜′, w′) ∧ V˜Op(o˜, q))
∨
(∃ v, j, v′, p • H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ∧

stpOpT
(v, j, v′, p) ∧

(H˜(u˜′, v′) ∨ D˜Op(u˜′, v′, o˜, p; i˜, j, u˜, v))) )
(X2)

K˜(u˜′, w′) ∧ K˜(u˜′, w′) ⇒  w′ ~ w′ (X3)

(H˜(u˜′, v′) ∨ D˜Op(u˜′, v′, ...)) ∧
(H˜(u˜′, v′) ∨ D˜Op(u˜′, v′, ...)) ⇒ v′ ~ v′ (X4)

V˜Op(o˜, q) ∧ V˜Op(o˜, q) ⇒ q ~ q (X5)

D˜Op(..., o˜, p; ...) ∧ D˜Op(..., o˜, p; ...) ⇒ p ~ p (X6)

H˜(u˜′, v′) ⇒  (∃ w′ • K˜(u˜′, w′)) (X7)

H˜(u˜′, v′) ∧ K˜(u˜′, w′) ⇒ H•(([v′], [w′]), v′) (X8)

H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ∧
D˜Op(u˜′, v′, o˜, p; i˜, j, u˜, v) ⇒

(∃ w′, q, k, w • K˜(u˜′, w′) ∧ V˜Op(o˜, q) ∧
R̃ Op(i˜, k) ∧ K˜(u˜, w)) (X9)

K˜(u˜′, w′) ∧ V˜Op(o˜, q) ∧ R̃ Op(i˜, k) ∧ K˜(u˜, w) ∧
H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ∧
D˜Op(u˜′, v′, o˜, p; i˜, j, u˜, v) ⇒

H•(([v], [w]), v) ∧ Q•
Op(([j], [k]), j, ([v], [w]), v) ∧

D•
Op(([v′], [w′]), v′, ([p], [q]), p;

([j], [k]), j, ([v], [w]), v) (X10)

V˜Op(o˜, q) ⇒ (∃ p • V•
Op(([p], [q]), q)) (X11)

Notice properties (U1) to (U11) correspond to propertie
(X1) to (X11). HenceUniv andXtra belong to the same
class of systems that complete the square.

We now define relationsK˚, R̊ Op, andV˚Op.
8
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K˚(u, u˜)  = K˚(([v], [w]), u˜)  =

(∀ w • K˜(u˜, w) ⇒ K•(([v], [w]), w))  ∧
(∀ v • H˜(u˜, v) ⇒ H•(([v], [w]), v)  ∧
(∀ v, o˜, p, i˜, j, u˜, v • H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ∧

D˜Op(u˜, v, o˜, p; i˜, j, u˜, v) ⇒
(∃ o, i, u • H•(u, v) ∧ Q•

Op(i, j, u, v) ∧
D•

Op(([v], [w]), v, o, p; i, j, u, v)))
(5.40)

R̊ Op(i, i˜)  = R̊ Op(([j], [k]), i˜)  =

(∀ k • R̃ Op(i˜, k) ⇒ R•
Op(([j], [k]), k))  ∧

(∀ j, v, u, u˜ • K˚(u, u˜) ⇒
( H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ⇔

H•(u, v) ∧ Q•
Op(([j], [k]), j, u, v) ) ) (5.41)

V˚Op(o, o˜)  = V˚Op(([p], [q]), o˜)  =

(∀ q • V˜Op(o˜, q) ⇒ V•
Op(([p], [q]), q))  ∧

(∀ v′, p, j, v, u′, u˜′, i, i˜, u, u˜ •

H˜(u˜, v) ∧ Q˜Op(i˜, j, u˜, v) ∧
D˜Op(u˜′, v′, o˜, p; i˜, j, u˜, v) ∧
K˚(u′, u˜′) ∧ R̊ Op(i, i˜) ∧ K˚(u, u˜) ⇒

H•(u, v) ∧ Q•
Op(i, j, u, v) ∧

D•
Op(u′, v′, ([p], [q]), p; i, j, u, v))) (5.42)

The above satisfy the necessary inclusions, and are the re-
trieve, within and nevertheless relations of an I/O-filtered
refinement fromUniv to Xtra because POs (5.43) and
(5.44) hold. This completes part (2).

InitX(u˜′) ⇒ (∃ u′ • InitU(u′) ∧ K˚(u′, u˜′)) (5.43)

K˚(u, u˜) ∧ R̊ Op(i, i˜) ∧ stpOpX
(u˜, i˜, u˜′, o˜) ⇒

(∃ u′, o • stpOpU
(u, i, u′, o) ∧

K˚(u′, u˜′) ∧ V˚Op(o, o˜)) (5.44)

Part (3) follows readily by observing that for a system
Univ* having the same properties asUniv, there will be an
I/O-filtered refinement fromUniv to Univ* and an I/O-fil-
tered refinement fromUniv* to Univ. This completes the
reconciliation.

In this section we have shown how to take a retrench-
ment and a refinement to a common system and construct a
canonical system that reconciles the two, giving the most
abstract construction possible within a class of systems.

6. An Example

We return to our example and use it to illustrate the con-
struction ofUniv. First observe that conditions (5.27) to
(5.30) hold. The states ofUniv are pairs of equivalence
classesu = ([v], [w]). So ([<2, 3, 88>], [{1, 9, 43454}]) is
a valid state. It is instructive to work out the elements of the

equivalence classes [v] and [w].
We begin with [w]. As we shall see there are three pos

sibilities for a typical class. Considerw = <1, 2>, a state of
Ref. This is linked byH to t = <1, 2> in Conc. Similarly
H links w = <2, 1> andt = <2, 1>. Now botht’s are linked
to {1, 2} by K. Therefore, by (5.5), one class is [w] = { <1,
2>, <2, 1>}. Τhe same applies to anyw with length 9 or
less. Thus one possibility for [w] is a set of sequences
which are serialisations of X, where X∈ P(NAT) ∧ |X| ≤ 9.

Now takew = <1..10>. This is linked tot = <1..10> by
H, which in turn is linked tov = {1..10} by K. In addition
each<1..10, x> in Ref, wherex ∈ NAT ∧ x > 10, is linked
to t = <1..10> by DAdd. The same arrangement applies fo
any sequencew of length 10. So by (5.5) another possibil
ity for [w] is a set of sequences which are serialisations
X and Y, where X∈ P(NAT) ∧ |X| = 10, Y∈ P(NAT) ∧ |Y|
= 11 and X⊆ Y. The final possibility for [w] is a singleton
whose member is a sequence of length 12 or more.

For [v] the situation is much simpler. Each class is a si
gleton which is an element ofP(NAT). For the I/O spaces
the input and output classes are singleton sets whose
ment is aNAT, plus, forPRem/~PRem, the class [EMPTY].

Let us now examine a typical non-boundary step forAd-
dU. Its structure can be deduced by inspecting (5.32
Well, either (5.32a) or (5.32b) must hold. Suppose (5.32
holds forstpAddT

(v, j, v′). Then because the classes part
tioningV andJ are singletons,u = ([v], -), i = ([j], -) andu′
= ([v′], -). Furthermore, whenH•, Q• andH•′∨D• hold, then
so do theK•, R• andK•′ of (5.32a), for all validw, k andw′.
Notice also thatH•(([v], [w]), v) pairs together classes [v]
and [w] such that members of [w] are serialisations ofv. In
the same wayQ• pairs [j] and [k], andH•′∨D• pairs [v′] and
[w′]. Thus it follows that (6.1) below is a suitable instance

([<1,2>], [{1,2}]) -(([3], [3]), AddU)-›

([<1,2,3>], [{1,2,3}]) . (6.1)

When only (5.32a) holds we get junk transitions whic
consist ofAddF steps which have no correspondingAddT
step. One suchAddF step is<1..15> -(16,AddF)-› <1..16>.
We will say nothing more about junk transitions.

Using the same analysis, a boundary case is

([<1..10>], [{1..10}]) -(([11], [11]), AddU)-›

([<1..11>], [{1..10}]) . (6.2)

So the equivalence classes bunch together allRef andRet
steps which correspond. For instance, from (6.2), {1..10
(11, AddT)-› {1..10} matches both<1..10> -(11, AddF)-›
<1..11> and <10..1> -(11, AddF)-› <10..1,11>, amongst
others. Thus we interpretUniv as being a system which es
sentially enjoys the behaviour ofRef but with data at the
level of abstraction ofRet.

ForRemU a typical non-boundary step is shown in (6.3)
9
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([<1,2>], [{1,2}]) -( RemU, ([1], [1]))-› ([<2>], [{2}])

(6.3)

Note that it is not possible to find values that satisfy (5.32)
for a step which describes the removal of an element when
there are none left. This is entirely consistent with our in-
terpretation ofUniv: Ref does not have a transition in this
case that can be lifted to the level ofRet.

7. Conclusions

We have shown how a retrenchment and a refinement to a
common system can be reconciled by a system universal
within a class of similar reconciliations.

We sought the most general result, by trying to restrict
the relations of the given retrenchment and refinement as
little as possible, thus admitting the greatest number of sit-
uations. Work is ongoing to produce a mathematically
more elegant solution, by enforcing a greater degree of reg-
ularity on the component relations, which, although not as
general as the current result, should still be applicable to a
large number of realistic problems.

The pushout-like construction of this paper is one result
in the full algebraic integration of retrenchment and refine-
ment. Other results appear in the already cited works [2,
12, 13], and yet others are work in progress. The complete
suite of results will ensure that retrenchment adds a truly
fresh dimension to possible development routes, comple-
menting refinement in situations where it struggles to give
a convincing account, rather than being a stand-alone tech-
nique that fragments development routes into incompatible
branches. Ultimately the developer gains by having a rich-
er integrated palette of tools with which to organise the
building of systems.
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	6. An Example
	([<1,2>], [{1,2}]) -(([3], [3]), AddU)-› ([<1,2,3>], [{1,2,3}]) . (6.1)
	([<1..10>], [{1..10}]) -(([11], [11]), AddU)-› ([<1..11>], [{1..10}]) . (6.2)
	([<1,2>], [{1,2}]) -(RemU, ([1], [1]))-› ([<2>], [{2}]) (6.3)
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